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ABSTRACT

Bilateral trade models the problem of intermediating between two
rational agents — a seller and a buyer — both characterized by a
private valuation for an item they want to trade. We study the
online learning version of the problem, in which at each time step
a new seller and buyer arrive and the learner has to set prices for
them without any knowledge about their (adversarially generated)
valuations.

In this setting, known impossibility results rule out the existence
of no-regret algorithms when budget balanced has to be enforced
at each time step. In this paper, we introduce the notion of global
budget balance, which only requires the learner to ful�ll budget
balance over the entire time horizon. Under this natural relaxation,
we provide the �rst no-regret algorithms for adversarial bilateral
trade under various feedback models. First, we show that in the full-
feedback model, the learner can guarantee $̃ (

√
) ) regret against

the best �xed prices in hindsight, and that this bound is optimal up
to poly-logarithmic terms. Second, we provide a learning algorithm
guaranteeing a $̃ () 3/4) regret upper bound with one-bit feedback,
which we complement with a Ω() 5/7) lower bound that holds even
in the two-bit feedback model. Finally, we introduce and analyze
an alternative benchmark that is provably stronger than the best
�xed prices in hindsight and is inspired by the literature on bandits
with knapsacks.

CCS CONCEPTS

• Theory of computation→Algorithmic game theory; • Com-

puting methodologies→ Online learning settings.
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1 INTRODUCTION

Bilateral trade is a classic economic problem where two agents — a
seller and a buyer — are interested in trading a good. Both agents
are characterized by a private valuation for the item, and their goal
is to maximize their own utility. Solving this problem requires the
design of a mechanism that intermediates between the two par-
ties, facilitating the trade. Ideally, the mechanism should maximize
e�ciency (i.e., trade whenever the buyer’s valuation exceeds the
seller’s one) while ensuring that agents behave according to their
true preferences (incentive compatibility), and that the utility for
participating in the mechanism of each agent is non-negative (in-
dividual rationality). These properties ensure favorable outcomes
for the agents, yet they do not guarantee the economic viability of
the mechanism. To see this, consider the following mechanism M.
M asks the agents for their valuations, B for the seller and 1 for the
buyer, and makes the trade happen if it is convenient (i.e., if B ≤ 1).
In case of a trade, M then charges B to the buyer and pays 1 to the
buyer. It is not hard to see that M enforces incentive compatibility
and individual rationality, and is e�cient by design. However, it
exhibits the major drawback of allowing the intermediary to incur
a net loss when 1 > B . To avoid such situations, a crucial constraint
in bilateral trade is budget balance, which restricts the mechanism
from subsidizing the agents.

As highlighted by the above example, an incentive compatible
mechanism maximizing e�ciency for bilateral trade may not be
budget balanced. This phenomenon was �rst observed by Vick-
rey [49]; subsequently Myerson and Satterthwaite [43], provided
a more general impossibility result by showing the existence of
instances where a fully e�cient mechanism that satis�es incentive
compatibility, individual rationality, and budget balance does not
exist. This result holds even when probabilistic information on the
agents’ valuations is available. To circumvent these impossibility
results, the extensive subsequent research primarily focuses on
�nding approximately e�cient mechanisms in the Bayesian setting.
There, various incentive compatible mechanisms exist that give a
constant-factor approximation to the social welfare (see, e.g., Blum-
rosen and Dobzinski [11], Kang et al. [34], while more recent works
also consider the harder problem of approximating the gain from
trade [12, 14, 25, 28, 41]. While the Bayesian assumption of having
perfect knowledge about the underlying distributions of valuations
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is, in some sense, necessary for extracting meaningful approxima-
tions to the social welfare [27], it is important to observe that this
assumption is oftentimes unrealistic.

Following the recent line of work initiated by Cesa-Bianchi
et al. [18], we study this fundamental mechanism design problem
through the lens of regret minimization in a repeated setting where
at each time C , a new seller/buyer pair arrives. The seller arriving
at time C has a private valuation BC representing the lowest price
they are willing to accept for the item. Analogously, the buyer has a
private valuation 1C representing the highest price they are willing
to pay for the item. The learner, without any knowledge about
the private valuations at the current time C , posts two (possibly
randomized) prices: ?C to the seller and @C to the buyer. A trade
happens when both agents agree to trade, i.e., when BC ≤ ?C and
@C ≤ 1C . After posting (?C , @C ), the learner observes some feedback
about the transaction, and is awarded the gain from trade:

GFTC (?, @) = I{BC ≤ ?}I{@ ≤ 1C }(1C − BC ).

The goal of the learner is to maximize the overall gain from trade
or, equivalently, minimize the regret with respect to the best price
in hindsight. Prior research has investigated the impact of di�er-
ent budget balance notions on the problem’s learnability. When
the mechanism is constrained to enforce per-round strong budget

balance (i.e., ?C = @C at each time step C ), it is possible to attain
sublinear regret only when the sequence of valuations is drawn
i.i.d. from some �xed unknown distribution, and the learner has
either full feedback, or some stringent assumptions regarding the
sequence of valuations are enforced. Speci�cally, in partial feedback
regime, valuations have to be drawn i.i.d. from a smooth distribu-
tion, independently for the seller and the buyer [18, 20]. If the
learner is only required to enforce (step-wise) weak budget balance
(i.e., ?C ≤ @C for each C ), then Azar et al. [4] provide a learning algo-
rithm achieving sublinear 2-regret when the sequence of valuation
is generated by an oblivious adversary.1 They also show that this
result is tight: no algorithm can achieve sublinear (2 − Y)-regret
in the adversarial case, for any constant Y > 0. In an attempt to
overcome this barrier, Cesa-Bianchi et al. [19] show that sublinear
regret can be achieved beyond the i.i.d. stochastic setting, under the
assumption that the adversary is constrained to choose randomized
(possibly non-stationary) sequences of valuations that are not “too
concentrated” (i.e., under a f-smooth adversary model). Inspired
by the positive results obtained in the literature by transitioning
from strong to weak budget balance, we investigate the following
natural open question:

Is it possible to achieve sublinear regret against an oblivious

adversary in the repeated bilateral trade problem under a realistic

notion of budget balance?

We answer this question positively by introducing global budget

balance, where the learner is required to maintain budget balance
only “overall”. The idea behind global budget balance is to allow the
learner to reinvest the pro�t gained in previous rounds (obtained
by posting a lower price for the seller compared to the buyer),
with the constraint that the learner cannot subsidize the market
over the whole time horizon. Formally, a learning algorithm that

1The U-regret measures the di�erence between the gain from trade of the best �xed
price in hindsight and U times that of the algorithm (see e.g., Kakade et al. [33]).

posts prices (?1, @1), (?2, @2), . . . is global budget balanced if the
following inequality holds almost surely:

∑)
C=1 ProfitC (?C , @C ) ≥ 0.

The pro�t ProfitC (?C , @C ) = I{BC ≤ ?C }I{@C ≤ 1C }(@C − ?C ) is non-
negative when ?C ≤ @C , and may drop below zero only by posting
prices that are not step-wise budget balanced, i.e., ?C > @C .We argue
that this constraint is more realistic than the restrictive notions of
per-round budget balance. For instance, in contexts like ride-hailing
platforms (such as Uber and Lyft), the platform might opt to forego
some short-term pro�t to enhance other metrics, like the overall
welfare of the system.

1.1 Overview of Our Results

We report here an overview of our results, we also refer to Table 1
for a comparison with the state of the art. In this paper we introduce
the notion of global budget balance for the repeated bilateral trade
problem, and provide the following results in terms of regret with
respect to the best �xed price in hindsight in the adversarial case:

• In the full feedback model, when the learner observes seller
and buyer valuations after posting prices, we design a learn-
ing algorithm characterized by a $̃ () 1/2) regret upper bound
(Theorem 4.2). We also prove that no learning algorithm
can improve this bound by more than a poly-log) factor
(Theorem 4.3).
• In the one-bit feedback model, where the learner can observe
only whether the trade happened or not, we show that it
is possible to guarantee a $̃ () 3/4) regret upper bound (The-

orem 5.4). Then, we provide an Ω() 5
7≈0.714) lower bound,

which holds even in the two-bit feedback model, where the
learner can observe which agent accepted and who declined
the o�ered prices (Theorem 5.5).

