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ABSTRACT
The MaGIC project (Marine Geohazard along the Italian Coasts) had the aim of mapping the
geohazard in the Italian seas and resulted in the production of numerous maps covering
parts of the Italian Seas. In this paper, we present the maps: ‘The submerged portions of the
Aeolian volcanic islands and the north-eastern Sicilian margin’, located in the south-eastern
Tyrrhenian Sea. Both areas are affected by active geological processes, which represent
important geohazards elements. Inthe submarine parts of the Stromboli volcanoremobilization
of volcaniclastic deposits occur along the Sciara del Fuoco, where small-scale instabilities may
represent a source of geohazard. Hydrothermal activity occurs on Enarete and Enaretino
conical seamounts. The north-eastern Sicilian margin has a narrow continental shelf.
Numerous canyon heads indent the shelf and, sometimes, reach close to the coast. Canyons
have often a retrogradational trend and further eventual landward shift through sliding can
iendangeri coastal or offshore infrastructures. Many of the canyons connect with leveed
channels with widespread sediment instability. In the Gioia Basin, some of the channels
connect to form the Stromboli slope Valley. Volcanic unrest or local and regional earthquakes
are proven to have caused submarine landslides and tsunamis.
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1. Introduction

Our article complements the ‘Maps of Geohazard
features of the eastern Sardinian Margin’, produced
in the frame of the MaGIC project (Marine
Geohazard along the Italian Coasts) (Main Map).
The latter was a large coordinated effort which
involved the whole marine geological community
in Italy in the years 2007–2013. The maps result
from the interpretation of multibeam bathymetric
data acquired during various cruises. As such, in
the maps, the hazard reconstructions result from
the interpretation of the seafloor morphology and
of the shallow and immediate sub-surface elements.
Two levels of interpretation are presented: the map
of the Physiographic Domain at 1:250,000 scale
and the map of the Morphological Units and
Morpho-bathymetric Elements (areas and vectors
respectively) at 1:100,000 scale.

2. Study area: the geology of the Aeolian
Island slopes and North-Eastern Sicilian
offshore

The north-eastern Sicilian margin and the Aeolian
Islands sit between the Calabrian Arc and the southern
Tyrrhenian back-arc basin in the context of the
NW-ward subduction of the Ionian lithosphere
beneath the Calabrian Arc (Doglioni, 1991; Gvirtzman
& Nur, 1999; Malinverno & Ryan, 1986; Marani &
Gamberi, 2004a; Figure 1(a)).

The basement Units of the Peloritani Mountains,
overlay the Sicilian-Maghrebian Chain, and border
the Sicilian margin (Figure 1; Lentini et al., 1996).
NNE-SSW-trending normal faults and NW-SE-trend-
ing strike-slip faults cause a horst and graben struc-
tural setting.

High regional uplift rates affect the Western Calab-
ria and the NE Sicily area (Sulli et al., 2013; Westaway,
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1993) and are modified by vertical movements con-
nected to active tectonic structures (Catalano et al.,
2003; Scicchitano et al., 2011). Short and steep water-
courses (locally named ‘fiumare’), with torrential
regimes, drain the mountainous hinterland. They
can transport large volumes of debris into the sea in
a very short time span. An important seismicity,
with frequent moderate to strong earthquakes,
affects the area.

A very narrow continental shelf is present along the
northern Sicilian margin (Gamberi, 2020; Gamberi,
Rovere, et al., 2014) where some of the canyon heads
reach the coastal areas (Gamberi, 2019; Gamberi
et al., 2015, 2017). The distal part of deltas develops
where the shelf is relatively larger (Casalbore, Ridente,
et al., 2017; Distefano & Gamberi, 2022; Gamberi et al.,
2015). In the slope, both constructional and

destructional sectors are evident (Gamberi et al.,
2019; Gamberi & Marani, 2006). In the first case,
channel-levee systems develop (Gamberi, Rovere,
Mercorella, & Leidi, 2014; Gamberi & Rovere, 2011),
in the latter, large mass-transport complexes com-
posed predominate (Gamberi et al., 2011, 2020; Gam-
beri & Marani, 2006). In the intraslope basins, frontal
splay form at the mouth of submarine channels
(Gamberi, 2019; Gamberi & Rovere, 2011; Gamberi,
Rovere, Mercorella & Leidi, 2014). However, also
landslide deposits contribute to the basin plain strati-
graphy (Gamberi, 2019; Gamberi et al., 2011, 2015,
2019).

