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Abstract. We study discounted Hamilton–Jacobi equations on networks, with-

out putting any restriction on their geometry. Assuming the Hamiltonians are

continuous and coercive, we establish a comparison principle and provide rep-

resentation formulae for solutions. We follow the approach introduced in [11],

namely we associate to the differential problem on the network, a discrete func-

tional equation on an abstract underlying graph. We perform some qualitative

analysis and single out a distinguished subset of vertices, called λ–Aubry set,

which shares some properties of the Aubry set for Eikonal equations on compact

manifolds. We finally study the asymptotic behavior of solutions and λ–Aubry

sets as the discount factor λ becomes infinitesimal.

1. Introduction

We are concerned with discounted Hamilton–Jacobi equations on networks. We
establish a comparison principle, provide representation formulae for solutions and
perform some qualitative analysis. We emphasize that our results apply without
any restriction on the geometry of the network. In particular multiple arcs connecti
ng a given pair of vertices are allowed as well as loops or multiple loops based on a
single vertex.

Given a finite family of Hamiltonians Hγ defined on [0, 1] × R, indexed by a

parameter γ, we consider the corresponding discounted equations

(1) λu+Hγ(s, u
′) = 0 in (0, 1),

with discount factor λ independent of γ. The Hγ are assumed continuous in both

arguments and coercive in the momentum variable, no convexity is required, see

assumptions (H1), (H2) in Section 2.

Since the Hamiltonians are unrelated and no boundary conditions are specified,
these equations possess infinite viscosity solutions, when separately considered.
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A sort of geometric coupling is provided by setting each equation on an arc of a

given network Γ immersed in RN , and combining them with additional conditions
at the vertices, namely at the junction points of different arcs. In other terms
boundary conditions are introduced in correspondence to endpoints 0 and 1 of the
parametrization. The subtle point however is that these conditions are not required
in the same way at all vertices for supersolutions, but are given taking into account

the geometry of the network, as made precise in Definition 2.3 iii).

The aim is to uniquely select distinguished solutions of all equations which piece
together continuously at vertices, in other terms to uniquely determine a solution of
the differential problem on Γ. Namely a continuous functions u : Γ −→ R satisfying

λu ◦ γ +Hγ(s, (u ◦ γ)′) = 0 in (0, 1)

in the viscosity sense for any arc γ, plus vertex conditions. Following [8], [11] we

consider state constraint type boundary conditions which correspond to, at least
on the arcs where these boundary conditions apply, so called maximal solutions of

(1). By this we mean that fixing a number α, and considering the family Sα of all

solutions taking the value α at 0, the element of Sα which also satisfies the state
constraint boundary condition at 1 is maximal in Sα.

We attack the problem through the approach introduced in [11] for the Eikonal

case. Namely we associate to the above described problem on Γ a discrete equa-
tion defined on an underlying graph, which has the same vertices of Γ and edges
corresponding to the arcs of Γ.

The two problems are related by the fact that the trace on the vertices of a solution
of the continuous equation solves the discrete one, and conversely any solution of the
discrete equation can be uniquely extended, from vertices to the whole network, to a

solution of the HJ discounted equation. See (DFEλ) and Theorem 4.2, Proposition

4.3 in Section 4.
We can therefore prove existence and comparison results for the discrete equation

and then transfer it to the differential problem on the network. The advantage of
this procedure is twofold. The comparison principles are obtained through simple
combinatorial techniques bypassing Crandall–Lions doubling variables method, see
Theorem 4.4. In addition, explicit representation formulae for solutions can be

provided, see (17), which makes possible a qualitative analysis, using a suitable

functional defined on the paths of the graph, see Definition 5.1.

In this way we can single out a special subset of vertices (and edges), called λ–

Aubry set, which shares some properties of the Aubry set for Eikonal equations on

networks with convex or quasiconvex Hamiltonians, see [11]. A similar entity has

been found for discounted equations with regular Hamiltonians, (contact Hamilto-

nians) on compact manifolds in [9], [13] via dynamical techniques.
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Assuming the Hγ convex, we study the link, as λ becomes infinitesimal, of λ–

Aubry set with the Aubry set of the corresponding Eikonal equation (λ = 0). In

particular we show, see Proposition 8.8, that, for λ suitably small, the λ–Aubry sets
are contained in the Aubry set for the Eikonal equation. This should be compared

with the convergence result established in [9].

The paper is organized as follows: The problem under investigation is presented in
Section 2 together with the assumptions on the Hamiltonians and the main related
definitions. In Section 3 we summarize the relevant properties of one–dimensional
discounted HJ equations posed on an interval.

In Section 4 we introduce the discrete equation, prove the link with the differential
problem on the network, and establish a comparison principle. Section 5 is devoted
to the definition of a functional on the paths of the graph, which will play a major
role in the representation formulae for solutions described in Section 6. In Section 7
we define the λ–Aubry sets via a condition on cycles. Section 8 provides in the first
part a summary of the main properties of Eikonal equations on networks and then
focus on the behavior of solutions and λ–Aubry set as λ −→ 0.

Finally Appendix A collects some basic material on graphs and networks , and in
Appendix B we provide some proofs of results stated in Section 3.

2. Setting of the problem

We consider a network Γ immersed in RN . We denote by V, E the set of vertices
and arcs, respectively. We also consider the abstract graph X underlying Γ with the
same vertices of Γ and edges that are, loosely speaking, an immaterial copy of the
arcs of E . See Appendix A for more detail and further terminology and notation on
graphs and networks.

We are given a family of Hamiltonians

Hγ : [0, 1]× R→ R

indexed by the arcs of the network. They are unrelated for arcs of different support,
and satisfy the compatibility condition

(2) H−γ(s, p) = Hγ(1− s,−p) for any γ ∈ E .

We assume the Hγ to be:

(H1) continuous in (s, p);

(H2) coercive in p.

No convexity conditions are required for the discounted equation. Some additional
assumptions will be introduced for the asymptotic results of Section 8 where an
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Eikonal problem will appear at the limit, as the discount factor goes to 0. See

hypotheses (H3), (H4) in Section 8

For any given arc γ, we are concerned with the discounted equation

(HJγλ) λw +Hγ(s, w
′) = 0 in (0, 1).

The problem we are interested on is a combination of all the (HJγλ). We look for

continuous functions u defined on Γ such that

(HJΓλ) λu ◦ γ +Hγ(s, (u ◦ γ)′) = 0 in [0, 1], for any γ ∈ E

in the viscosity sense, plus suitable conditions at the vertices, as made precise in the

forthcoming Definition 2.3. We preliminarily recall some definition and terminology
of viscosity solution theory.

2.1. Definition. Given a continuous function w in [0, 1], we say that a C1 function

ϕ is supertangent to w at s ∈ (0, 1) if

w = ϕ at s and w ≤ ϕ in (s− δ, s+ δ) for some δ > 0.

The notion of subtangent is given by just replacing ≤ by ≥ in the above formula.
Finally, ϕ is called constrained subtangent to w at 1 if

w = ϕ at 1 and w ≥ ϕ in (1− δ, 1) for some δ > 0.

