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We introduce a numerical procedure which permits us to drastically accelerate the design of multimode
photonic crystal resonators. Specifically, we demonstrate that the optical response of an important class of such
nanoscale structures is reproduced accurately by a simple, one-dimensional model within the entire spectral
range of interest. This model can describe a variety of tapered photonic crystal structures. Orders of magnitude
faster to solve, our approach can be used to optimize certain properties of the nanoscale cavity. Here we consider
the case of a nanobeam cavity, for which the confinement results from the modulation of its width. The profile
of the width is optimized in order to flatten the resonator dispersion profile (so that all modes are equally spaced
in frequency). This result is particularly relevant for miniaturizing parametric generators of nonclassical light,
optical nanocombs, and mode-locked laser sources. Our method can be easily extended to complex geometries,
described by multiple parameters.
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I. INTRODUCTION

The nonlinear interaction among several resonant fields in
an optical resonator leads to efficient Raman and Brillouin
scattering, three- and four-wave mixing, optical parametric
oscillation [1], laser mode locking, and frequency-comb gen-
eration [2]. Scaling down the size of optical resonators implies
that the optical power level for triggering nonlinear effects
decreases as V −1 or V −2, where V is an effective volume of
the spatial distribution of the interacting fields. In the context
of photonic integration, the decrease in the power budget is of
paramount importance.

Nanoscale optical resonators such as photonic crystals are
able to confine light within V ≈ λ3, i.e., a wavelength-sized
volume, with a photon decay time, or interaction time, well
above 1 ns (i.e., the cavity quality factor Q � 106). Owing to
these properties, it has been possible to demonstrate nanoscale
lasers [3–6], Raman sources [7], and, more recently, optical
parametric oscillators [8], all operating with a power supply
(optical or electrical) in the microwatt range. Yet a major
challenge remains in achieving the nonlinear interaction of
multiple longitudinal modes, as it occurs in mode-locked
lasers or in microcombs. While ring or microdisk resonators
naturally provide the necessary, nearly frequency-equispaced
set of cavity resonances, achieving the same condition in
nanoscale resonators is notoriously a nontrivial task. On the
other hand, nanoscale resonators could, in principle, be de-
signed in a way that a specified number of modes, starting
from the fundamental mode, are allowed to take part in the
nonlinear interaction. This unique property not only implies
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that a much higher degree of control of power transfer among
modes (which is crucial in quantum and signal processing ap-
plications [9]) can be achieved, but also leads to maximizing
the interaction efficiency. This is because, in the typical con-
figuration of a nanoscale resonator, the lowest-order modes
are also the most tightly confined. Moreover, in a mode-locked
nanolaser, the control of the interacting modes would enable a
favorable scaling of the repetition rate vs the size of the device
[10].

It has been shown that some specific designs of a photonic
crystal cavity lead, for some set of parameters, to frequency-
equispaced eigenmodes; moreover, their mode envelopes are
described by Hermite-Gauss functions. This suggests that,
within a certain spectral range, the complex photonic crystal
structure can be well approximated by a quantum-mechanical
harmonic oscillator model [11,12]. It has also been shown
that postfabrication trimming is effective in correcting for
fabrication tolerances, thereby demonstrating an almost per-
fect alignment of the cavity resonances [13]. Yet a systematic
design approach for generating a given number of equispaced
modes, or, more generally, with a prescribed dispersion pro-
file, while at the same time maximizing the radiation-limited
Q factor is still missing, while brute-force methods are ex-
tremely inefficient.

Finding a cavity geometry, or, more generally, a physical
system whose response to an input excitation corresponds to a
well-defined target function, e.g., a spatial distribution of the
dielectric permittivity such that the electromagnetic field has
prescribed resonances, belongs to the class of inverse prob-
lems, which are notoriously difficult to solve. Yet progress in
nanofabrication techniques has motivated the development of
powerful methods such as topological optimization (TO) [14]
and inverse design (ID) [15]. The common feature of these
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FIG. 1. Common design of high-Q resonators based on gentle
confinement: (a) tapered distributed feedback grating [18], (b) 1D
nanobeam with parabolic width [25], (c) 1D nanobeam bichromatic
resonator [26], and (d) two-dimensional bichromatic resonator [11]
and the corresponding tapering parameter �.

two approaches is that their result is a spatial distribution of
ε(x), rather than an optimized set of parameters for a prede-
fined geometry. These methods are therefore able to create
novel geometries, hence the reference to design. Moreover,
automatic differentiation [16] and the adjoint method [17]
enable a very efficient computation of the gradient, which is
required in the iterative search of the optimum distribution,
even in the presence of nonlinearity.

