9852

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 34, NO. 10, OCTOBER 2024
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Abstract— Ground-truth RGBD data are fundamental for a
wide range of computer vision applications; however, those
labeled samples are difficult to collect and time-consuming to
produce. A common solution to overcome this lack of data is to
employ graphic engines to produce synthetic proxies; however,
those data do not often reflect real-world images, resulting in poor
performance of the trained models at the inference step. In this
paper we propose a novel training pipeline that incorporates
DiffusiondD (D4D), a customized 4-channels diffusion model able
to generate realistic RGBD samples. We show the effectiveness
of the developed solution in improving the performances of
deep learning models on the monocular depth estimation task,
where the correspondence between RGB and depth map is
crucial to achieving accurate measurements. Our supervised
training pipeline, enriched by the generated samples, outperforms
synthetic and original data performances achieving an RMSE
reduction of (8.2%, 11.9%) and (8.1%, 6.1%) respectively on
the indoor NYU Depth v2 and the outdoor KITTI dataset.

Index Terms— Computer vision, diffusion models, deep learn-
ing, monocular depth estimation, generation.

I. INTRODUCTION

EEP learning has achieved astonishing results in several

research fields encouraging its fast growth in all of
its aspects, from the study of neural network structure to
its optimization. In computer vision and image processing,
it has gained significant success in tasks like object detection,
depth estimation, and semantic segmentation [1]. However,
the increasing size and capacity of neural network architec-
tures require the availability of a huge amount of labeled
training data, which are often missing or difficult to collect.
This issue led researchers to focus on several techniques
to reduce the data requirements, such as unsupervised [2]
or self-supervised [3] learning strategies, with the objective
of categorizing unlabeled or partially labeled data. However,
unsupervised learning is intrinsically more complex than
(data-driven) supervised learning due to the lack of labeled
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output samples. Another possible solution could be the use of
Al-based methodologies [4] to automatically generate realis-
tic samples and data augmentation techniques [5] exploited
to increase the diversity of training data. Nevertheless, the
latter techniques are usually constrained by the mathematical
transformations that can be used to modify original images
while preserving their information. Moreover, the automatic
generation of realistic samples has been typically attributed
to variational autoencoders (VAEs) and generative adversarial
networks (GANs), which lack of samples’ variety and details.
Differently, a commonly used solution to generate novel
datasets is based on synthetic rendering such as Unity® [6]
and Unreal Engine® [7] frameworks. Unfortunately, those tech-
nologies often fail to provide realistic data, lacking of many
realistic features such as accurate light reflections, camera
artifacts, and noisy data. As a result, the data distribution of
real samples will differ from synthesized ones, despite many
works have been proposed to address the problem via domain
adaptation and randomization approaches [8], [9], [10].

The lack of a large amount of ground truth data is
particularly significant in the case of dense prediction appli-
cations, such as depth estimation, where RGB images and
corresponding depth maps are required to perform the task.
This situation is likely related to the difficulties and highly
time-consuming procedures needed to collect congruent RGB
and depth data. Such issues are not limited to calibration
and alignment procedures between cameras and depth sensors
but are also related to unfilled depth maps captured with
LiDAR devices and the wide range of possible scenarios. Even
if many RGBD datasets have been proposed [11], most of
them include less than 50K real-world samples such as NYU
Depth v2 (NYU) [12] and KITTI [13] datasets. In contrast,
millions of labeled samples are available for other computer
vision tasks such as image classification (ImageNet [14]) and
object detection (COCO [15]). Consequently, the objective
of this paper is to automatically generate realistic RGBD
samples in order to increase the amount of training data while
improving the deep learning model’s performances, aiming to
overcome the limits of data augmentation and synthetically
created samples. Our proposed solution, named Diffusion4D
(D4D), is based on denoising diffusion probabilistic models
(DDPMs) [16], [17], a score-based generation techniques that
have shown outstanding results in the creation of high-fidelity
images [18]. Our strategy focuses on a custom 4-channels
DDPM to capture the intrinsic information presents in real
indoor and outdoor RGBD samples in order to generate
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Fig. 1.
the aspect ratio of the original samples. The depth maps are converted in RGB format with a perceptually uniform colormap for a better view, while the two
bottom colorbars emphasize the depth data distribution (in meters) over the generated samples.

realistic RGB images and corresponding depth maps while
improving the data diversity between training samples. D4D
introduces customized architecture configurations which are
based on 4-channels samples, fine-tuned loss functions, and
diffusion schedules. The designed models are used to drive
the learning procedure of the DDPM to generate (uncon-
ditioned!) heterogeneous variations of the original RGBD
dataset. Exploiting the characteristic of DDPMs based on
the principle of non-equilibrium statistical physics, our aim
is to extract key features of real RGBD samples during
the forward (inference) process; subsequently, during the
backward (generative) phase, the model generates realistic
variations of original data obtained merging previously learned
features. Therefore, we do not target the production of highly
photo-realistic images rather than coherent samples where
RGB values and depth distances are correlated as in real-
world; some examples are shown in Figure 1. Furthermore,
to demonstrate the effectiveness of generated RGBD samples,
we apply D4D in a novel supervised training pipeline to tackle
the monocular depth estimation (MDE) [19] task, a dense
prediction task consisting of estimating a per-pixel distance
map given a single RGB image as input.

The main contributions of this work are summarized as fol-
lows: 1) We design a customized 4-channels diffusion model
to generate realistic RGBD samples. 2) We incorporate D4D-
generated data into a novel training pipeline to boost MDE
models’ performances. 3) We demonstrate the effectiveness of
the proposed training strategy to tackle the MDE task over
four reference MDE models. In particular, we focus on three
convolution neural networks (CNN) and one hybrid vision
transformer (hViT), which are respectively DenseDepth [20],
FastDepth [21], SPEED [22], and METER [23]. We identify
those architectures in order to provide a general overview
of the adaptability of the proposed solution over various

IThe unconditioned generation techniques are identified by the absence of
additional input data.
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D4D generated RGBD samples based on the indoor NYU Depth v2 (right) and the outdoor KITTI (left) datasets. The images are scaled to match

MBDE architectures; precisely, in Section V, we will report the
quantitative and qualitative estimation error reduction achieved
with the employment of the D4D training pipeline over
both indoor and outdoor scenarios. Furthermore, we report
some additional experiments on two efficient ViT architectures
proposed in [24]. Subsequently, we show the superior perfor-
mances of generated samples in three settings: 3.1) When the
training of MDE models is performed without the original
dataset. 3.2) When compared against synthetic datasets, such
as SceneNet RGB-D [25] and SYNTHIA-SF [26] datasets.
3.3) In generalization performances on the indoor DIML/CVL
RGB-D [27] test dataset in blind conditions. 4) Finally,
we created two new datasets, namely D4D-NYU and D4D-
KITTI, each dataset refers to the original one (NYU, KITTI)
and it is internally divided according to the generation res-
olution used. The datasets collect D4D-generated RGBD
samples at a variety of resolutions, ranging from 64 X
48 pixels to 320 x 240 pixels. We hope that such datasets
could be further exploited to improve the performances of
MDE architectures and other depth-based tasks. The project
page and generated datasets are publicly available at the
following link https://github.com/lorenzopapab/
Diffusion4D.

This paper is organized as follows: Section II reviews some
previous works related to the topics of interest. Section III
describes the proposed D4D method and the overall training
pipeline in detail. Experiments and hyper-parameters are dis-
cussed in Section IV, while Section V reports the qualitative
and quantitative improvements achieved by the chosen MDE
model with the use of D4D generated samples. Some final con-
siderations and future applications are provided in Section VI.

II. RELATED WORK

The task of producing new samples from an existing data
collection is known as generation. There are two basic gener-
ation methodologies: unconditioned, in which the samples are
generated from noise (i.e., Gaussian noise), and conditioned,
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in which the samples are generated in response to a given
input, e.g., text prompts and images. In Al-based approaches,
this task is usually tackled through VAEs, GANs, and the
recent DDPMs, deep learning techniques commonly based
on convolutional and transformer operations. Many aspects in
developing models for generating realistic images have been
studied and improved during these years, such as conditioning
the output with ad-hoc input variables as well as speeding up
the process by working on the efficiency and inference fre-
quency. Zhu et al. [28] propose DM-GAN, a text-conditioned
architecture able to improve the quality of generated samples
based on information prompts. Karras et al. [29] focus on
an augmentation solution for training a GAN model under
limited data constraints. Cai et al. [30] propose a deep
convolutional GAN solution to generate synthetic data to
tackle the imbalanced problem of training datasets for crash
prediction scenarios. Zhao et al. [31] integrate and optimize
the computational complexity of transformer architectures into
a GAN-based approach in order to produce high-resolution
images.

