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A B S T R A C T

Rapidly convergent series are derived to efficiently evaluate a class of integrals involving the
product of spherical Bessel functions of the first kind occurring in acoustic and electromagnetic
scattering from circular disks and apertures. Depending on the involved parameters, the series
can be further reduced to closed-form expressions in terms of generalized hypergeometric func-
tions or Meijer G-functions, which can immediately be evaluated through current mathematical
toolboxes. Numerical results are provided showing that the accuracy of the series representation
can easily be controlled and that the proposed solutions are at least 1000 times faster than
specific quadrature schemes which, in general, have to deal with irregularly oscillating and
slowly decaying functions.

1. Introduction

This paper deals with the analytical evaluation of the integrals

𝐼 (𝑚, 𝑛, 𝑘, 𝛼) = ∫

∞

0

J𝑚+1∕2 (𝜈) J𝑛+1∕2 (𝜈)

𝜈𝑘
√

𝛼2 − 𝜈2
d𝜈 (1)

and

𝐽 (𝑚, 𝑛, 𝑘, 𝛼) = ∫

∞

0
J𝑚+1∕2 (𝜈) J𝑛+1∕2 (𝜈)

√

𝛼2 − 𝜈2

𝜈𝑘
d𝜈 , (2)

where J𝜇 (⋅) are Bessel functions of the first kind and order 𝜇 while 𝑚, 𝑛, and 𝑘 are non-negative integers satisfying suitable conditions
of convergence (i.e., 𝑚 + 𝑛 + 2 − 𝑘 > 0 with 𝑘 > 0 for (1) and 𝑘 > 1 for (2)), 𝛼 is a real parameter, and the square-root is defined
according to Im

[
√

𝛼2 − 𝜈2
]

≤ 0. The Bessel functions of half-integer order J𝑚+1∕2 (⋅) appearing in (1)–(2) can also be expressed in

terms of spherical Bessel functions of the first kind j𝑚 (⋅), taking into account the identity

j𝑚 (𝜈) =
√

𝜋
2𝜈

J𝑚+1∕2 (𝜈) (3)

so that (1) and (2) can alternatively be written as

𝐼 (𝑚, 𝑛, 𝑘, 𝛼) = 2
𝜋 ∫

∞

0

j𝑚 (𝜈) j𝑛 (𝜈)

𝜈𝑘−1
√

𝛼2 − 𝜈2
d𝜈 (4)
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(

and

𝐽 (𝑚, 𝑛, 𝑘, 𝛼) = 2
𝜋 ∫

∞

0
j𝑚 (𝜈) j𝑛 (𝜈)

√

𝛼2 − 𝜈2

𝜈𝑘−1
d𝜈 . (5)

The interest of the authors in such a class of integrals was born because their efficient evaluation is a crucial step in the
solution of different problems involving electromagnetic (EM) scattering and shielding from circular disks or circular apertures
in infinite screens [1–6], where the parameter 𝛼 in (1) and (2) represents the normalized radius of the disk or of the aperture.
More specifically, such integrals appear when the involved integral equation is transformed into a second-kind Fredholm infinite-
matrix operator equation by means of a suitable choice of basis functions: the mentioned integrals represent the elements of the
resulting matrix. In general such integrals are improper integrals of asymptotically oscillating and slowly decaying functions and
their calculation is usually the bottleneck of an efficient formulation. This class of integrals have been encountered by other authors
in similar problems [7–15] where the methods of analytical regularization and analytical preconditioners are used to convert first-
kind integral equations and strongly singular second-kind integral equations to analytically regularized matrix equations and specific
quadrature routines and techniques are proposed [16–19]. It is worth mentioning that in [20,21], for a subclass of integrals (1) and
(2), alternative expressions involving fast converging proper integrals have been proposed, which however always require numerical
quadrature routines. Also in other disciplines, like acoustics, the considered class of integrals is fundamental for the solution of the
involved problems [22–24].

Because of the irregular oscillating behavior of the product of two Bessel functions, in addition to the above mentioned
investigations, through the years much research has been devoted to finding efficient formulations or closed-form expressions for
integrals containing this product as a multiplicative factor of the integrand function [25–35]. In fact, such integrals result to be of
extreme importance in many other branches of theoretical and applied physics and engineering: in addition to electromagnetic
and acoustic scattering, they find application in nuclear physics, calculation of Feynman diagrams [36], gravitational fields of
astrophysical discs [37], hydrodynamics [38], and elasticity theory [39]. In this connection, the proposed approach can also be
useful to address more general integrals containing a product of Bessel functions of arbitrary order and with different integrand
functions.

1.1. Method of solution

Before presenting the proposed solution for the integrals (1)–(2), credit should be given to the work of George Fikioris, who
introduced the powerful method of the Mellin transform technique for the evaluation of different finite and infinite one-dimensional
integrals arising in EM theory (including integrals involving products of Bessel functions, as those considered here) [40–43]. The
method and the analysis presented in this paper are strictly related to the Mellin-transform technique and have their roots in the
fundamental work of Prudnikov et al. [44] although, in our case, we preferred to start directly from a Mellin–Barnes class of integrals
derived from an integral representation of the product of Bessel functions originally pointed out in [45]. In fact, let us consider the
general integral

 = ∫

∞

0
𝑓 (𝜈) J𝜇 (𝜈) J𝜉 (𝜈) d𝜈 (6)

We first use the Mellin–Barnes integral representation of the product of Bessel functions of the first kind [45, Sec. 13.6]

J𝜇 (𝜈) J𝜉 (𝜈) =
1
2𝜋i ∫

𝑐+i∞

𝑐−i∞

𝛤 (−𝑠)𝛤 (2𝑠 + 𝜇 + 𝜉 + 1)
(

1
2 𝜈

)2𝑠+𝜇+𝜉

𝛤 (𝑠 + 𝜇 + 1)𝛤 (𝑠 + 𝜉 + 1)𝛤 (𝑠 + 𝜇 + 𝜉 + 1)
d𝑠 , (7)

where 𝛤 (⋅) is the Gamma function. By using the Legendre duplication formula for the Gamma function [46, 8.335], i.e.,

𝛤 (2𝑥) = 22𝑥−1
√

𝜋
𝛤 (𝑥)𝛤

(

𝑥 + 1
2

)

, (8)

the integral in (7) can also be written as

J𝜇 (𝜈) J𝜉 (𝜈) =
1

2𝜋
√

𝜋 i ∫

𝑐+i∞

𝑐−i∞

𝛤 (−𝑠)𝛤
(

𝑠 + 𝜇+𝜉+1
2

)

𝛤
(

𝑠 + 𝜇+𝜉
2 + 1

)

𝜈2𝑠+𝜇+𝜉

𝛤 (𝑠 + 𝜇 + 1)𝛤 (𝑠 + 𝜉 + 1)𝛤 (𝑠 + 𝜇 + 𝜉 + 1)
d𝑠 . (9)

The singularities of the integrand in (9) are the poles of the Gamma functions in the numerator [46, 8.310.2], i.e., 𝑠(1)𝑝 = 𝑝
𝑝 = 0, 1, 2… ), 𝑠(2)𝑞 = −𝑞 − (𝜇 + 𝜉 + 1) ∕2 (𝑞 = 0, 1, 2… ), and 𝑠(3)𝑟 = −𝑟 − 1 − (𝜇 + 𝜉) ∕2 (𝑟 = 0, 1, 2… ): the parameter 𝑐 is therefore a

real number such that − (𝜇 + 𝜉 + 1) ∕2 < 𝑐 < 0. Substituting (9) into (6) and interchanging the order of integrations we have

 = 1
2𝜋

√

𝜋 i ∫

𝑐+i∞

𝑐−i∞

𝛤 (−𝑠)𝛤
(

𝑠 + 𝜇+𝜉+1
2

)

