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al. Armii Krajowej 36, 42-200 Czȩstochowa, Poland
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Abstract

We propose a method for content-based retrieving solar magnetograms. We use the SDO
Helioseismic and Magnetic Imager output collected with SunPy PyTorch libraries. We
create a mathematical representation of the magnetic field regions of the Sun in the form
of a vector. Thanks to this solution we can compare short vectors instead of comparing
full-disk images. In order to decrease the retrieval time, we used a fully-connected au-
toencoder, which reduced the 256-element descriptor to a 32-element semantic hash. The
performed experiments and comparisons proved the efficiency of the proposed approach.
Our approach has the highest precision value in comparison with other state-of-the-art
methods. The presented method can be used not only for solar image retrieval but also for
classification tasks.
Keywords: Content-Based Image Retrieval, Image Descriptor, Solar Analysis

1 Introduction

The Solar Dynamics Observatory (SDO) is a
part of NASA’s Living With a Star (LWS) Program
for researching Sun activity impacts on Earth. SDO
provides data concerning the solar atmosphere on
small scales of space and time and in many wave-
lengths. One of the SDO instruments is the He-
lioseismic and Magnetic Imager (HMI) devised for
analysing oscillations and the magnetic field at the
solar surface (photosphere). It provides doppler-
grams, continuum filtergrams and line-of-sight and
vector magnetograms (maps of the photospheric
magnetic field). Our work is based on the magne-

tograms, and we propose a method to fast retrieve
similar ones. The SDO spacecraft produces data
at an enormous rate, so it is impossible to man-
ually annotate and search this collection. There
were developed some image retrieval methods but
usually for real-life images. Semantic hashing is a
method to reduce the dimensionality by similarity-
preserving short codes. Such codes should reflect
as much as possible the content of the input data.
The term was coined by [1] and was later used for
any short codes reflecting data content-similarity.

The rest of the paper is organized as follows.
Section 2 describes the proposed method for solar
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hash generation. Section 3 presents the outcome of
the example experiments with the hash. Section 3
concludes the paper.

2 Semantic Hashing for Solar Mag-
netogram Images

The SDO’s instruments allow not only to take
solar images in various wavelengths (AIA), but they
also provide a data to build magnetograms of the
Sun. The magnetic field in active regions can be
1,000 or more times stronger than the average mag-
netic field of the Sun. The magnetograms provide
data about magnetic fields of the entire solar disk,
therefore we can use these images in many areas
of solar analysis. From our perspective the usage
of magnetograms in solar image description or so-
lar image hashing should increase precision of the
hash due to noise reduction. The regular active re-
gion images can contain bright pixels that repre-
sent flares which extends beyond the solar disk what
is usually impractical noise. Therefore, using the
magnetograms to analyse Sun’s activity (see Fig-
ure 1) seams to be more reasonable. This section
contains description of the main steps of the hash-
ing process.

Figure 1. Example magnetogram image. As can
be seen the image is difficult to analyze without the

pre-processing.

2.1 Magnetic Region Detection

In the first step we adjust magnetogram image
by annotating the magnetic regions more distinc-
tively (see Figure 2).

Figure 2. The magnetic region detection and
annotation process. The magnetic regions can be
clearly visible. We can observe the polarities (red

and blue) and their intensities.

Figure 3. A magnification of magnetic regions.

This process is called magnetic region detec-
tion. We obtained the magnetogram images (Fig-
ure 1) by using the SunPy library [2, 3]. This
step allows determining the strength of the mag-
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netic field. As can be seen in Figure 1 and Figure 2
the strength of magnetic field increases around the
active regions, and thus we can define the strength
of the magnetic field as colour intensities (see Fig-
ure 3). The magnetic field can twist, tangle and re-
organize itself during the solar cycle.

It should be noted that magnetic regions (MR)
are highly correlated with CME’s and thus solar
flares. Therefore, analysis of them is important
from the perspective of life on Earth. As can be
seen in Figure 3, magnetic region detection (MRD)
allow determining the polarities north (red) or south
(blue). The Corona Mass Ejections are most likely
to take their origin between these polarities. More-
over, tracking and analysing MRs is useful in pre-
dicting solar flares. The magnetic region detection
provide data for the next steps of the algorithm.