These results demonstrate how the notion of global budget bal-
ance enables online learnability, allowing us to provide the �rst
no-regret algorithms for repeated bilateral trade within an oblivious
adversary framework, in contrast to the per-round approaches con-
sidered in previous works. Furthermore, the regret rates separate
full feedback and the two partial feedback models (one or two bits).
In partial feedback, the surprising lower bound of Ω() 5/7), together
with the$ () 3/4) upper bound, mark a clear separation between this
problem and other partial feedback models (e.g., partial monitoring
[7] and online learning with feedback graph [2], where the minimax
regret have been characterized to fall in one of three admissible
rates:

√
) ,) 2/3 and) ). This separation had already been hinted at in

the special case of f-smooth adversary by Cesa-Bianchi et al. [19].
Finally, inspired by work on bandits with knapsacks (see Sec-

tion 1.3 for detailed references), we introduce a stronger learning
benchmark: the best �xed feasible distribution over prices. Such
benchmark is allowed to post prices that are not per-round budget
balanced, but is global budget balanced in “expectation”.

• We show that there exists a constant Y0 > 0 such that it is
impossible to achieve sublinear U-regret against this bench-
mark for any U ∈ [1, 1 + Y0) (Theorem 6.2).
• We prove that the best feasible distribution over prices col-
lects at most twice the gain from trade extracted by the best
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Table 1: Comparison of prior results on bilateral trade. The positive result for a stochastic adversary in the partial feedback,

marked with an asterisk (∗), holds under the assumption that the seller and buyer valuations are drawn independently from

smooth distributions. All the bounds in the second row (Azar et al. [4]), marked with a dagger (†), apply to 2-regret.

Type of

Adversary
Budget Balance

Regret

Upper Bounds

Regret

Lower Bounds

Cesa-Bianchi et al. [18]
stochastic
setting

strong
• Full: $̃ () 1/2)
• Partial: $̃ () 2/3)∗

• Full: Ω() 1/2)
• Partial: Ω() 2/3)

Azar et al. [4]
adversarial
setting

weak
• Full: $̃ () 1/2)†
• Partial: $̃ () 3/4)†

• Full: Ω() 1/2)†
• Partial: Ω() 2/3)†

Cesa-Bianchi et al. [19]
f-smooth
adversary

weak
• Full: $̃ () 1/2)
• Partial: $̃ () 3/4)

• Full: Ω() 1/2)
• Partial: Ω() 3/4)

This paper
adversarial
setting

global
• Full: $̃ () 1/2)
• Partial: $̃ () 3/4)

• Full: Ω() 1/2)
• Partial: Ω() 5/7≈0.714)

�xed price in hindsight (Theorem 6.3). This implies the exis-
tence of algorithms with sublinear 2-regret against this new
benchmark.
• We show that the multiplicative gap of 2 between the gain
from trade attainable by the two di�erent benchmarks is
tight (Theorem 6.5).

First, we observe that the task of learning the best feasible dis-
tribution over prices is reminiscent of the problem of bandits with
knapsacks in the presence of replenishment [9, 37, 47]. In contrast
to previous work, we consider the more challenging adversarial
setting and provide learning algorithms with a competitive ratio
that is an absolute constant. In the adversarial bandits with knap-
sacks literature, the only setting where sublinear Θ(1)-regret can
be achieved is when the available budget is Ω() ) [15], while in
general the competitive ratio is $ (log) ) [31]. Second, the tight
multiplicative gap of 2 between the two benchmarks suggests that
to design a better learning algorithm with sublinear U-regret with
respect to the best feasible distribution (for U ∈ (1 + Y0, 2)), a more
direct approach is needed.

1.2 Challenges and Techniques

The key aspects that distinguish bilateral trade from standard online
learning models with full or bandit feedback can be identi�ed in two
main features: the action space and the challenging partial feedback
structure. The applicability of previous results to our model is
signi�cantly limited due to adversarial input sequences and the
need to handle the global budget balance constraint e�ectively.

Action space. The action space is continuous and bidimensional
(prices belong to [0, 1]2), and neither the gain from trade nor the
pro�t functions are continuous in the prices posted. This makes it
challenging to discretize the space with a �nite grid� such that the
best prices in � perform similarly to the best prices in [0, 1]2, and
such that grid � is small enough that it is possible to learn in an
online way its best pair of prices. In the absence of any probabilistic
or smoothness assumption on the adversary, we cannot rely on a
“smoothing trick” to induce regularity on the expected gain from
trade, as in previous works [19].

Partial Feedback. Partial feedback models for bilateral trade are in-
herently challenging. The one-bit feedback model only informs the
learner on whether the trade happened or not, which is signi�cantly
less informative than the traditional bandit feedback model, since
the learner cannot even reconstruct the gain from trade received
for the speci�c prices it posted. For example, if the learner posts
price 1/2 to both agents, and they accept the trade, there is no way
of distinguishing between the case in which the gain from trade is
constant (e.g., valuations are (0, 1)) from the case in which the gain
from trade is arbitrarily small (e.g., valuations are (1/2 − Y, 1/2 + Y)
for some small Y). On the other hand, if one of the two agents re-
jects the trade, then the learner can only infer loose bounds on the
valuations.

Gain from Trade vs. Pro�t trade-o�. Global budget balance
requires that the cumulative sum of pro�ts at the end of the time
horizon must be greater than or equal to 0. Therefore, the learner
has to maximize its cumulative gain from trade, while accumulating
enough pro�t to enforce global budget balance. Balancing this trade-
o� is a complex task due to the di�erent nature of the two objectives:
gain from trade is maximized by setting identical prices for both
agents, whereas pro�t is maximized by selecting prices that are “far
from each other”. To see this, consider an instance where valuations
are either (BC , 1C ) = (0, 1) or (BC , 1C ) = (1/2 − Y, 1/2 + Y) with equal
probability, for some small Y > 0. To achieve maximum expected
pro�t, the learner would always set the price at 0 for the seller and
1 for the buyer. On the other hand, to maximize the expected gain
from trade, the learner would always o�er 1/2 to both agents.

Our Two-Phase Approach. Our learning algorithms follow a two-
phase approach, initially focusing on maximizing pro�t through a
carefully designed multiplicative grid � of candidate prices and
then switching to maximizing gain from trade on a di�erent (addi-
tive) grid � of non-budget-balanced prices. At a high level, the
�rst phase is used to collect budget, which can be subsequently
reinvested in the second phase. This poses several challenges due
to the non-stationary nature of the adversary. The pairs of prices
in � , which are not per-round budget balanced, enable the algo-
rithm to circumvent the negative results that hinder discretization
in scenarios with per-round budget balance (see, e.g., , the “needle
in a haystack” phenomenon in Theorem 7 of Cesa-Bianchi et al.
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[20]). The multiplicative nature of the grid � is crucial in ensuring
that the gain from trade accrued by the algorithm during the �rst
phase does not yield too much regret. This last result is surprising
since, in the �rst phase, the learning algorithm is maximizing pro�t,
an objective that is inherently orthogonal to the gain from trade.
Finally, the scarcity of feedback in the one-bit feedback model is
addressed via a carefully designed estimation technique that allows
the learner to estimate the gain from trade in one point of the grid
� posting two di�erent prices. In contrast to the technique by
Azar et al. [4], our procedure is “asymmetric” in how it deals with
the seller and buyer, and it provides biased estimates.