𝛤
(

𝑠 + 𝜇+𝜉
2 + 1

)

𝛤 (𝑠 + 𝜇 + 1)𝛤 (𝑠 + 𝜉 + 1)𝛤 (𝑠 + 𝜇 + 𝜉 + 1)
𝛹 (𝜇, 𝜉, 𝑠) d𝑠 (10)

where

𝛹 (𝜇, 𝜉, 𝑠) =
∞
𝑓 (𝜈) 𝜈2𝑠+𝜇+𝜉 d𝜈 . (11)
2

∫0
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In some cases the function 𝛹 (𝜇, 𝜉, 𝑠) of the complex variable 𝑠 can be expressed in a closed form and it is possible to determine its
singularities (moreover, in general, the existence of the function 𝛹 (𝜇, 𝜉, 𝑠) is limited to a domain of analyticity which can next be
extended by analytic continuation). The integral  is then itself a Mellin–Barnes integral [47]. The original vertical integration path
of the complex 𝑠 plane in (10) can then be closed to its right or to the left (depending on the behavior of the integrand function) [44]
enclosing all the poles of the integrand function in (10). If Jordan’s Lemma can be applied, then the integral  is expressed as a
sum of the residues at the enclosed poles. Very often the function 𝛹 (𝜇, 𝜉, 𝑠) is expressed as a product and ratio of Gamma functions
and some exponentials and, in such a case, the integrals can then be expressed in terms of generalized hypergeometric [48], Meijer
G-, or Fox H-functions [49].

We focus our work in the evaluation of integrals (1), where the Bessel functions have the same argument. This restriction is
important since it allows for a representation of the product of Bessel functions as a Mellin–Barnes integral, which is fundamental
for the successive derivations. Unfortunately, we are not aware of any Mellin–Barnes integral representation when the arguments
of the involved Bessel functions are different. However, in this case one could think of different strategies, such as those proposed
in [50].

For conciseness, the application of the method is detailed only for the integral 𝐼 : in fact, although it can be applied for the
evaluation of the integral 𝐽 as well, the integral 𝐽 can also be calculated as

𝐽 (𝑚, 𝑛, 𝑘, 𝛼) = 𝛼2𝐼 (𝑚, 𝑛, 𝑘, 𝛼) − 𝐼 (𝑚, 𝑛, 𝑘 − 2, 𝛼) . (12)

1.2. Organization of the article

The paper is organized as follows. First, in Section 2 the most effective quadrature scheme for the evaluation of the considered
class of integrals is presented, which is based on the work of Michalski and Mosig on numerical computation of generalized
Sommerfeld-type integrals [51]. Section 3 is the core of the paper and presents a detailed analysis for the derivation of rapidly
converging series based on a Mellin–Barnes integral representation of the product of Bessel functions and a careful application of
the Cauchy residue theorem. Moreover, closed-form expressions for all the classes of considered integrals are provided in terms of
generalized hypergeometric functions and/or Meijer G-functions. In Section 4, several numerical examples are presented to check
the efficiency and accuracy of the proposed results. Finally, in Section 5 conclusion are drawn.

2. Evaluation of the integral through numerical quadrature

In this section, an efficient quadrature scheme for the calculation of the integral 𝐼 (𝑚, 𝑛, 𝑘, 𝛼) in (1) is illustrated using the method
proposed by Michalski and Mosig [51]. The integral 𝐽 (𝑚, 𝑛, 𝑘, 𝛼) in (2) can be treated in a similar way. In fact, as is well known,
the numerical evaluation of such integrals is a cumbersome task due to the potential irregularly oscillating nature of the integrand
and the possible slow decay.

As suggested in [51], the first step is the adoption of the method of Lucas [17] based on the decomposition

J𝑚+1∕2 (𝜈) J𝑛+1∕2 (𝜈) =
1
2
[

 +
𝑚𝑛 (𝜈) +  −

𝑚𝑛 (𝜈)
]

, (13)

where

 ±
𝑚𝑛 (𝜈) = J𝑚+1∕2 (𝜈) J𝑛+1∕2 (𝜈) ∓ Y𝑚+1∕2 (𝜈) Y𝑛+1∕2 (𝜈) . (14)

It should be noted that, for large 𝜈

 ±
𝑚𝑛 (𝜈) ≃

1
𝜋𝜈

⎧

⎪

⎨

⎪

⎩

sin
[

2𝜈 − (𝑚 + 𝑛 + 1) 𝜋2

]

cos
[

(𝑚 − 𝑛) 𝜋2

] (15)

so that  +
𝑚𝑛 (𝜈) is asymptotically sinusoidal, while  −

𝑚𝑛 (𝜈) tends to be a monotonically decreasing function. As noted by Lucas [17],
the decomposition (13) should be used only for 𝜈 > 𝑎 (where 𝑎 is a suitable threshold value) to prevent the loss of accuracy due
to the large values of the Bessel functions of the second kind for small arguments (and the consequent catastrophic cancellation).
Lucas suggests to use

𝑎 = 𝑦𝑝+1∕2, 𝑝 = max (𝑚, 𝑛) , (16)

where 𝑦𝑞 denotes the first zero of Y𝑞 (𝜈) [17]. Therefore the original integral can be split as follows:

𝐼 (𝑚, 𝑛, 𝑘, 𝛼) = ∫

∞

0

J𝑚+1∕2 (𝜈) J𝑛+1∕2 (𝜈)

𝜈𝑘
√

𝛼2 − 𝜈2
d𝜈

= ∫

𝛼

0

J𝑚+1∕2 (𝜈) J𝑛+1∕2 (𝜈)

𝜈𝑘
√

𝛼2 − 𝜈2
d𝜈

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐼𝛼

+∫

𝑎

𝛼

J𝑚+1∕2 (𝜈) J𝑛+1∕2 (𝜈)

𝜈𝑘
√

𝛼2 − 𝜈2
d𝜈

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐼𝑎

+ ∫

∞

𝑎

 +
𝑚𝑛 (𝜈)

𝜈𝑘
√

𝛼2 − 𝜈2
d𝜈

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

+∫

∞

𝑎

 −
𝑚𝑛 (𝜈)

𝜈𝑘
√

𝛼2 − 𝜈2
d𝜈

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

.

(17)
3

𝐼+ 𝐼−
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t
D
p

w

A

3

w

f

3

c

B

T

i

Now, both the integrals 𝐼𝛼 and 𝐼𝑎 can be computed through the tanh-sinh Double Exponential (DE) rule (taking into account
he square-root singularity) [51–53]. On the other hand the integral 𝐼− (which is not oscillatory) can be computed by the
E rule [51,52], while the integral 𝐼+ can be computed by the Partition-Extrapolation (PE) method (with the modified Sidi
artition) [51,54,55]. To do this, following [51] we must find 𝑏 such that

 +
𝑚𝑛 (𝑏) = 0 (18)

ith 𝑏 > 𝑎 and, consequently split the integral

𝐼+ = 𝐼𝑏 + 𝐼+2 = ∫

𝑏

𝑎

 +
𝑚𝑛 (𝜈)

𝜈𝑘
√

𝛼2 − 𝜈2
d𝜈 + ∫

∞

𝑏

 +
𝑚𝑛 (𝜈)

𝜈𝑘
√

𝛼2 − 𝜈2
d𝜈 . (19)

gain, the integral 𝐼𝑏 can be computed through the tanh-sinh DE rule and 𝐼+2 by the PE method.
In summary:

𝐼 (𝑚, 𝑛, 𝑘, 𝛼) = ∫

𝛼

0

J𝑚+1∕2 (𝜈) J𝑛+1∕2 (𝜈)