2.2 Magnetic Field Grid-based Descriptor

This section describes the calculation of the
Magnetic Field Grid-based Descriptor. This step
is crucial, because processing of full disk images
is computationally costly. Therefore, we need to
define the mathematical description of the MRII
(Magnetic Region Intensity Image) obtained in sec-
tion 2.1. We applied a grid to MRII, which slices
an image into several sub-images (cells). The grid
size is based on the parameter N which controls the
number of cells to be defined in x and y axis. We
set the value of N empirically to 16. In the future
work we intend to use optimization methods for de-
termining this value. The descriptor calculation is
composed of several stages. At first, we slice MRII
into N ×N number of cells. As a result we obtain
a list of sub-images (cells). Afterwards, for every
cell we calculate the sum of magnetic region areas
in the given grid cell. This stage allows us to de-
fine a descriptor matrix (DM), which consist of the
grid cell sums. For example: if a grid cell with id
11 have sum equal 523, then the DM11 = 523, etc.
The last stage of this step, performs normalization
and vectorization and as a result we obtain the de-
scriptor vector (DV ). The vectorization step simply
concatenate all DM rows into one DV vector. Natu-
rally, the size of the DV is correlated with the value
of the N parameter. It should be noted that the N
value has significant impact on the results. During
the experiments we determined that value 16 for N
provides the best results in the solar analysis tasks.

The entire process of this step has been presented in
the form of pseudocode (Algorithm 1) and in Fig-
ure 4.

Algorithm 1. Algorithm for calculating grid-based
descriptor.

Figure 4. Steps for calculating the magnetic region
grid-based descriptor.

INPUT: MRII - magnetic region intensity image
N - grid size in x-axis and y-axis
OUTPUT: DV - magnetic grid based descriptor

vector
Local Variables: ImageCells - list for containing

grid cells
DM - matrix sums of pixels in the cells
HSlices := DivideIntoHorizontalSlices(MRII,N)
foreach HSlice ∈ HSlices do

CellsForHSlice :=
DivideSlicesVerticallyIntoCells(HSlice,N)
foreach CellForHSlice ∈CellsForHSlice
do

ImageCells.Add(CellForHSlice)
CellSum :=
CalcSumO f RegionPixelsInCell(ImageCell)

SumMatrix.SetCellSum(CellSum)
end

end
DV =VectorizeMatrix(DN)
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The main aim of this stage was to obtain a hand-
crafted descriptor which will be used in the next
steps of the method.

Table 1. Tabular representation of the
fully-connected autoencoder model.

Layer (type) Output Filters Params
(in, out)

Input(InputLayer) [1, 256] 0
Linear 1(Linear) [1, 128] 256, 128 32896

ReLU 1 [1, 128] 0
Linear 2(Linear) [1, 64] 128, 64 8256

ReLU 2 [1, 64] 0
Linear 3(Linear) [1, 32] 64, 32 2080

ReLU 3 [1, 32] 0
Encoded [1, 32]

Linear 4(Linear) [1, 64] 32, 64 2112
ReLU 4 [1, 64] 0

Linear 5(Linear) [1, 128] 64, 128 8320
ReLU 5 [1, 128] 0

Linear 6(Linear) [1, 256] 128, 256 33024
ReLU 6 [1, 256] 0

Decoded(Tanh) [1, 256]

2.3 Training and Hash Generation

This section contains the description of hash
generation process. As input in this step we take a
Magnetic Region Grid-based Descriptor (MRGD),
which is later used for generating the corresponding
hash. The aim of this process is to obtain the rep-
resentative hash, which describes the correspond-
ing solar image and more precisely the magnetic re-
gions of the Sun in the given timestamp. This step
is important because it allows to reduce the data in
the retrieval stage (see Section 2.4). In order to per-
form this operation we used a fully-connected au-
toencoder (AE) to encode the previously obtained
MRGD. The autoencoder are used in various ma-
chine learning tasks such as: image compression,
dimensionality reduction, feature extraction, image
reconstruction [4, 5, 6]. As autoencoders use un-
supervised learning, they are perfect for generating
semantic hashes. We present the autoencoder model
architecture in Table 1. The AE model should be
analysed from top to bottom. As can be seen the
model is relatively simple but nevertheless allows
reducing the hash length without significant loss of
the information about magnetic regions of the mag-
netogram. We would like to emphasize that only
the latent space (encoded) part of the trained AE is
used for hash generation. The decoding part of AE

is used only for training purposes. During a series
of experiments we determined that 50 epochs are
sufficient to obtain the satisfactory level of general-
ization without the overfitting phenomena.