The Aeolian Arc is made up of seven islands and
several seamounts: Sisifo, Enarete and Eolo to the
West of Alicudi, and Lametini and Alcione to the
North of Stromboli (Marani & Gamberi, 2004b; Figure

Figure 1. (a) Sketch of the regional geology of the Aeolian Arc and the north-eastern Sicilian margin (SAFS = Sisifo-Alicudi fault
Syatem; ATLFS = Aeolian-Tinadari-Letojanni Fault System; SPFS = Stromboli-Panarea fault System) (modified from Barreca et al.
2014). The red line marks the external front of the Calabrian arc and the Apenninic-Maghrebian chain. (b) Sparker seismic line
BG2 showing the extensional tectonic features affecting the Sicilian margin in the area of the Gioia basin. Landslide and channels
are also evident. The Stromboli valley is here a depositional feature forming an extensive levee wedge. The volcaniclastic apron in
the Aeolian Island slope displays chaotic reflections indicative of instability and erosional, often channelized, flows.
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Figure 2. (a) Shaded relief map of the central and eastern sectors of the Aeolian Archipelago. Channels and gullies prevail in the
upper slope, while bedform fields become dominant further downslope. Instability is also widespread as indicated by numerous
landslide scars. (b) A detailed image of sediment waves in the offshore of Piscità, where a channel (Piscità ch) develops in the
northern slope of Stromboli volcanic edifice. (c) Bathymetric map of the Sicilian margin in the area of the Cefalù Basin. A chan-
nel-levee complex develops at the base of slope and is affected by widespread seafloor instability. The related landslide and debris
flow deposits (areas in pink) form chaotic bodies that can reach the basin plain forming lobes. (d) A side scan sonar image of part
of the Capo d’Orlando channel-levee complex. It shows the complex nature of the landslide scars, the blocky facies of the landslide
deposits, which sometimes plug the channels. The corresponding sub-bottom profile shows that the landslide deposits have a
chaotic facies and lie on top of a levee wedge with continuous reflections.
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2(a)). The oldest rocks found in the Aeolian Archipe-
lago, dated at 1.3 Ma, were sampled from the Sisifo
Seamount (Beccaluva et al., 1982).

Subaerial volcanism started at 270–250 ka on Sal-
ina, Filicudi and Lipari islands and is still active at
Lipari (AD 1230), Vulcano (AD 1888–1890) and
Stromboli (Rosi et al., 2000). The volcanic rocks
belong to the calc-alkaline, HK-calc-alkaline, shosho-
nitic and alkaline potassic series (Barberi et al., 1974).

The Aeolian Arc has three sectors characterized by
distinctive structural trends and evolution (Figure 1
(a); De Astis et al., 2003; Gamberi et al., 1997; Romag-
noli, Casalbore, Bortoluzzi, et al., 2013; Ventura, 2013).

The western sector is mostly controlled by the
Sisifo-Alicudi fault System, WNW-ESE-oriented
strike-slip dextral shear zone (Bortoluzzi et al.,
2010), showing that conjugate synthetic and antithetic
fault systems, mainly trending WNW-ESE and NNE-
SSW, have controlled the magmatism (Figure 1(a)).
The central sector lies along the northern termination
of the Aeolian-Tindari-Letojanni Fault System and is
mostly dominated by volcanic and tectonic features
along a NNW-SSE-trending belt extending from the
northern Sicilian coast to Salina Island (Argnani
et al., 2007; Ventura, 2013; Figure 1(a)). The eastern
sector, along the Stromboli-Panarea Fault System is
characterized by prevailing NNE-SSW to NE-SW
striking fault systems that control vents and eruptive
features on Panarea and Stromboli Islands
(Francalanci et al., 2013; Ventura, 2013) and in the
submarine areas (Gamberi et al., 1997; Romagnoli,
Casalbore, Bortoluzzi, et al., 2013; Figure 1(a)).