Here we follow a radically different approach, which is
arguably more suited for the class of problems under con-
sideration. This is motivated by the fact that the geometries
of nanoscale resonators with the largest experimentally re-
ported Q factors [18–22] are still based on the principle of
gentle confinement [23]. In other words, these nanostructures
are essentially periodic, with an adiabatic tapering of some
parameters, i.e., a gentle change in the radius of the holes, the
period, or the magnitude of a “dislocation” defect. We note
that more aggressive design strategies, including TO and ID,
have instead been considered for different tasks, e.g., for max-
imizing light-matter interactions in single-mode resonators
[16,24].

Let us restrict our search to a family of structures which
can be described by means of a periodic pattern ε(x,�) that
depends on a control parameter �, which is supposed to
adiabatically vary in space (i.e., gently). Some examples of
such geometries are given in Fig. 1. The crucial point is that it
is possible to map the three-dimensional (3D) Maxwell equa-
tions (MEs) into an equivalent system of one-dimensional
(1D) equations, which will be referred to as the reduced
model (RM). Remarkably, the relative precision of the reso-
nances predicted by the RM turns out to be at least as good
as the precision of the direct numerical solution of the 3D
ME. The search for the desired optimal spatial dependence
of � will be performed by using any suitable optimization
method, leveraging the extremely faster solution of the RM

when compared the direct solution of the 3D MEs. The RM
itself requires only a single direct solution of the 3D MEs for
building an initial approximation of the structure. Subsequent
applications of the RM are used in order to refine the first
approximation. As we shall see, in total only three 3D solvers
are sufficient for obtaining a design that matches our target
with an accuracy that is equivalent to that of directly solving
the 3D MEs but with a comparatively much larger number of
iterations.

Hereafter we will first discuss the derivation of the RM;
then we will formulate a design target, followed by the in-
troduction of the optimization procedure, including model
calibration. Finally, we will discuss possible applications and
generalizations of the model.

II. REDUCED MODEL FOR A PERIODIC
PHOTONIC CRYSTAL

The reduced model is inspired by the so-called k · p
method [27], which is used in solid-state physics to model
the electronic band structure of crystals. The main idea of the
method is to describe the dispersion relation of the electronic
bands (i.e., electron energy vs wave vector k) through a suit-
able algebraic equation, which is built upon the eigenfunctions
of the exact Hamiltonian at the bands’ extrema (at points of
high symmetry, e.g., k = 0, or the � point). Within a range
of energies of interest, the dispersion relation is extrapolated
from the � point by treating the k · p term as a perturbation. In
this way, the complexity of solving the full Schrödinger equa-
tion for the crystal is reduced by using a much simpler model
in which only a few parameters need to be suitably adjusted.
As a consequence of this approach, the local modulation of
a semiconductor, e.g., of a heterostructure, can be well de-
scribed in terms of a change in these parameters within the
energy range of interest. As a result, it is possible to introduce
a much simpler Schrödinger equation which depends only on
these parameters.