Furthermore, generative models have also been widely
applied to handle the image translation task, in which an input
image from one domain is translated (mapped) to another one
while preserving the content of the given image. An example is
provided by Zhu et al. [32] with CycleGAN, where the authors
mainly focus on a cycle consistency loss to enhance the overall
generation performances. Russo et al. [33], inspired by [32],
introduce a class consistency loss for cross-domain classifi-
cation tasks. Moreover, Tang et al. [34] propose to guide the
translation process through an attention mechanism in order
to achieve high-fidelity images, whereas Torbunov et al. [35]
improve CycleGAN performances by incorporating transform-
ers layers as the generator. Similarly to previous related works
and closer to our application scenario, Du et al. [36] present a
specific domain shift model to extract depth maps from RGB
images. This work has been motivated by the limited amount
of labeled data provided in existing RGBD datasets,

Recently, DDPMs [17], a powerful new family of deep
generative models have been proposed. Such architectures are
based on two Markov chains: a forward chain that perturbs
input data to noise and a reverse chain that translates noise
to data. Ho et al. [16] demonstrate DDPM -capabilities in
computer vision applications for the generation of high-quality
images. Moreover, Dhariwal et al. [37] shows that such models
are able to achieve superior performances than GANs to handle
image synthesis. However, those architectures require sub-
stantial computational resources to be trained; consequently,
Rombach et al. [38] propose a latent diffusion model that
can be trained on limited computational resources proposing
to integrate the Markovian structure into the latent space
of a pretrained autoencoder network. Contrarily, Peebles and
Xie et al. [39] replace the commonly-used U-Net [40] with
transformer modules improving the generation capabilities
while increasing the computational complexity.

In contrast to such Al-based approaches, another popular
solution for the generation of (potentially unlimited) samples is
based on the extraction of frames and associated ground truth
data from virtual environments, i.e., generated via graphical
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engines such as Unity®, Unreal Engine® and the most recent
NVIDIA Isaac Sim™ (Replicator) [41]. Those technologies
often fail to provide realistic data, lacking artifact information
commonly present in real-world images, resulting in poor per-
formance at the inference step. Synthetic datasets, generated
with graphic engines, have been widely employed in the MDE
task. Zou et al. [42] use the synthetic SYNTHIA datasets as a
pre-training strategy to improve depth estimation performances
on autonomous driving scenarios, while Chen et al. [43]
employ the synthetic SceneNet dataset to increase the number
of training samples and the model’s generalization perfor-
mances. Contrarily, Xian et al. [44] propose to estimate
pseudo-depth data trained on relative depth datasets to improve
the model’s generalization in real-world scenarios. The work
also underlies the presence of a domain gap between synthetic
and real data, as well as the need for domain adaptation
techniques to efficiently use synthesized samples.

Consequently, based on similar motivation of [36] and [44],
in this paper, we integrate in a novel training pipeline a
custom 4-channels DDPM in order to generate realistic RGBD
samples for both indoor and outdoor contexts and improve the
estimation performances of MDE approaches while overcom-
ing the limitations introduced by graphical engines. To the best
of our knowledge, no previous works propose a similar solu-
tion to improve a dense prediction task; a detailed description
of the proposed training pipeline is following reported.

III. METHODOLOGY

This section describes the proposed pipeline for generat-
ing RGBD samples with the D4D model. As mentioned in
Section I, one of the primary bottlenecks in the MDE task,
a computer vision application where a dense depth map is
predicted from a single RGB image, is the lack of a large
amount of training data. Therefore, the proposed training
pipeline aims to improve the estimation performances of
well-known MDE architectures by generating RGBD samples
learned from real-world 4-channels (images) data distribution.
We report a graphical representation in Figure 2; as can be
seen, the pipeline is divided into three stages described below.

Stage 1: The first phase is characterized by widely
employed preprocessing techniques. More in detail, we select
as training datasets the NYU for the indoor scenarios and
the KITTI for the outdoor ones, both of which are composed
of real-world RGBD samples. Furthermore, the pixel values
of the training samples are normalized into the [0, 1] range
and rescaled to the working model resolution. Consequently,
the image’s height and width are scaled (resized with a
bilinear interpolation process) to the working resolutions of
the compared architectures used in Stage 3, such as 640 x 480
(DenseDepth), 224 x 224 (FastDepth), and 256 x 192 (SPEED
and METER). This choice will influence (in Stage 2) the
generation resolution of D4D model at inference time.

Stage 2: The second phase is devoted to generating real-
istic samples; precisely, we leverage our custom DDPM to
produce 4-channels samples based on the original training
data. Before introducing our generation strategy, let us briefly
review some basic concepts necessary to better understand
DDPMs, highlighting the motivations that led us to develop



PAPA et al.: D4D: AN RGBD DIFFUSION MODEL TO BOOST MONOCULAR DEPTH ESTIMATION

9855

Stage 1 Stage 2 Stage 3
RGBD D4D Encoder-Decoder Model
Samples

pe

)

J P |

RGBD Data

Training
Data

T

Fig. 2. Graphical representation of the introduced training pipeline. Stage 1 shows the pre-processing operations applied on 4-channels samples extracted from
the original training dataset. Stage 2 emphasizes the training and unconditioned generation processes of D4D model. Stage 3 depicts the training procedure
of a generic encoder-decoder MDE network by highlighting how the RGBD training samples are composed.

the proposed solutions. DDPMs, inspired by non-equilibrium
statistical physics, exploit the reduction of the input data
distribution into a well-known one, in our case, the Gaus-
sian distribution. This process, known as forward diffusion
(inference), is then reversed (generation) to restore input data
distribution. This procedure is commonly defined in literature
as highly flexible and tractable since the model can potentially
represent unlimited data distributions. According to this behav-
ior, the straightforward baseline idea of this paper is to use a
DDPM to learn the distribution of RGBD data from real-world
benchmark datasets during the forward phase. As a result,
during the generation phase, D4D could produce multiple
realistic 4-channels variations of original ground-truth data by
combining previously extracted features.

Therefore, we introduce some basic knowledge about diffu-
sion model methodologies by focusing on the main parameters
that would impact D4D generation performance. More in
detail, diffusion models are characterized by forward and
reverse procedures. The training process of our diffusion
model is principally driven by the cost function L(:,-) and
the diffusion rate B. The first function, usually a L1(-,-)
(mean-absolute) or L2(-, -) (mean-squared) loss, is computed
between the input data distribution ¢ (x™) and the generated
one p(x™) to fit the DDPM data distribution 7(y), which
usually represents a Gaussian distribution. At the forward
phase, the diffusion rate, as defined in [17], drives the Markov
diffusion kernel t;(y|y’; B;) with t = [t9; T] steps, to make
the distribution 7 (y) analytically tractable, while the reverse
phase is trained to describe the same trajectory, but in a reverse
way; we report the two procedures in the following equations.

forward — q(x') = q(xtO)H,{)tn(XIx/; Br) (D

reverse — p(x') = n(xT)l'I,Totn (x'|x) 2

Moreover, the configuration of the diffusion rate is fundamen-
tal for its final performances; in [16] and [17] authors set a
linear B variance ranging from B = 107* to B7 = 0.02 with
T = 1000. In contrast, in [45], authors propose to improve
diffusion models with a reparametrization of the generation
process variance, i.e., replacing the linear schedule with a

squared cosine to prevent abrupt changes of noise levels. This
choice leads to a slower forward process with 7" = 4000 steps
while increasing reconstructed image details.

Based on the just introduced description on diffusion model
methodologies and influenced by the loss function formu-
lation commonly employed in the MDE task [20], [46],
where the learning process usually relies on multiple loss
functions focused on contours, fine details, and images as
a whole, we design D4D with a similar behavior. Precisely,
the proposed strategy would combine two configurations of
loss functions and beta scheduler setups in order to ensure
diversity and consistency in the generated RGBD samples.
The combination of diversity and consistency of the generated
samples, which are combined into the training set, act as a
powerful and realistic data augmentation schema, which is
able to increase the generalization capabilities of our network,
resulting in a lower testing error as shown in the Results
section. More in detail, we propose a merging strategy based
on two complementary configurations, namely S1 and S2,
that are able to generate realistic samples with various data
distributions in order to enhance the overall depth estimation
performances of well-known MDE models. In the first con-
figuration (S1), the model focuses on creating realistic images
mainly composed of constant or gradually increasing depth
distances. As a result, we develop S1 with a slow convergence
behavior, i.e., characterized by an L1 loss function to mitigate
the error during the training process, and a linear diffusion
rate (B) [16], [17] leading the model to a faster forward
process with the constant addition of noisy data. Moreover,
by defining with P the set of pixels, for any pixel p € P, the
S1 configuration can be formalized as reported in Equation 3.

1
S1:Ll=—>"|lx, = yplhi. B=linear (3)
[P
peP

In contrast, in the second configuration (S2), we look for
generated images that are rich in detail with stronger distance
variations. Consequently, we implement S2 with a slower
forward process better focusing on details and objects in
the images, i.e., a cosinusoidal diffusion scheme (B) [45]
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combined with a L2 loss function to achieve a fast convergence
of the learning system. Moreover, by defining with P the set
of pixels, for any pixel p € P, the S2 configuration can be
formalized as reported in Equation 4.