3. Methods and software

As the maps were produced using the specific inter-
pretative and cartographic standard used in the
MAGIC project, the procedure is described in detail
in Ridente and Chiocci (this volume). The legend of
the Physiographic Domain map is presented on the
map. The legend of the maps of the ‘Morphological
Units and Morpho-bathymetric Elements’ is pre-
sented as a separate table.

4. Maps of morphologic units and morpho-
bathymetric elements

4.1. Stromboli Area (MaGIC sheet 16)

The Sheet 16 ‘Stromboli’ includes the submarine por-
tions of Stromboli and Panarea edifices and has
regional tectonic structures with SW-NE direction
(De Astis et al., 2003).

Stromboli is a steep, andesitic-basaltic stratovol-
cano, whose submarine part accounts for about 98%
of its surface. The edifice is made up of two volcanic
centers: Stromboli, developed in the last 100 ka and

Strombolicchio, dated at 200 ka (Gillot & Keller,
1993). The base of the edifice is located between
1400 and 2700 m depth. Stromboli displays a marked
bilateral symmetry with respect to the main SW-NE
axial zone (Bosman et al., 2009; Casalbore, Romagnoli,
et al., 2011; Tibaldi et al., 2009), where most of the
dykes, vent and eruptive fissures are present (Pasquarè
et al., 1993). The SW and NE flanks are characterized
by large insular shelves. In contrast, the NW and E
flanks are affected by multiple sector collapses that
led to the development of large subaerial-submarine
depressions down to 500–700 m water depth and to
the emplacement of debris avalanche deposits in the
more distal flanks (Romagnoli, Kokelaar, et al., 2009
and Romagnoli, Casalbore, et al., 2009). In 2002, a tsu-
namigenic submarine landslide occurred on the sub-
marine and subaerial slope of the Sciara del Fuoco
(Chiocci et al., 2008). The monitoring of the 2002
scar shows its rapid infill that partially obliterated its
original morphology (Casalbore et al., 2012). On Feb-
ruary 2007, a new eruptive crisis led to the emplace-
ment of a large lava delta within the 2002 scar, with
a maximum thickness of 70 m and volume of 10 ×
106 m3 (Bosman et al., 2014), with implications on
the slope stability (Casalbore, Passeri, et al., 2020).
Subsequent volcanic activity (such as in 2014, 2019–
2020, 2021) was responsible for the formation of
further lava deltas at the foot of the subaerial Sciara
del Fuoco, largely reworked during phases of reduced
activity (Casalbore, Di Traglia, et al., 2021). Subaerial
and submarine slope accretion and erosion occur
through time, also in association to pyroclastic flows
occurrence and small-scale instability processes con-
tinuously reshaping the slope (Casalbore et al., 2022;
Di Traglia et al., 2022).

A volcaniclastic apron surrounds the volcanic
edifice. It consists of a large spectrum of geomorphic
elements, such as slide scars and related deposits,
channels and bedforms (corresponding to 90% of
the entire area), alternated with volcanic outcrops
(Casalbore et al., 2010).