In optics, the simplest model for describing the propagation
of waves in a periodic dielectric is provided by the distributed
Bragg reflector. Here a modulation with period � of the
dielectric permittivity couples forward and backward waves.
A simple algebraic equation approximates the dispersion in
the spectral range that is centered at the Bragg angular fre-
quency ω0 = πc0n−1�−1. Here c0 is the speed of light in
vacuum, and n is an effective refractive index which describes
the optical-field distribution as a result of the dielectric in-
homogeneity [28]. In the presence of an intensity-dependent
contribution to the refractive index, one obtains coupled wave-
propagation equations which generalize the massive Thirring
model of field theory; their solitary wave solutions (gap or
Bragg solitons) describe the localization of wave packets in
periodic media [29]. The simplicity of the gap-soliton model
has facilitated the study of soliton stability by using analyt-
ical criteria [30]. Soliton dynamics has been experimentally
demonstrated in nanoscale photonics [31], and it has been
shown that nonlinear coupled-wave models are able to fully
capture the underlying physics [32]. Hereafter, we will con-
sider only a generalized linear version of the gap-soliton
model, and demonstrate that the model accurately describes
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FIG. 2. (a) Dispersion diagram of a periodic structure (see inset)
with width w = 450 nm and period a = 465 nm, centered on the K
point of the reduced Brillouin zone (k0 = π/a). The reduced model
considers coupled forward and backward waves (dashed lines), gen-
erating the valence and conduction bands (solid lines). The solid
circles represent the valence band calculated by periodic 3D MEs.
(b) The corresponding residuals σ/2π of the fit.

wave propagation in adiabatically modulated photonic crystal
structures.

Let us consider two counterpropagating waves E±(x, t ) =
A±

k exp(ıωt ± ıkx), with group velocity vg, coupled by a pe-
riodic modulation of the dielectric permittivity with scaled
magnitude K. In the presence of this linear coupling, the
dispersion relation of the waves is described by the coupled
equations

(vgk + D2k2 + ω0)A+
k + KA−

k = ωA+
k ,

(−vgk + D2k2 + ω0)A−
k + KA+

k = ωA−
k . (1)

Let us note that we introduced the Bragg angular frequency
ω0 and added the second-order dispersion term D2. The
set {ω0,K, vg,D2} describes the dispersion of the coupled
waves, and we will refer to it as the structure parameters.
We now derive these parameters for periodic structures with
different widths w by focusing on a specific portion of the
dispersion relation, namely, one or more bands, as shown in
Fig. 2(a).

Here we consider a so-called nanobeam photonic crystal,
where the width w of the beam takes the role of the control
parameter [Fig. 1(b)]. The nanobeam is supposed to be made
out of a III-V-group semiconductor alloy In0.5Ga0.5P, with
refractive index n = 3.17. The nanobeam is h = 180 nm thick,
with a w = 450 nm width and an a = 465 nm period; the hole
radius is 0.27a. The valence band ωv (k) is obtained by solving
the 3D MEs with Bloch periodic boundary conditions along

FIG. 3. Calculated structural parameters for the RM vs the con-
trol parameter w. (a) Averaged residual of the fit and (c)–(f) extracted
parameters (black squares), polynomial fit (blue dashed line), and
polynomial fit on the updated RM (solid red line). In (e) the group
velocity is reported in units of c0, i.e., the speed of light in vacuum.
(b) Residual of the fit of ω0 (dashed blue line) and after updating the
RM (red solid line).

x, i.e., Ek (r + ax̂) = Ek (r) exp (ıka). This is performed by
means of the periodic finite-difference time-domain (FDTD)
algorithm with a perfectly matched layer placed at the z
and y boundaries. The parameters are adjusted in order to
minimize the error N−1 ∑N−1

i=0 σ 2(ki ) over the N points in
the reciprocal space, with σ 2(ki ) = [ωv (ki ) − ω(RM)

v (ki )]2 ob-
tained from the reduced model ω(RM)

v , i.e., the characteristic
equation solutions of the linear system Eq. (1). This gener-
ates the set of parameters {ω0,K, vg,D2}(w), which depends
on the control parameter w. The average of the residual er-
ror in the reciprocal-space region of interest σfit = σ (k) is
about 100 GHz, [see Fig. 2(b)]. Let us note that this error
is about the same as the estimated discretization error of the
FDTD method [33]. This point is further discussed in the
Appendix.