2.4 Image Retrieval

In this section we present an application of our
semantic solar hash. In this case, we use the hash
for solar image retrieval task. We assumed that ev-
ery magnetogram will have the corresponding hash,
generated by the method presented in Section 2.
When having such prepared solar image database,
we can perform queries on it. We take the query
image to generate its hash, and then we compare it
with other semantic hashes stored in the database.
This approach is one of the textbook methods in
image retrieval. In order to perform the compari-
son operation we used the cosine distance measure.
The cosine distance is calculated by the formula

cos(Q j, I j) =
n

∑
j=0

(Q j • I j)∥∥Q j
∥∥∥∥I j

∥∥ ,

where • is the dot product. After distance calcula-
tion we obtain a list of distances D. The distances
represent similarity of magnetograms stored in the
database and the query image. The lower the dis-
tance value is, the greater similarity between the
given magnetogram and the query. Based on that,
we can sort distances, and easily obtain a list of
magnetograms where the head of the list contains
the most similar magnetograms. In the final step
we take n first images from D list as the most sim-
ilar images. These images are returned to the user
as the retrieved (most similar) images. The entire
retrieval process is presented in Figure 2.

Algorithm 2. Image retrieval steps.
INPUT: Hashes, QueryImage, n
OUTPUT: RetrivedImages
foreach hash ∈ Hashes do

QueryImageHash =
CalculateHash(QueryImage)

D[i] =Cos(QueryImageHash,hash)
end
SortedDistances = SortAscending(D)
RetrivedHashes = TakeFirst(n)
RetrievedImages =

GetCorrespondingImages(RetrievedHashes) 
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3 Experimental Results

This section contains the simulation results and
experimental methodology. The data that we ob-
tained from HMI via SunPy does not contain any
information about image similarity. Therefore, we
had to propose a solution how to determine the im-
age similarity. We used the Sun’s rotation move-
ment and magnetogram timestamps to define image
similarity. We knew that HMI provides the con-
tinuum magnetogram images with one minute ca-
dence. The changes between the consecutive im-
ages are minimal, if any at all. Based on that, we
can assume that these images are similar. The two
consecutive solar images should be slightly shifted.
This phenomenon can be observed when we run
magnetograms as slides. The main challenge was
to determine the similarity window, how wide is the
similarity window. After analysing the series of ex-
periments, we concluded that 48-hours is the most
suitable. Therefore, a magnetogram taken at a cer-
tain time has similar images 24 heours before and
after. Based on that assumption, we can define sim-
ilar images (SI), perform the experiments and eval-
uate the results. The methodology of our experi-
ments is as follows:

1. Execute image query and obtain the retrieved
images.

2. For every retrieved image, compare its times-
tamp with the query image timestamp.

3. If the timestamp is within a 48-hour window, the
image is similar to the query.

The necessity of defining the similar images (SI)
allows determine the well-known evaluation mea-
sures: precision, recall, F −measure [7, 8]. These
measures require defining the following sets:

– SI – set of similar images,

– RI – set of retrieved images for query,

– PRI(T P) – set of positive retrieved images (true
positive),

– FPRI(FP) – false positive retrieved images
(false positive),

– PNRI(FN) – positive not retrieved images,

– FNRI(T N) – false not retrieved images (TN).

We used the previously defined sets in order to
adapt them to the following performance measures.

precision =
|PRI|

|PRI +FPRI|
, (1)

recall =
|PRI|

|PRI +PNRI|
. (2)

F1 = 2 · precision · recall
precision+ recall

. (3)

As can be seen in Table 2, the obtained simula-
tion results are promising. The average value of F1
proves the method effectiveness, moreover the as-
sumptions concerning the higher accuracy seems to
be true. We would like to emphasize the high values
of the precision measure. The average precision is
0.9241, and Banda et al. [9] – 0.848, Angryk et
al. [10] – 0.850. Moreover, we improved the re-
sults obtained previously by the authors [11]. The
results also prove that most of the solar images with
a close distance to the query image were success-
fully retrieved. Unfortunately, the magnetograms
with higher distances can be classified as positive,
not retrieved images (PNRI) although, this value is
significantly reduced when compared to the previ-
ous works. The high values of PNRI are most likely
caused by the Sun’s rotation movement, which is
responsible for magnetic regions were shifted or
missing. Such cases can be observed even during
the 48-hour window. Such described phenomena
have significant impact on the obtained semantic
hash and thus for the query results. The described
case was observed during the experiments. We have
concluded that lower values of Recall are caused by
this phenomenon. The simulation environment was
developed in Python language, SunPy PyTorch li-
braries, on the following hardware: Intel Core I9-
9900k 3.6 GHz, 32 GB RAM, GeForce RTX 2080
Ti 11 GB, Windows Server 2016. The hash cre-
ation time took approximately 4 hour 10 minutes,
for 525,600 images. The learning stage took ap-
proximately 21 hours. The average retrieval time is
700 ms.