The Panarea edifice is 2000-m-high and displays a
large insular shelf, with a diameter of 8 km and
outer edge at 120–150 m depth, which is representa-
tive of the maximum subaerial extension reached by
the subaerial volcanic edifice (Romagnoli, 2013). The
insular shelf is covered by submarine depositional ter-
races, i.e. sedimentary wedges with internal prograd-
ing geometry, whose formation occurs below the
storm-wave base level (Casalbore, Falese, et al., 2017
and reference therein). The shallow-water portions
of Panarea are affected by tectonic and hydrothermal
activity (Gamberi et al., 1997). In 2002–2003, a strong
degassing activity on the shelf offshore the islets facing
the eastern part of Panarea Island was responsible for a
large plume of suspended sediments at the sea surface
(Esposito et al., 2006).
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In the slope, the flanks of both volcanoes are steep
and uneven, with volcanic outcrops alternated with
features such as channels, landslide scars and extensive
bedform fields (Casalbore et al., 2014; Romagnoli,
Casalbore, Bortoluzzi, et al., 2013). Finally, part of
the Stromboli Canyon is present in the westernmost
sector of the sheet. It represents the main feature of
the southern Tyrrhenian Sea with a length of about
120 km (Gamberi &Marani, 2007; Gamberi &Marani,
2011).

4.2. Milazzo Area (MaGIC sheet 17)

The western sector of the Sheet 17 ‘Milazzo’ is the site
of a channel-levee system built by the Milazzo, Villa-
franca and Niceto submarine channels (Gamberi
et al., 2013; Hansen et al., 2015). The channels connect
upslope with canyons with their heads close to the
coastline (Gamberi, 2020; Gamberi et al., 2015, 2017).

The Milazzo slope channel is the proximal trunk of
the Stromboli Valley. The Niceto Channel also con-
nects with the Stromboli Valley and has an eastern
levee hosting 50-m-high sediment waves (Hansen
et al., 2015).

The Villafranca Channel forms and connects to a
transient fan lobe, with an area of 225 km2 (Gamberi,
Rovere, Mercorella, Leidi, 2014; Gamberi & Rovere,
2011).

The south-western sector of the sheet, offshore
from the town of Milazzo, displays various canyons
directly connected to rivers (Gamberi, Rovere, Mer-
corella, & Leidi, 2014). The canyon heads indent the
shelf, being extremely close (less than 500 m) to an
industrial area, posing a serious hazard on the infra-
structures, in the case of retrogressive canyon-head
instability. In addition, hyperpycnal flows triggered
by extreme climate events, such as that connected
with a flood in 2011, that hit several municipalities,
including Barcellona Pozzo di Gotto, are further pro-
cesses with strong erosional behavior, sources of
serious geohazards.

To the West from the channel-levee system, in the
eastern sector of the sheet, a large mass-transport
complex develops on the western slope of the
Acquarone Ridge, a structural high formed as a
horst during the rifting of the northern Sicily margin
(Gamberi et al., 2011; Gamberi et al., 2020; Gamberi
& Marani, 2006). The mass-transport complex was
formed during several distinct episodes of
seafloor instability which deposited different bodies,
the largest being the 230 km2 Villafranca Slide,
which is 300-m-thick, with an estimated volume of
48 km3 (Gamberi et al., 2011; Rovere et al., 2014).
On top of the Acquarone Ridge, a field of pockmarks
is the evidence of fluid circulation and flow, which
may contribute to the instability along the slope
(Rovere et al., 2014).

4.3. Capo d’Orlando Area (MaGIC sheet 18)

The Sheet 18 ‘Capo D’Orlando’ includes the north-
eastern Sicilian continental margin in the area between
the Gulf of Patti and Capo d’Orlando, as well as the
submarine portions of Vulcano, Stromboli and Salina
volcanic edifices. The area has a narrow (up to 6-km-
wide) and steep shelf, whose edge is deeply indented
by canyons (Gamberi, 2020; Gamberi et al., 2017).
Most of the canyon heads are located at less than
50 m of depth, only a few hundreds of meters from
the coast (Casalbore, Clementucci, et al., 2020; Chiocci
& Casalbore, 2017; Gamberi, 2020; Gamberi et al.,
2015). Moreover, a large submarine deltaic system is
present off the mouth of Mazzarrà River, with gullies
and seafloor waveforms (Casalbore, Ridente, et al.,
2017). Specifically, the gullies are the erosive trace of
hyperpycnal flood generated during flash-flood as
observed in similar setting elsewhere (Casalbore,
Chiocci, et al., 2011; Chiocci & Casalbore, 2011).