A similar notion, with obvious adaptations, can be given at t = 0.

2.2. Definition. Given a continuous function w in [0, 1], a point s0 ∈ {0, 1}, we say

that it satisfies the state constraint boundary condition for (HJγλ) at s0 if

λϕ(s0) +Hγ(s0, ϕ
′(s0)) ≥ 0.

for any constrained C1 subtangent ϕ to w at s0.

2.3. Definition. We say that u : Γ −→ R is subsolution to (HJΓλ) if

i) it is continuous on Γ,

ii) s 7→ u(γ(s)) is subsolution to (HJγλ) in (0, 1) for any γ ∈ E .

We say that u is supersolution to (HJΓλ) if

i) it is continuous;

ii) s 7→ u(γ(s)) is supersolution of (HJγλ) in (0, 1) for any γ ∈ E ;
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iii) for every vertex x there is at least an arc γ, with x as terminal point, such

that u(γ(s)) satisfies the state constraint boundary condition for (HJγλ) at
s = 1

A function u is said solution if it is at the same time super and subsolution.

Let us observe that iii) for supersolutions is actually a partial boundary condition

since it is given only at one endpoint. However when it is combined with a Dirichlet
condition at the other endpoint, it gives the uniqueness of the solution as proved
in Corollary 3.5. Also notice that in the definition of subsolution no conditions are
required on vertices.

2.4. Remark. Passing from γ to −γ and from Hγ to H−γ, we see that the condition

iii) in the definition of supersolution for a vertex x can be equivalently given at

s = 0 considering the edges with initial vertex x.

2.5. Remark. The condition iii) in the above definition of supersolution is the same

given in [8] at the junction point 0. In [8] the authors do not impose conditions

for the test functions on the other vertices, but for the uniqueness principle they
need considering some boundary condition at the other vertices of the junction.

We assume condition iii) at any vertex but we get uniqueness of solutions without

assuming any additional boundary condition, we do not even single out a boundary
in our network.

3. Local analysis of HJ equations on arcs

We focus on an arc γ ∈ E , our treatment is independent of whether or not γ is a

cycle. We recall some basic facts about viscosity (sub)solutions to (HJγλ), see for

instance [1], [2].

3.1. Theorem (Comparison Principle). If u is an upper semicontinuous subsolution

and v is a lower semicontinuous supersolution to (HJγλ) with u ≤ v in {0, 1}, then

u ≤ v in [0, 1].

Given α ∈ R, we define

uγmax(s) = sup{u(s) | u subsolution to (HJγλ)}(3)

uγα(s) = sup{u(s) | u subsolution to (HJγλ) with u(0) ≤ α}(4)
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3.2. Lemma. The function uγmax is characterized by the property of being a Lips-

chitz continuous solution to (HJγλ) in (0, 1) satisfying state constraints boundary

conditions at 0 and 1.

3.3. Lemma. The function uγα is a Lipschitz–continuous solution to (HJγλ) in (0, 1)

satisfying state constraint boundary conditions at s = 1. In addition uγα is equal to

α at s = 0 if and only if α ≤ uγmax(0).

The proof of the two above lemmata is in Appendix B.

3.4. Corollary. The identity uγα ≡ uγmax holds true in [0, 1] if and only if α ≥ uγmax(0).

We deduce from the previous results the following characterization of uγα:

3.5. Corollary. The function uγα, for α ≤ uγmax(0), is the unique solution to (HJγλ)

satisfying the Dirichlet boundary condition uγα(0) = α and the state constraint bound-

ary condition at s = 1.

By slightly adapting the proof of Lemma 3.2, we also have:

3.6. Corollary. Let w be a supersolution of (HJγλ) with w(0) = α satisfying the

state constraint boundary condition at s = 1, then w ≥ uγα in [0, 1].

We introduce the function u−γα defined as uγα, but with the Hamiltonian Hγ in

equation (HJγλ) replaced by H−γ. This function is the analogue of uγα on −γ in the

sense that it is the maximal subsolution to λu + H−γ(s, u
′) = 0 taking a value less

than or equal to α at 0.

3.7. Remark. It is apparent that w(s) is subsolution to (HJγλ) with H−γ in place

of Hγ if and only s 7→ w(1 − s) has the same property for the original equations.

This shows that u−γα (1− s) is the maximal subsolution to (HJγλ) taking value ≤ α

at s = 1. In addition, s 7→ uγmax(1 − s) is the maximal subsolution to (HJγλ) with

H−γ in place of Hγ.

The next result is about Dirichlet boundary problems. It will be crucially used in
the passage from the local problem on the arcs to the global problem on the network.

3.8. Proposition. There exists an unique solution u of the equation (HJγλ) with

u(0) = α, u(1) = β if and only if

(5) α ≤ u−γβ (1), β ≤ uγα(1).
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The proof is in Appendix B.

In the next result we show continuity of uγα(1) with respect to α plus two mono-

tonicity properties we will repeatedly exploit in what follows. We stress in particular

that the strict monotonicity in item ii) will play a crucial role in the whole paper.

3.9. Proposition.

i) α 7→ uγα(1) is Lipschitz continuous and nondecreasing;

ii) α 7→ uγα(1)− α is strictly decreasing;

iii) limα→−∞ u
γ
α(1)− α = +∞ , limα→+∞ u

γ
α(1)− α = −∞.

Proof: We start from ii). We consider β < α. The function s 7→ uγα + β − α is a

strict subsolution to (HJγλ) taking a value less than or equal to β at s = 0. This

implies

(6) uγα(1) + β − α ≤ uγβ(1).

Arguing as in the proof of Lemma 3.2, we find a constrained subtangent to uγα+β−α
at s = 1 of the form

ϕ(s) = uγα(1) + β − α + q (s− 1)

for some q > max{p | p ∈ ∂uγα(1)} satisfying

(7) λ (uγα(1) + β − α) +Hγ(1, q) < 0.

If equality holds in (6) then ϕ is also a constrained subtangent to uγβ at s = 1 and (7)

contradicts uγβ satisfying state constraint boundary condition at s = 1, see Corollary

3.5. Then a strict inequality must prevail. This shows item ii).

We pass to i). The nondecreasing character of α 7→ uγα(1) is a direct consequence

of the maximality of uγα. From this and item ii) we derive for any α ≥ β,

0 ≤ uγα(1)− uγβ(1) ≤ α− β,

which implies the claimed continuity.

To prove iii), we recall that by Corollary 3.4

uγα(1)− α = uγmax(1)− α for α sufficently large ,

which gives the claimed negative divergence as α → +∞. Given any p0 > 0, we
consider α with

−max
s∈R
{Hγ(s, p0)} ≥ λ (α + p0),

then s 7→ α+ s p0 is subsolution to (HJγλ), and consequently uγα(1)− α ≥ p0. This

implies the claimed positive divergence as α→ −∞. �

We derive:



8 MARCO POZZA AND ANTONIO SICONOLFI

3.10. Corollary. There exists one and only one α such that uγα(1) = α, and it

satisfies α ≥ − 1
λ

max
s
Hγ(s, 0).