𝜈𝑘
√

𝛼2 − 𝜈2
d𝜈

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
tanh-sinh DE

+∫

𝑎

𝛼

J𝑚+1∕2 (𝜈) J𝑛+1∕2 (𝜈)

𝜈𝑘
√

𝛼2 − 𝜈2
d𝜈

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
tanh-sinh DE

+ ∫

𝑏

𝑎

 +
𝑚𝑛 (𝜈)

𝜈𝑘
√

𝛼2 − 𝜈2
d𝜈

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
tanh-sinh DE

+∫

∞

𝑏

 +
𝑚𝑛 (𝜈)

𝜈𝑘
√

𝛼2 − 𝜈2
d𝜈

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
PE-Sidi

+∫

∞

𝑎

 −
𝑚𝑛 (𝜈)

𝜈𝑘
√

𝛼2 − 𝜈2
d𝜈

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
DE rule

.
(20)

. Evaluation of the integral through rapidly convergent series

The integral 𝐼 (𝑚, 𝑛, 𝑘, 𝛼) in (1) is now evaluated as a rapidly convergent power series of 𝛼.
First of all the integral in (1) can be written as

𝐼 (𝑚, 𝑛, 𝑘, 𝛼) = 𝐼R (𝑚, 𝑛, 𝑘, 𝛼) + i𝐼J (𝑚, 𝑛, 𝑘, 𝛼) , (21)

here

𝐼R (𝑚, 𝑛, 𝑘, 𝛼) = ∫

𝛼

0

J𝑚+1∕2 (𝜈) J𝑛+1∕2 (𝜈)

𝜈𝑘
√

𝛼2 − 𝜈2
d𝜈 (22)

and

𝐼J (𝑚, 𝑛, 𝑘, 𝛼) = ∫

∞

𝛼

J𝑚+1∕2 (𝜈) J𝑛+1∕2 (𝜈)

𝜈𝑘
√

𝜈2 − 𝛼2
d𝜈 . (23)

As mentioned above, at the basis of the method there is the Mellin–Barnes integral representation of the product of Bessel
unctions of first kind (9).

.1. Evaluation of 𝐼R (𝑚, 𝑛, 𝑘, 𝛼)

Let us start with the integral in (22). Taking into account that 𝜇 = 𝑚+ 1∕2 and 𝜉 = 𝑛+ 1∕2 in (9) (so that 𝜇 + 𝜉 = 𝑚+ 𝑛+ 1), (22)
an be written as

𝐼R (𝑚, 𝑛, 𝑘, 𝛼) = ∫

𝛼

0

1

𝜈𝑘
√

𝛼2 − 𝜈2
1

2𝜋
√

𝜋 i ∫

𝑐+i∞

𝑐−i∞

𝛤 (−𝑠)𝛤
(

𝑠 + 𝑚+𝑛
2 + 1

)

𝛤
(

𝑠 + 𝑚+𝑛+3
2

)

𝜈2𝑠+𝑚+𝑛+1

𝛤
(

𝑠 + 𝑚 + 3
2

)

𝛤
(

𝑠 + 𝑛 + 3
2

)

𝛤 (𝑠 + 𝑚 + 𝑛 + 2)
d𝑠 d𝜈 . (24)

y interchanging the two integrals in (24), we have

𝐼R (𝑚, 𝑛, 𝑘, 𝛼) = 1
2𝜋

√

𝜋 i ∫

𝑐+i∞

𝑐−i∞

𝛤 (−𝑠)𝛤
(

𝑠 + 𝑚+𝑛
2 + 1

)

𝛤
(

𝑠 + 𝑚+𝑛+3
2

)

𝛤 (𝑠 + 𝑚 + 𝑛 + 2)𝛤
(

𝑠 + 𝑚 + 3
2

)

𝛤
(

𝑠 + 𝑛 + 3
2

)

[

∫

𝛼

0

𝜈2𝑠+𝑚+𝑛+1−𝑘
√

𝛼2 − 𝜈2
d𝜈

]

d𝑠 . (25)

he integral in [46, 3.251.1] furnishes

∫

1

0
𝑥𝜇−1

(

1 − 𝑥𝜆
)𝜈−1 d𝑥 = 1

𝜆
B
( 𝜇
𝜆
, 𝜈
)

, 𝜇 > 0, 𝜈 > 0, 𝜆 > 0 , (26)

where B (⋅, ⋅) is the Beta function [46, 8.38]. From the relation [46, 8.384.1]

B (𝑥, 𝑦) =
𝛤 (𝑥)𝛤 (𝑦)
𝛤 (𝑥 + 𝑦)

(27)

t thus follows that

∫

𝑎

0

𝑦𝛽
√

𝑎2 − 𝑦2
d𝑦 =

𝑎𝛽
√

𝜋 𝛤
(

𝛽+1
2

)

2𝛤
(

1 + 𝛽
) , 𝛽 > −1 (28)
4

2
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and therefore, by using 𝛽 = 2𝑠 + 𝑚 + 𝑛 + 1 − 𝑘, we have

𝐼R (𝑚, 𝑛, 𝑘, 𝛼) = 1
2𝜋i ∫

𝑐+i∞

𝑐−i∞

𝛤 (−𝑠)𝛤
(

𝑠 + 𝑚+𝑛
2 + 1

)

𝛤
(

𝑠 + 𝑚+𝑛+3
2

)

𝛤 (𝑠 + 𝑚 + 𝑛 + 2)𝛤
(

𝑠 + 𝑚 + 3
2

)

𝛤
(

𝑠 + 𝑛 + 3
2

)

⋅
𝛼2𝑠+𝑚+𝑛+1−𝑘

√

𝜋 𝛤
(

𝑠 + 1 + 𝑚+𝑛−𝑘
2

)

2𝛤
(

𝑠 + 𝑚+𝑛+3−𝑘
2

) d𝑠 , Re [𝑠] > − 𝑚 + 𝑛 − 𝑘
2

− 1 .

(29)

By letting

𝜎 = 𝑚 + 𝑛, 𝛿 = 𝑚 − 𝑛 (30)

o that

𝑚 = 𝜎 + 𝛿
2

, 𝑛 = 𝜎 − 𝛿
2

, (31)

(29) can be written as

𝐼R (𝑚, 𝑛, 𝑘, 𝛼) = 1
4𝜋i ∫

𝑐+i∞

𝑐−i∞

𝛤 (−𝑠)𝛤
(

𝑠 + 𝜎
2 + 1

)

𝛤
(

𝑠 + 𝜎+3
2

)

𝛤
(

𝑠 + 1 + 𝜎−𝑘
2

)

𝛤 (𝑠 + 𝜎 + 2)𝛤
(

𝑠 + 𝜎+𝛿+3
2

)

𝛤
(

𝑠 + 𝜎−𝛿+3
2

)

𝛤
(

𝑠 + 𝜎+3−𝑘
2

) 𝛼2𝑠+𝜎+1−𝑘 d𝑠 (32)

provided that Re [𝑠] > − (𝜎 − 𝑘) ∕2 − 1.
The singularities of the integrand function in (32) are among the poles of the Gamma functions in the numerator of (32), i.e.,

𝑠(1)𝑝 = 𝑝, 𝑝 = 0, 1, 2… ,

𝑠(2)𝑞 = − 𝜎
2

− 1 − 𝑞, 𝑞 = 0, 1, 2… ,

𝑠(3)𝑟 = − 𝜎 − 𝑘
2

− 1 − 𝑟 , 𝑟 = 0, 1, 2,… ,

𝑠(4)𝑡 = − 𝜎 + 3
2

− 𝑡 , 𝑡 = 0, 1, 2,… .