Figure 3 describes the dependence of the structure parame-
ters on the control parameter w. Figure 3(a) shows that the
fit error decreases when w grows from 0.45 to 0.52 μm,
meaning that the dispersion relation is increasingly closer
to that of the RM. In Figs. 3(c)–3(f), the blue dashed line
represents the polynomial fit of the extracted parameters with
respect to w. Here we make a crucial assumption, namely, that
the dependence of the structure parameters on w is smooth.
Figure 3 shows that a low-order (third) polynomial is a good
approximation; moreover, the residual of ω0 [blue solid line
in Fig. 3(b)] is about 100 GHz or less. The result here is a
set of polynomial coefficients C (P )

i for each parameter P =
{ω0,K, vg,D2}. This two-step interpolation of the dispersion
of the periodic structure removes the minute deviations which
might be related to the discretization error.
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FIG. 4. Tapered nanobeam optical cavity. (a) Simplified layout
and (b) spatial dependence of the valence band edge at k = k0

(dashed black line), the normalized distribution of the squared elec-
tric field corresponding to the calculated Bloch modes (3D MEs) of
the cavity along the axis y = 0, z(d ) = 0 (solid gray line), and en-
velopes calculated from the reduced model of the cavity (blue dashed
line) and after the model update (red solid line). The vertical offset
corresponds to the frequency at resonance. (c) Integrated dispersion
Dint calculated by solving the 3D MEs (squares), with the reduced
cavity model (blue dashed line) and after the update (red solid).
(d) Spatial dependence of w. (e) Frequency deviation for each mode
σRM/2π of the RM (blue dashed line) and the updated RM (red solid
line) relative to the 3D ME calculations.

III. REDUCED MODEL OF A TAPERED
NANOBEAM CAVITY

Let us now consider an optical resonator where the con-
finement is due to the tapering of the width w(x) = ρ0 + ρx2

(ρ > 0) of the nanobeam, as described in Ref. [25]. When
considering the w dependence of ω0 and K in Fig. 3(d), we
immediately realize that the edge of the valence band ωvb =
ω0 − K decreases as w increases. This leads to localization
of Bloch waves in the valence band of the nanobeam if w is
smaller in the center of the nanobeam. Let us consider the
case with ρ = 500 m−1. Figure 4(b) shows the corresponding
spatial distribution of the modes as it is obtained from the

solution of the 3D MEs using the finite-element method (de-
tails are discussed in the Appendix).

Let us now build a RM for the cavity and define the linear
operator LRM acting on complex-valued functions of space x
(R → R2):

LRM =
[−D2∂

2
x + ıvg∂x + ω0 K

K −D2∂
2
x − ıvg∂x + ω0

]
.

(2)

Here the structure parameters {ω0,K, vg,D2} are all functions
of x via the profile w(x) and the polynomials C (P )

i . Namely,
for each parameter P the corresponding function of x reads

P (x) =
∑

l

C (P )
l w(x)l . (3)

The polynomial expansion is replaced by constant values for
|x| > xmax, namely, P||x|>xmax = P (xmax). The eigenfunctions
ψ = [A+,A−] of the equation

(LRM − ω)ψ = 0 (4)

correspond to the envelopes of the cavity modes, as predicted
by the RM. The equation is solved by finite-difference dis-
cretization (see the Appendix). It is apparent that the field
envelopes and the eigenfrequencies are close to the corre-
sponding results from a direct solution of the 3D MEs. A
very important figure to describe the dispersion in multimode
resonators is the integrated dispersion [2], which measures the
deviation of the cavity resonances ωm from a constant free
spectral range (FSR): Dint,m = ωm − ω0 − D1m. This quantity
is shown in Fig. 4(c). The FSR is fixed to D1 = ω1 − ω0

from the solution of the 3D MEs, where ω0 is always the
first eigenvalue (the fundamental mode); this implies that we
consider only the relative error of the eigenvalues between
the 3D ME results and the RM predictions. Let us also note
that the modes are ordered with decreasing frequency be-
cause the valence band has an upper bound. The deviation
σm = |ωm(3D MEs) − ωm(RM)| is shown in Fig. 4(e): as can
be seen, its value is about 100 GHz. Let us now allow the
polynomial coefficients Ci to be adjusted in order to minimize
the mismatch between the eigenfrequencies obtained from the
solution of the 3D MEs and from the RM, namely,

ε = 1

N

N∑
m

∣∣∣σm

ω0

∣∣∣2
. (5)