Proof: If α = − 1
λ

max
s
Hγ(s, 0) then the function constantly equal to α is sub-

solution to (HJγλ). Consequently uγα(1) ≥ α, and the conclusion follows from

Proposition 3.9 ii), iii). �

3.11. Remark. According to Proposition 3.8, the equation (HJγλ) admits a periodic

solution in (0, 1), namely attaining the same value at 0 and 1, if and only if the

boundary value is less than or equal to the α appearing in the statement of Corollary
3.10.

We introduce the Eikonal equation

(HJγ) Hγ(s, u
′) = 0 s ∈ (0, 1)

under the additional assumptions (H3), (H4), see Section 8 for a precise statement

of these conditions and a quick review of Eikonal equation on networks. We define

aγ = max
s

min
p
Hγ(s, p)

3.12. Lemma. If 0 ≥ aγ, then there is a function v such that α + v is the maximal

subsolution to (HJγ) taking the value α at 0, for any α ∈ R. It is in addition a

Lipschitz continuous solution of (HJγ).

Proof: See Proposition 5.6 in [11]. The solution v + α is given by formula (20) in

[11] with α in place of w(0) and 0 in place of a.

�

We study the asymptotic behavior of solutions to (HJγλ) as λ → 0. Given a

positive infinitesimal sequence λn, we indicate by uλnmax, uλnα the maximal solution

to (HJγλ), with λn in place of λ, and the maximal solution among those taking

the value α at s = 0, respectively. The function v is defined as in the statement of
Lemma 3.12. The proof of the following result is in Appendix B.

3.13. Lemma. Let αn be a sequence converging to some α ∈ R. If uλnmax(0) ≥ αn for

n sufficiently large, then un = uλnαn
uniformly converges in [0, 1] to α + v.
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4. Discrete functional equations

We introduce a discrete functional equation on V suitably related to (HJΓλ).

The relation is made clear in Theorem 4.2, Proposition 4.3.

For e = Ψ−1(γ), we set

ρ(α, e) = uγα(1)

α(e) = uγmax(0)

α(e) = uγmax(1),

We record for later use:

4.1. Proposition. For any e ∈ E we have

α(e) = α(−e) = ρ(α(e), e)

Proof: The equalities in the statement directly come from the definitions of α, α,
ρ and Remark 3.7. �

The discrete functional equation in V is defined as follows:

(DFEλ) U(x) = min
e∈−Ex

ρ(U(o(e)), e).

We say that U : V −→ R is a subsolution (resp. supersolution) to (DFEλ) if

(8) U(x) ≤ (resp. ≥ ) min
e∈−Ex

ρ(U(o(e)), e). for any x ∈ V.

A solution is at the same time sub and supersolution. See (33) in the Appendix for

the definition of −Ex. Notice that in accordance with condition iii) in Definition

2.3 of the supersolution on the network, we have considered in (DFEλ) only the

edge ending at x. As pointed out in Remark 2.5, it is equivalent to instead consider

arcs (in Definition 2.3) and edges (in (DFEλ)) starting at x

The following results provide the bridge linking (DFEλ) to (HJΓλ).

4.2. Theorem. A solution U to (DFEλ) can be uniquely extended to a solution u

to (HJΓλ). Conversely, given a solution u to (HJΓλ), U = u|V is a solution to

(DFEλ).
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Proof: Assume that U solves (DFEλ). Let e be an edge in E. We set, to ease

notations, γ = Ψ(e), α = U(o(e)), β = U(t(e)). By the very definition of subsolution

to (DFEλ) and ρ we have

β ≤ ρ(α, e) = uγα(1)

α ≤ ρ(β, e) = u−γβ (1)

and this implies, thanks to Proposition 3.8, that there is a unique solution w to

(HJγλ) with w(0) = α and w(1) = β. We have in addition that for any x ∈ V there

exists e0 ∈ −Ex with
U(x) = ρ(U(o(e0)), e0).

This implies that U can be uniquely extended as the maximal subsolution to (HJγλ)

less than or equal to U(o(e0)) at s = 0. It is by Corollary 3.5 a solution to (HJγλ)

and satisfies the state constraint boundary condition at s = 1. This shows the first

part of the assertion. Conversely, assume that u is a solution to (HJΓλ), and set

U = u|V. We deduce from the definition of ρ and Proposition 3.8

(9) U(x) ≤ min
e∈−Ex

ρ(U(o(e)), e) for any x ∈ V.

Taking into account that u satisfies condition iii) in the definition of solution to

(HJΓλ), we find in force of Corollary 3.5 for any x ∈ V an e0 ∈ −Ex for which

formula (9) holds with equality. This shows that U solves (DFEλ) and concludes

the proof. �

As a consequence of the very definition of ρ and Corollary 3.6, we also have

4.3. Proposition. The trace on V of any subsolution (resp. supersolution) to

(HJΓλ) is a subsolution (resp. supersolution ) of (DFEλ)

We establish a comparison principle for (DFEλ).

4.4. Theorem. Let U , W be a subsolution and a supersolution, respectively, to

(DFEλ). Then U ≤ W .

Proof: Assume by contradiction that maxV U −W > 0, and denote by x0 a corre-
sponding maximizer. In force of the very definition of subsolution and supersolution,
there is e0 ∈ −Ex0 with

U(x0) ≤ ρ(U(o(e0)), e0)

W (x0) ≥ ρ(W (o(e0)), e0).

By subtracting the above relations, we obtain

(10) U(x0)−W (x0) ≤ ρ(U(o(e0)), e0)− ρ(W (o(e0)), e0),
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and so, bearing in mind that U(x0) > W (x0), we get

(11) ρ(U(o(e0)), e0)− ρ(W (o(e0)), e0) > 0.

Since ρ(·, e0) is nondecreasing by Proposition 3.9, we derive from (11) U(o(e0)) >

W (o(e0)). Thus, exploiting the strictly decreasing character of α 7→ ρ(α, e0)−α, we

further get from (10)

U(o(e0))−W (o(e0)) > ρ(U(o(e0)), e0)− ρ(W (o(e0)), e0) ≥ U(x0)−W (x0)

which contradicts x0 being a maximizer of U −W in V. �

We derive as a consequence:

4.5. Theorem. The discounted discrete equation can have at most one solution.

By combining Theorem 4.4 and Proposition 4.3, we finally state a comparison

principle for (HJΓλ).

4.6. Theorem. Let u, w be sub and supersolution of (HJΓλ), the u ≤ w in Γ.

Proof: By Proposition 4.3 the traces of u, w on V are sub and supersolution to

(DFEλ), respectively. By Theorem 4.4 u|V ≤ w|V. This gives the assertion in force

of Theorem 3.1.
�

5. Analysis of the discrete equation

In this section we extend the definition of ρ from edges to general paths via an
inductive procedure on the length of paths. We furthermore define some related
quantities.

5.1. Definition. Given α ∈ R and a path ξ, we define

ρ(α, ξ) = ρ(α, e) if ξ = e .