Lower bounds. Besides the typical challenges in proving lower
bounds for repeated bilateral trade with respect to the best �xed
price in hindsight, in our model the agent is allowed to post prices
that are not per-round budget balanced (i.e., it may be the case
that ?C > @C ). This considerably complicates the construction of
the hard instances, as any algorithm could sacri�ce temporarily
some pro�t by posting prices with ?C > @C to extract a large gain
from trade (that the �xed price benchmark may not be able to
obtain). To deter this kind of behavior, we incorporate into the hard
instances certain unfavorable trade opportunities that dissuade
the learner from setting prices that are not budget balanced. This
additional complication comes at some cost: in the partial (two-bit)
feedback model we recover a lower bound of Ω() 5/7), whereas the
corresponding lower bound by Cesa-Bianchi et al. [19] is Ω() 3/4).

1.3 Further Related Works

Online Learning and Economics. Regret minimization tech-
niques have found applications across di�erent domains motivated
by economics, with the goal of overcoming unrealistic assumptions.
For example, they have been applied to one-sided pricing [29, 36],
auctions [6, 21, 22, 24, 38, 42, 44, 50], contract design [26, 30, 52],
brokerage [13], and Bayesian persuasion [10, 16, 17, 53].

Partial feedback. Repeated bilateral trade naturally involves chal-
lenges due to partial feedback. Therefore, our work aligns with the
research that explores online learning with feedbackmodels beyond
the conventional full feedback and bandit models. Our one- and
two-bit feedback models share similarities with graph-structured

feedback [2] and with the partial monitoring framework [7, 23].

Bandits with knapsacks. Another related line of work is that of
online learning under long-term constraints. Some works study the
case of static constraints and develop projection-free algorithms
with sublinear regret and constraint violations [32, 39], while oth-
ers study the case of time-varying constraints [40, 48, 51]. Badani-
diyuru et al. [5] introduced and solved the (stochastic) bandits with
knapsacks (BwK) framework, in which they consider bandit feed-
back and stochastic objective and cost functions. In this model, the
learner’s objective is to maximize utility while guaranteeing that,
for each of the< available resources, cumulative costs are below a
certain budget �. Other optimal algorithms for stochastic BwKwere
proposed by Agrawal and Devanur [1], Immorlica et al. [31]. The
setting with adversarial inputs was �rst studied in Immorlica et al.
[31], where the baseline considered is the best �xed distribution
over arms. Achieving no-regret is not possible under this baseline

Learning Protocol of Repeated Bilateral Trade

1 Initial budget �0 = 0

2 for C = 1, 2, . . . do

3 The adversary privately chooses (BC , 1C ) in [0, 1]2
4 The learner posts prices (?C , @C ) ∈ [0, 1]2 such that

?C − @C ≤ �C
5 The learner receives a (hidden) reward

GFTC (?C , @C ) ∈ [−1, 1]
6 The budget of the learner is updated

�C ← �C−1 + ProfitC (?C , @C )
7 Feedback IC is revealed to the learner

and, therefore, they provide no-U-regret guarantees for their algo-
rithm. If we denote by d the per-iteration budget of the learner, the
best-known guarantees on the competitive ratio U are 1/d in the
case in which � = Ω() ) [15], and$ (log< log) ) in the general case
[35]. When considering a benchmark similar to the adversarial BwK
scenario, we show that our algorithm ensures a U = 2 guarantee.
Kumar and Kleinberg [37] recently proposed a generalization of
the stochastic BwK model in which resource consumption can be
non-monotonic; that is, resources can be replenished or renewed
over time. Our model also admits replenishment. It should be noted
that, in our setting, directly utilizing techniques from BwK is not
feasible due to the complex continuous action space and the lim-
ited availability of feedback, which is less informative compared to
traditional bandit feedback.

2 REPEATED BILATERAL TRADE

We study repeated bilateral trade problem in an online learning
setting, where the learner has to enforce global budget balance and
the sequence of valuations is generated by an oblivious adversary.

The learning protocol. The learner repeatedly interacts with the
environment according to the following protocol (see also pseu-
docode). At each time step C , a new pair of buyer and seller arrives,
characterized by valuations 1C ∈ [0, 1] and BC ∈ [0, 1], respectively.
Without knowing BC and 1C , the learner posts two prices: ?C ∈ [0, 1]
to the seller, and @C ∈ [0, 1] to the buyer. If both the seller and the
buyer accept (i.e., BC ≤ ?C and @C ≤ 1C ), then the learner is awarded
the gain from trade

GFTC (?C , @C ) = I{BC ≤ ?C }I{@C ≤ 1C }(1C − BC ),

that corresponds to the increase in social welfare generated by the
trade. To simplify the notation, we omit the second argument of
GFTC (and of ProfitC ) when the same price is posted to both agents.
After posting the prices, the learner does not observe directly the
gain from trade or the valuations, but receives some feedback IC .

Global budget balance. For each time step C , the notion of pro�t
of the learner is naturally de�ned: if the agents accept prices ?C
and @C , then the learner receives a net pro�t of @C − ?C ∈ [−1, 1].
Unlike the case of the gain from trade, the learner naturally knows
its pro�t at the end of each time step, as it sets the prices and
always observes whether the trade occurred. The learner main-
tains a budget �C , which is initially 0 (�0 = 0) and is updated
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at each time step according to the pro�t generated or consumed:
�C ← �C−1 + ProfitC (?C , @C ) .We restrict the learner to enforce a
global budget balance property which states that the �nal budget �)
has to be non-negative with probability 1. In practice, we require
the learner to always post prices ?C , @C such that (?C −@C ) ≤ �C−1.2

Feedback models. In this paper, we study three feedback models,
that we list here in increasing order of intricacy:

• Full feedback: at the end of each round, the agents reveal
their valuations (i.e., IC = (BC , 1C )).
• Two-bit feedback: the agents only reveal their willingness to
accept the prices o�ered by the learner (i.e., IC is composed
by the two bits (I{BC ≤ ?C }, I{@C ≤ 1C }))
• One-bit feedback: the learner only observes whether the trade
happened or not (i.e., IC = I{BC ≤ ?C } · I{@C ≤ 1C }).

These feedback models are not only interesting from the theoretical
learning perspective, but they are also well motivated in terms
of practical applications. The full-feedback model can be used to
describe sealed-bid-type auctions, while the two partial feedback
settings (one- and two-bit) enforce the desirable property (for the
agents) of revealing a minimal amount of information to the learner.

Regret with respect to the best �xed price. The goal is to maxi-
mize the total gain from trade on a �xed and known time horizon
) while enforcing the global budget balance condition. Following
the literature on repeated bilateral trade [18], we measure the per-
formance of a learning algorithm in terms of its regret with respect
to the best �xed price(s) in hindsight. For any learning algorithm
A and sequence of valuations S = {(BC , 1C )})C=1 we de�ne:

') (A, S) = max
(?,@) ∈ [0,1]2

?≤@

)∑

C=1

GFTC (?, @) − E
[
)∑

C=1

GFTC (?C , @C )
]
, (1)

where the sequence S induces the GFTC functions and the expec-
tation is with respect to (possibly) randomized prices ?C and @C
generated by the learning algorithm A. One simple property that
follows immediately by de�nition is that, for any sequence of valu-
ations, there exists a �xed pair of identical prices that maximizes
the gain from trade. This means that the notion of “best price in
hindsight” is well de�ned, and con�rms the intuition that posting
two di�erent prices only helps during learning, but does not im-
pact the maximization of gain from trade in hindsight. Finally, we
de�ne the regret of an algorithm A (without the dependence on
a speci�c sequence of valuations) as its worst-case performance:
') (A) = supS ') (A, S), where the sup is over the set of all the
possible sequences of ) pairs of valuations.