304 Rafał Grycuk, Rafał Scherer, Alina Marchlewska, Christian Napoli

Table 2. Experiment results for retrieving solar magnetograms with the semantic hashes. Due to lack of
space, we present only example queries.

Timestamp RI SI PRI (TP) FPRI (FP) PNRI (FN) Precision Recall F1

2011-01-01 00:00:00 217 241 206 11 35 0.95 0.85 0.90
2011-01-07 18:00:00 436 481 394 42 87 0.90 0.82 0.86
2011-01-10 03:06:00 427 481 383 44 98 0.90 0.80 0.85
2011-01-15 15:12:00 425 481 399 26 82 0.94 0.83 0.88
2011-01-17 19:12:00 414 481 375 39 106 0.91 0.78 0.84
2011-01-23 10:18:00 401 481 385 16 96 0.96 0.80 0.87
2011-01-28 22:18:00 401 481 393 8 88 0.98 0.82 0.89
2011-02-03 21:18:00 400 481 393 7 88 0.98 0.82 0.89
2011-02-05 19:24:00 429 481 383 46 98 0.89 0.80 0.84
2011-02-11 07:30:00 396 481 389 7 92 0.98 0.81 0.89
2011-02-17 06:36:00 401 481 390 11 91 0.97 0.81 0.88
2011-02-24 10:42:00 442 481 393 49 88 0.89 0.82 0.85
2011-03-17 02:48:00 427 481 379 48 102 0.89 0.79 0.84
2011-03-22 13:48:00 420 481 396 24 85 0.94 0.82 0.88
2011-03-27 05:54:00 426 481 401 25 80 0.94 0.83 0.88
2011-03-30 21:00:00 437 481 396 41 85 0.91 0.82 0.86
2011-04-02 22:00:00 434 481 392 42 89 0.90 0.81 0.85
2011-04-08 15:00:00 432 481 395 37 86 0.91 0.82 0.86
2011-04-15 16:06:00 430 481 404 26 77 0.94 0.84 0.89
2011-04-20 19:12:00 426 481 389 37 92 0.91 0.81 0.86
2011-04-27 00:12:00 439 481 400 39 81 0.91 0.83 0.87
2011-04-30 23:18:00 424 481 389 35 92 0.92 0.81 0.86
2011-05-03 06:24:00 444 481 395 49 86 0.89 0.82 0.85
2011-05-11 05:24:00 400 481 392 8 89 0.98 0.81 0.89
2011-05-14 21:30:00 425 481 386 39 95 0.91 0.80 0.85
2011-06-30 06:48:00 398 481 386 12 95 0.97 0.80 0.88
2011-07-04 02:54:00 442 481 398 44 83 0.90 0.83 0.86
2011-07-05 09:00:00 435 481 395 40 86 0.91 0.82 0.86
2011-07-07 22:06:00 441 481 393 48 88 0.89 0.82 0.85
2011-07-09 07:06:00 431 481 386 45 95 0.90 0.80 0.85
2011-07-15 15:12:00 426 481 390 36 91 0.92 0.81 0.86
2011-07-19 22:12:00 429 481 387 42 94 0.90 0.80 0.85

Avg. 0.9241 0.8127 0.8641
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Conclusions

We proposed a novel semantic hash for retriev-
ing solar magnetograms similar to the query one.
We use the SDO Helioseismic and Magnetic Im-
ager output collected with SunPy PyTorch libraries.
We created a mathematical representation of the
magnetic regions of the Sun in the form of a vec-
tor. Thanks to this solution we can compare vec-
tors of 32-length instead of comparing full-disk
images. In order to increase the retrieval time,
we used a fully-connected autoencoder, which re-
duced MRGD (256-element long) to a semantic
hash (32-element long). The performed experi-
ments and comparisons presented in Table 2 proved
the efficiency of the proposed approach. Our ap-
proach has the highest precision value in compar-
ison with other state-of-the-art methods. The pre-
sented method can be used not only for solar im-
age retrieval but also for classification tasks. As the
proposed algorithm uses magnetograms instead of
Atmospheric Imaging Assembly images of the so-
lar atmosphere in one or multiple wavelengths, the
obtained semantic hash has a higher resistance to
noise.
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