The canyon heads consist of several coalescing and
retrogressive slide scars, having average diameter of
few hundreds of meters. Canyons drain the entire con-
tinental slope over 1000 m depth and are ten kilo-
meters long, some hundreds of meters wide and up
to 100-m-deep (Gamberi, 2019; Gamberi et al., 2015).

The Vulcano, Lipari and Salina volcanic edifices
have been strongly controlled by a main, NNW-SSE-
trending strike-slip fault system, interpreted as the
offshore prolongation of the regional ‘Tindari – Leto-
janni’ fault in north-eastern Sicily and showing right-
lateral to oblique kinematics (Romagnoli et al., 1989;
Ventura, 2013). Insular shelves, with a maximum
width of 2 km, develop around the oldest part of the
volcanic edifices. The edge of these shelves is located
between 90 and 220 m depth (Casalbore, Bosman,
Romagnoli, Di Filippo, et al., 2016; Casalbore, Bos-
man, Romagnoli, & Chiocci, 2016; Romagnoli, 2013;
Romagnoli, Casalbore, Bosman, et al., 2013), approxi-
mately corresponding to the lowermost level reached
by sea level during the Late-Quaternary sea level
fluctuations (Bintanja et al., 2005). The areas where
the shelf edge is deeper were affected by subsidence
after their formation (Romagnoli et al., 2018). The
insular shelf edge is frequently the seat of shallow
landslides scars, as observed at Stromboli (Casalbore,
Romagnoli, et al., 2011), and their possible (re)activa-
tion may potentially generate tsunamis. At greater
depths, the volcanic flanks are steep (slope gradients
>30°) and uneven, due to volcanic outcrops and geo-
morphic elements with both erosional and deposi-
tional genesis (Casalbore et al., 2014). Volcanic
outcrops occur both near the coast, in continuation
with subaerial structures, and as isolated features on
the submarine flanks, unrelated to the subaerial mor-
phology. The erosive and depositional sedimentary
features include channels, depositional fans, bedforms
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and landslide scars (Casalbore, Clare, et al., 2021;
Gamberi, 2001; Romagnoli, Casalbore, Bortoluzzi,
et al., 2013). Specifically, the submarine part of La
Fossa Caldera at Vulcano (Casalbore et al., 2018;
Romagnoli et al., 2012) and the submarine canyons
in the eastern part of Lipari (Bosman et al., 2015;
Casalbore, Romagnoli, et al., 2017c) are the seat of
active canyons with headwalls approaching the coast
and represent a main potential geohazard for coastal
areas.

In the eastern coastal area of Lipari,, a significant
subsidence since roman times has been shown
(Anzidei et al., 2016) and this, together with the
coastal dynamics occurred in the last decades
(Romagnoli et al., 2022) can have severe implications
for flooding scenario in the most touristic part of the
island (Anzidei et al., 2017).

4.4. Alicudi e Filicudi Area (MaGIC sheet 19)

The Sheet 19 ‘Alicudi e Filicudi’ includes the western
part of the Aeolian arc, with the homonymous islands,
and a submerged portion, consisting of Eolo and Enar-
ete seamounts and the volcanic range comprising
Sisifo Seamount (Marani & Gamberi, 2004b). To the
south of Eolo seamount and the islands of Filicudi
and Alicudi. The northern part of the Cefalù Basin is
also part of the sheet.

The island of Filicudi stretches in a NW-SE direc-
tion. The oldest basalts and andesites of the island,
are dated 200 ka (Barberi et al., 1994). In the north-
western sector, an additional distinct volcanic edifice
is present; it has a flat top peaking at 50 m depth.
The flat morphology of the edifice is probably the
result of repeated marine abrasion during low sea-
level stands. The southern part of Filicudi is located
at the northern margin of the flat basin plain of the
Cefalù Basin, at 1500 m depth; its northern slope
drops to 1750 m and is traversed by a wide erosional
chute delimited. The feature extends from the shallow
water down to the base of the edifice. A flat-lying
seafloor surrounds the island, except for its northern
sector. An area of rugged seafloor topography,
10 km NE of the island, is a further indication of sub-
marine volcanism.