A stronger benchmark: the best feasible distribution over

prices. In this paper we also introduce a new (stronger) benchmark
for the study of repeated bilateral trade: the best �xed budget-
feasible distribution over prices. This benchmark captures the �exi-
bility of the global budget balance condition, and it arises naturally
from the literature on bandits with knapsacks. Before proceeding
with the de�nition, let Δ( [0, 1]2) be the family of all the probability

2In fact, this condition is not just su�cient, but also necessary. Indeed, if ?C −@C > �C ,
the adversary might select valuations (BC , 1C ) such that ProfitC (?C , @C ) < −�C−1
and thus �C < 0. After that, the adversary might select valuations (Bg , 1g ) = (0, 0)
for all g ≥ C + 1, thereby forcing �) = �C < 0.

measures over the measurable space ( [0, 1]2,B( [0, 1]2)), where B
denotes the Borel f-algebra.

De�nition 2.1 (Best feasible distribution). For any sequence S

of seller’s and buyer’s valuations, we de�ne the best �xed budget-
feasible distribution over prices as the solution of:

sup
W
EW

[
)∑

C=1

GFTC (?, @)
]
s.t. EW

[
)∑

C=1

ProfitC (?, @)
]
≥ 0, (2)

where EW denotes that the expectation is with respect to prices
(?, @) sampled according to W .

3 PRICE DISCRETIZATIONS AND
TWO-PHASE ALGORITHM

In this section we present our two-phase meta algorithm, preceeded
by two key results on how to discretize the price space in a way
that ensures certain essential properties about pro�t and gain from
trade. First, in Section 3.1 we prove that the gain from trade of
the best �xed price in hindsight is close to that of the best pair of
(non-budget-balanced) prices on a suitable “additive” grid. Second,
in Section 3.2 we construct an hybrid “multiplicative-additive” grid
in which each interval of a one-dimensional additive grid is further
divided into sub-intervals with geometrically decreasing length.
This grid has the surprising property that the pro�t of the best
�xed pair of prices on it is close to the gain from trade generated by
the best �xed price in the [0, 1] interval, up to a poly-logarithmic
multiplicative factor. Finally, we introduce our two-phase learning
via the meta-algorithm GFT-Max.

3.1 Additive Grid for Gain from Trade

For any integer  , we denote by � = {0, 1/ , 2/ , . . . , 1 − 1/ , 1}
the  -uniform grid over [0, 1]. Similarly, we denote with � =

{(8+1/ , 8/ ) : 8 ∈ {0, 1, . . . ,  − 1}} the set of pairs formed by con-
tiguous points in the  -uniform grid such that the �rst element of
the pair is greater than the second. This latter grid can be proved
to enjoy the desirable property of well-approximating the gain
from trade of the best �xed price, while violating the global budget
balance condition by a small amount. The argument behind the
approximation guarantee is simple: if ?∗ is the best �xed price in
hindsight, then the pair of prices ( (8+1)/ , 8/ ) such that ?∗ belongs
to the interval [8/ , (8+1)/ ] are nearly as good as ?∗. We have the
following result; its proof, and all the missing ones in the rest of
the paper, can be found in the full version [8].

Proposition 3.1. For any  and sequence of valuations, we have:

max
?∈[0,1]

)∑

C=1

GFTC (?) ≤ max
(?,@) ∈� 

)∑

C=1

GFTC (?, @) +
)

 
.

For any (?, @) ∈ � , total pro�t
∑)
C=1 ProfitC (?, @) is at least −)/ .

A simple calculation shows that GFTC ( (8+1)/ , 8/ ) is bounded
by the sum of GFTC (8/ ) and GFTC ( (8+1)/ ). Therefore, we obtain
the following known result as a Corollary to Proposition 3.1.
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?

?

?+2−8

?

?

?−2−8

Figure 1: �+
 
(left) and �−

 
(right) for  = 8, ) = 32, 8 = 3.

Corollary 3.2 (Claim 1 of Azar et al. [4]). For any  and sequence

of valuations, we have:

max
?∈[0,1]

)∑

C=1

GFTC (?) ≤ 2 · max
?∈� 

)∑

C=1

GFTC (?) +
)

 
.

3.2 Multiplicative Grid for Pro�t

For any  , we construct the two-dimensional grid � starting from
the points on the one-dimensional grid � . For each ? ∈ � ,
we add to � points of the form (? − 2−8 , ?) and (?, ? + 2−8 ), for
8 = 0, 1, . . . , ⌈log) ⌉ so that they de�ne intervals of geometrically
decreasing length to the left and upward of (?, ?). Formally, we
de�ne � as the union of �−

 
and �+

 
(see also Figure 1):

�− =
{
(? − 2−8 , ?) : ? ∈ � and 8 ∈ {0, 1, . . . , ⌈log) ⌉}

}
∩ [0, 1]2,

�+ =
{
(?, ? + 2−8 ) : ? ∈ � and 8 ∈ {0, 1, . . . , ⌈log) ⌉}

}
∩ [0, 1]2 .

The additive-multiplicative nature of � endows it with two crucial
properties: (i) its cardinality is $ ( log) ) an thus only depends
linearly in  and (ii) the pro�t of the best prices in � is at least a
$ (log) ) fraction of the GFT at the best �xed price in [0, 1], up to
an additive factor of $ ()/ ).

Proposition 3.3. For any  and sequence of valuations, we have:

max
?∈[0,1]

)∑

C=1

GFTC (?) ≤ 12 log) · max
(?,@) ∈� 

)∑

C=1

ProfitC (?, @) +
5)

 
.

3.3 Our Two-Phase Meta-Algorithm: GFT-Max

We describe our two-phase learning approach by presenting the
meta-algorithm GFT-Max. For details, we refer to the pseudocode.
The algorithm takes in input a budget threshold V and an integer  
(which induces the two grids � and � ) and employs two regret
minimizers—AP for the pro�t and AG for the gain from trade—as
internal routines. In the �rst phase (Line 1), the algorithm uses
function Profit-Max to maximize pro�t until the collected budget
reaches a given threshold V . This is achieved by running a regret
minimizer AP over the set � of pairs of prices (see Section 3.2)
using pro�t as objective. Then, in the second phase (from Line 2
onward), the algorithm exploits a regret minimizerAG to maximize
the gain from trade over the grid � , whose prices which are
“almost budget-balanced” and consume only a small fraction of the
previously acquired budget (see Proposition 3.1). In Section 4 and
Section 5 we provide regret upper bounds for this meta-algorithm
in the full and one-bit feedback model, respectively. The budget

Algorithm 1: GFT-Max

Input: • budget threshold V
• integer  and price-grids � and � 
• regret minimizers AP and AG

1 Run Profit-Max (V, � ,AP) /* Phase I */

2 if Profit-Max terminated at time step g < ) then

3 Initialize AG on � /* Phase II */

4 for C = g + 1, 2, . . . ,) do

5 Receive from AG the prices (?C , @C )
6 Post prices (?C , @C ) and observe feedback IC
7 Feed feedback IC to AG

8 function Profit-Max (V, � ,AP)
Input: • budget threshold V

• grid � of pairs of prices
• regret minimizer AP

9 Initialize AP on |� | actions, one for each (?̂, @̂) ∈ � ,
and set �0 ← 0

10 for C = 1, 2, . . . ,) do

11 Receive from AP the prices (?C , @C )
12 Post prices (?C , @C ) and observe feedback IC
13 Feed feedback IC to AP

14 Update �C ← �C−1 + ProfitC (?C , @C )
15 if �C ≥ V then Terminate the algorithm

threshold V , the regret minimizers, and the grid parameter  are
tuned according to the speci�c case considered.

4 FULL FEEDBACK

We start by studying the full feedback input model where the agents
reveal their valuations (BC , 1C ) at the end of each time step C . Here,
the learner has counterfactual information regarding all the prices
they could have posted, independently of the pair of prices actually
posted at time C . In Section 4.1, we �rst present a two-phase learning
algorithm (GFT-Max) which guarantees $̃ (

√
) ) regret with respect

to the best �xed price in hindsight. In Section 4.2 we complement
this result by proving that this is tight, up to poly-logarithmic terms.