The results correspond to the red lines in Fig. 4(b), which are
now much closer to the Bloch modes obtained from the solu-
tion of the 3D MEs. This is even more visible when inspecting
Dint [Fig. 4(c)] and the corresponding residual [Fig. 4(e)],
which is now below 10 GHz. Let us now analyze the change
in the polynomial coefficients by inspecting the change in
the dependence of P on w in Figs. 3(b)–3(f). The relative
change in the parameters is very small and merely appears as
an offset. The relative change in D2 is larger, but this param-
eter represents a higher-order correction to the coupled-wave
model. Thus, a slight adjustment of the parameters is sufficient
to let our reduced model converge to the solution of the 3D
MEs. We will refer to it hereafter as the “updated” RM. The
fact that a correction of the parameters is needed is justified
by the fact that the adiabatic condition for the tapering is only
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partially satisfied. Yet it is noteworthy that the RM already
generates a very good approximation of the numerically exact
result, and that a slight change in the polynomial coefficients
is enough to match the exact result within the discretization
error in the solution of the 3D ME. The updated RM solution
is, in this sense, fully equivalent to the 3D ME solution.

IV. DESIGN OF A MULTIMODE RESONATOR
WITH A FLAT DISPERSION

Let us now consider the updated RM, which consists of the
eigenvalue Eq. (4) with the operator Eq. (2) and parameters
defined by the updated coefficients Ci. The profile w(x) is
now allowed to change, so that the integrated dispersion Dint

converges towards a prescribed target. As a notable example,
we consider a flat dispersion profile for the first seven modes
as a target, i.e., Dint,m = 0 for m = 1, . . . , 7. The tapering
profile is defined by a polynomial with even orders up to
2M = 6: w(x) = ρ0 + ∑M

l=1 ρl x2l . With this choice we have
three degrees of freedom in the optimization process (ρl , with
l = 2, 4, 6), ensuring both convergence and high computa-
tional efficiency. The cost function

∑
m |Dint,m| is minimized

with respect to the parameters ρl . This results in a new profile
w1(x) [Fig. 5(c)], for which the RM predicts that Dint/2π

decreases by almost 2 orders of magnitude to about 2–4 GHz
[Fig. 5(b)]. The 3D MEs are solved again with w1(x), and the
resulting Dint/2π is reduced to about 10 GHz, i.e., not as much
as the prediction of the RM. The coefficients C are updated
such that RM approaches the 3D MEs, as in the previous sec-
tion. This is necessary since w1(x) has considerably departed
from a parabola. Indeed, Fig. 5(d) shows that the residuals
(red dashed line) are larger than the estimated accuracy of the
3D MEs (green dashed line), yet they decrease below it after
the second update (solid red line). A new optimized profile is
then generated w2(x), yet no appreciable change is achieved
[Figs. 5(b)–5(d)], indicating that the procedure has reached
convergence, which is essentially set by the accuracy of the
3D ME solver. In summary, the method required solving once
for the periodic 3D MEs and solving the 3D MEs twice more
for the cavity; the third time only confirms convergence.

Finally, we analyze how the ID procedure affects the Q
factors. Since our procedure does not consider Q a target for
optimization, there is no guarantee that high-Q values are
preserved. This is examined in Fig. 6. The Q factors have been
calculated either deterministically (circles) or by modeling the
fabrication imperfections by introducing disorder, i.e., by ran-
domly varying (rms = 0.5 nm) the position and the diameter
of all the holes. The error bars represent statistics (the mean
value and the standard deviation of a log-normal distribution)
over an ensemble of 20 simulations. Thus, circles correspond
to the radiation-limited Q, which decreases Q to less than
106 after the optimization. Importantly, this is no longer true
when disorder is taken into account, as Q factors are basically
unchanged.