The oldest basalts and andesites of the island of Ali-
cudi, are 167 ka (Villari, 1980). Alicudi is a near-per-
fect cone with a circular base at the northern margin
of the Cefalù Basin plain at 1500 m depth. The flat
plain continues to the North of the island as a 10-
km-long, 5-km-wide bench delimited by a 500-m-
high western escarpment. The eastern margin has a
relief of about 250 m before merging with the products
of Filicudi Volcano. Several minor volcanic construc-
tions develop at the rims of the bench to the north of
Alicudi. In particular, a 500-m-high conical volcano

stands out at the north-eastern termination of the
bench.

Eolo Seamount is located 20 km westward from
Alicudi Island in the western margin of the sheet.
Dredge hauls from Eolo have included basalts, dacites
and rhyolites, dated between 0.85 and 0.77 Ma
(Beccaluva et al., 1985). The volcano has a wide,
3 km by 2 km, relatively flat summit area, ∼800 m
deep, elongated in an NW-SE direction (Marani &
Gamberi, 2004b). The flat summit of Eolo Seamount
is roughly square-shaped and is bounded by linear
highs (75–125-m-high) on three sides, except to the
SW. In this latter side, the summit area terminates at
a 300-m-deep scarp surrounded by three small cones
(350-, 250- and 175-m-high), which thus form a closed
depression. A conjecture could interpret the flat lying
summit surrounded by highs, as an infilled caldera,
implying the destruction of a previously larger edifice.

4.5. Sisifo-Enarete Area (MaGIC sheet 20)

The Sheet 20 ‘Sisifo-Enarete’ encompasses the wes-
tern sector of the Aeolian Arc, including from the
east, a small portion of Eolo and the submarine volca-
noes Enarete, Enaretino and Sisifo (Marani & Gam-
beri, 2004b). In addition, in its southern part, the
north-western portion of the Cefalù Basin, at approxi-
mately 1700 m depth, is part of the sheet. The area
becomes deeper northward, in the Enarete and the
Sisifo basins, which are located in the NE and in the
NW corners, respectively; these are separated by the
volcanic edifice of Sisifo and reach the depth of 2800
m (Marani & Gamberi, 2004b).

Sisifo is am NW-SE-directed, 20-km-long, ridge,
bordered by faults along its southern flank. The volca-
nic edifice consists of basalts and trachytes dated 1.3–
0.9 Ma (Beccaluva et al., 1985), thus holding the oldest
age in the Aeolian Arc.

Enarete, on the contrary, is cone-shaped, slightly
NW-SE elongated, with a northern flank characterized
by gullies and ridges formed by gravity flows origi-
nated from the summit areas (Marani & Gamberi,
2004b). The Enarete Volcano, which reaches up to a
minimum depth of 300 m, is formed by basalts
dated 0.78–0.67 Ma (Beccaluva et al., 1985); small vol-
canic cones are located in its western and southern
flanks. Sediment and rock sampling on the summit
area of the volcano showed hydrothermal activity,
consisting of recent deposits of manganese oxides
and hydro-oxides (Marani et al., 1999). About 3 km
westward of Enarete, a small coalescing cone stands
up for a few hundred meters. Another small volcano,
tentatively named Enaretino, is located 6 km to the
East of Sisifo; it is up to 1000-m-high over the flat
area of the Enarete Basin (Marani & Gamberi, 2004b).

A vast lava flow outcrops or sub-crops in the wes-
tern part of the sheet, between Enarete and Sisifo.
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The flow is possibly fed by volcanic edifices (vent)
located in the south-western area of the sheet.