If ξ = (ei)
M
i=1, for M > 1, we set ξ̄ = (ei)

M−1
i=1 and define

ρ(α, ξ) = ρ(ρ(α, ξ̄), eM).

The following concatenation formula is inherent to the definition. Let ξ, η be

paths with t(ξ) = o(η) then

(12) ρ(α, ξ ∪ η) = ρ(ρ(α, ξ), η) for any α.

Taking into account that the property of being continuous is stable for composition
of functions, we get from Proposition 3.9:
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5.2. Proposition. Given any path ξ, the function

α 7→ ρ(α, ξ)

is continuous.

The next Proposition is a direct consequence of Proposition 3.9 and will be re-
peatedly used in what follows.

5.3. Proposition. The following monotonicity properties hold for any path ξ

i) α 7→ ρ(α, ξ) is nondecreasing;

ii) α 7→ ρ(α, ξ)− α is strictly decreasing.

Proof: We prove both items arguing by induction on the length of the path. If it
is 1, and so the path reduces to an edge, the statement is a direct consequence of
the definition of ρ and Proposition 3.9. We assume the assertion to be true for any

path with length less than M and show it for ξ := (ei)
M
i=1. By the very definition of

ρ

(13) ρ(α, ξ) = ρ(ρ(α, ξ̄), eM),

where ξ̄ = (ei)
M−1
i=1 . The functions α 7→ ρ(α, ξ̄) and α 7→ ρ(α, eM) are nondecreas-

ing by the inductive step, and ρ(·, ξ) is therefore nondecreasing as composition of

nondecreasing functions. This concludes the proof of item i). To show ii), we argue

again by induction. Given β < α, we have by item i) ρ(β, ξ) ≤ ρ(α, ξ), exploiting

this inequality, and the inductive step, we get

ρ(α, ξ)− ρ(β, ξ) < α− β

ρ(ρ(α, ξ̄), eM)− ρ(ρ(β, ξ̄), eM) ≤ ρ(α, ξ)− ρ(β, ξ).

By combining the above inequalities, we obtain

ρ(α, ξ)− ρ(β, ξ) < α− β

which gives ii). �

The next result is a generalization to paths of Corollary 3.10. It has a crucial
relevance since the fixed points of ρ will play a key role in our analysis.

5.4. Corollary. For any path ξ there exists one and only one α ∈ R with ρ(α, ξ) = α.

Proof: We have by the definition of α and ρ

(14) ρ(α, e) ≤ α(e) for any e ∈ E, α ∈ R.
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Let ξ = (ei)
M
i=1 and ξ̄ = (ei)

M−1
i=1 . We get in force of (14) and the concatenation

formula (12)

(15) ρ(α, ξ) = ρ(ρ(α, ξ̄), eM) ≤ α(eM) for any α ∈ R.

Taking into account Corollary 3.10, we set

α0 = min{α | ρ(α, ei) = α, i = 1, · · · ,M}.
We claim that

(16) ρ(α, ξ) > α for α < α0.

We fix α > α0 and prove the claim arguing by induction on the length of the curve.

If the length is 1, say ξ = e, then (16) holds because of the strict monotonicity of

α 7→ ρ(α, e) − α. Assuming the property true for curves of length less than M , we

get ρ(α, ξ̄) > α and consequently by the nondecreasing character of ρ(·, eM) and

(12)

ρ(α, ξ) = ρ(ρ(α, ξ̄), eM) ≥ ρ(α, eM) > α,

proving the claim. Relations (15), (16) plus continuity and monotonicity of ρ(·, ξ),
see Propositions 5.3, 5.2, give the assertion. �

In what follows, we will exploit the property highlighted by the above proposition
solely for cycles.

5.5. Definition. Given a cycle ξ, we define β(ξ) to be the unique fixed point of

α 7→ ρ(α, ξ).

5.6. Proposition. For any edge e, the cycle ξ = (e,−e) satisfies

β(ξ) = α(e).

Proof: We have
ρ(α(e), ξ) = ρ(ρ(α(e), e),−e)

and we derive, taking into account Lemma 4.1

ρ(α(e), ξ) = ρ(α(−e),−e) = α(e).

�

5.7. Remark. It is worth pointing out that β(ξ), see Definition 5.5, also depends on

the initial point of the cycle. In other terms, if we consider another cycle η with the

same edges as ξ but different initial point then in general β(ξ) 6= β(η). For example,

if we define, for a given edge e, ξ = {e,−e} and η = {−e, e} then, according to

Proposition 5.6, β(ξ) = α(e) and β(η) = α(e), which are clearly in general different.
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In what follows when we will say that a cycle is a based on a certain vertex, we will
mean that the vertex is the initial point of the cycle.

6. Existence of solutions of (DFEλ), (HJΓλ) and representation
formulae

We show that a solution to (DFEλ) does exist providing a representation formula.

We define a function f : V→ R via

f(x) = inf{β(ξ) | for some cycle ξ based on x}.
The definition is well posed thanks to Corollary 5.4. We set for x ∈ V

(17) U(x) = inf{ρ(f(o(ξ)), ξ) | ξ path with t(ξ) = x}.

Since for any vertex x, any cycle based on x is an admissible path for (17), it is

clear that
U(x) ≤ f(x).

We have

6.1. Theorem. The function U defined in (17) is solution to (DFEλ).

The rest of the section is devoted to the deduction of some properties of f and
U , and to the proof of Theorem 6.1.

6.2. Proposition. We have

(18) −1

λ
max
e,s

HΨ(e)(s, 0) ≤ f(x) ≤ min
e∈Ex

α(e) for any x ∈ V.

Proof: The rightmost inequality of the formula in the statement is a direct conse-

quence of the definition of f and Proposition 5.6. We set α = − 1
λ

max
e,s

HΨ(e)(s, 0),

and claim that

(19) ρ(α, ξ) ≥ α for any path ξ.

Were the claim true, we derive from it, because of the strict monotonicity of α 7→
ρ(α, ξ) − α, β(ξ) ≥ α for any cycle ξ. This in turn implies the leftmost inequality

in (18). We prove (19) arguing inductively on the length of paths. It is true if

the length is 1 in force of Corollary‘3.10. We take a general path ξ = (ei)
M
i=1 and

set ξ = (ei)
M−1
i=1 . By inductive step ρ(α, ξ̄) ≥ α and ρ(α, eM) ≥ α. Exploiting the

monotonicity of ρ(·, eM), we have

ρ(α, ξ) = ρ(ρ(α, ξ̄), eM) ≥ ρ(α, eM) ≥ α.

This concludes the proof. �
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6.3. Proposition. The infimum in the definition of U is realized by a simple path
with terminal vertex x, for any x ∈ V.

Proof: We fix x and a path ξ with terminal vertex x, and set, to ease notation,

α = f(o(ξ)). Let us assume that there is a cycle η properly contained in ξ with

(20) o(η) 6= o(ξ) and t(η) 6= t(ξ).

The path ξ can be consequently written in the form

ξ = ξ1 ∪ η ∪ ξ2

where ξ1, ξ2, η satisfy t(ξ1) = o(ξ2) = o(η). We have by the concatenation formula

(21) ρ(α, ξ) = ρ(ρ(ρ(α), ξ1), η), ξ2).