1
§2:02=— Z llxp — ypll3, B =cosine (4
P e

Finally, the proposed configuration (S3) is composed by
merging the generated RGBD samples from S1 and S2.
We opted to set the number of steps 7 equal to 1000 as
a trade-off between training time and image photorealism.
Under these settings, S3 effectively encompasses a wide
range of possible RGB and depth data distributions while
balancing the convergence speed and the diffusion rate of the
4-channels DDPM. Moreover, by defining with s1 and s2 the
set of generated RGBD data, respectively, from S1 and S2
configurations, the proposed strategy can be summarized as
follows:

S1:{loss : L1,
S2 :{loss : L2,

i
$3 = (s1Us2) where p - linear)
B : cosine}

®)

We conclude this stage by merging the generated RGBD
samples with the original training data in order to create a
unique augmented training set. Furthermore, because DDPM
has a significant computing cost during the training and
generation stages, we perform all of the operations described
in this step offline.

Stage 3: Following the proposed training pipeline, in the
last phase, we employ the novel augmented training set to
tackle the MDE task. Precisely, we employ the RGB images
and respective depth maps to train commonly used encoder-
decoder architectures, which are represented as transparent
blocks in Figure 2; in particular, we focus on DenseDepth,
FastDepth, SPEED, and METER, which are typically deep
and shallow architectures commonly used in the MDE task.
We chose these models due to their different working reso-
lutions, architectural components, and estimation capabilities
in order to demonstrate the effectiveness of D4D-generated
samples at different scales and performances. This final phase
is fundamental for demonstrating the efficacy of the proposed
training pipeline and for quantitatively measuring the attained
improvement.

IV. EXPERIMENTAL SETUP

In this section, we describe hyperparameter setups of trained
architectures and evaluation metrics used to compare their
performances. The proposed method is implemented on the
PyTorch framework [47]. To generate new samples with the
D4D procedure, we employ two benchmark MDE datasets,
i.e., NYU Depth v2 and KITTI, following the Eigen et al. [48]
split strategy. NYU and KITTI are respectively composed of
around (50K, 23K) training and (654, 652) test samples at
a resolution of (640 x 480, 1242 x 375) and a maximum
depth range of (10, 80) meters. Furthermore, to compare the
performances achieved by generated samples with respect to
synthetic ones (Figure 2, Stage 3), we use the SceneNet dataset
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for the indoor scenario and the SYNTHIA-SF for the outdoor
one. We use a subset of 300K samples for the first dataset and
the entire training set for the second one, composed of 3K
samples. Finally, we use the 503 samples of the DIML test
dataset to show the generalization performances on an unseen
set of data. Moreover, following the training pipeline outlined
in the previous section, we describe the hyperparameters and
evaluation metrics used in this paper.

In Stage 2, we train each configuration (S1 and S2) at
different image resolutions ranging from 64 x 48 pixels to
320 x 240 pixels on NYU and KITTI datasets. The DDPM
layers are initialized as described in [16] and [49]. We train
D4D for 150 epochs with a batch size ranging from 256 to
16 depending on the image resolution on an NVIDIA A100
SXM4. We use Adam as optimizer with decoupled weight
decay [50] of 1 x 1072, a learning rate equal to 1 x 10~*
and a decay of 1 x 10~! after 100 and 125 epochs. Follow-
ing common practice we set remaining hyperparameters as
B1 =09, B2 =0.999 and € =1 x 1078,

In Stage 3, we train all the compared MDE models
(DenseDepth, FastDepth, SPEED, and METER) with the
following hyperparameter setting: we use Adam optimizer
configuration as before with a learning rate equal to 1 x 1073
and a decay of 1 x 107! every 20 epochs for a total of
80 epochs on an NVIDIA RTX 3090. Furthermore, we ini-
tialized the convolutional kernels as suggested in respective
papers [20], [21], [22], [23] and trained/tested the MDE
architectures with original input-output model resolutions, i.e.,
(640 x 480,320 x 240), (224 x 224,224 x 224), (256 x
192, 64 x 48) and (256 x 192,64 x 48 or 640 x 192, 160 x
48)? respectively for DenseDepth, FastDepth, SPEED, and
METER. The training procedure is further enriched using the
strategy proposed in [20] with the addition of the random
crop. Finally, we evaluate the trained models following the
evaluation metrics introduced in [48]: root mean squared error
(RMSE, in meters [m]), mean absolute error (MAE, in meters
[m]), absolute relative error (Absg,;), and accuracy values such
as 81, 8> and §3. Moreover, for any pixel p € P, we define its
ground truth depth map as y, while §, is the predicted one.
Those evaluation metrics are formally defined in the following
equations.

! .
RMSE = | — > lly, — 3l ©6)
P
peP
1 .
MAE = — > |y, — )l ()
P
peP
1 by =50l
Abska = 75 > e v ®)
peP Yp

For estimating the accuracy values §.eN with z € [1, 3],
a threshold (thr) is commonly set to 1.25° while the set of

2Differently to the other compared CNN architecture, METER has different
image resolutions between the indoor and outdoor scenarios (same height but
different width).
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TABLE I

QUANTITATIVE EVALUATION OF DIFFERENT MDE ARCHITECTURES AND CONFIGURATIONS. THE ORIGINAL SAMPLES ARE TAKEN FROM NYU DATASET
(THIRD COLUMN, NYU = 50K), THE Synthetic SAMPLES ARE FROM SCENENET, WHILE THE GENERATED SAMPLES (Add) ARE FROM D4D-NYU.
THE PROPOSED S3 CONFIGURATION IS IN BOLD, WHILE THE OPTIMAL STRATEGY FOR EACH
COMPARED MODEL IS HIGHLIGHTED IN GRAY

Model | Configuration | NYU [K]  Add [K] Res [pix] | RMSE{ [m] MAE] [m] Absged | 61t 62T 63T
SO 50 0 - 0.5021 0.3663 0.1445 0.8087 0.9507 0.9846
Synthetic 50 50 320 x 240 0.4882 0.3438 0.1367 0.8199  0.9583  0.9888
Synthetic 50 150 320 x 240 0.4713 0.3487 0.1358 0.8251 0.9634 0.9910
S1 50 50 320 x 240 0.4575 0.3352 0.1294 0.8379 0.9640 0.9899
DenseDepth S2 50 50 320 x 240 0.4598 0.3354 0.1273 0.8390 0.9667 0.9921
S3 50 50 320 x 240 0.4568 0.3368 0.1327 0.8340 0.9659 0.9912
S3 50 100 320 x 240 0.4480 0.3262 0.1236 0.8499  0.9693 0.9923
S3 50 50 256 x 192 0.4788 0.3513 0.1340 0.8241 0.9614 0.9912
S3 50 100 256 x 192 0.4578 0.3364 0.1286 0.8376  0.9672 0.9917
SO 50 0 - 0.5714 0.4317 0.1751 0.7535 0.9374  0.9820
Synthetic 50 100 320 x 240 0.5468 0.4122 0.1617 0.7747 0.9450 0.9858
Synthetic 50 300 320 x 240 0.5198 0.3883 0.1519 0.7948 09533  0.9870
FastDepth S1 50 100 256 x 192 0.5029 0.3741 0.1455 0.8058 0.9586 0.9892
S2 50 100 256 x 192 0.5313 0.3995 0.1600 0.7775 0.9454  0.9869
S3 50 100 256 x 192 0.4980 0.3678 0.1414 0.8119 0.9603  0.9901
S3 50 50 320 x 240 0.5132 0.3810 0.1467 0.8014 09553 0.9886
S3 50 100 320 x 240 0.5103 0.3802 0.1492 0.7903  0.9507  0.9865
SO 50 0 - 0.5638 0.4275 0.1676 0.7601  0.9357  0.9836
Synthetic 50 100 320 x 240 0.5606 0.4247 0.1657 0.7605 0.9404 0.9857
Synthetic 50 300 320 x 240 0.5542 0.4217 0.1633 0.7696  0.9496  0.9864
SPEED S1 50 100 256 x 192 0.5170 0.3877 0.1482 0.7948  0.9549  0.9897
S2 50 100 256 x 192 0.5216 0.3943 0.1486 0.7905 0.9565 0.9912
S3 50 100 256 x 192 0.4982 0.3712 0.1430 0.8054 0.9610 0.9911
S3 50 50 320 x 240 0.5132 0.3870 0.1494 0.7973  0.9559  0.9885
S3 50 100 320 x 240 0.5001 0.3767 0.1441 0.8090 0.9587  0.9903
SO 50 0 - 0.5112 0.3854 0.1439 0.8138 09577 0.9876
Synthetic 50 100 320 x 240 0.4893 0.3675 0.1446 0.8130 0.9592  0.9890
Synthetic 50 300 320 x 240 0.4957 0.3709 0.1446 0.8150 0.9574  0.9882
METER S1 50 100 256 x 192 0.4649 0.3471 0.1353 0.8320 0.9685 0.9915
S2 50 100 256 x 192 0.4760 0.3584 0.1388 0.8202  0.9660  0.9923
S3 50 100 256 x 192 0.4574 0.3390 0.1290 0.8357 0.9667 0.9924
S3 50 50 320 x 240 0.4669 0.3495 0.1334 0.8303 0.9673  0.9923
S3 50 100 320 x 240 0.4615 0.3447 0.1320 0.8350 0.9695  0.9928

pixel P} is defined as follows:

P = [p € P s.t.max ()j—p, y—p) < thrz] 9)
Yp Yp
Finally, the accuracy values can be expressed as reported in
Equation 10.

| P;|

Z

P

8.eN,ze[1,3] = (10)

V. EXPERIMENTS

In this section, we show the effectiveness of the proposed
pipeline in terms of improvements obtained over the four
chosen MDE models. The first performed analysis is computed
with respect to indoor and outdoor D4D-generated datasets,
i.e., when selected models are trained by adding the D4D-
NYU and D4D-KITTI datasets. Subsequently, we investigate
the effects of the different resolutions and amounts of RGBD
data generated by D4D on the trained models. We conclude
this section by analyzing the generalization performances
on an unseen test dataset DIML/CVL RGB-D (DIML), the
estimation improvement over efficient variants of METER
architecture and with an analysis of similarity distances over
probabilistic distributions. We compare the obtained results
with respect to S1, S2, S3, a baseline configuration (S0), i.e.,

when the models are trained on original datasets (NYU and
KITTI), as well as an alternative augmentation schema based
on synthetic datasets (Synthetic).

A. Indoor Results

The first analysis is performed on D4D-NYU dataset under
different configurations (Si with i = [0, 3] and Synthetic),
settings (NYU = 50K or NYU = 0), number of generated
samples (Add) and D4D resolutions (Res). These training
combinations have been taken in order to show how the
presence of the original dataset and the generation resolu-
tion of the samples influence the estimation performances
of chosen models. Precisely, we report the same tests over
the four chosen reference MDE models with and without the
original datasets (NYU), respectively in Table I and Table II,
in order to understand differences, similarities, and respec-
tive quantitative improvement obtained when using generated
samples, i.e., how much D4D mimic original samples or
how much those generated samples differs from original one.
Generally speaking, we noticed that the proposed merging
strategy (S3) has superior estimation performances in indoor
scenarios with respect to all the compared configurations.
Based on the achieved results, we derive that the closer
the generation resolution of the samples is to the input
resolution of the trained model, the better the estimation
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TABLE I

QUANTITATIVE EVALUATION OF DIFFERENT MDE ARCHITECTURES AND CONFIGURATIONS. THE Synthetic SAMPLES ARE FROM SCENENET WHILE THE
GENERATED SAMPLES (Add) ARE FROM D4D-NYU WHILE NO NYU (ORIGINAL) SAMPLES ARE USED (THIRD COLUMN, NYU = 0K). THE
PROPOSED S3 CONFIGURATION IS IN BOLD, WHILE THE OPTIMAL STRATEGY FOR EACH COMPARED MODEL IS HIGHLIGHTED IN GRAY

Model [ Configuration | NYU [K]  Add [K] Res [pix] | RMSE] [m] MAEJ [m] Absgel [ 01T o2t o3t
SO 0 0 - - - - - - -
Synthetic 0 50 320 x 240 1.1034 0.8648 0.4298 0.4123 0.6886  0.8465
Synthetic 0 150 320 x 240 1.0383 0.8292 0.4019 0.4197 0.7228  0.8825
S1 0 50 320 x 240 0.5559 0.4250 0.1736 0.7549 0.9373  0.9821
DenseDepth S2 0 50 320 x 240 0.6087 0.4767 0.1931 0.6619 0.9297 09773
S3 0 50 320 x 240 0.5306 0.4030 0.1580 0.7755 0.9489  0.9873
S3 0 100 320 x 240 0.5301 0.4003 0.1578 0.7754 0.9490 0.9873
S3 0 50 256 x 192 0.5473 0.4163 0.1654 0.7654 0.9446  0.9866
S3 0 100 256 x 192 0.5398 0.4096 0.1597 0.7720 0.9469  0.9877
SO 0 0 - - - - - - -
Synthetic 0 100 320 x 240 1.1169 0.9779 0.4538 0.3866 0.6903 0.8621
Synthetic 0 300 320 x 240 1.0852 0.9051 0.4167 0.4247  0.7275 0.8817
FastDepth S1 0 100 256 x 192 0.5709 0.4319 0.1768 0.7543 0.9412  0.9839
; S2 0 100 256 x 192 0.5952 0.4569 0.1845 0.7047 0.9292  0.9842
S3 0 100 256 x 192 0.5502 0.4165 0.1730 0.7649 0.9464  0.9877
S3 0 50 320 x 240 0.5735 0.4397 0.1756 0.7468 0.9389 0.9844
S3 0 100 320 x 240 0.5651 0.4343 0.1721 0.7473 0.9394  0.9854
S0 0 0 - : : - - - -
Synthetic 0 100 320 x 240 1.2278 1.0606 0.5424 0.3159 0.6279  0.8290
Synthetic 0 300 320 x 240 1.1635 0.9827 0.4732 0.3923 0.6850  0.8532
SPEED S1 0 100 256 x 192 0.5833 0.4430 0.1687 0.7493 0.9385 0.9857
S2 0 100 256 x 192 0.6003 0.4646 0.1779 0.6875 0.9224  0.9825
S3 0 100 256 x 192 0.5590 0.4260 0.1622 0.7665 0.9438 0.9874
S3 0 50 320 x 240 0.5803 0.4482 0.1735 0.7456 0.9352  0.9852
S3 0 100 320 x 240 0.5694 0.4379 0.1674 0.7439 0.9423  0.9862
S0 0 0 - : : - - - -
Synthetic 0 100 320 x 240 12242 T.0100 04319 | 03688 06770 08547
Synthetic 0 300 320 x 240 1.0480 0.8556 03837 | 04468 07403  0.8909
METER S1 0 100 256 x 192 0.5445 0.4140 0.1636 0.7679 0.9474  0.9863
S2 0 100 256 x 192 0.5905 0.4574 0.1837 0.7180 0.9322  0.9851
S3 0 100 256 x 192 0.5370 0.4075 0.1577 0.7711 0.9510 0.9886
S3 0 50 320 x 240 0.5778 0.4465 0.1709 0.7729 0.9366  0.9862
S3 0 100 320 x 240 0.5368 0.4125 0.1602 0.7686 0.9491 9887

results, although the error difference is small (e.g., 2.2% of
the RMSE in the DenseDepth case). This finding, based on
the best D4D generation resolution, has been used in the
experiments listed below and will be further investigated in
the following ablation studies. Moreover, we observe that by
doubling the amount of generated data with respect to the
original training dataset (from 50K to 100K), the proposed
configuration (S3) outperforms the baseline configuration (S0)
and the Synthetic datasets with an RMSE reduction equal to
(10.8%, 4.9%) on DenseDepth, (14.7%, 9.7%) on FastDepth,
(11.6%, 11.1%) on SPEED and (10.5%, 6.5%) on METER.
Furthermore, when trained only on D4D-NYU (NYU = 0), S3
is able to achieve better performances than SO in the case of
FastDepth and SPEED, while slightly worse for DenseDepth
and METER. Contrarily, the synthetic RGBD data performs
poorly without the original training dataset. These results
demonstrate the ability of D4D-generated samples to mimic
real-world samples. To summarize, the overall average per-
centage improvement obtained with the proposed training
pipeline, computed with respect to the baseline configuration
over the evaluation metrics used, is equal to 7.3%, 9.6%, 8.2%,
and 6.2% respectively for DenseDepth, FastDepth, SPEED,
and METER.

Finally, to have a complete understanding of the obtained
improvement, we report in Figure 3 a qualitative comparison
of the estimation performances of the DenseDepth model

under the compared configurations, i.e., Si with i = [0, 3]
and Synthetic. Based on predicted depth maps and related
difference maps® reported for each configuration, we note
that DenseDepth, in the synthetic configuration, produces the
highest estimation error (more than 100cm) with respect to
compared setups. Contrarily, S3 is the only configuration
with an error range less than 80cm (demonstrated by darker
difference map in Figure 3). Furthermore, we notice that all the
compared predicted depth maps have well-defined contours.
However, in the reported case, the proposed configuration (S3)
is able to correctly estimate distances in the situation where
all the others fail, i.e., where the scene distance varies rapidly
(e.g., behind a wall); we highlight this area on the difference
map with a dashed red rectangle.