(33)

while the zeros are among the poles of the Gamma functions in the denominator of (32), i.e.,

𝑧(1)𝑝 = −𝜎 − 2 − 𝑝, 𝑝 = 0, 1, 2… ,

𝑧(2)𝑞 = − 𝜎 + 𝛿 + 3
2

− 𝑞, 𝑞 = 0, 1, 2… ,

𝑧(3)𝑟 = − 𝜎 − 𝛿 + 3
2

− 𝑟 , 𝑟 = 0, 1, 2,… ,

𝑧(4)𝑡 = − 𝜎 − 𝑘 + 3
2

− 𝑡 , 𝑡 = 0, 1, 2,… .

(34)

t should be noted that for certain values of the parameters a pole-zero cancellation may occur, as it will be described later. The
arameter 𝑐 in (32) is thus chosen in the interval

− 𝜎 − 𝑘
2

− 1 < 𝑐 < 0 (35)

so that all the poles 𝑠(1)𝑝 are on the right of the integration path in (32) and all the poles 𝑠(2)𝑞 , 𝑠(3)𝑟 , and 𝑠(4)𝑡 are on the left (it should
e noted that it is certainly −(𝜎−𝑘)∕2−1 < 0). The original integration path in (32) (also known as Barnes integration path B) can
hen be closed to its right (or to the left) thus giving rise to a closed path R (or L) having clockwise (or anticlockwise) orientation
nclosing all the poles 𝑠(1)𝑝 (or all the poles 𝑠(2)𝑞 , 𝑠(3)𝑟 , and 𝑠(4)𝑡 ). To determine where the integration path B has to be closed we need
o examine the behavior of the integrand function 𝐹 (𝑠) as 𝑠 → ∞. This can be done through the asymptotic expansion of the Gamma
unction [46, 8.327.1]:

𝛤 (𝑧) ≃
√

2𝜋 𝑧𝑧−1∕2 e−𝑧 (36)

for which

𝐹 (𝑠) ≃
( 𝛼e
𝑠

)2𝑠
. (37)

The integration path can then be closed to its right, thus giving rise to a closed path R oriented clockwise and enclosing all the
poles 𝑠(1)𝑝 . The situation is described in Fig. 1.

From the Residue theorem it then follows

𝐼R (𝑚, 𝑛, 𝑘, 𝛼) = − 𝛼𝜎−𝑘

2

∞
∑

𝑝=0

Res [𝛤 (−𝑠)]𝑠=𝑝 𝛤
(

𝑝 + 𝜎
2 + 1

)

𝛤
(

𝑝 + 𝜎+3
2

)

𝛤
(

𝑝 + 1 + 𝜎−𝑘
2

)

𝛤 (𝑝 + 𝜎 + 2)𝛤
(

𝑝 + 𝜎+𝛿+3
)

𝛤
(

𝑝 + 𝜎−𝛿+3
)

𝛤
(

𝑝 + 𝜎+3−𝑘
) 𝛼2𝑝+1 . (38)
5

2 2 2
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Fig. 1. Example of pole singularities of the Gamma functions in (32) in the 𝑠 plane (in the case 𝑘 = 0) together with the Barnes integration path B and the
closed path R.

The residues of the function 𝛤 (−𝑠) at the poles 𝑠(1)𝑝 = 𝑝 are

Res [𝛤 (−𝑠)]𝑠=𝑝 = lim
𝑠→𝑝

(𝑠 − 𝑝)𝛤 (−𝑠) = lim
𝑡→0

𝑡𝛤 (−𝑡 − 𝑝) = − lim
𝑡→0

𝛤 (−𝑡 + 1)
(−𝑡 − 1)⋯ (−𝑡 − 𝑝)

=
(−1)𝑝+1

𝑝!
=

(−1)𝑝+1

𝛤 (𝑝 + 1)
(39)

so that from (38) and (39) we obtain

𝐼R (𝑚, 𝑛, 𝑘, 𝛼) = 𝛼𝜎−𝑘

2

∞
∑

𝑝=0

(−1)𝑝 𝛤
(

𝑝 + 𝜎
2 + 1

)

𝛤
(

𝑝 + 𝜎+3
2

)

𝛤
(

𝑝 + 𝜎−𝑘
2 + 1

)

𝛤 (𝑝 + 1)𝛤 (𝑝 + 𝜎 + 2)𝛤
(

𝑝 + 𝜎+𝛿+3
2

)

𝛤
(

𝑝 + 𝜎−𝛿+3
2

)

𝛤
(

𝑝 + 𝜎−𝑘+3
2

) 𝛼2𝑝+1 . (40)

It is worth noting that the series representation in (40) can be used to express the result in terms of the generalized
hypergeometric functions 𝑝𝐹𝑞 [46, 9.14]. In fact, by definition

𝑝𝐹𝑞
(

𝑎1, 𝑎2,… , 𝑎𝑝; 𝑏1, 𝑏2,… , 𝑏𝑞 ; 𝑧
)

=
∞
∑

𝑛=0

(

𝑎1
)

𝑛
(

𝑎2
)

𝑛…
(

𝑎𝑝
)

𝑛
(

𝑏1
)

𝑛
(

𝑏2
)

𝑛…
(

𝑏𝑞
)

𝑛

𝑧𝑛

𝑛!
, (41)

where use is made of the Pochhammer symbol

(𝑥)𝑦 =
𝛤 (𝑥 + 𝑦)
𝛤 (𝑥)

. (42)

Noting that (40) can be written as

𝐼R (𝑚, 𝑛, 𝑘, 𝛼) =
𝛼𝜎+1−𝑘𝛤

(

1 + 𝜎
2

)

𝛤
(

𝜎+3
2

)

𝛤
(

1 + 𝜎−𝑘
2

)

2𝛤
(

𝜎+3+𝛿
2

)

𝛤
(

𝜎+3−𝛿
2

)

𝛤 (𝜎 + 2)𝛤
(

𝜎−𝑘+3
2

)

∞
∑

𝑝=0

(

1 + 𝜎
2

)

𝑝

(

𝜎+3
2

)

𝑝

(

1 + 𝜎−𝑘
2

)

𝑝
(

𝜎+3+𝛿
2

)

𝑝

(

𝜎+3−𝛿
2

)

𝑝
(𝜎 + 2)𝑝

(

𝜎−𝑘+3
2

)

𝑝

(

−𝛼2
)𝑝

𝑝!
(43)

using (41) and the properties of the Gamma function it also results

𝐼R (𝑚, 𝑛, 𝑘, 𝛼) =
𝛼𝜎+1−𝑘𝛤

(

1 + 𝜎
2

)

𝛤
(

𝜎+3
2

)

𝛤
(

1 + 𝜎−𝑘
2

)

2𝛤
(

𝜎+3+𝛿
2

)

𝛤
(

𝜎+3−𝛿
2

)

𝛤 (𝜎 + 2)𝛤
(

𝜎−𝑘+3
2

) ⋅

3𝐹4
(

1 + 𝜎
2
, 𝜎 + 3

2
, 1 + 𝜎 − 𝑘

2
; 𝜎 + 2, 𝜎 − 𝑘 + 3

2
, 𝜎 + 3 + 𝛿

2
, 𝜎 + 3 − 𝛿

2
; −𝛼2

)

.