V. CONCLUSIONS

We have introduced a procedure for the inverse design of
the dispersion of a multimode nanoscale resonator. The main
idea behind our approach harnesses the fact that nanoscale

FIG. 5. Design of a nanobeam multimode resonator with flat
dispersion. (a) Bloch modes (from the 3D ME) and envelopes from
the RM after optimization (as in Fig. 4). (b) Integral dispersion Dint

for the resonator with parabolic tapering w0(x) (gray) and after the
first w1(x) (red) and second w2(x) (blue) optimizations. Symbols
represent the solution of the 3D ME, and lines correspond to the
RM solutions. Note the logarithmic vertical scale. (c) Corresponding
tapering profiles wi(x). (d) Residuals (difference between RM and
3D MEs) computed after updating the RM with w0(x) (red dashed
line), after the second update and w1(x) (red solid line), and with
w2(x) (blue line).

cavities with large quality factors are, in general, designed ac-
cording to the principle of “gentle confinement.” This implies
that they can be described as almost adiabatically tapered peri-
odic structures. Inspired by well-known methods of solid-state
physics, we have introduced a reduced model which is able
to capture very well the dispersion of the nanoscale structure
in the spectral domain of interest, where the cavity modes
exist. The reduced model consists of a linear operator acting
on complex functions of a single variable, whose parameters
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FIG. 6. Calculated Q factors for the reference cavity with
parabolic tapering w0(x) (orange) and the dispersion-flattened cavity
with an optimized profile (blue). Circles correspond to the radiation-
limited Q; error bars are an estimate of Q accounting for fabrication
disorder. On the x axis the frequency of the resonances is reported.

are slowly varying. These parameters are initially determined
by fitting the dispersion of a reference periodic structure via
a function of the “control” parameter. Here we considered
the case of a “nanobeam” photonic crystal cavity. The width
of the nanobeam is decreased in the middle, which creates
a confining potential in the valence band of the photonic
crystal. Next, the model is updated by adapting the nanobeam
parameters to the cavity. This two-step procedure avoids is-
sues related to the possible presence of suboptimal minima in
the fitting procedure. We showed that the reduced model is
equivalent to the solution of the 3D Maxwell equations within
the discretization accuracy of the numerical solver, but it is 3
orders of magnitude faster. For this reason, any optimization
algorithm can be used. As an example, we considered the
problem of flattening the dispersion of a nanoscale resonator.
The integrated dispersion Dint is reduced below ∼10 GHz,
essentially limited by the numerical accuracy of the Maxwell
solver.

Our method can be applied to any cavity geometry which
can be described via the one- or two-dimensional tapering of
a periodic structure. The model can be extended to use more
than one control parameter and could also leverage the pres-
ence of multiple waves. In contrast to topological optimization
or inverse design, which are intended to solve a very general
class of problems, our procedure is particularly suited to a
specific but important class of optical resonators, and could
considerably help with the development of nanoscale optical
combs, mode-locked lasers, and special-purpose parametric
generators of nonclassical light.
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APPENDIX

1. Numerical implementation

The reduced model requires the solution of the eigenvalue
problem Eq. (1), which is a system of linear partial differential
equations. This is solved by finite-difference discretization of
the operator L̂RM,

L̂RM =
[
ω̂0 − D̂2D̂2

x + ıv̂gD̂FW
x K̂

K̂ ω̂0 − D̂2D̂2
x − ıv̂gD̂BW

x

]
,

where the hat symbol in D̂2 and D̂x indicates the finite-
difference approximation of the differential operators, i.e., a
2N × 2N matrix, where N is the number of points used to
approximate the spatial domain. Therefore, L̂RM is 4N × N
matrix. The operator LRM is generally non-Hermitian; thus,
its eigensolutions are not real. Localized eigenfunctions cor-
respond to nearly real eigenvalues (Re{ω̃} � Im{ω̃}). The
difference operators D̂2

x and D̂FW,BW
x are implemented on a

regular grid x j = j�x using a second-order central differ-
ence scheme and third-order forward and backward upwind
schemes [34,35],

D̂FW
x f j = − f j+2 + 6 f j+1 − 3 f j − 2 f j−1

6�x
,

D̂BW
x f j = f j−2 − 6 f j−1 + 3 f j + 2 f j+1

6�x
, (A1)

and for the second-order derivative

D2
x f j = f j+1 − 2 f j + f j−1

h2
. (A2)

As the terms of the difference scheme outside the domain are
implicitly set to zero, they imply Dirichlet boundary condi-
tions, which are not appropriate to represent either evanescent
field decay or dispersive waves. Therefore, the considered
computation domain is much larger than the size of the cav-
ity. The other operators are diagonal, v̂g = δi, jvg(x j ), κ̂ =
δi, jκ (x j ), and ω̂0 = δi, jω0(x j ), with δi, j being the Kronecker
delta. All of the code written for optimization and evaluation
of the reduced model is written in JULIA [36].