If ρ(α, ξ1) ≥ β(η) then by the usual monotonicity property

ρ(ρ(α, ξ1), η) ≥ ρ(β(η), η) = β(η)

which implies, taking also into account (21) and the definition of α

(22) ρ(f(o(ξ)), ξ) ≥ ρ(β(η), ξ2) ≥ ρ(f(o(ξ2)), ξ2)).

If instead ρ(α, ξ1) < β(η), then by the strict monotonicity of α 7→ ρ(α, η) − α, we

have
ρ(ρ(α, ξ1), η) > ρ(α, ξ1)

and by (21) and the definition of α, we further get

(23) ρ(f(o(ξ)), ξ) > ρ(ρ(α, ξ1), ξ2) = ρ(α, ξ1 ∪ ξ2) = ρ(f(o(ξ1 ∪ ξ2), ξ1 ∪ ξ2).

Taking into account (22) (23), we realize that the cycle η can be removed without

affecting the infimum in the definition of U(x). By slightly adapting the argument,

we reach the same conclusion getting rid of condition (20). The procedure can be

repeated for all other cycle properly contained in ξ. We therefore see that

U(x) = min{ρ(f(o(ζ)), ζ) | ζ simple path with t(ζ) = x},
where the minimum in the above formula is justified by the fact that the simple
paths are finite. This ends the proof.

�

By following the same argument as in Proposition 6.3 we can also show

6.4. Corollary. Assume that for a given x

U(x) = ρ(f(o(ξ)), ξ) for some path ξ with t(ξ) = x.

Then there exists a simple path ζ with o(ζ) = o(ξ), t(ζ) = y such that

U(x) = ρ(f(o(ζ), ζ).
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Proof: (of Theorem 6.1) We fix x ∈ V and e ∈ −Ex. By Proposition 6.3, there

is a simple path ξ ending at o(e) with

U(o(e)) = ρ(f(o(ξ)), ξ).

By the very definition of U and the concatenation principle (12), we have

U(x) ≤ ρ(f(o(ξ)), ξ ∪ e) = ρ(U(o(e), e).

This shows that U is subsolution. Taking again into account Proposition 6.3, we

proceed denoting by η = (ei)
M
i=1 a simple path with terminal point x satisfying

U(x) = ρ(f(o(η), η).

We set η̄ = (ei)
M−1
i=1 , and derive from concatenation formula, monotonicity and

definition of U

U(x) = ρ(ρ(f(o(η), η̄), eM) ≥ ρ(U(o(eM)), eM)

Knowing that U is subsolution and eM ∈ −Ex, equality must prevail in the above
formula, showing that U is actually a solution, as was claimed.

�

6.5. Remark. If e is a loop with vertex x then clearly U(x) ≤ β(e) = β(−e), see

Remark 3.11, if there is a strict inequality then the edge e (resp.the arc Ψ(e)) can be

removed from the graph (resp. from the network) without affecting the solution of

(DFEλ) (resp. the solution of (HJΓλ) on the arcs different from Ψ(e)). A similar

phenomenon takes place for the Eikonal equation on graphs/networks, see Remark

6.17 in [11].

Combining the previous result with Theorems 4.2 and 4.5 we get

6.6. Theorem. There is one and only one solution to (HJΓλ), and its restriction

to V coincide with the function U defined in (17).

7. λ–Aubry sets

We define in this section the λ–Aubry sets, an analogue to the Aubry sets in-
troduced for the Eikonal problem, see Section 8. These sets allow writing a new

representation formula for solutions to (DFEλ), and will play a role in the asymp-

totic problem we will deal with in the next section.

7.1. Definition. The (projected) λ–Aubry set is given by

Aλ = {y ∈ V | U(y) = β(ξ) for some cycle ξ based on y.}
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7.2. Proposition. Given y ∈ Aλ, then any cycle ξ = (ei)
M
i=1 based on y with U(y) =

β(ξ) satisfies

U(o(ej)) = β
(
(ei)

M
i=j ∪ (ei)

j−1
i=1

)
(24)

U(o(ej)) = ρ
(
U(o(ek)), (ei)

j−1
i=k

)
(25)

for any j, k = 1, · · · ,M , k ≤ j.

Proof: We start proving (24). Taking into account that U is solution to (DFEλ),

we have

(26) U(y) ≤ ρ(U(o(eM)), eM).

We set η = (ei)
M−1
i=1 , ζ = eM ∪ η, it is clear that ζ is a cycle based on o(eM). By the

concatenation formula

(27) U(y) = ρ(U(y), ξ) = ρ(ρ(U(y), η), eM).

We then derive from (26), (27) and the monotonicity of ρ(·, eM)

ρ(U(y), η) ≤ U(o(eM))

which in turn implies, due to U(y) = β(ξ) ≥ f(y),

ρ(f(y), η) ≤ ρ(U(y), η) ≤ U(o(eM))

We then have by the very definition of U , and (27)

(28) U(o(eM)) = ρ(U(y), η) and U(y) = ρ(U(o(eM)), eM).

We finally get

ρ(U(o(eM)), ζ) = ρ(ρ(U(o(eM)), eM), η) = ρ(U(y), η) = U(o(eM))

and consequently

U(o(eM) = β(ζ)

or, in other term, formula (24) with j = M . It can be extended to all j by iterating

backward the above argument.

We proceed proving (25). We set

α = ρ
(
U(o(ek)), (ei)

j−1
i=k

)
.

By (24) we have

ρ
(
α, (ei)

M
i=j ∪ (ei)

k−1
i=1

)
= U(o(ek))

and accordingly by the concatenation formula

ρ
(
α, (ei)

M
i=j ∪ (ei)

j−1
i=1

)
= ρ

(
ρ
(
α, (ei)

M
i=j ∪ (ei)

k−1
i=1

)
, (ei)

j−1
i=k

)
= ρ

(
U(o(ek)), (ei)

j−1
i=k

)
= α.
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This implies by (24) that α = U(o(ej)), as was claimed.

�

The above assertion can be slightly strengthen.

7.3. Corollary. Given y ∈ Aλ, there exists a circuit ζ based on y with U(y) = β(ζ).

It therefore enjoys the same properties stated for ξ in Proposition 7.2.

Proof: We adopt the same notation of Proposition 6.3. We denote by ξ a cycle

based on y with U(y) = β(ξ). We assume that there is a cycle η properly contained

in ξ satisfying condition (20). Since o(ξ2) = o(η) we get thanks to the concatenation

principle and (25)

U(y) = ρ(U(o(ξ2)), ξ2) = ρ(U(o(η)), ξ2) = ρ(U(y), ξ1 ∪ ξ2).

This shows that U(y) = β(ξ1∪ ξ2). By slightly adapting the argument, we reach the

same conclusion getting rid of condition (20). This procedure can be repeated for

all other cycles properly contained in ξ, and we end up with a circuit ζ satisfying
the assertion. �

The next Proposition provide a further representation formula for the solution of

(DFEλ) and shows that the λ–Aubry sets are nonempty. The argument is reminis-

cent of that of Proposition 6.15 in [11].