B. Outdoor Results

Along with the previous findings, the proposed method (S3)
achieves notable estimation improvements also in the outdoor
scenario, especially when the D4D generation resolution is
close to the MDE model input resolution. We report in
Table III the results obtained by the selected MDE models
when trained on KITTI dataset and in combination with
DA4D-KITTT or the synthetic SYNTHIA-SF dataset. Precisely,

3The difference map is computed as a per pixel-difference between pre-
dicted () and expected (y) depth map.
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SO Synthetic

o .--

Fig. 3. Indoor results. Qualitative analysis of the estimated prediction obtained with DenseDepth method. The model has been tested on NYU (indoor)
dataset. SO is the baseline setup, i.e., when the MDE model is trained only on the NYU dataset. In Synthetic setup, DenseDepth has been trained over NYU
and a 50K subset from the SceneNet dataset. In Si with i = [1, 3], as described in Section III, DenseDepth has been trained over NYU and 50K samples
taken from our proposed D4D-NYU datasets generated at a resolution of 320 x 240. The Difference Map is computed as a per pixel-difference between
predicted () and expected depth (y), while the reported colorbars are used to emphasize the depth/error range in centimeters (cm).

TABLE III

QUANTITATIVE EVALUATION OF DIFFERENT MDE ARCHITECTURES AND CONFIGURATIONS. THE ORIGINAL SAMPLES ARE TAKEN FrROM KITTI
DATASET, THE Synthetic SAMPLES ARE FROM SYNTHIA-SF WHILE THE GENERATED SAMPLES (Add) ARE FROM D4D-KITTI. THE PROPOSED
S3 CONFIGURATION IS IN BOLD, WHILE THE OPTIMAL STRATEGY FOR EACH COMPARED MODEL IS HIGHLIGHTED IN GRAY

Model | Configuration | KITTI [K] Add [K] Res [pix] [ RMSE] [m] MAE]| [m] Absgel [ 01t o2t o371

SO 23 0 - 5.2099 3.1749 0.1417 0.7991  0.9475  0.9840

Synthetic 23 3 1940 x 1080 5.2982 3.2499 0.1448 0.7871  0.9458  0.9856

DenseDepth S1 23 50 320 x 240 5.1284 3.0221 0.1341 0.8057 0.9546  0.9882
S2 23 50 320 x 240 5.1437 3.0539 0.1349 0.7989  0.9533  0.9869

S3 23 50 320 x 240 4.9636 2.9874 0.1294 0.8168 0.9580  0.9892

S3 23 50 256 x 192 5.1478 3.1324 0.1337 0.8058 0.9542  0.9883

SO 23 0 - 6.1884 3.9174 0.1910 0.7147  0.9088  0.9684

Synthetic 23 3 1940 x 1080 6.1257 3.8100 0.1895 0.7184 09182 0.9764

FastDepth S1 23 50 256 x 192 5.9277 3.6774 0.1854 0.7286  0.9240 0.9781
S2 23 50 256 x 192 5.9417 3.6994 0.1884 0.7292  0.9223  0.9777

S3 23 50 256 x 192 5.6310 3.5062 0.1682 0.7551  0.9316  0.9804

S3 23 50 320 x 240 5.8244 0.3613 0.1759 0.7374 09290 0.9792

SO 23 0 - 5.3957 3.0473 0.1480 0.7797  0.9387  0.9841

Synthetic 23 3 1940 x 1080 5.4219 3.1233 0.1565 0.7574  0.9307  0.9808

SPEED S1 23 50 256 x 192 5.2321 2.9477 0.1409 0.7890  0.9445  0.9848
S2 23 50 256 x 192 5.0945 2.8758 0.1401 0.7980  0.9476  0.9857

S3 23 50 256 x 192 4.9828 2.8017 0.1337 0.8104 0.9521  0.9878

S3 23 50 320 x 240 5.2640 3.0663 0.1437 0.7823  0.9421  0.9839

SO 23 0 - 4.8398 2.7284 0.1278 0.8153  0.9462  0.9859

Synthetic 23 3 1940 x 1080 5.2139 3.0725 0.1468 0.7753  0.9428  0.9847

METER S1 23 50 256 x 192 4.8961 2.7206 0.1275 0.8118 0.9512  0.9864
S2 23 50 256 x 192 4.7908 2.8271 0.1456 0.7840  0.9450  0.9845

S3 23 50 256 x 192 4.7288 2.6833 0.1308 0.8155 0.9533 0.9875

S3 23 50 320 x 240 4.7519 2.6780 0.1314 0.8083  0.9503  0.9857

the maximum RMSE reduction with respect to SO and the (9.1%, 8.1%) on FastDepth, (8.3%, 8.8%) on SPEED, and
Synthetic dataset is obtained by tripling the amount of train- (2.3%, 9.3%) on METER. However, we cannot rule out that
ing data, and it is equal to (4.7%, 6.3%) on DenseDepth, further improvements could be obtained by greatly increasing
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Synthetic

Fig. 4. Outdoor results. Qualitative analysis of the estimated prediction obtained with DenseDepth method. The model has been tested on KITTI (outdoor)
dataset. SO is the baseline setup, i.e., when DenseDepth is trained only on KITTI dataset. In Synthetic setup, the model has been trained over KITTI and
SYNTHIA-SF datasets. In the proposed configuration (S3), the model has been trained over KITTI and 50K samples taken from our proposed D4D-KITTI
datasets generated at a resolution of 320 x 240. The Difference Map is computed as a per pixel-difference between predicted (y) and expected depth (y),
while the reported colorbars are used to emphasize the depth/error range in decimeters (dm).

the number of generated samples. Summarizing, the overall
average percentage improvement achieved with the proposed
training pipeline, when compared with SO, is equal to 4.0%,
6.7%, 5.7%, and ~ 1.0% respectively, for DenseDepth, Fast-
Depth, SPEED, and METER. The latter results obtained for
the hViT architecture are most likely attributed to the D4D
generation resolution. Consequently, similar to the indoor
scenario, we expect comparable RMSE reductions to the CNN
architectures in the case of images generated at the same work-
ing resolution of METER. These results confirm the soundness
of D4D for increasing the performances of any kind of MDE
model. Finally, we report in Figure 4 a qualitative comparison
for the estimation performances of the DenseDepth model in
SO, Synthetic, and S3 configurations. Based on the reported
predictions and associated difference maps, we noticed that the
maximum depth error for all the configurations is in between
(50, 60)dm. However, the proposed setup (S3) predicts object
edges and overall distances more precisely than the other
configurations; we highlight these areas on the difference map
with three dashed red circles (the darker is the area the better).

C. Generalization

After showing the efficacy of the proposed solution in the
two most common MDE scenarios, we illustrate the general-
ization performances of DenseDepth in a blind test, i.e., when
the model is trained and tested over two different datasets
without fine-tuning. In detail, we used the selected model as in
previous indoor analysis and tested it on a different real-world
dataset (DIML). We report the obtained results in Table IV.
It is possible to point out that when the model is trained on
S3 configuration, with the same amount of training samples
(Add = 50K), it outperforms the generalization performances
of SO (NYU). In the case of Synthetic (SceneNet), such
behavior is evident even when the number of training samples

is increased to 150K. Moreover, using 320 x 240 pixels as
DA4D generation resolution, S3 achieves over SO and Synthetic
data an RMSE reduction equal to (8.7%, 26.9%) respectively.
Furthermore, the increase (100K and 150K) of D4D-generated
samples results in comparable estimation performances with
the previously analyzed S3 configuration (Add = 50K),
as shown in Table IV, which does not justify the time required
to produce the additional samples. More in detail, Figure 5
reports a qualitative analysis of DenseDepth model trained
on NYU, SceneNet, or D4D-NYU (separately) and tested
(without fine-tuning) on the DIML/CVL RGB-D dataset over
the compared configurations of Table IV. Based on predicted
depth maps and related difference maps for each configuration,
it is possible to notice that S3 achieves a lower estimation error
than all the other configurations. Precisely, with a maximum
distance error of almost 40cm with respect to the 100cm
and 57cm achieved by synthetic and baseline (SO) setups.
These quantitative and qualitative comparisons demonstrate
the superior performances of the proposed D4D-NYU dataset
even when testing MDE models on an unseen dataset.