4.6. Sant’ Agata di Militello Area (MaGIC
sheet 23)

The area of the Sheet 23 ‘Sant’Agata di Militello’ is
located along the northern Sicilian margin, between
Capo d’Orlando and Finale. The sheet Sant’Agata
includes the continental shelf and slope and a portion
of the basin plain of the Cefalù Basin at about 1500 m
depth. The continental shelf has its maximum width of
about 12 km in the central part of the sheet and narrows
to only 5 m toward both the eastern and western mar-
gins. The shelf-break is located between 140 and
150 m depth; lower depths coincide with the heads of
the canyons (Gamberi, 2019; Gamberi, 2020; Gamberi
et al., 2015). In particular, in the westernmost area, the
heads of the Zappulla and Orlando canyons are very
close to the coast; here, the shelf has a reduced width
(less than 500 m) and the shelf-break is consequently
located at a very shallow depth (Gamberi et al., 2015).

The coastal systems are fed by torrential rivers, that,
when reaching the sea, originate hyperpycnal flows
and build deltas, which submerged part is present in
the areas closest to the coast and thus not imaged in
the acquired data. The distal parts of the modern
coastal systems, characterized mainly by a uniform
drape of sediment of the Holocene prograding
wedge, are present in the inner continental shelf.
The external shelf, in particular in its central and
widest part, displays basement highs and relict mor-
phologies above the erosional surface formed during
the subaerial exposure in the last sea-level lowstand.
Depositional bodies originated during the successive
transgression of sea level crop out as relict geomorphic
elements, such as spits, tombolos, deltas, coastal
barrier-lagoon systems.

A series of canyons, chutes and gullies incises the
upper continental slope. The largest canyons are pre-
sent in the eastern part of the sheet, where the head
of the Orlando Canyon is imaged at only 30 m
depth, only 500 m from the coastline. The head of
the Zappulla Canyon is at only 2 km from the coast-
line. Large canyons also develop in the western part
of the sheet (Gamberi et al., 2015). In this area, can-
yons are associated with extensional faults. This area
is also affected by widespread instability with mass-
transport complexes, with mainly a blocky texture
(Gamberi, 2019; Gamberi et al., 2015; Gamberi &
Dalla Valle, 2009). In the lower slope, the Orlando
and Zappulla canyons connect to leveed channels
(Gamberi, 2019; Gamberi et al., 2015). Widespread
instability processes at different scales affect the
depositional levees (Gamberi, 2019). Where the chan-
nels reach the basin plain, frontal splays span the
whole basin plain; they reach the northern edge of

the basin to the north of the limit of the sheet
(Gamberi et al., 2015).

5. Conclusions

The area of the Aeolian volcanic arc and of the north-
eastern Sicilian margin has a complex morphology
due to the interplay between volcanic, tectonic and
sedimentary processes, at different spatial and tem-
poral scales. The morphologic analysis has evidenced
various offshore geohazard elements, among which
submarine landslides affect both the submarine slope
of the Aeolian Island and the Sicilian margin. Large-
scale landslides, linked to sector collapse, affected
Stromboli and destroyed large portions of the subaer-
ial and submarine edifice. A more important threat is
associated with smaller scale, more frequent failures,
as shown by the Stromboli 2002 event, connected
with a volcanic unrest on land. In these cases, besides
landslides, an equally important hazard, stems from
the possible generation of tsunamis, which can impact
the coastal areas. Landslides are the major geohazard
also in the Sicilian continental margin. They occur
as large mass-transport complexes, which affect the
margin, such in the Gioia and in the Cefalù Basin,
with headwall regions located in general far from the
coast. In these cases, they result from the stacking of
various landslide bodies, proving that seafloor
instability is a recurrent event. As in the volcanic
slopes, landslides along the Sicilian margin can how-
ever also occur as the result of smaller scale failures
at the head of submarine canyons. This kind of col-
lapse, although involving a relatively small volume of
sediment, can have a significant impact particularly
where canyon heads are close to the coast, a frequent
setting in the study area, both in the Aeolian Island
submarine flanks and in the Sicilian north-eastern
continental slope.

Software

Global mapper and IHS Kingdom suite were used for
bathymetric and seismic data visualization and
interpretation.
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