(44)

It should be taken into account that the closed-form expression (44) can further be simplified for particular values of the involved
parameters because, for instance, the order of the generalized hypergeometric function is reduced when an upper and a lower
Pochhammer symbol are equal. It is worth noting that, as already pointed out in [40,43], generalized hypergeometric functions can
be automatically evaluated (also through definitions other than the series expansion (41)) and manipulated by modern routines in
6

mathematical packages and their expression can be used for further steps in analytical studies.
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3.2. Evaluation of 𝐼J (𝑚, 𝑛, 𝑘, 𝛼)

Using similar arguments for the integral in (23) we have

𝐼J (𝑚, 𝑛, 𝑘, 𝛼) =
1

2𝜋
√

𝜋 i ∫

𝑐+i∞

𝑐−i∞

𝛤 (−𝑠)𝛤
(

𝑠 + 𝑚+𝑛
2 + 1

)

𝛤
(

𝑠 + 𝑚+𝑛+3
2

)

𝛤 (𝑠 + 𝑚 + 𝑛 + 2)𝛤
(

𝑠 + 𝑚 + 3
2

)

𝛤
(

𝑠 + 𝑛 + 3
2

)

[

∫

+∞

𝛼

𝜈2𝑠+𝑚+𝑛+1−𝑘
√

𝜈2 − 𝛼2
d𝜈

]

d𝑠 . (45)

he integral in [46, 3.251.3] furnishes

∫

+∞

1
𝑥𝜇−1 (𝑥𝑝 − 1)𝜈−1 d𝑥 = 1

𝑝
B
(

1 − 𝜈 −
𝜇
𝑝
, 𝜈
)

, 𝑝 > 0, 𝜈 > 0, 𝜇 < 𝑝 − 𝑝𝜈 . (46)

rom (27) it thus follows that

∫

∞

𝑎

𝑦𝛽
√

𝑦2 − 𝑎2
d𝑦 =

𝑎𝛽
√

𝜋 𝛤
(

− 𝛽
2

)

2𝛤
(

1−𝛽
2

) , 𝛽 < 0 (47)

and therefore, using 𝛽 = 2𝑠 + 𝑚 + 𝑛 + 1 − 𝑘 and the same settings (30)–(31), we have

𝐼J (𝑚, 𝑛, 𝑘, 𝛼) =
𝛼𝜎+1−𝑘

4𝜋i ∫

𝑐+i∞

𝑐−i∞

𝛤 (−𝑠)𝛤
(

𝑠 + 𝜎
2 + 1

)

𝛤
(

−𝑠 − 𝜎+1−𝑘
2

)

𝛤
(

𝑠 + 𝜎+3
2

)

𝛤 (𝑠 + 𝜎 + 2)𝛤
(

𝑠 + 𝜎+𝛿+3
2

)

𝛤
(

𝑠 + 𝜎−𝛿+3
2

)

𝛤
(

−𝑠 − 𝜎−𝑘
2

) 𝛼2𝑠 (48)

provided that Re [𝑠] < − (𝜎 + 1 − 𝑘) ∕2.
The singularities of the integrand function in (48) are among the poles of the Gamma functions in the numerator of (48), i.e.,

𝑠(1)𝑝 = 𝑝, 𝑝 = 0, 1, 2… ,

𝑠(2)𝑞 = − 𝜎
2

− 1 − 𝑞, 𝑞 = 0, 1, 2… ,

𝑠(3)𝑟 = 𝑟 − 𝜎 − 𝑘 + 1
2

, 𝑟 = 0, 1, 2,… ,

𝑠(4)𝑡 = − 𝜎 + 3
2

− 𝑡 , 𝑡 = 0, 1, 2,… .

(49)

while the zeros are among the poles of the Gamma functions in the denominator of (48), i.e.,

𝑧(1)𝑝 = −𝜎 − 2 − 𝑝, 𝑝 = 0, 1, 2… ,

𝑧(2)𝑞 = − 𝜎 + 𝛿 + 3
2

− 𝑞, 𝑞 = 0, 1, 2… ,

𝑧(3)𝑟 = − 𝜎 − 𝛿 + 3
2

− 𝑟 , 𝑟 = 0, 1, 2,… ,

𝑧(4)𝑡 = 𝑡 − 𝜎 − 𝑘
2

, 𝑡 = 0, 1, 2… .

(50)

he parameter 𝑐 in (32) is thus chosen in the interval

− 𝜎
2

− 1 < 𝑐 < − 𝜎 + 1 − 𝑘
2

(51)

so that all the poles 𝑠(2)𝑞 and 𝑠(4)𝑡 are on the left of the integration path B in (48) and all the poles 𝑠(1)𝑝 and 𝑠(3)𝑟 are on the right.
The original integration path can then be closed to its right (or to its left) thus giving rise to a closed path having clockwise (or
anticlockwise) orientation enclosing all the poles 𝑠(1)𝑝 and 𝑠(3)𝑟 (or all the poles 𝑠(2)𝑞 and 𝑠(4)𝑡 ). To determine where the integration path
as to be closed we need to examine the behavior of the integrand function 𝐹 (𝑠) as 𝑠 → ∞. This can be done again through the
symptotic expansion of the Gamma function so that

𝐹 (𝑠) ≃
( 𝛼e
𝑠

)2𝑠
. (52)

The integration path can then be closed to its right thus giving rise to a closed path R run in a clockwise direction and enclosing
all the poles 𝑠(1)𝑝 and 𝑠(3)𝑟 .

In contrast with the case of the integral in (32), the zeros at 𝑧(4)𝑡 may or may not cancel the poles 𝑠(1)𝑝 in (49). In particular, if
𝜎 − 𝑘 is even, the zeros 𝑧(4)𝑡 cancel the poles 𝑠(1)𝑝 and only the poles 𝑠(3)𝑟 contribute to the Residue theorem, while if 𝜎 − 𝑘 is odd no
cancelation occurs and we end up with two sets of poles enclosed by R: a finite number of simple poles at 𝑠(3)𝑟 for 𝑟 = 0,… , 𝑟0 (with
𝑟0 = (𝜎 − 𝑘 − 1)∕2) and an infinite number of double poles at 𝑠(1)𝑝 (which are superimposed to the poles 𝑠(3)𝑟 for 𝑟 > 𝑟0).

3.2.1. 𝜎 − 𝑘 even
If 𝜎 − 𝑘 is even, the poles enclosed by R are all the 𝑠(3)𝑟 poles so that from the Residue theorem it follows

𝐼J (𝑚, 𝑛, 𝑘, 𝛼) = − 1
2

∞
∑

𝑟=0

Res
[

𝛤
(

−𝑠 − 𝜎+1−𝑘
2

)]

𝑠=𝑠(3)𝑟
𝛤
(

−𝑟 + 𝜎−𝑘+1
2

)

𝛤
(

𝑟 + 𝑘+1
2

)

𝛤
(

𝑟 + 𝑘
2 + 1

)

𝛤
(

𝑟 + 1 + 𝑘+𝛿
)

𝛤
(

𝑟 + 1 + 𝑘−𝛿
)

𝛤
(

𝑟 + 𝜎+𝑘+3
)

𝛤
(

−𝑟 + 1
) 𝛼2𝑟 . (53)
7
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It results

Res
[

𝛤
(

−𝑠 − 𝜎 + 1 − 𝑘
2

)]

𝑠=𝑠(3)𝑟
= lim
𝑠→𝑠(3)𝑟

(

𝑠 − 𝑠(3)𝑟
)

𝛤
(

−𝑠 − 𝜎 + 1 − 𝑘
2

)

=
(−1)𝑟+1

𝑟!
=

(−1)𝑟+1

𝛤 (𝑟 + 1) (54)

so that from (53) and (54) we obtain

𝐼J (𝑚, 𝑛, 𝑘, 𝛼) =
1
2

∞
∑

𝑟=0

(−1)𝑟 𝛤
(

−𝑟 + 𝜎−𝑘+1
2

)

𝛤
(

𝑟 + 𝑘+1
2

)

𝛤
(

𝑟 + 1 + 𝑘
2

)

𝛤
(

𝑟 + 1 + 𝑘+𝛿
2

)

𝛤
(

𝑟 + 1 + 𝑘−𝛿
2

)