D. Image Resolution

In previous experiments, we showed that the image resolu-
tion of D4D-generated samples leads to better depth estimation
performances when it is closer to the input image resolution
of the trained model. Therefore, we report in Table V a
detailed analysis of the effects of D4D-generated resolutions
over deep (DenseDepth) and shallow (FastDepth) MDE mod-
els. This experiment has been performed on indoor samples
(D4D-NYU) with the best parameters’ setup, i.e., S3 con-
figuration, NYU = 50K, and Add = 100K. The previous
trend is confirmed since working with a generation resolution
significantly different from the model input leads to a notice-
able performance decrease, with a maximum difference on
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TABLE IV

GENERALIZATION PERFORMANCES OF DENSEDEPTH ON DIML/CVL RGB-D TEST DATASET. THE PROPOSED STRATEGY
Is IN BOLD, WHILE THE OPTIMAL CONFIGURATION IS HIGHLIGHTED IN GRAY

Model [ Configuration | NYU [K]  Add [K] Res [pix] | RMSE{| [m] MAE] [m] Absged | 01T o2t o371
SO 50 0 - 0.8723 0.7295 0.1268 0.4466  0.7968  0.9337
Synthetic 0 50 320 x 240 1.0901 0.8999 0.3738 0.4221 0.7188  0.8800
Synthetic 0 150 320 x 240 1.0510 0.8721 0.3747 0.4294  0.7248  0.8766
S1 0 50 320 x 240 0.8443 0.7126 0.2696 0.4876  0.8225  0.9331
DenseDepth S2 0 50 320 x 240 0.9417 0.7975 0.1432 0.4005 0.7255 0.8943
S3 0 50 320 x 240 0.7959 0.6660 0.2486 0.5069 0.8381 0.9540
S3 0 50 256 x 192 0.8142 0.6864 0.2730 0.4998  0.8278  0.9365
S3 0 100 320 x 240 0.8001 0.6701 0.2522 0.4921 0.8377 0.9537
S3 0 150 320 x 240 0.7914 0.6623 0.2439 0.5116  0.8421  0.9548
S0 Synthetic s1 s2 S3
RGB Image
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Fig. 5.

Generalization. Qualitative analysis of the estimated prediction obtained with DenseDepth method. The model has been tested in blind condition

(i.e., without fine-tuning) on DIML/CVL RGB-D dataset when trained on a different indoor dataset, i.e., NYU for SO, SceneNet for Synthetic, and D4D-NYU
for S1, S2, and S3. The Difference Map is computed as a per pixel-difference between predicted (y) and expected depth (y), while the reported colorbars are

used to emphasize the depth/error range in centimeters (cm).

TABLE V

QUANTITATIVE COMPARISON OF MDE MODELS TRAINED ON SUBSETS
OF D4D-NYU GENERATED AT DIFFERENT RESOLUTIONS.
THE OPTIMAL VALUES FOR EACH COMPARED
MODEL ARE HIGHLIGHTED IN GRAY

Model [ Res [pix] | RMSEJ [m] Absgl 0t
64 x 48 0.5505 0.1595  0.7678
DenseDepth | 160 X 120 0.4829 0.1342  0.8258
sebep 256 x 192 0.4578 0.1286  0.8376
320 x 240 0.4480 0.1236  0.8499
64 x 48 0.5880 0.1758 07410
FastDenth | 160 X 120 0.5443 0.1616  0.7816
stbep 256 x 192 0.4980 0.1414  0.8119
320 x 240 0.5103 0.1492  0.7903

the RMSE equal to (19.9%, 15.3%) and an overall averaged
percentage reduction of (17.3%, 12.2%) on DenseDepth and
FastDepth. Thanks to this fact, we could keep limited com-
putational requirements needed to generate RGBD samples,
avoiding the use of unnecessary high resolutions. Finally,
Figure 6 reports a qualitative analysis of FastDepth archi-
tecture (other models show similar behavior) when trained
on NYU and the proposed D4D-NYU dataset (S3 settings)
when its samples are generated at different resolutions ranging

from 64 x 48 to 320 x 240 pixels. Based on predicted
depth maps and related difference maps for each generation
resolution, we qualitatively confirm the fact that the closer
the generation resolution of D4D to the input resolution of
FastDepth, the better is the estimation for the MDE model.
In fact, as noticed, the dataset generated at an image resolution
of 256 x 192 pixels, which is closer to FastDepth’s input
resolution (224 x 224), has a lower error distribution. This
can be noticed from the dark region areas that are larger with
respect to the other predictions (underlined by the gray dashed
rectangle in Figure 6).

Based on the obtained findings, we assume that the just
described behavior, due to the different D4D generation reso-
lutions, is caused by the varying feature extraction capabilities
of each MDE architecture. More in detail, since each MDE
architecture has been developed to work with a specific input
resolution, it follows that this parameter defines the quantity
of information (pixels) that the model is able to process in
order to ensure optimal performance. Consequently, the closer
the resolution used to generate samples is to the network’s
working resolution, the better the performance; in contrast,
samples that are larger/smaller than the working resolution of
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Image resolution. Qualitative analysis of the estimated prediction obtained with FastDepth method. The model has been tested on NYU (indoor)

dataset and trained under S3 settings over NYU and D4D-NYU datasets, where its samples have been generated at different resolutions. The Difference Map
is computed as a per pixel-difference between predicted (¥) and expected depth (y), while the reported colorbars are used to emphasize the depth/error range

in centimeters (cm).

the network will be compressed/expanded, thus resulting in
information loss or inaccurate data.

E. Amount of Generated Samples

Once the optimal generation resolution has been analyzed,
in this ablation study, we investigate how different amounts of
generated samples impact the performance of MDE models.
More in detail, we study the behavior of FastDepth architecture
when the number of D4D-generated (training) samples varies;
precisely, we examine a data range between 0 and 250K
RGBD samples generated by D4D-NYU in the optimal S3
configuration at the resolution of 256 x 192 pixels. We report
the obtained results in the two compared setups, i.e., with and
without the original training dataset (NYU), in Table VL.

Based on the obtained results, it can be noticed that the
higher estimation performances are obtained with the addition
of 200K generated training data (Add = 200K). More in
detail, we obtain an average RMSE reduction of 7.9% and
4.6% when the best performing model is compared with
respect to the other configurations (Add = i % 50K with
i € [0, 3]) in the two analyzed scenarios, i.e., when the original
training dataset is used (NYU=50K) and when it is not
considered (NYU=0K). Based on the two compared configu-
rations, we can note that when comparing the best-performing

TABLE VI

QUANTITATIVE COMPARISON OF FASTDEPTH MODEL TRAINED ON
DIFFERENT AMOUNT OF D4D-NYU GENERATED SAMPLES
(S3 CONFIGURATION) AT THE RESOLUTION OF 256 x 192 PIXELS.
THE BEST VALUES FOR EACH COMPARED SETUP
ARE HIGHLIGHTED IN GRAY

Model | NYU [K] _Add [K] | RMSE] [m] _ Absged 611
50 0 05714 0.1751 _ 0.7535
50 50 0.5585 0.1643  0.7666
50 100 0.4980 0.1414  0.8119
50 150 0.4962 0.1411  0.8121
50 200 0.4919 0.1406  0.8127
FastDepth 500 2(5)0 0.5?76 0.1_517 0.7_981
0 50 0.5996 0.1746  0.7500
0 100 0.5502 0.1730  0.7649
0 150 0.5449 0.1619  0.7665
0 200 0.5397 0.1607  0.7678
0 250 0.5444 0.1616  0.7629

setup with the best one (Add = 100K) reported in Table I
and Table II (also reported in Table VI), the RMSE reduction
is limited to 1.2% and 1.9%, respectively. Moreover, when
compared to the Add = 250K setups, the Add = 200K ones
results in an RMSE reduction of 3.1% (NYU= 50) and 0.9%
(NYU= 0). Consequently, we can assume that the Add =
200K setup is FastDepth’s best configuration with respect to
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TABLE VIII

EMBEDDING VECTORS’ DISTANCES COMPUTED BETWEEN EACH
CONFIGURATIONS (Si WITH i = [0, 3]) AND NYU TEST SET.
EACH SUBSET COUNTS 50K TRAINING SAMPLES

NYU KITTI . . RGB Depth

Model D4D RMSE], [m] 511 RMSE] [m] 51t Model Configuration ED HD ED HD
METER X 0.5112 0.8138 4.8398 0.8153 SO 0.1158 0.0771 | 0.1243  0.0826
v 0.4574 0.8357 4.7288 0.8155 ResNet18 S1 0.2626  0.1720 | 0.2739  0.1815
MetaM X 0.5058 08111 2.9403 0.8014 S2 0.2384  0.1597 | 0.2568  0.1719
v/ 0.4556 0.8373 4.6714 0.8166 S3 0.3636  0.2403 | 0.3608 0.2361
y v/ 0.4944 0.8139 4.9652 0.7737 EffB4 S1 1.7724  1.0307 | 2.0593 1.1886
S2 1.4572  0.8330 | 1.8667 1.0584
S3 19611 1.1356 | 2.1222  1.2283

the amount of generated samples; however, when considering
the time required to generate a larger number of RGBD data
and the limited percentage improvement, we can conclude that
100K samples are a good trade-off, ensuring good estimation
performance on the NYU dataset while limiting the overall
computational time.