4.1 $̃ (
√
) ) Upper Bound with Full Feedback

We start the analysis by looking at the �rst phase of GFT-Max,
Profit-Max (reported as a function in the pseudocode of GFT-
Max). We employ the Hedge algorithm (see, e.g., Section 5.3 of
Slivkins [46]) as the regret minimizer AP, which is used on the
action space of the prices in � . As a �rst step, we note that the gain
from trade of any �xed price in the �rst phase (which terminates
at the stopping time g) is not too large.

Lemma 4.1. Consider Profit-Max with budget threshold V , grid

� , and learning algorithm Hedge as AP. Then, with probability at

least 1 − 1/) , we have

max
?∈[0,1]

g∑

C=1

GFTC (?) ≤ 8(V + 1) log) + 5)
 + 32 log)

√
) log() |� |) .

Lemma 4.1 helps us bounding the regret of GFT-Max up to the
(random) time step g , when the algorithm switches from pro�t to
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Figure 2: Partition of [0, 1]2 as in the proof of Theorem 4.3.

gain from trade maximization. Setting V =
√
) and  =

√
) , and

using Hedge as regret minimizer also in the second phase, yields
the following result.

Theorem 4.2. Consider the repeated bilateral trade problem in the

full feedback model. There exists a learning algorithm A that respects

global budget balance and whose regret with respect to the best �xed

price in hindsight veri�es ') (A) ≤ 92 log
3/2 () )

√
) .

4.2 Ω(
√
) ) Lower Bound with Full Feedback

We present a lower bound that shows how the regret rate in Theo-
rem 4.2 is optimal up to poly-logarithmic factors. The lower bound
is based on the following stochastic sequence: at each time step
C the pair (BC , 1C ) is drawn uniformly at random between 3 pairs
of valuations: (0, 1/4), (3/4, 1) and (3/4, 1/4). These three points nat-
urally partition the [0, 1]2 square into four regions (see Figure 2).
Crucially, prices in the [3/4, 1] × [0, 1/3] region (green in Figure 2)
incur in negative expected gain from trade, while prices in the
[0, 3/4) × (1/3, 1] region (white in Figure 2) miss all trades. Therefore,
the only reasonable option for any learner is to post prices in the
two remaining regions (orange in Figure 2), with an expected gain
from trade of 1/12. This allows for a reduction to an expert problem
with 2 available actions (one for each of the two orange regions).
This construction highlights a key di�culty if compared to lower
bounds for per-round budget balanced algorithms: we need to dis-
incentivize the learner from choosing non budget balanced prices
below the diagonal. We have the following result.

Theorem 4.3. Consider the repeated bilateral trade problem in the

full feedback model. Any learning algorithm that satis�es global

budget balance su�ers at least Ω(
√
) ) regret with respect to the best

�xed price in hindsight.

5 PARTIAL FEEDBACK

In this section, we study the more challenging partial feedback
models. In Section 5.1, we provide a positive result for the case of
one-bit feedback (IC = I{BC ≤ ?C } · I{@C ≤ 1C }), where the learner
only observes whether the trade happened or not. In particular, we
show that GFT-Max, with a suitable initialization, achieves a regret
of the order $̃ () 3/4). Di�erently from the full-information setting,
the design of a no-regret algorithm for the gain from trade (i.e.,AG)
is particularly challenging as we need to build an estimator for the
gain from trade by only playing non-budget balanced prices in � .

In Section 5.2 we complement the regret upper bound by proving
that every algorithm has regret at least Ω() 5/7), even with two-bit
feedback (IC = (I{BC ≤ ?C }, I{@C ≤ 1C })), i.e.,where each agent sepa-
rately reveal their willingness to accept the prices posted. One of the
main challenges posed by such a lower bound resides in handling
non-budget balanced prices, as any algorithm could temporarily
sacri�ce some pro�t while collecting large GFT.

5.1 $̃ () 3/4) Upper Bound with One-Bit Feedback

We show how to employ GFT-Max with a suitable choice of pa-
rameters V and  , and regret minimizersAP andAG to achieve the
desired regret bound. Section 5.1.1 presents a regret-minimizing
algorithm that can be employed as AP, while Section 5.1.2 pro-
vides a suitable regret minimizer to be employed as AG. Finally, in
Section 5.1.3, we present the �nal regret upper bound.

5.1.1 Regret Minimizer for Profit under Partial Feedback. As in
the full-information setting, we exploit Profit-Max to maximize
the pro�t until the accrued budget is at least a given threshold
V . In particular, we instantiate the subroutine Profit-Max with
EXP3.P [3] as regret minimizer AP and grid � . The following
lemma shows that the gain from trade of any �xed price ? in the
�rst phase is small enough up to the stopping time g that terminates
the �rst phase.

Lemma 5.1. Consider Profit-Max with budget threshold V , grid

� , and learning algorithm EXP3.P as AP. Then with probability

at least 1 − 1/) , we have that max?∈[0,1]
∑g
C=1GFTC (?) is at most

8(V + 1) log) + 5)
 + 256 log)

√
|� |) log( |� |) ) .

5.1.2 Regret Minimizer for Gain from Trade under Partial Feedback.

A crucial ingredient we need is an estimation procedure capable
of extracting quantitative information from the gain from trade,
having only access to one bit of feedback. More precisely, we need
an estimation procedure of the gain from trade function � ∋
(?, @) ↦→ GFTC (?, @). A similar challenge is faced in Azar et al. [4],
where the action set consists of a discretization of a single price
(i.e., their estimation procedure posts ? to both seller and buyer).
However, in our scenario, such symmetry no longer applies. Here,
we must consider the grid � , which employs distinct prices for
the seller and the buyer (? + 1/ and ? , respectively). Thus, our
estimation procedure GFT-Est has an asymmetric structure (see
the pseudocode, in particular Lines 17 and 20).

First, GFT-Est draws a sample from a Bernoulli distribution with
parameter (? + 1)/( + 1) (Line 15). If the result is 1, it posts price
? to the buyer, and the seller receives a price drawn uniformly at
random from [0, ? + 1/ ] (Line 17). Otherwise, if the result is 0,
GFT-Est posts price ? to the seller, and the buyer’s price is drawn
uniformly at random from [?, 1]. We denote the �nal estimate at
C by ĜFTC (? + 1/ , ?) (Line 20). Overall, our estimator has a small
bias, as formalized in the following Lemma.

Lemma 5.2. For every (? + 1/ , ?) ∈ � , the random variable

ĜFTC (? + 1/ , ?) is an 1/ -biased estimate of ��)C (? + 1/ , ?), i.e.,���GFTC
(
? + 1

 , ?
)
− E

[
ĜFTC

(
? + 1

 , ?
)] ��� ≤ 2

 .