7.4. Proposition. The λ–Aubry set is nonempty. Moreover, if U is the solution of

(DFEλ) then the following formula holds true

(29) U(x) = min{ρ(U(y), ζ) | y ∈ Aλ, ζ simple path that links y to x}.

If y, ζ = (ei)
M
i=1 realize the minimum in (29),we in addition have

(30) U(o(ej)) = ρ
(
U(y), (ei)

j−1
i=1

)
for any j = 2, · · · ,M .

Proof: Since U is solution, then there exists for any x ∈ V an edge e ∈ −Ex with

U(x) = ρ(U(o(e)), e).

By iterating backward the previous procedure and using the concatenation formula,

we can construct a path ξ of any possible length, with t(ξ) = x such that

U(x) = ρ(U(o(ξ)), ξ).

Since the set E is finite, we will find, by going on in the iteration, a cycle η contained
in ξ such that, by construction

U(o(η)) = U(t(η)) = ρ(U(o(η)), η)
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which implies U(o(η)) = β(η) and consequently that y := o(η) ∈ Aλ. We denote by

ζ the portion of ξ after η. It is a simple path, up to suitable choice of the cycle η,
joins y to x, and in addition

U(x) = ρ(U(y), ζ).

This relation shows (29). Formula (30) is a direct consequence of the construction

of ζ. �

7.5. Remark. If e is a loop with vertex x and U(x) = β(e) = β(−e) then apparently

x ∈ Aλ. By combining it with Remark 6.5, we can say that if on the contrary
x 6∈ Aλ then any loop based on x can be removed from the graph without affecting
the solution U .

8. Asymptotic as λ −→ 0

In this section we will study the asymptotic behavior of the solutions to (HJΓλ),

(DFEλ) and the corresponding λ–Aubry sets as λ tends to 0, assuming that the

Hamiltonians Hγ satisfy, in addition to (H1) and (H2), the conditions (H3) and

(H4), see Subsection 8.1. We plan to perform in a subsequent paper a more complete

analysis of the issue with the aim of recovering in our setting the uniqueness of the

limit established in [5].

8.1. Eikonal equations on networks. We summarize in this subsection some

material taken from [11] needed for the forthcoming convergence results. We consider

the Eikonal problem on Γ assuming, beside (H1), (H2), the following additional

conditions

(H3) for any x ∈ Γ, γ ∈ E , Hγ(x, ·) is quasiconvex with

int{p | Hγ(x, p) ≤ a} = {p | Hγ(x, p) < a} for any a ∈ R,

where int stands for the interior.
(H4) given any γ ∈ E , the map s 7→ minp∈RHγ(s, p) is constant in [0, 1].

8.1. Remark. Assumption (H4) can be actually formulated in a slightly weaker

way, see [11], We have chosen the above version for simplicity.

We consider for any given arc γ the family of Eikonal equations

Hγ(s, w
′) = a in (0, 1),
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with a ∈ R. We look for continuous functions v defined on Γ such that

Hγ(s, (v ◦ γ)′) = a in [0, 1], for any γ ∈ E

The definition of (sub/super) solution is given as in Definition 2.3 with obvious

adaptations.

8.2. Proposition. There exists one and only one value of a, called critical, such
that the above equation on Γ admits solutions.

We assume throughout the paper, without any loss of generality, that the critical
value is 0. It is then clear that

0 ≥ max
γ∈E

min
p∈R

Hγ(0, p).

We focus on the critical equations

(HJγ) Hγ(s, w
′) = 0 in (0, 1),

and

(HJΓ) Hγ(s, (v ◦ γ)′) = 0 in [0, 1], for any γ ∈ E

We associate to (HJΓ) the discrete equation on V.

(DFE) V (x) = min
e∈−Ex

(
V (o(e)) + σ(e)

)
where σ(e) = vΨ(e)(1), and vΨ(e) is the function appearing in Lemma 3.12 in relation

with the equation HΨ(e) = 0. We define

σ(ξ) =
M∑
i=1

σ(ei) for any path ξ = (ei)
M
i=1.

8.3. Proposition. A function V : V→ R is subsolution to (DFE) if and only if

(31) V (y)− V (x) ≤ σ(ξ) for any path ξ linking x to y.

There are results similar to Theorem 4.2, Proposition 4.3 linking (HJΓ) and

(DFE). We recall in particular:

8.4. Proposition. The trace on V of any solution to (HJΓ) is solution of (DFE).

Conversely, any solution of (DFE) can be uniquely extended to a solution of (HJΓ).
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The Aubry set A is made up by vertices y such that there is a cycle ξ based on

it with σ(ξ) = 0.

In general equation (DFE) has many solutions, not just differing by an additive

constant. They are univocally determined, once a trace satifying (31) is assigned on

A. The Aubry set plays in a sense the role of a hidden boundary.

8.2. Convergence results. We denote by uλ , for λ > 0, the solution to (HJΓλ).

and set Uλ = uλ|V. Uλ is then the solution of the corresponding discrete equation

(DFEλ).

8.5. Lemma. The functions uλ : Γ→ R are equibounded with respect to λ > 0.

Proof: Let v be a solution of the Eikonal equation on Γ. We can choose a large

positive constant α such that that v+α, v−α are super and subsolution of (HJΓλ)

for any λ > 0. We derive from Theorem 4.6

v − α ≤ uλ ≤ v + α.

�

8.6. Proposition. The functions uλ : Γ → R converge to a solution of the Eikonal
equation on Γ, up to subsequences.

Proof: We have that

λuλ(x) ≥ min{λm, −max
γ

max
s
Hγ(s, 0)} for any x ∈ Γ, λ > 0,

where m is a lower bound for all the uλ as x varies in Γ, see Lemma 8.5. We deduce,
by the coercivity of the Hγ, that the functions uλ are equi–Lipschitz continuous and

equibounded. They are therefore convergent up to subsequences.
Assume, to fix ideas, that uλn , for some infinitesimal sequence λn, converges to a

function v. Then v ◦γ is solution in (0, 1) of (HJγ), for any arc γ, by basic stability

properties of viscosity solutions theory.

Given a vertex x, there is, by the very definition of solution to (HJΓλ), an arc γn
with γn(1) = x such that uλn ◦ γn satisfies the state constraint boundary condition

for (HJγλ), with λ = λn at s = 1. The arcs being finite, we can extract a subse-

quence λnk
of λn and select γ with γ(1) = x such that uλnk

◦ γ satisfies the state

constraint boundary condition for (HJγλ), with λ = λnk
, for any k, at s = 1. By

applying standard arguments, we derive that the limit function v ◦ γ satisfies the

state constraint boundary condition for (HJγ). This concludes the proof, taking

into account the definition of solution to (HJγ).

�
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8.7. Proposition. We have

ρλ(αn, ξ) −→ α + σ(ξ) as λ −→ 0,

for any path ξ = (ei)
M
i=1 and αn −→ α ∈ R with αn ≤ αλ(e1) and

ρλ
(
αn, (ei)

j
i=1

)
≤ α(ej+1) for j = 1, · · · ,M − 1, n large.