𝛤 (𝑟 + 1)𝛤
(

𝑟 + 𝜎+𝑘+3
2

)

𝛤
(

−𝑟 + 1
2

) 𝛼2𝑟 . (55)

Using the reflection property of the Gamma function [46, 8.334.2]

𝛤
(

−𝑀 + 1
2

)

= 𝜋

(−1)𝑀 𝛤
(

𝑀 + 1
2

) , (56)

where 𝑀 is a positive integer, we obtain

𝐼J (𝑚, 𝑛, 𝑘, 𝛼) =
(−1)

𝜎−𝑘
2

2

∞
∑

𝑟=0

(−1)𝑟 𝛤
(

𝑟 + 1
2

)

𝛤
(

𝑟 + 1
2 + 𝑘

2

)

𝛤
(

𝑟 + 1 + 𝑘
2

)

𝛤
(

𝑟 + 1 + 𝑘+𝛿
2

)

𝛤
(

𝑟 + 1 + 𝑘−𝛿
2

)

𝛤 (𝑟 + 1)𝛤
(

𝑟 + 𝜎+𝑘
2 + 3

2

)

𝛤
(

𝑟 − 𝜎−𝑘
2 + 1

2

) 𝛼2𝑟 . (57)

If 𝑘±𝛿 < 0, some of the addends in the series (57) are identically zero. Therefore, in general, by indicating 𝑟0 = max {0,− (𝑘 + 𝛿) ∕2,−
(𝑘 − 𝛿) ∕2}, the sum in (57) starts with 𝑟0, i.e.,

𝐼J (𝑚, 𝑛, 𝑘, 𝛼) =
(−1)

𝜎−𝑘
2

2

∞
∑

𝑟=𝑟0

(−1)𝑟 𝛤
(

𝑟 + 1
2

)

𝛤
(

𝑟 + 1
2 + 𝑘

2

)

𝛤
(

𝑟 + 1 + 𝑘
2

)

𝛤
(

𝑟 + 1 + 𝑘+𝛿
2

)

𝛤
(

𝑟 + 1 + 𝑘−𝛿
2

)

𝛤 (𝑟 + 1)𝛤
(

𝑟 + 𝜎+𝑘
2 + 3

2

)

𝛤
(

𝑟 − 𝜎−𝑘
2 + 1

2

) 𝛼2𝑟 . (58)

To represent (58) in terms of a general hypergeometric functions 𝑝𝐹𝑞 , we thus redefine the index of summation as 𝑞 = 𝑟 − 𝑟0.
Recasting the series in a form equivalent to (41) and by letting for brevity 𝑟1 = 𝑟0 + 1 and 𝑟2 = 𝑟0 + 1∕2 we arrive to

𝐼J (𝑚, 𝑛, 𝑘, 𝛼) =
(−1)

𝜎−𝑘
2 +𝑟0 𝛼2𝑟0𝛤

(

𝑟2
)

𝛤
(

𝑟2 +
𝑘
2

)

𝛤
(

𝑟1 +
𝑘
2

)

2𝛤
(

𝑟1 +
𝑘+𝛿
2

)

𝛤
(

𝑟1 +
𝑘−𝛿
2

)

𝛤
(

𝑟1
)

𝛤
(

𝑟1 +
𝜎+𝑘+1

2

)

𝛤
(

𝑟2 −
𝜎−𝑘
2

) ⋅

4𝐹5
(

𝑟2, 𝑟2 +
𝑘
2
, 𝑟1 +

𝑘
2
, 1; 𝑟1, 𝑟1 +

𝑘 + 𝛿
2

, 𝑟1 +
𝑘 − 𝛿
2

, 𝑟1 +
𝜎 + 𝑘 + 1

2
, 𝑟2 −

𝜎 − 𝑘
2

; −𝛼2
)

.

(59)

Again, it should be noted that the closed-form expression (59) can further be simplified for particular values of the involved
parameters because, for instance, the order is reduced when an upper and a lower Pochhammer symbol are equal.

3.2.2. 𝜎 − 𝑘 odd
As mentioned before, if 𝜎 − 𝑘 is an odd integer, when we apply the Cauchy Residue theorem to (48), both the 𝑠(1)𝑝 and 𝑠(3)𝑟 poles

are enclosed: actually, for 𝑟 < (𝜎 − 𝑘 + 1)∕2 the 𝑠(3)𝑟 poles are simple poles of the integrand function, while for 𝑟 ≥ (𝜎 − 𝑘 + 1)∕2 the
𝑠(3)𝑟 pole array coincide with the 𝑠(1)𝑝 pole array and they represent a set of double poles for the integrand function in (48): this has
to be carefully taken into account when applying the Residue theorem so that

𝐼J (𝑚, 𝑛, 𝑘, 𝛼) = 𝐼 (1)J (𝑚, 𝑛, 𝑘, 𝛼) + 𝐼 (2)J (𝑚, 𝑛, 𝑘, 𝛼) , (60)

where

𝐼 (1)J (𝑚, 𝑛, 𝑘, 𝛼) = −2𝜋i
𝐿−1
∑

𝑟=0
Res [𝐹 (𝑠)]𝑠=𝑠𝑟 (61)

and

𝐼 (2)J (𝑚, 𝑛, 𝑘, 𝛼) = −2𝜋i
∞
∑

𝑝=0
Res [𝐹 (𝑠)]𝑠=𝑠𝑝 , (62)

where we have indicated

𝐿 = 𝜎 + 1 − 𝑘
2

(63)

and

𝐹 (𝑠) = 1
4𝜋i

𝛤 (−𝑠)𝛤
(

𝑠 + 𝜎
2 + 1

)

𝛤
(

𝑠 + 𝜎+3
2

)

𝛤
(

−𝑠 − 𝜎+1−𝑘
2

)

𝛤 (𝑠 + 𝜎 + 2)𝛤
(

𝑠 + 𝜎+𝛿+3
2

)

𝛤
(

𝑠 + 𝜎−𝛿+3
2

)

𝛤
(

−𝑠 − 𝜎−𝑘
2

) 𝛼2𝑠+𝜎+1−𝑘 . (64)

From (61) and (64), calculating the residues at the first 𝐿 simple poles 𝑠(3)𝑟 and using the reflection property (56), we have

𝐼 (1)J (𝑚, 𝑛, 𝑘, 𝛼) = 1
2𝜋

𝐿−1
∑

𝑟=0

𝛤
(

𝑟 + 1
2

)

𝛤 (𝐿 − 𝑟)𝛤
(

𝑟 + 𝑘+1
2

)

𝛤
(

𝑟 + 1 + 𝑘
2

)

𝛤
(

𝑟 + 1 + 𝑘+𝛿
)

𝛤
(

𝑟 + 1 + 𝑘−𝛿
)

𝛤
(

𝑟 + 𝜎+𝑘+3
)

𝛤 (𝑟 + 1)
𝛼2𝑟 . (65)
8
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When considering the evaluation of 𝐼 (2)J (𝑚, 𝑛, 𝑘, 𝛼) we need to evaluate the residue of the 𝐹 (𝑠) function in a double pole. The
result is

𝐼 (2)J (𝑚, 𝑛, 𝑘, 𝛼) = − 𝛼𝜎−𝑘+1

2𝜋

∞
∑

𝑝=0

(−1)𝑝 𝛤
(

𝑝 + 1 + 𝜎
2

)

𝛤
(

𝑝 + 1 + 𝜎+1
2

)

𝛤
(

𝑝 + 𝐿 + 1
2

)

𝛤
(

𝑝 + 𝜎+𝛿+3
2

)

𝛤
(

𝑝 + 𝜎−𝛿+3
2

)

𝛤 (𝑝 + 1)𝛤 (𝑝 + 𝐿 + 1)𝛤 (𝑝 + 𝜎 + 2)