Given the estimation procedure GFT-Est, it is possible to turn
any no-regret algorithm for the full-feedback setting into a regret
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Algorithm 2: Block-Dec

Input: • Number of rounds ) and number of blocks #
• Set of prices � 

1 Initialize Hedge over action space � and time horizon #

2 Initialize random mappings ℎ 9 for all 9 ∈ {0, . . . , # − 1}
3 B9 ← { 9 )# + 1, . . . , ( 9 + 1)

)
# } for all 9 ∈ {0, . . . , # − 1}

4 for 9 ∈ {0, . . . , # − 1} do
5 Receive from A the distribution over pair of prices x 9
6 for C ∈ B9 do

7 if C ∉ ( 9 then

8 Play (?, @) ∼ x 9 and observe I{BC ≤ ? ∧ @ ≤ 1C }
9 else

10 Select prices (?, @) such that ℎ 9 (?, @) = C
11 Compute ĜFTC (?, @) through GFT-Est

12 r̂ 9 (?, @) ← ĜFTC (?, @)
13 Update A with reward vector r̂ 9

14 function GFT-Est

Input: prices (? + 1/ , ?) ∈ � 
15 Sample / from a Bernoulli with parameter

? +1
 +1

16 if / = 1 then

17 Post price (?̃, ?), with ?̃ ∼ * [0, ? + 1/ ]
18 ĜFTC (? + 1/ , ?) ← I{BC ≤ ?̃}I{? ≤ 1C }
19 else

20 Post price (?, ?̃), with ?̃ ∼ * [?, 1]
21 ĜFTC (? + 1/ , ?) ← I{BC ≤ ?}I{?̃ ≤ 1C }
22 return ĜFTC (? + 1/ , ?)

minimizer for the partial feedback setting by the standard block
decomposition technique (see, e.g., Chapter 4 of Nisan et al. [45]).
The procedure, which we call Block-Dec is described in the pseu-
docode. We assume to employ Hedge as the full-feedback regret
minimizerA. The algorithm works by subdividing the time horizon
) into # blocks, and the same randomized strategy is played for
the entire block except for a single step, uniformly distributed in
the block, in which the estimation procedure GFT-Est is run. Then,
the reward computed by GFT-Est is fed to Hedge as the estimated
reward for that block. Di�erently from the standard analysis, we
have that the reward computed by GFT-Est is not unbiased but has
a small $ (1/ ) bias which does not hinder the overall guarantees
of the algorithm, which are presented in the following statement.

Lemma 5.3. Block-Dec with  = )
1/4 and # = )

1/2 guarantees:

sup
(?,@) ∈� 

)∑

C=1

GFTC (?, @) −
)∑

C=1

E
(?,@)∼xC

[GFTC (?, @)] ≤
5

2
)

3/4√log() ) .

5.1.3 Pu�ing Everything Together. GFT-Max with the two regret
minimizers described in Sections 5.1.1 and 5.1.2 guarantees a$ () 3/4)
bound on the regret.

Theorem 5.4. Consider the repeated bilateral trade problem in the

one-bit feedback model. There exists a learning algorithm A that

respects global budget balance and whose regret with respect to the

best �xed price in hindsight veri�es:

') (A) ≤ 1282 ·) 3/4 log2) .

W1
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W4
W5
W6

1+;
2

1+;
2

1−;
2

1+;
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1- ;-d
1- ;
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F:
D

Figure 3: Representation of the support of the distributions

`: and their partitions.

5.2 Ω() 5/7) Lower Bound with Two-Bit Feedback

In this section, we provide a lower bound for learning the best
price against any oblivious adversary, with global budget balance
constraints and two-bit feedback. Our construction builds upon the
one by Cesa-Bianchi et al. [19], but exhibits two key di�erences.
First, we are not constrained to use smooth value distributions.
This allows us to simplify the construction, avoiding the reduction
to multi-armed bandits with feedback graphs. Second, we only
require algorithms to be globally budget balanced (instead of per-
round weakly budget balanced); looser budget balance constraints
enhance the capabilities of the learning algorithm. All in all, we
derive a lower bound that is slightly looser ) 5/7 ≈ ) 0.714 compared
to the Ω() 3/4). We further elaborate on this comparison at the end
of the Section.

Theorem 5.5. Consider the problem of repeated bilateral trade in the

two-bit feedback model. Any learning algorithm that satis�es global

budget balance su�ers regret at least Ω() 5/7).

The rest of the Section is devoted to the proof of Theorem 5.5; for
the missing details, we refer to the full version. Our lower bound
construction is based on # stochastic distributions of valuations
that are close with respect to some statistical measure of distance
and ensure that any pair of prices that reveals information on the
underlying instance is highly suboptimal in terms of GFT (i.e.,
gathering information is “costly”). We proceed in 5 steps.

i) Building a set of hard instances. We introduce the # hard
instances of the bilateral trade problem. Our goal is to show that
any learning algorithm su�ers Ω() 5/7) regret in at least one of the
# instances. We de�ne a distribution `: ∈ Δ( [0, 1]2) of valuations
(B, 1) over [0, 1]2 for each : ∈ {0, . . . , # − 1}, where we have # − 1
“perturbed” distributions corresponding to indices: ∈ {1, . . . , #−1},
and a “base” distribution corresponding to : = 0.

Let ℓ = 1/12, Δ = ℓ/(#−1), d = 1/32 and X = Δ/2. Then, for any
instance : ∈ {0, . . . , # − 1}, the distributions `: are supported
on the same set W of �nitely many valuations. We describe the
set W by partitioning it into six di�erent sets. An illustration of
the set of valuations can be found in Figure 3. First, we de�ne
the two setsW1 =

{
F81 = (1−ℓ/2 + 8Δ, 1 − ℓ) : 8 = 0, . . . , # − 1

}
and
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W2 =
{
F82 = (1−ℓ/2 + 8Δ, 1 − ℓ − d) : 8 = 0, . . . , # − 1

}
. These val-

uations are “balanced out” by the following # valuations: W3 ={
F83 = (0, 1−ℓ/2 − X + 8Δ) : 8 = 0, . . . , # − 1

}
. Moreover, we de�ne

W4 =
{
F84 = (1−ℓ/2 + 8Δ, 1−ℓ/2 − X + 8Δ) : 8 = 0, . . . , # − 1

}
, and a

single valuation belonging to W5 = {(0, 1−ℓ/2)} .We conclude by
de�ning the set of the “extremal” valuationsW6 = {0, 1}2 .

We assign di�erent probabilities to the valuations in each set
W9 depending on the instance. In particular, for any instance : ∈
{1, . . . , # − 1} with distribution `: , we have that

`: (F89 ) =
1

64# 2
= W1 ∀9 ∈ {1, 2}, 8 ∉ {:, : + 1}, (3)

while we perturb by Y the probability of the following valuations:

`: (F:1 ) = W1 + Y, `: (F
:+1
1 ) = W1 − Y, (4)

`: (F:2 ) = W1 − Y, `: (F
:+1
2 ) = W1 + Y.

Conversely, for the base instance `0, we place equal probability
`0 (F) = W1 on all the valuations F ∈ W1 ∪ W2, and hence all
these valuations have the same probability. For each instance : ∈
{0, . . . , # − 1} with distribution `: , the probability of valuations
F83, with 8 ∈ {0, . . . , # − 1}, is set as

`: (F83) = W1 ·
1 − ℓ − d − 28Δ
1−ℓ/2 − X + 8Δ ∈ (0, 2W1) .

Let W tot3 =
∑
F∈W3

`: (F) < 2W1# be the total probability as-
signed to valuations in W3. Moreover, for any instance : ≥ 1

with distribution `: , we assign to every trade in W4 probability
W4 = 4W1 (13# − 14), i.e.,

`: (F) = 4W1 (13# − 14) ∀F ∈ W4 . (5)

Then, for any instance : ≥ 1 with distribution `: , we assign proba-
bility W5 to the single valuation inW5, i.e., `: (0, (1−ℓ )/2) = W5 = 1/64.
Finally, all the remaining probability is equally divided into the 4
extremal trades inW6, i.e.,

`: (F) =
1 −

(
2W1# + W tot3 + 4W1# (13# − 14) + W5

)

4
= W6 ∀F ∈ W6 .

Now, we de�ne GW as the grid generated by such valuations.
Formally GB

W
= {B : ∃ (B, ·) ∈ W}, G1

W
= {1 : ∃ (·, 1) ∈

W}, and GW =

{
(B, 1) : B ∈ GB

W
and 1 ∈ G1

W

}
. Thus, GB

W
and

G1
W

represent the projections ofGW onto its �rst (seller) and second
(buyer) component, respectively. ii) Analysis of the gain from

trade. By construction, we can restrict our attention to consider
algorithms that play only prices in GW, without loss of generality.
Consider in fact, any instance : and any randomized algorithm A.
One can easily prove that there exists an equivalent algorithm (in
terms of both feedback, pro�t, and GFT), that only has distribution
supported on the grid GW generated by the valuationsW.