Proof: The argument proceeds by induction on the length of ξ. If M = 1 then the
assertion is a consequence of Lemma 3.13 . We assume it true for any path of length

less than or equal to M − 1 and deduce it for the length M . We write ξ = (ei)
M−1
i=1

and use the concatenation formula plus induction step, and Lemma 3.13 to get

lim
λ→0

ρλ(αn, ξ) = ρλ(ρλ(αn, ξ), eM) = α + σ(ξ) + σ(eM) = α + σ(ξ).

�

As pointed out in the Introduction, the next proposition should be compared with

the convergence result for Mather sets obtained in [9].

8.8. Proposition. The sets Aλ are contained in A for λ sufficiently small.

Proof: The argument is by contradiction. Since the vertices are finite, we can
therefore assume that there is y ∈ V and λn → 0 with

y ∈ (∩nAλn) \ A.

Taking into account the very definition of λ–Aubry set, Corollary 7.3, and the fact
that the circuits are finite, we have, up to extracting a subsequence from λn, that

there exists a circuit ξ = (ei)
M
i=1 based on y satisfying Uλn(y) = βλn(ξ) for any n,

and the conditions of Proposition 7.2. Taking into account Proposition 6.2, we then
have

Uλn(y) = fλn(y) ≤ αλn(e1)

and

ρλn
(
Uλn(y), (ei)

j
i=1

)
= Uλn(o(ej+1)) = fλn(o(ej+1)) ≤ αλn(ej+1) j = 1, · · · ,M−1.

Since the sequence Uλn(y) is bounded by Lemma 8.5, it is convergent to some α, up

to subsequences, and we have by applying Proposition 8.7

α = lim
n
Uλn(y) = ρλn(Uλn(y), ξ) = α + σ(ξ).

This is impossible because y 6∈ A, and consequently by the very definition of A,

σ(ξ) > 0. �
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We consider the limit set B defined as

B = {y ∈ V | ∃ λn −→ 0 with y ∈ Aλn}

It comes from Proposition 8.8 that B is contained in the Aubry set A. The next
result shows that any limit of the Uλ is uniquely determined by its trace on B.

8.9. Proposition. Let Uλn be a sequence of solution to (DFEλ) with λ = λn, con-

verging to V . Then V is a solution of (DFE) satisfying

V (x) = min{V (y) + σ(ξ) | y ∈ B, ξ path joining y to x}.

Proof: We set to ease notations

Un = Uλn , ρn = ρλn , An = Aλn .

We know from Proposition 8.6 that V solves (DFE). For any x ∈ V, we have by

Proposition 7.4 that

Un(x) = ρn(Un(yn), ξn)

for some yn ∈ An, and some simple path ξn linking yn to x. Since both vertices and
simple paths are finite, we deduce that there is a subsequence λnk

, y ∈ ∩kAnk
⊂ B,

a simple path ξ = (ei)
M
i=1 joining y to x such that

Unk
(x) = ρnk

(Unk
(y), ξ) for any k

and in addition

Unk
(o(ej)) = ρnk

(
Unk

(y), (ei)
j−1
i=1

)
for any j = 2, · · ·M − 1.

Owing to Proposition 6.2 and to the inequality fnk
≥ Unk

, we are therefore in the

position to apply Proposition 8.7 and get

lim
k
ρnk

(Unk
(y), ξ) = V (y) + σ(ξ).

This implies

V (x) ≥ min{V (y) + σ(ξ) | y ∈ B, ξ path joining y to x}.

The converse inequality is a consequence of V being solution to (DFE), see Propo-

sition 8.3. �
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Appendix A. Graphs and networks

An immersed network or continuous graph is a subset Γ ⊂ RN of the form

Γ =
⋃
γ∈E

γ([0, 1]) ⊂ RN ,

where E is a finite collection of regular simple curves, called arcs of the network, we

assume for simplicity parameterized in [0, 1]. The main condition is

(32) γ((0, 1)) ∩ γ′([0, 1]) = ∅ whenever γ 6= ±γ′,

where for any arc γ, the inverse arc −γ defined as

−γ(s) = γ(1− s) for s ∈ [0, 1].

We make precise that we consider throughout the paper γ, −γ as distinct arcs. We
call vertices initial and terminal points of the arcs, and denote by V the sets of all

such vertices. Note that (32) implies that

γ((0, 1)) ∩V = ∅ for any γ ∈ E .

We assume that the network is connected, namely given two vertices there is a finite
concatenation of arcs linking them.

As already pointed out, we do not put any restriction on the geometry of the
network.

A graph X = (V,E) is an ordered pair of sets V and E, which are called, respec-

tively, vertices and (directed) edges, plus two functions:

o : E −→ V

which associates to each (oriented) edge its origin (initial vertex), and

− : E −→ E

e 7−→ −e,

which changes orientation, and is a fixed point free involution. We define the ter-
minal vertex of e as

t(e) = o(−e)
We consider e and −e as distinct edges. We call loop any edge e with o(e) = t(e).

We define path ξ = (e1, · · · , eM) any finite sequence of concatenated edges, namely

satisfying

t(ej) = o(ej+1) for any j = 1, · · · ,M − 1.

We define the length of a path as the number of its edges. We set o(ξ) = o(e1),

t(ξ) = t(eM). We call a path closed or a cycle if o(ξ) = t(ξ).
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Given two paths ξ, η, we say that ξ is contained in η, mathematically ξ ⊂ η, if

the edges of ξ make up a subset of the edges of η. If the condition t(ξ) = o(η) holds

true, we denote by ξ ∪ η the path obtained via concatenation of ξ and η.
We call simple a path without repetition of vertices, except possibly the initial

and terminal vertex, in other terms ξ = (ei)
M
i=1 is simple if

t(ei) = t(ej) ⇒ i = j.

A.1. Remark. There are finite many simple paths in a finite graph. In fact their

number is estimated from above by that of the sum of the k–permutations of |E|
objects for 2 ≤ k ≤ |E|.

A.2. Proposition. A path is simple if and only there is no simple cycle properly
contained in it.

We define a circuit to be a simple cycle.

Given x ∈ V, we set

(33) −Ex = {e ∈ E | t(e) = x}.

Starting from a network, a graph can be defined taking as vertices the same
vertices of Γ and as edges the elements of any abstract set E equipotent to E . We
denote by Ψ a bijection from E to E . The functions o, − yielding the graph structure
are given by

o(e) = Ψ(e)(0)

−e = Ψ−1(−Ψ(e)).

A graph corresponding to a connected network is connected in the sense that any
two vertices are linked by some path.