F. Additional Experiments on Efficient ViT

Once the main parameters of D4D have been analyzed,
we present some additional results on efficient ViT archi-
tectures to emphasize the proposed solution’s versatility.
We outline the following analysis motivated by the practical
applicability of MDE models on embedded/mobile devices,
which are usually characterized by limited computational
powers. In order to infer on such devices, factors like
reduced network computational capabilities, number of train-
able parameters, or model depth typically result in a reduction
of the estimation performances. Consequently, this analysis
investigates the percentage boost that D4D is able to achieve
when combined with efficient architectures. In particular,
we analyze the performance improvement of the proposed
pipeline across two efficient METER configurations, namely,
Meta-METER (MetaM) and Pyra-METER (PyraM) proposed
in [24]. The latter architectures were developed by exploiting
the efficiency capabilities of MetaFormer [51] and Pyramid
Vision Transformer [52], which aims to reduce/linearize the
computational cost of self-attention.

We compare the reported architectures using the same
METER’s optimal* hyperparameters identified in Tablel and
Tablelll respectively for the NYU and KITTI datasets. Based
on the obtained results (Table VII), we can note an average
percentage RMSE reduction of 6.4% and §; increment of
2.0% when the D4D pipeline is used instead of a standard
training pipeline. As a result, it can be noticed that in
this scenario, where model learning capabilities are limited
with respect to deeper architectures due to computational
constraints introduced by embedded devices, the proposed
pipeline still provides a good percentage boost for the model’s
estimation performances.

G. Analysis on Feature Space
We conclude the result section by performing similarity
measurements among different configurations on the feature

4For the NYU dataset: configuration S3, Add= 100K, Res. 256 x 192. For
the KITTI dataset: configuration S3, Add= 50K, Res. 256 x 192.

space in order to provide an in-depth explanation of the
obtained results. More in detail, we analyze the learning
capabilities of D4D configurations (S1, S2, and S3) with
respect to the NYU training setup (S0). We extract the
visual features characterizing each dataset with two pretrained
neural networks (initialized on ImageNet): the ResNet18 [53]
and the EfficienNetB4 [54]. This procedure is performed by
removing the last classification layer (fully connected) from
each respective model. Therefore, a final embedding vector
of each dataset is obtained as the average features vector
extracted from 50K input samples. Subsequently, we compute
the distance between the mean of the embedding vectors
using two evaluation metrics: the Euclidean distance (ED)
and the Hillinger distance (HD) [55]. Table VIII shows such
differences computed between the embedding vectors related
to each configuration and the NYU test dataset.

Based on reported values, S3 has higher values both for ED
and HD rather than other configurations. Moreover, observing
the metrics reported in Table I, Table II, and Table IV we
noticed that the increasing distances correspond to greater
estimation performances. Therefore, without loss of generality,

we derive that the higher the distance of the features from
the test dataset, the better the performance of the MDE model.
We hypothesize that a greater distance corresponds to stronger
generalization capabilities due to a more efficient covering of
heterogeneous samples.

VI. CONCLUSION

This paper presents a novel training pipeline composed of
D4D, a custom 4-channels DDPM to produce realistic RGBD
samples used to improve the estimation performances of deep
and shallow MDE models. The proposed methodology demon-
strates superior performances with respect to synthetically
generated datasets in indoor and outdoor scenarios, with an
average RMSE reduction equal to 8.2% and 8.1%. Moreover,
our solution achieves an RMSE reduction equal to 11.9% and
6.1% with respect to the baseline indoor NYU Depth v2 and
outdoor KITTI datasets. We hope that our method, together
with the generated datasets (D4D-NYU and D4D-KITTI), will
encourage the combined use of DDPM with deep learning
architectures to address the lack of labeled training data in a
variety of computer vision applications. A key element of the
proposed strategy is the use of real-world images to generate
novel augmented samples, thus improving the estimation and
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generalization of MDE model capabilities for deploying in
real-case scenarios.

Our technique is applied to tackle the MDE task, where the
generated depth map is crucial to obtain accurate performance.
However, the generated RGBD samples could also contribute
to other applications, such as monocular SLAM or other
computer vision tasks where a fourth (depth) channel can be
used to improve standard RGB approaches, as in semantic
segmentation [56], human action recognition [57] and object
detection [58]. Consequently, in the future, we will further
evaluate our method and employ generated samples in different
RGBD tasks, study their performances on different archi-
tectures, and propose new diffusion architectures specifically
tailored for depth data.

[1]

[2]

[3]

[4]

[5]
[6]
[7]
[8]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

REFERENCES

A. Ioannidou, E. Chatzilari, S. Nikolopoulos, and I. Kompatsiaris, “Deep
learning advances in computer vision with 3D data: A survey,” ACM
Comput. Surv., vol. 50, no. 2, pp. 1-38, Mar. 2018.

M. Usama et al., “Unsupervised machine learning for networking:
Techniques, applications and research challenges,” IEEE Access, vol. 7,
pp. 65579-65615, 2019.

L. Jing and Y. Tian, “Self-supervised visual feature learning with deep
neural networks: A survey,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 43, no. 11, pp. 4037-4058, Nov. 2021.

Z. Wang, Q. She, and T. E. Ward, “Generative adversarial networks in
computer vision: A survey and taxonomy,” ACM Comput. Surv., vol. 54,
no. 2, pp. 1-38, Mar. 2022.

C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmenta-
tion for deep learning,” J. Big Data, vol. 6, no. 1, pp. 1-48, Dec. 2019.
A. Juliani et al., “Unity: A general platform for intelligent agents,” 2018,
arXiv:1809.02627.

Epic Games. Unreal Engine. Accessed: May 20, 2023. [Online]. Avail-
able: https://www.unrealengine.com

T. Alkhalifah, H. Wang, and O. Ovcharenko, “MLReal: Bridg-
ing the gap between training on synthetic data and real data
applications in machine learning,” Artificial Intell. Geosci., vol. 3,
pp. 101-114, Dec. 2022. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S2666544122000260 x

J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst. (IROS), Sep. 2017, pp. 23-30.

J. Tremblay et al., “Training deep networks with synthetic data: Bridging
the reality gap by domain randomization,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. Workshops, Jun. 2018, pp. 969-977.

A. Lopes, R. Souza, and H. Pedrini, “A survey on RGB-D datasets,”
Comput. Vis. Image Understand., vol. 222, Sep. 2022, Art. no. 103489.
N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor segmentation
and support inference from RGBD images,” in Computer Vision—ECCV
2012 (Lecture Notes in Computer Science), vol. 7576, A. Fitzgibbon,
S. Lazebnik, P. Perona, Y. Sato, and C. Schmid, Eds. Berlin, Germany:
Springer, 2012, doi: 10.1007/978-3-642-33715-4_54.

A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? The KITTI vision benchmark suite,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2012, pp. 3354-3361.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Miami, FL, USA, Jun. 2009, pp. 248-255.

T. Lin et al., “Microsoft COCO: Common objects in context,” in Proc.
13th Eur. Conf. Comput. Vis. Ziirich, Switzerland: Springer, Sep. 2014,
pp. 740-755.

J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,”
in Proc. Adv. Neural Inf. Process. Syst., vol. 33, 2020, pp. 6840-6851.
J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep
unsupervised learning using nonequilibrium thermodynamics,” in Proc.
Int. Conf. Mach. Learn., 2015, pp. 2256-2265.

L. Yang et al., “Diffusion models: A comprehensive survey of methods
and applications,” 2022, arXiv:2209.00796.

Y. Ming, X. Meng, C. Fan, and H. Yu, “Deep learning for monocular
depth estimation: A review,” Neurocomputing, vol. 438, pp. 14-33,
May 2021.

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

[33]

[34]

[35]

[36]

(37]

[38]

[39]

[40]

I. Alhashim and P. Wonka, “High quality monocular depth estimation
via transfer learning,” 2018, arXiv:1812.11941.

D. Wofk, F. Ma, T.-J. Yang, S. Karaman, and V. Sze, “FastDepth: Fast
monocular depth estimation on embedded systems,” in Proc. Int. Conf.
Robot. Autom. (ICRA), May 2019, pp. 6101-6108.

L. Papa, E. Alati, P. Russo, and I. Amerini, “SPEED: Separable pyrami-
dal pooling encoder—decoder for real-time monocular depth estimation
on low-resource settings,” IEEE Access, vol. 10, pp. 44881-44890,
2022.

L. Papa, P. Russo, and I. Amerini, “METER: A mobile vision trans-
former architecture for monocular depth estimation,” /EEE Trans.
Circuits Syst. Video Technol., vol. 33, no. 10, pp. 5882-5893, Oct. 2023,
doi: 10.1109/TCSVT.2023.3260310.

C. Schiavella, L. Cirillo, L. Papa, P. Russo, and 1. Amerini, “Opti-
mize vision transformer architecture via efficient attention modules: A
study on the monocular depth estimation task,” in Image Analysis and
Processing—ICIAP 2023 Workshops. Springer, Jan. 2024, pp. 383-394.
J. McCormac, A. Handa, S. Leutenegger, and A. J. Davison, “SceneNet
RGB-D: Can 5M synthetic images beat generic ImageNet pre-training
on indoor segmentation?” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 2697-2706.