⋅
[

2𝛾 −𝐻𝑝 −𝐻𝑝+𝐿 + 2 ln 𝛼 + 𝜓
(

𝑝 + 𝜎
2

+ 1
)

+ 𝜓
(

𝑝 + 𝜎 + 3
2

)

−𝜓
(

𝑝 + 𝜎 + 𝛿 + 3
2

)

− 𝜓
(

𝑝 + 𝜎 − 𝛿 + 3
2

)

− 𝜓 (𝑝 + 𝜎 + 2) + 𝜓
(

−𝑝 − 𝐿 + 1
2

)]

𝛼2𝑝 ,

(66)

where 𝐻𝑝 is the 𝑝th harmonic number (i.e., the sum of the reciprocals of the first 𝑝 natural numbers) and the Digamma (or Psi)
function 𝜓 (𝑠) has been introduced [46, 8.36] which is defined as

𝜓 (𝑠) = d
d𝑠

ln𝛤 (𝑠) . (67)

Since the series in (66) includes a ln 𝛼 term (which in general appears when multiple poles are present), it is usually said to be
logarithmic [44]. It is worth noting that expression (66) can be simplified when the evenness or oddness of 𝜎 and 𝑘 are specified,
as shown in the next Section. Since the derivation of (66) is not a trivial task, the relevant details are reported in Appendix.

Finally, it should be noted that the integral in (48), although not directly expressed as a suitable generalized hypergeometric
function, it can be expressed in a closed form as a Meijer G-function [56–58] (which is, in some sense, a generalization of the
generalized hypergeometric function). The latter is in fact defined through a Mellin–Barnes integral as

𝐺𝑚,𝑛𝑝,𝑞

(

𝑎1,… , 𝑎𝑝
𝑏1,… , 𝑏𝑞

; 𝑧
)

= 1
2𝜋i ∫

∏𝑚
𝑗=1 𝛤

(

𝑏𝑗 + 𝑠
)
∏𝑛

𝑖=1 𝛤
(

1 − 𝑎𝑖 − 𝑠
)

∏𝑝
𝑖=𝑛+1 𝛤

(

𝑎𝑖 + 𝑠
)
∏𝑞

𝑗=𝑚+1 𝛤
(

1 − 𝑏𝑗 − 𝑠
) 𝑧−𝑠 d𝑠 , (68)

here  is one of the contours which separate all poles 𝑏𝑗𝑙 = 𝑏𝑗 + 𝑙 (𝑙 = 0, 1,… ) to the left and all poles 𝑎𝑖𝑘 = 1− 𝑎𝑖 + 𝑘 (𝑘 = 0, 1,… )
to the right of . By comparing (48) and (68) it is thus immediate to derive that

𝐼J (𝑚, 𝑛, 𝑘, 𝛼) =
𝛼𝜎+1−𝑘

2
𝐺2,2
5,3

(

1, 𝜎+3−𝑘2 , 𝜎 + 2, 𝜎+3+𝛿2 , 𝜎+3−𝛿2
1 + 𝜎

2 ,
𝜎+3
2 , 1 + 𝜎−𝑘

2
; 1
𝛼2

)

. (69)

t should be noted that expressions (66) and (69) are consistent with the considerations in [59] concerning the series expansion of
he Meijer G-function (Theorem 3.2 in [59]).

It is important to point out that reliable calculations of the Meijer G-functions (as of the generalized hypergeometric functions)
re nowadays available in any commercial mathematical software like, e.g., Mathematica [60] or MATLAB [61].

.3. Evaluation of 𝐼 (𝑚, 𝑛, 𝑘, 𝛼)

The original integral 𝐼 (𝑚, 𝑛, 𝑘, 𝛼) is obtained as a combination of 𝐼R and 𝐼J through (21). From a computational point of view,
the expressions for 𝐼R and 𝐼J obtained in the previous Section can be further simplified considering the parity of the parameters 𝜎
and consequently 𝛿) and 𝑘. For computational purposes we will also avoid the calculation of the Gamma and Digamma functions.
n particular, by considering an integer 𝑀 , we will make use of the properties of the Pochhammer symbol [46, 8.339.5-6]

𝛤 (𝑥 +𝑀)
𝛤 (𝑥)

= (𝑥)𝑀 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥 (𝑥 + 1)⋯ (𝑥 +𝑀 − 1) , 𝑀 > 0 ,

1 , 𝑀 = 0 ,
1

(𝑥 +𝑀) (𝑥 +𝑀 + 1)⋯ (𝑥 − 1)
, 𝑀 < 0 ,

(70)

the properties of the Gamma function [46, 8.339.1-2]

𝛤 (𝑀 + 1) =𝑀! ,

𝛤
(

𝑀 + 1
2

)

=

√

𝜋
2𝑀

(2𝑀 − 1)!!
(71)

and the properties of the Digamma function [46, 8.365.4, 8.366.3]

𝜓 (𝑀 + 1) = −𝛾 +𝐻𝑀

𝜓
(

±𝑀 + 1
2

)

= −𝛾 − 2 ln 2 + 2𝐻odd
𝑀

(72)

where

𝐻odd
𝑀 =

𝑀
∑ 1 . (73)
9
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3.3.1. Case 1: 𝑚 + 𝑛 even and 𝑘 even
When both 𝜎 and 𝑘 are even, from with 𝑆 = (𝑚 + 𝑛) ∕2, 𝐷 = (𝑚 − 𝑛) ∕2, and 𝐾 = 𝑘∕2, we have

𝐼R (𝑚, 𝑛, 𝑘, 𝛼) = 22𝑆+1𝛼2𝑆−2𝐾
𝜋

∞
∑

𝑝=0

(−1)𝑝 22𝑝

(2𝑝 + 2𝑆 + 2𝐷 + 1)!! (2𝑝 + 2𝑆 − 2𝐷 + 1)!!
(𝑝 + 1)𝑆−𝐾

(𝑝 + 𝑆 + 1)𝑆+1
(

𝑝 + 𝑆 + 3
2

)

−𝐾

𝛼2𝑝+1 , (74)

while from (58), by indicating 𝑟0 = min {0, 𝐷 −𝐾,−𝐷 −𝐾}, we have

𝐼J (𝑚, 𝑛, 𝑘, 𝛼) =
(−1)𝑆−𝐾

2

∞
∑

𝑟=𝑟0

(−1)𝑟

(𝑟 +𝐾 +𝐷)! (𝑟 +𝐾 −𝐷)!
(𝑟 + 1)𝐾

(

𝑟 +𝐾 + 1
2

)

𝑆+1

(

𝑟 + 1
2

)

𝐾−𝑆

𝛼2𝑟 . (75)

It is worth noting that this class of integrals occurs in the solution of electromagnetic scattering from circular disks and
apertures [20].

3.3.2. Case 2: 𝑚 + 𝑛 odd and 𝑘 odd
When both 𝜎 and 𝑘 are odd, from (40) with 𝑆 = (𝑚 + 𝑛 + 1) ∕2, 𝐷 = (𝑚 − 𝑛 − 1) ∕2, and 𝐾 = (𝑘 + 1) ∕2, we have

𝐼R (𝑚, 𝑛, 𝑘, 𝛼) = 22𝑆𝛼2𝑆−2𝐾
𝜋

∞
∑

𝑝=0

(−1)𝑝 22𝑝

(2𝑝 + 2𝑆 + 2𝐷 + 1)!! (2𝑝 + 2𝑆 − 2𝐷 − 1)!!
(𝑝 + 1)𝑆−𝐾

(𝑝 + 𝑆 + 1)𝑆
(

𝑝 + 𝑆 + 1
2

)

1−𝐾

𝛼2𝑝+1 (76)

while from (58) we have

𝐼J (𝑚, 𝑛, 𝑘, 𝛼) =
(−1)𝑆−𝐾

2

∞
∑

𝑟=𝑟0

(−1)𝑟

(𝑟 +𝐾 +𝐷)! (𝑟 +𝐾 −𝐷 − 1)!
(𝑟 + 1)𝐾−1

(

𝑟 +𝐾 + 1
2

)

𝑆

(

𝑟 +𝐾 + 1
2

)

𝐾−𝑆

𝛼2𝑟 , (77)

where 𝑟0 = max {0,−𝐾 −𝐷,−𝐾 +𝐷 + 1}.