2. Numerical accuracy

A critical issue when calculating the dispersion of mul-
timode nanoscale cavities is that the relative error in the
calculation of frequencies can hardly decrease below 10−4,
which translates to inaccuracies of the order of tens of giga-
hertz. In Ref. [33] a variety of methods for solving the ME
are compared for computing the resonances of a nanoscale
cavity. It was observed that finite-element methods (FEMs)
converge better than finite-difference time-domain (FDTD)
methods. Yet it was concluded that the FEM error is likely
to be underestimated, since different implementations of the
FEM converge to slightly different results. This underlines
how critical the numerical accuracy is for these methods. For
this reason, both approaches have been used here. The FDTD
algorithm is an in-house code, graphically accelerated with
subpixel smoothing [37]. The FEM method is implemented
within the COMSOL commercial code.

Figure 7 compares the two methods by considering the
convergence of the frequency of the fundamental order
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FIG. 7. Numerical solution of 3D ME with the nanobeam cavity:
convergence of FEM (red) and FDTD (blue) methods against the
number of elements and size of the grid, respectively; the error bar
stands for the stochastic simulation on an ensemble of 20 realiza-
tions. (a) Fundamental mode frequency, (b) the integral dispersion
up to the seventh-order mode, and (c) the CPU time in seconds.

mode ν0 [Fig. 7(a)] and the integrated dispersion up to the
seventh-order mode [Fig. 7(b)] and the time required for
the computation [Fig. 7(c)]. Let us note that the computation
time scales with (�x/a)4 for the FDTD and moderately su-
perlinearly with the number of elements used in the FEM;
thus, the two horizontal scales cannot be compared directly.
Moreover, a more reliable computation of the frequencies
through FDTD is obtained by adding random fluctuations in
the geometry (as discussed earlier), performing the calculation
on 20 to 60 realizations (depending on the resolution) of the
structure, and considering averages and standard deviations
of the histograms of calculated frequencies. The standard
deviation depends on the disorder introduced (rms = 1 nm),
and it is not an estimate of a numerical accuracy. Thus,
the time required by FDTD is much longer indeed if this
method is used. Figure 7(a) shows that the inaccuracy for
the frequency is about 10 GHz when FEM is used. More
precisely, the accuracy is assessed by comparing the reso-
nances computed by using either a low (67 252 elements)
or a high (364 550 elements) resolution on the tetrahedral
mesh, namely, σ 2

FEM = 1
N

∑N
m |ωFEM,H,m − ωFEM,L,m|2; hence,

σFEM/2π = 13 GHz. As shown in Fig. 4, this is comparable
to the average residual between the frequencies computed
with our RM and with FEM. The FDTD converges to the
same value with a/�x = 40. The inaccuracy on the integrated

TABLE I. Workflow and overall performance of the method. The
reduced model is built from the periodized structure (w0). RM is
updated by comparison with the 3D ME calculation (FEM) of the
reference cavity (w0 upd.). The profile is modified to one with flat
dispersion as the target (w1). RM is updated again against the 3D
ME calculation of the optimized cavity (w1 upd.). The geometry
is optimized again with the updated model (w2). σRM is the aver-
aged residual between RM and 3D MEs, �(2) = (N − 2)−1

∑
j �

(2)
j ,

where �
(2)
j = ω j+1 + ω j−1 − 2ω j is the averaged second-order dis-

persion, normalized to the FSR. Note that both the update and the
optimization steps result in a minimization of two different figures of
merit, i.e., σRM (blue arrows) and �(2) (red arrows). The computing
time for the 3D FDTD periodic and FEM calculations for w0, w1,
and w2 and the time needed to optimize the profile using the RM and
the number of calls needed to converge are also shown.