Next, for any ? ∈ GB
W

, we characterize the value of posting the
pair of prices (?, ? + X) under the valuation’s distribution `: , with
: ∈ {0, . . . , # −1}. Note that posting the pair (?, ? +X) ∈ GW under
any instance `: , is equivalent to posting a single price ? ∈ GB

W
to

both the seller and the buyer, with the only di�erence that (?, ?) ∉
GW, while (?, ? + X) ∈ GW. Then, for any ? ∈ GB

W
, we relate

the GFT obtained by posting a pair (?, ? + X) under valuations
sampled from `: , with : ∈ {1, . . . , # − 1}, and under the base

distribution `0. For every : ∈ {0, . . . , # − 1}, let E: and P: be
expectation and probabilitymeasure under instance `: , respectively.
Direct calculations shows that, for all ? ∈ GB

W
and : ∈ {1, . . . , # −

1}, it holds that E: [GFT(?, ? + X, B, 1)] = E0 [GFT(?, ? + X, B, 1)] +
dYI

{
? = ?∗

:

}
, where GFT(?, ? +X, B, 1) is simply the gain from trade

when the prices posted are (?, ? + X) and valuations (B, 1), and
?∗
:
=

1−ℓ
2 +:Δ. Moreover, for all ? ∈ GB

W
it holds that E0 [GFT(?, ?+

X, B, 1)] is



21 = W5
1+ℓ
2 + `0 (0, 1) + W1

77
96# if ? ∈ [0, 1+ℓ2 ]

22 = `0 (0, 1) + W1 7796# if ? ∈ ( 1+ℓ2 , 1 − ℓ − 2]
23 = `0 (0, 1) + W1 5

12# if ? ∈ (1 − ℓ − 2, 1 − ℓ]
24 = `0 (0, 1) if ? ∈ (1 − ℓ, 1]

From these calculations, we show that in an instance : ≥ 1 the pair
that maximizes the expected gain from trade is (?∗

:
, ?∗
:
+ X).

Lemma 5.6. For any instance : ∈ {1, . . . , # − 1}, we have that:
max

(?,@), ?≤@
E: [GFT(?, @, B, 1)] = E: [GFT(?∗: , ?

∗
:
+X, B, 1)] = 21 + d · Y.

The previous lemma characterizes the optimal �xed budget bal-
anced strategy. Then, we show that all the strategies that are not
budget balanced are dominated. Indeed, one of the main challenges
of our reduction is that, in general, a globally budget balanced al-
gorithm could get a larger GFT by temporarily sacri�cing some
pro�t and posting prices (?, @) with @ < ? . In the following lemma
we show that our instances are built so that these strategies are
dominated and thus can be discarded. Intuitively, every tuple of
prices ?, @ that tries to gain higher GFT than the one obtained by
playing on the diagonal must win also trades in W4. Then, since
trades in W4 have negative GFT and happen with su�ciently high
probability W4, we have that posting prices @ < ? is dominated.

Lemma 5.7. For every pair of posted prices (?, @) ∈ GW ∩ {(?, @) ∈
[0, 1]2 | ? < @}, (?′, @′) ∈ GW ∩ {(?, @) ∈ [0, 1]2 | ? ≥ @}, and
instance : ∈ {0, . . . , # − 1}, we have that E: [GFT(?, @, B, 1)] ≤
E: [GFT(?′, @′, B, 1)] ≤ 21 + d Y I

{
(?′, @′) = (?∗

:
, ?∗
:
+ X)

}
.

We complete this section by showing that also strategies that
propose a high price to the buyer are dominated in every instance.
In particular, we show that when the algorithm places prices (?, @)
with @ > (1+ℓ )/2, it looses a constant GFT with respect to choosing
a smaller @. This is because the learner cannot induce the tradeW5

which guarantees expected GFT of Θ(W5). Formally,

Lemma 5.8. For any instance : , ? ∈ WB
G
∩[ (1−ℓ )/2, (1+ℓ )/2], and@ ∈

( (1+ℓ )/2, 1] ∩G1
W

we have E: [GFT(?, ? +X)] ≥ E: [GFT(?, @)] +
W5
3 .

Intuitively, this lemma shows that exploring is costly. Indeed,
as we show shortly, the algorithm must post @ ≥ (1+ℓ )/2 to gain
information on the instance.

iii) Analysis of the feedback.Now, we show that for any instance
`: and any posted prices (?, @), the distribution of the two-bit feed-
back is independent on the instance almost everywhere. Speci�cally,
the feedback distribution depends on the instance : only within a
“small” and instance-dependent region of prices. For every instance
: ≥ 1, let F: = [1−ℓ/2 + (: − 1)Δ, 1−ℓ/2 + :Δ) × (1 − ℓ − 2, 1 − ℓ] .
Then, the feedback is independent from the instance for each pair
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outside the sets F: (see Claim 2 of Cesa-Bianchi et al. [19] for a
similar result).

Lemma 5.9. For all (?, @) ∈ [0, 1]2 \ ⋃: ′∈{1,...,#−1} F: ′ it holds
that for all I ∈ {0, 1}2 and ∀9, : ∈ {0, . . . , # − 1} we have that
P: [(I{B ≤ ?}, I{@ ≤ 1}) = I] = P9 [(I{B ≤ ?}, I{@ ≤ 1}) = I] .

iv) Price regions. We partition [0, 1]2 in the following regions,
also depicted in Figure 3.

• Exploration regions. We have the # − 1 regions F: . These are
the regions where the probability of observing a certain two-bit
feedback depends on the instance `: .
• Exploitation regions. We de�ne the regions E: for any : ≥ 1 as

E: =

{
(?, @)

��� @ ≥ ?, @ ≤ 1+ℓ
2 , ? ∈

[
1−ℓ
2 + (: − 1)Δ,

1−ℓ
2 + :Δ

)}
.

All these regions are such that the GFT collected by posting
(?, @) ∈ E: is close (and smaller than or equal to) to the optimal
GFT, i.e., the one obtained by posting (?∗

:
, ?∗
:
+ X).

• Dominated regions. We de�neD as the remaining set of possible
valuations D = [0, 1]2 \ (∪: (F: ∪ E: )) . It’s easy to verify that
(?, @) ∈ D obtain a GFT that is at most 21.

Next, we de�ne the number of times an algorithm plays in the
exploration, exploitation and dominated regions, which are N: =∑
C ∈[) ] I{(?C , @C ) ∈ F: }, M: =

∑
C ∈[) ] I{(?C , @C ) ∈ E: }, and O =∑

C ∈[) ] I{(?C , @C ) ∈ D}, respectively. Then, we can upperbound the
gain from trade of an algorithm A by considering only the number
of plays in each region. In particular:

• Cost of exploration: the GFT collected by posting prices in F9

is at most 22 for all 9 (Lemma 5.8);
• Exploitation: the GFT collected by posting prices in E9 is at
most 21 + d · YI{ 9 = :} (Lemma 5.7);
• Cost of domination: the GFT collected by posting prices in D

is at most 21 (Lemma 5.7).

Formally, these observations lead to the following upper bound.

Lemma 5.10. Let {(?C , @C )}C ∈[) ] be the sequences of prices posted
by any algorithm A. Then

)∑

C=1

E: [GFT(?C , @C , B, 1)] ≤ E:

[
dYM: +

#−1∑

:=1

(
21M9 + 22N9 + 21O

)
]
.

v) Relating the algorithm behavior on di�erent instances.

Now we relate the number of exploitation roundsM: in di�erent
instances. This di�erence depends on the probability measures P:
and P0 through the Pinsker’s inequality on a suitably de�ned multi-
nomial random variable that encodes the four possible feedbacks.