G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez, “The
SYNTHIA dataset: A large collection of synthetic images for semantic
segmentation of urban scenes,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2016, pp. 3234-3243.

J. Cho, D. Min, Y. Kim, and K. Sohn, “DIML/CVL RGB-D dataset:
2M RGB-D images of natural indoor and outdoor scenes,” 2021,
arXiv:2110.11590.

M. Zhu, P. Pan, W. Chen, and Y. Yang, “DM-GAN: Dynamic memory
generative adversarial networks for text-to-image synthesis,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp- 5802-5810.

T. Karras, M. Aittala, J. Hellsten, S. Laine, J. Lehtinen, and T. Aila,
“Training generative adversarial networks with limited data,” in Proc.
Adv. Neural Inf. Process. Syst., vol. 33, 2020, pp. 12104-12114.

Q. Cai, M. Abdel-Aty, J. Yuan, J. Lee, and Y. Wu, “Real-
time crash prediction on expressways using deep generative mod-
els,” Transp. Res. C, Emerg. Technol., vol. 117, Aug. 2020,
Art. no. 102697. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0968090X20306124

L. Zhao, Z. Zhang, T. Chen, D. Metaxas, and H. Zhang, “Improved
transformer for high-resolution GANSs,” in Proc. Adv. Neural Inf. Pro-
cess. Syst., vol. 34, 2021, pp. 18367-18380.

J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proc. IEEE
Int. Conf. Comput. Vis., Oct. 2017, pp. 2223-2232.

P. Russo, F. M. Carlucci, T. Tommasi, and B. Caputo, “From source
to target and back: Symmetric bi-directional adaptive GAN,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp- 8099-8108.

H. Tang, H. Liu, D. Xu, P. H. S. Torr, and N. Sebe, “AttentionGAN:
Unpaired image-to-image translation using attention-guided generative
adversarial networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34,
no. 4, pp. 1972-1987, Apr. 2023.

D. Torbunov et al., “UVCGAN: UNet vision transformer cycle-
consistent GAN for unpaired image-to-image translation,” in Proc.
IEEE/CVF Winter Conf. Appl. Comput. Vis. (WACV), Jan. 2023,
pp. 702-712.

D. Du, L. Wang, H. Wang, K. Zhao, and G. Wu, “Translate-to-recognize
networks for RGB-D scene recognition,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 11828-11837.
P. Dhariwal and A. Nichol, “Diffusion models beat GANs on
image synthesis,” in Proc. Adv. Neural Inf. Process. Syst., vol. 34,
M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan,
Eds. Red Hook, NY, USA: Curran Associates, 2021, pp. 8780-8794.
[Online].  Available:  https://proceedings.neurips.cc/paper/2021/file/
49ad23d1ec9tad4bd8d77d0268 1df5cfa-Paper.pdf

R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer,
“High-resolution image synthesis with latent diffusion models,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2022,
pp. 10684-10695.

W. Peebles and S. Xie, “Scalable diffusion models with transformers,”
2022, arXiv:2212.09748.

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional net-
works for biomedical image segmentation,” in Proc. 18th Int. Conf. Med.
Image Comput. Comput.-Assist. Intervent., vol. 9351, Munich, Germany.
Cham, Switzerland: Springer, Oct. 2015, pp. 234-241.


http://dx.doi.org/10.1007/978-3-642-33715-4_54
http://dx.doi.org/10.1109/TCSVT.2023.3260310

PAPA et al.: D4D: AN RGBD DIFFUSION MODEL TO BOOST MONOCULAR DEPTH ESTIMATION

[41]

[42]

[43]

[44]

[45]

[46]

(47

[48]

[49]

[50]

[51]

[52]

(53]

(541

[55]

[56]

NVIDIA. NVIDIA Isaac Sim. Accessed: May 20, 2023. [Online]. Avail-
able: https://developer.nvidia.com/isaac-sim

Y. Zou, Z. Luo, and J.-B. Huang, “Df-Net: Unsupervised joint learning
of depth and flow using cross-task consistency,” in Proc. Eur. Conf.
Comput. Vis. (ECCV), 2018, pp. 36-53.

W. Chen, S. Qian, and J. Deng, “Learning single-image depth from
videos using quality assessment networks,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 5597-5606.

K. Xian, J. Zhang, O. Wang, L. Mai, Z. Lin, and Z. Cao, “Structure-
guided ranking loss for single image depth prediction,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 611-620.

A. Q. Nichol and P. Dhariwal, “Improved denoising diffusion prob-
abilistic models,” in Proc. 38th Int. Conf. Mach. Learn., Jul. 2021,
pp. 8162-8171.

J. Hu, M. Ozay, Y. Zhang, and T. Okatani, “Revisiting single image
depth estimation: Toward higher resolution maps with accurate object
boundaries,” in Proc. IEEE Winter Conf. Appl. Comput. Vis. (WACV),
Jan. 2019, pp. 1043-1051.

A. Paszke, “PyTorch: An imperative style, high-performance deep
learning library,” in Proc. Adv. Neural Inf. Process. Syst., vol. 32.
Red Hook, NY, USA: Curran Associates, 2019. [Online]. Available:
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee 7f92f2bfa9f7
012727740-Paper.pdf

D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction from a
single image using a multi-scale deep network,” in Proc. Adv. Neural
Inf. Process. Syst., vol. 27, 2014.

S. Qiao, H. Wang, C. Liu, W. Shen, and A. Yuille, “Micro-batch training
with batch-channel normalization and weight standardization,” 2019,
arXiv:1903.10520.

I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
2017, arXiv:1711.05101.

W. Yu et al., “MetaFormer is actually what you need for vision,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022,
pp. 10819-10829.

W. Wang et al., “Pyramid vision transformer: A versatile backbone for
dense prediction without convolutions,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct. 2021, pp. 568-578.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770-778.

M. Tan and Q. Le, “EfficientNet: Rethinking model scaling for con-
volutional neural networks,” in Proc. Int. Conf. Mach. Learn., 2019,
pp. 6105-6114.

D. Pollard, A User’s Guide to Measure Theoretic Probability (Cambridge
Series in Statistical and Probabilistic Mathematics). Cambridge, U.K.:
Cambridge Univ. Press, 2001.

Y. Cheng, R. Cai, Z. Li, X. Zhao, and K. Huang, “Locality-sensitive
deconvolution networks with gated fusion for RGB-D indoor semantic
segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jul. 2017, pp. 3029-3037.

(571

(58]

9865

Y. Yang, G. Liu, and X. Gao, “Motion guided attention learning for self-
supervised 3D human action recognition,” IEEE Trans. Circuits Syst.
Video Technol., vol. 32, no. 12, pp. 8623-8634, Dec. 2022.

X. Jin, K. Yi, and J. Xu, “MoADNet: Mobile asymmetric dual-
stream networks for real-time and lightweight RGB-D salient object
detection,” IEEE Trans. Circuits Syst. Video Technol., vol. 32, no. 11,
pp. 76327645, Nov. 2022.

Lorenzo Papa received the B.S. degree in computer
and automation engineering and the M.S. degree in
artificial intelligence and robotics from the Sapienza
University of Rome, Italy, in 2019 and 2021, respec-
tively. He is currently pursuing the Ph.D. degree in
computer science engineering. He collaborates with
ALCORLab, Department of Computer, Control, and
Management Engineering, Sapienza University of
Rome. He is a Visiting Researcher with the School
of Electrical and Information Engineering, Faculty
of Engineering and Information Technology, The

University of Sydney, Australia. His research interests include deep learning,
computer vision, and cyber security.

Paolo Russo received the B.S. degree in telecommu-
nication engineering from UniversitA degli studi di
Cassino, Italy, in 2008, and the M.S. degree in arti-
ficial intelligence and robotics and the Ph.D. degree
in computer science from the Sapienza University
of Rome, Italy, in 2016 and 2020, respectively.
From 2018 to 2019, he was a Researcher with Italian
Institute of Technology (IIT), Tourin, Italy. He is
currently an Assistant Researcher with ALCORLab,
DIAG Department, Sapienza University of Rome.
His main research interests include deep learning,

computer vision, generative adversarial networks, and reinforcement learning.

Irene Amerini (Member, IEEE) received Ph.D.
degree in computer engineering, multimedia, and
telecommunication from the University of Florence,
Italy, in 2010. She is currently an Associate Profes-
sor with the Department of Computer, Control, and
Management Engineering Antonio Ruberti, Sapienza
University of Rome, Italy. Her main research inter-
ests include digital image processing, computer
vision, and multimedia forensics. She is a member of
the IEEE Information Forensics and Security Tech-
nical Committee, the EURASIP TAC Biometrics,

Data Forensics, and Security, and the IAPR TC6-Computational Forensics
Committee.

Open Access funding provided by ‘Universita degli Studi di Roma "La Sapienza" 2’ within the CRUI CARE Agreement