w0

w0

upd. w1

w1

upd. w2

σRM (GHz) 200 8 30 12 13

Δ(2)(%FSR) 27 31 1.7 0.17 0.12
3D ME period. w0 w1 w2

CPU time (s) 80314 2948 2776 2816
fun. calls – 723 220 557 254
CPU time (s) – 356 107 261 125

dispersion [Fig. 7(b)] is similar, and it is matched by FDTD
for a/�x = 30. The two methods give almost identical results
for a/�x = 40. In terms of computing time (for a single
FDTD realization) the resolution a/�x = 40 corresponds to
the high-resolution FEM mesh, while the low-resolution mesh
corresponds to a/�x = 25. With this resolution, we deduce
from Figs. 7(a) and 7(b) that the error of the FDTD is about
100 GHz.

We conjecture that the accuracy of the RM may be better
than that of the numerical solution of 3D MEs. As a matter
of fact, the discretization of space through finite differences
or finite elements results in uncorrelated deviations of the
resonances. This source of randomness should vanish in the
exact solution, and it may be much reduced in the RM since
the method inherently averages out random deviations. How-
ever, the proof of this is problematic because of the accuracy
limitation of numerical solutions. Still, our method guarantees
that dispersion flatness remains within the order of 10 GHz in
terms of the integrated dispersion, over the first seven confined
modes, which is clearly better than what is achievable with the
strictly bichromatic design that was reported in [8,11] or with
the parabolic tapering design of Ref. [12]. Moreover, here
we have shown how, by means of the RM, it is possible to
tailor the dispersion of a wide class of resonators, regardless
of their initial dispersion curves. Specifically, we could flatten
the integrated dispersion of the highest-order modes by almost
3 orders of magnitude, i.e., from �1 THz down to ∼10 GHz,
by drastically changing the Dint curve.

3. The optimization algorithm: Workflow and performances

The performances of our method are summarized in
Table I. Computation is performed using a 32-core CPU
(AMD EPYC 7351) with clock frequency equal to 2.4 GHz
and 64 GB RAM. The first step consists of establishing
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FIG. 8. Flowchart of the design algorithm: the band diagram
calculation of a perfectly periodic structure (I) gives a first estimate of
the structure parameters. A reference w(x) PhC profile is taken into
account (II) and numerically solved (III). After the calibration of the
RM (IV), we proceed with the actual optimization (V). A loop across
steps IV and V might be necessary if the accuracy is not sufficient
upon optimization (red arrows).

the RM, which requires the calculation of the bands as a func-
tion of the control parameter (here w). This takes ∼3000 s for
each of the 26 values of w. The second step is the calculation
of the frequencies for the reference cavity, as well as of the
first and second optimized geometries, which each take about
3000 s using FEM. An error-minimization iterative procedure
based on the steepest gradient is performed twice for updating
the RM and twice for the optimization of the profile w(x).
Convergence requires a few hundred function calls, and the
average time for evaluating the RM is 0.6 s. This gives a sense
of the acceleration provided by replacing the solution of the
3D MEs with that of the RM.

In Fig. 8 we sketch a flowchart showing each step of
our design technique: the initial step (I) consists of the band
diagram calculation of a perfectly periodic structure for dif-
ferent values of the control parameter. A first estimate of
the structure parameters and of their dependence on w can
be extrapolated by means of a polynomial fit, as sketched in
Fig. 3. Consequently, a reference profile of w = ρ0 + ρx2 is
taken into account (II), and the structure is solved by means
of both RM and 3D ME solvers (III). At this point, the RM
is calibrated, and the set {ω0,K, vg,D}(w) is updated to re-
cover the best accuracy (IV). The following step is the actual
optimization of the ρi|i>0 coefficients of an even Mth-order
polynomial expansion w(x) = ρ0 + ∑M

l=1 ρl x2l (V). After the
optimization cycle, it is essential to verify whether the RM ac-
curacy was degraded (red arrows): if so, an other loop of steps
IV and V will be needed in order to recover the prescribed
accuracy.
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