Lemma 5.11. For all : ∈ {1, . . . , # − 1} we have that E: [M: ] −
E0 [M: ] ≤ )Y

√
2E0 [N: ]/W6 .

vi) Lower bounding the regret.

We de�ne the expected regret under instance : as:

':) = max
(?,@) ∈ [0,1]2,?≥@

E:

[
)∑

C=1

GFTC (?, @) −
)∑

C=1

GFTC (?C , @C )
]
.

Then, combining all the previous results leads to the following
lemma which gives a lower bound in terms of Y, # , and ) .

U

V

1

1
3

U = V

U = 2V

2
7

1
4

1
4

1
7

Figure 4: Order of U and V reachable by Cesa-Bianchi et al.

[19] (red) and this work (blue).

Lemma 5.12. There is an instance: ∈ {0, . . . , #−1} and an absolute
constant 2 ∈ (0, 1) such that ':

)
≥ 2 ·min

(
#Y−2, Y)

)
.

By using Lemma 5.12 we can readily conclude the proof of The-
orem 5.5 as follows. Let Y = ) −U and # = ) V , with U, V > 0. Now
we simply have to optimize over the choice of parameters U and
V . In doing so, we need to take into account the additional con-
straints necessary to have well de�ned instance distribution `: . In
particular, we have that Y ≤ W1 from Equation (4), and 2#W1 < 1

from Equation (3). Moreover, we also need to impose W4# < 1

by Equation (5). Since W4 = 4W1 (14# − 13), this also implies that
W1 <

1
4# (13#−14) <

1
# 2 for # > 2. Therefore, the constraint Y < W1

implies: Y = ) −U ≤ 1/) 2V = 1/# 2 which yields that U ≥ 2V . Note
that this dominates the constraint Y < 1/# (or equivalently written
as U ≥ V) that would have been implied by Equation (4) alone.

The lower bound of is maximized when U and V are solution to
maxU≥0 (1 − U) subject to U ≥ 2V , 1 − U = V + 2U , which gives
U = 2/7 and V = 1/7. This implies a lower bound Ω() 5/7).

Connection with the Ω() 3/4) lower bound of Cesa-Bianchi

et al. [19]. While our result and the one of Cesa-Bianchi et al. [19]
build on a similar constructions (at least conceptually), we obtain a
weaker lower bound. The main reason is that the learner in Cesa-
Bianchi et al. [19] is weak budget balanced, while in our work the
learner has only a global budget balance constraint. To preclude
this option to the learner, we penalize the GFT of prices in the lower
triangle by adding the set of valuations W4. If W4 is large enough
w.r.t. W1, then posting prices in the lower triangle is dominated. In
particular, we must choose W4 = Θ(W1# ) as we prove in Lemma 5.7.
Once we prove that the lower triangle is dominated, we can con-
ceptually reduce our problem to the one of Cesa-Bianchi et al. [19].
However, the choice of W4 = Θ(W1# ) imposes the additional con-
straint U ≥ 2V , which is not needed in the original construction.
Hence, they can set U = V = 1/4, and get a bound of Ω() 3/4). This
di�erence is depicted in Figure 4.

6 BEST FEASIBLE DISTRIBUTION OF PRICES

In this section, we analyse the regret with respect to the best �xed
distribution over prices which satis�es global budget balance on
average. First, we present a negative result that clearly separates
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this new benchmark from the best �xed price in hindsight: in The-
orem 6.2, we prove that it is impossible to achieve sublinear (1 + Y)-
regret with respect to the best feasible distribution, even in the
full feedback setting. On the positive side, we show that the two
benchmarks are only a multiplicative factor 2 apart (Theorem 6.3).
This implies that any learning algorithm that exhibits sublinear
regret with respect to the best �xed price in hindsight automati-
cally achieves sublinear 2-regret with respect to the best feasible
distribution. Finally, we complement this positive result by proving
that this multiplicative gap of 2 is tight (Theorem 6.5).

6.1 Linear Lower Bound

The best feasible distribution has a crucial advantage with respect
to any budget balanced learner: it has the possibility to “run some
de�cit” in a preliminary phase of the sequence as it knows it will
be possible to extract enough pro�t to ensure global budget bal-
ance in some later stages. For instance, consider a half-sequence
where (BC , 1C ) is either (0, 1/3) or (2/3, 1), for C ≤ )/2. Any learning
algorithm has to enforce budget balance at time )/2 (to be protected
about the possibility that (BC , 1C ) = 0 for all future C ), while the
randomized benchmark, which knows the future, may run a de�cit
and collect more gain from trade by posting the budget unbalanced
prices (2/3, 1/3) with some probability. Inspired by this example, we
state the following Lemma.

Lemma 6.1. For any algorithm A that enforces global budget bal-

ance, there exists a deterministic sequence of valuations S1 with the

following properties: (8) the expected gain from trade of A is at most
)/9; (88) the valuations (BC , 1C ) are either (0, 1/3) or (2/3, 1) for all
C ≤ )/2; (888) the valuations (BC , 1C ) are equal to (0, 0) for all C > )/2.

The lemma is crucial in proving the impossibility result in the
following Theorem, which holds even under full feedback.

Theorem 6.2. Fix any constant U ∈ [1, 36/35), and any globally

budget balanced learning algorithm A with full-feedback. Then there

exists a sequence of valuations such that

)∑

C=1

E
(?,@)∼W∗

GFTC (?, @) − U ·
)∑

C=1

E[GFTC (?C , @C )] ≥ 5
18

(
36
35 − U

)
),

where distribution W∗ is the optimal feasible distribution.

6.2 Comparison of the Two Benchmarks

Surprisingly, it holds that the performance of the optimal �xed price
is to not far from that of optimal global budget balanced distribution.

Theorem 6.3. Denote with ?∗, resp. W∗, the best �xed price, resp. the
best feasible distribution. Then, for any sequence of valuations:

)∑

C=1

E(?,@)∼W∗GFTC (?, @) ≤ 2

)∑

C=1

GFTC (?∗) .

As a corollary, we have that any algorithm that achieves sublinear
regret with respect to the best �xed price also guarantees sublinear
2-regret with respect to the best feasible prices distribution.

Corollary 6.4. Let A be a learning algorithm for the repeated bi-

lateral trade problem which guarantees an upper bound of 5 () ) on

the regret with respect to the best �xed price in hindsight. Then, the

2-regret of A with respect to the best budget feasible distribution over

prices is at most 5 () ).

Surprisingly, the factor 2 between the two benchmarks is optimal.
This implies that the analysis of the performance of the algorithms
in Corollary 6.4 is essentially tight.

Theorem 6.5. For any Y > 0, there exists a sequence of valuations

such that

)∑

C=1

E(?,@)∼W∗GFTC (?, @) ≥ (2 − Y)
)∑

C=1

GFTC (?∗),

where ?∗ and W∗ are the best �xed price and global budget balanced
distribution, respectively.

7 FINAL REMARKS AND OPEN PROBLEMS

In this paper we introduce the notion of global budget balance in
the repeated bilateral trade problem. With this notion, we show
for the �rst time that it is possible to achieve sublinear regret with
respect to the best �xed price in hindsight, without relying on any
additional assumption. In the full feedback model we prove that
the minimax regret rate of the learning problem is Θ̃(

√
) ), while

in the partial feedback models, we provide an upper bound on
the regret of order $̃ () 3/4), which is complemented with a Ω() 5/7)
lower bound. Our regret results proves a clear separation between
the two feedback models, but leave an open gap between the ) 5/7

and ) 3/4 rates in partial feedback.
Inspired by Bandits with Knapsack, we formulated a new bench-

mark: the best feasible distribution over prices. Against this harder
benchmark we prove that it is possible to achieve sublinear 2-regret,
while no algorithm can achieve sublinear (1 + Y0)-regret. We leave
as an open question the characterization of the optimal competitive
ratio U ∈ [1 + Y0, 2] obtainable against this benchmark.
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