Appendix B. Basic material on HJ equations in (0, 1)

Given a Lipschitz–continuous function w in [0, 1], we set for s ∈ [0, 1]

(34) ∂w(s) = co {p | p = limw′(si), w differentiable at si, si → s, si ∈ (0, 1)},

where the symbol co stands for convex hull.
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B.1. Lemma. Given a Lipschitz–continuous function w in [0, 1], the function s 7→
w(0) + q s is a constrained subtangent to w at s = 0 if

(35) q < min{p | p ∈ ∂w(0)}.

the function s 7→ w(1) + q (s− 1) is a constrained subtangent to w at s = 1 if

(36) q > max{p | p ∈ ∂w(1)}.

Proof: We consider the case s = 1, the assertion at s = 0 can be proved similarly.

We assume condition (36). By the very definition of ∂w(1) there is an open interval

I containing 1 with

(37) q > p for any s ∈ I ∩ (0, 1), p ∈ ∂w(s).

Assume for purposes of contradiction that there is s ∈ I ∩ (0, 1) with

(38) w(s) < w(1) + q (s− 1),

by Mean Value Theorem for generalized Clarke gradients (Theorem 2.3.7 in [4]), we

find s ∈ (s, 1) ⊂ I ∩ (0, 1) with

w(s)− w(1) = p (s− 1) for some p ∈ ∂w(s).

We derive, in the light of (38)

q (s− 1) > p (s− 1)

which in turn implies q < p, in contradiction with (37). �

Proof: ( of Lemma 3.2) The function constantly equal to c := − 1
λ

maxsHγ(s, 0)

is a subsolution to (HJγλ). By the coercivity of Hγ, the family of subsolutions

greater than or equal to c is equi–Lipschitz continuous and is in addition dominated
by

−1

λ
min{Hγ(s, p) | s ∈ [0, 1], p ∈ R}.

This shows that uγmax is finite valued and Lipschitz continuous. By standard ar-

guments in viscosity solutions theory, the maximality of uγmax implies that it is a

solution in (0, 1), and satisfies the state constraints boundary condition at s = 0, 1.

Assume now, for purposes of contradiction, that there is another solution w of
the equation plus state constraints boundary conditions. We set

−δ = min
[0,1]

(w − uγmax) < 0.

We can use suitable sup–convolutions of uγmax as test functions from below to prove

that the minimizers of w − uγmax cannot be interior points of the interval. To show
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that they cannot be boundary points, we exploit Lemma B.1. Assume, to fix ideas,
that 1 is such a a minimizer. Therefore uγmax − δ is a constrained subtangent to w

at 1. We set

p0 = max{p | p ∈ ∂uγmax(1)},
by the definition of ∂uγmax, there is a sequence si of differentiability points of uγmax

in (0, 1) converging to 1 with

(uγmax)′(si) −→ p0.

Since

λ(uγmax(s)− δ) +Hγ(s, (u
γ
max)′(s)) = −λδ

at any differentiability point s of uγmax, we derive by the continuity of Hγ

(39) λ (uγmax(1)− δ) +Hγ(1, p0) < 0,

and we can therefore find q > p0 with

(40) λw(1) +Hγ(1, q) = λ (uγmax(1)− δ) +Hγ(1, q) < 0.

By Lemma B.1 the function s 7→ (uγmax(1)− δ) + q (s− 1) is constrained subtangent

to (uγmax−δ) at 1 and consequently also to w at 1. Inequality (40) shows that w does

not satisfy the state constraint boundary condition at 1, reaching a contradiction.

�

Proof: (of Lemma 3.3) The function v ≡ c with

c = min

{
−1

λ
max
s∈[0,1]

Hγ(s, 0) , α

}
,

is subsolution to (HJγλ) taking a value less than or equal to α at s = 0. We deduce

that

uγα(s) = sup{v(s) | v subsolutions to (HJγλ) with v(0) ≤ α, v ≥ c}

and by the coercivity of Hγ the functions of this family are equi–Lipschitz contin-

uous and equibounded. This proves that uγα is a Lipschitz continuous subsolution

to (HJγλ). The supersolution property and the validity of the state constraint

boundary condition at s = 1 are straightforward consequences of the maximality
property.

If α ≤ uγmax(0) then there is a subsolution taking the value α at 0 and consequently

by maximality uγα(0) = α. Conversely, if uγα(0) = α then uγmax(0) ≥ uγα(0) = α. �
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Proof: (of Proposition 3.8) Let u be a solution to (HJγλ) plus Dirichlet boundary

conditions. The asserted uniqueness comes from Theorem 3.1 and (5) is a direct

consequence of the definition of uγα, u−γβ and Remark 3.7. Conversely, let us assume

(5), we define

u(s) = min{uγα(s), u−γβ (1− s)}

u(s) = max{u−γβ (1− s) + α− u−γβ (1) , uγα(s) + β − uγα(1)}.

The functions u, u are super and subsolutions to (HJγλ), respectively. We derive

from (5) and Remark 3.7 that

α ≤ u−γβ (1) ≤ uγmax(0)

and so uγα(0) = α by Lemma 3.3 and u(0) = α. We also have by (5)

α = uγα(0) ≥ uγα(0) + β − uγα(1)

which implies u(0) = α. Similarly

β ≤ uγα(1) ≤ uγmax(1)

which implies u−γβ (0) = β and u(1) = β, in addition

β = u−γβ (0) ≥ u−γβ (0) + α− u−γβ (1)

which gives u(1) = β. This shows that u, u satisfy the same boundary Dirichlet

conditions and are, in addition, both Lipschitz–continuous. Existence of the claimed

solution then comes via a straightforward application of Perron Method, see [2]. �

Proof: of Lemma 3.13 We have that

λn un(s) ≥ min{−max
s
Hγ(s, 0), α− 1} for any s ∈ [0, 1], n large.

This implies that the un are equibounded and equi–Lipschitz continuous. They

therefore converge, up to subsequences, to some function u with u(0) = α. By

stability properties of viscosity solutions u solves (HJγ). Therefore

(41) u ≤ α + v.

If aγ = 0 then the above inequality must be an equality. If instead aγ < 0 then

there is a strict subsolution w of Hγ = 0 with

(42) Hγ(s, w
′) ≤ −δ for a suitable δ > 0 and w(s) ≤ 0,
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We consider a sequence of positive numbers µk converging to 1 and a subsequence
λnk

of λn with

(43) λnk
≤ (1− µk)δ

µk

1

M
,

where M is an upper bound of αn + v(s) for n large and s varying in [0, 1]. We

exploit (42), (43) and the convex character of Hγ to get

λnk
(µk (αnk

+ v) + (1− µk)w) +Hγ(s, µkDv + (1− µk)Dw)

≤ λnk
µk (αnk

+ v)− (1− µk) δ ≤ λnk
µkM − (1− µk) δ

≤ (1− µk) δ
µk

1

M
µkM − (1− µk) δ = 0.

We thus see that µk (αnk
+ v) + (1 − µk)w is subsolution to (HJγλ) with λ = λnk

taking in addition, by (42), a value less than αnk
at s = 0, at least for k large. We

infer by the maximality property of unk

unk
≥ µk (αnk

+ v) + (1− µk)w in [0, 1],

so that
lim inf

k
unk
≥ lim

k
µk (αnk

+ v) + (1− µk)w = (α + v).

The above relation, together with (41), shows the assertion.

�
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