3.3.3. Case 3: 𝑚 + 𝑛 even and 𝑘 odd
If 𝜎 is even and 𝑘 is odd, from (40) with 𝑆 = (𝑚 + 𝑛) ∕2, 𝐷 = (𝑚 − 𝑛) ∕2, and 𝐾 = (𝑘 + 1) ∕2 we have

𝐼R (𝑚, 𝑛, 𝑘, 𝛼) = 𝛼2𝑆−2𝐾+2

2

∞
∑

𝑝=0

(−1)𝑝

(𝑝 + 𝑆 + 1 −𝐾)!𝑝!

(

𝑝 + 𝑆 −𝐷 + 3
2

)

𝐷−𝐾
(

𝑝 + 𝑆 + 3
2

)

𝐷
(𝑝 + 𝑆 + 1)𝑆+1

𝛼2𝑝 (78)

while we recall that

𝐼J (𝑚, 𝑛, 𝑘, 𝛼) = 𝐼 (1)J (𝑚, 𝑛, 𝑘, 𝛼) + 𝐼 (2)J (𝑚, 𝑛, 𝑘, 𝛼) . (79)

In this case 𝐿 = 𝑆 −𝐾 + 1 and from (65) it also results

𝐼 (1)J (𝑚, 𝑛, 𝑘, 𝛼) = 1
2𝜋

𝑆−𝐾
∑

𝑟=0

(𝑟 + 1)𝐾−1
(

𝑟 +𝐾 + 1
2

)

𝐷

(

𝑟 + 1
2

)

𝐾−𝐷
(𝑆 + 1 −𝐾 − 𝑟)2𝑟+2𝐾

𝛼2𝑟 (80)

while from (66), together with (70)–(72) we have

𝐼 (2)J (𝑚, 𝑛, 𝑘, 𝛼) = − 𝛼2𝑆−2𝐾+2

2𝜋

∞
∑

𝑝=0

(−1)𝑝

𝑝! (𝑝 + 𝑆 −𝐾 + 1)!

(

𝑝 + 𝑆 −𝐷 + 3
2

)

𝐷−𝐾
(

𝑝 + 𝑆 + 3
2

)

𝐷
(𝑝 + 𝑆 + 1)𝑆+1

⋅
[

2𝛾 + 2 ln 𝛼 −𝐻𝑝 −𝐻𝑝+𝑆−𝐾+1 +𝐻𝑝+𝑆 −𝐻𝑝+2𝑆+1 + 2𝐻odd
𝑝+𝑆+1 − 2𝐻odd

𝑝+𝑆+𝐷+1 − 2𝐻odd
𝑝+𝑆−𝐷+1 + 2𝐻odd

𝑝+𝑆−𝐾+1

]

𝛼2𝑝 .

(81)

.3.4. Case 4: 𝑚 + 𝑛 odd and 𝑘 even
If 𝜎 is odd and 𝑘 is even, from (40) with 𝑆 = (𝑚 + 𝑛 + 1) ∕2, 𝐷 = (𝑚 − 𝑛 − 1) ∕2, and 𝐾 = 𝑘∕2 we have

𝐼R (𝑚, 𝑛, 𝑘, 𝛼) = 𝛼2𝑆−2𝐾

2

∞
∑

𝑝=0

(−1)𝑝

(𝑝 + 𝑆 −𝐾)!𝑝!

(

𝑝 + 𝑆 −𝐷 + 1
2

)

𝐷−𝐾
(

𝑝 + 𝑆 + 1
2

)

𝐷+1
(𝑝 + 𝑆 + 1)𝑆

𝛼2𝑝 . (82)

In this case 𝐿 = 𝑆 −𝐾 and from (65) it also results

𝐼 (1)J (𝑚, 𝑛, 𝑘, 𝛼) = 1
2𝜋

𝑆−𝐾−1
∑

𝑟=0

(𝑟 + 1)𝐾
(

𝑟 +𝐾 + 1
) (

𝑟 + 1
)

(𝑆 −𝐾 − 𝑟)
𝛼2𝑟 (83)
10
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while from (66), together with (70)–(72) we have

𝐼 (2)J (𝑚, 𝑛, 𝑘, 𝛼) = − 𝛼2𝑆−2𝐾

2𝜋

∞
∑

𝑝=0

(−1)𝑝

𝑝! (𝑝 + 𝑆 −𝐾)!

(

𝑝 + 𝑆 −𝐷 + 1
2

)

𝐷−𝐾
(

𝑝 + 𝑆 + 1
2

)

𝐷+1
(𝑝 + 𝑆 + 1)𝑆

⋅
[

2𝛾 + 2 ln 𝛼 −𝐻𝑝 −𝐻𝑝+𝑆−𝐾 +𝐻𝑝+𝑆 −𝐻𝑝+2𝑆 + 2𝐻odd
𝑝+𝑆 − 2𝐻odd

𝑝+𝑆+𝐷+1 − 2𝐻odd
𝑝+𝑆−𝐷 + 2𝐻odd

𝑝+𝑆−𝐾

]

𝛼2𝑝 .

(84)

It should be noted that although in the cases 3 and 4 the expressions for the general series term look more involved, 𝐻𝑛 and
𝐻odd
𝑛 are simple numbers that can be calculated once for all and stored.

4. Numerical examples

First of all, we want to point out that the proposed expressions can be used to evaluate the well-known integral

𝐼0 = ∫

∞

0

J𝑚+1∕2 (𝜈) J𝑛+1∕2 (𝜈)

𝜈𝜆
d𝜈 (85)

(where 𝑚+ 𝑛+ 2 > 𝜆 > 0 to ensure the convergence of the integral), which is a special case of the Weber–Schafheitlin integral [45].
In fact, by letting 𝛼 = 0 in (1) we have

𝐼 (𝑚, 𝑛, 𝑘, 0) = i∫

∞

0

J𝑚+1∕2 (𝜈) J𝑛+1∕2 (𝜈)

𝜈𝑘+1
d𝜈 (86)

so that 𝐼0 = −i𝐼 (𝑚, 𝑛, 𝜆 − 1, 0). On the other hand, it is immediate to check that it always results

𝐼R (𝑚, 𝑛, 𝜆 − 1, 0) = 0 ,

𝐼 (2)J (𝑚, 𝑛, 𝜆 − 1, 0) = 0
(87)

and, both for 𝑚 + 𝑛 + 1 − 𝜆 even and odd from (57) and (65), after applying (8) and the property [46, 8.334.3]

𝛤 (1 − 𝑥) = 𝜋
sin (𝜋𝑥)𝛤 (𝑥)

, (88)

it results

𝐼J (𝑚, 𝑛, 𝜆 − 1, 0) = i
𝛤 (𝜆)𝛤

(𝑚 + 𝑛 − 𝜆 + 2
2

)

2𝜆𝛤
(−𝑚 + 𝑛 + 𝜆 + 1

2

)

𝛤
(𝑚 + 𝑛 + 𝜆 + 2

2

)

𝛤
(𝑚 − 𝑛 + 𝜆 + 1

2

)
(89)

so that

𝐼0 = −i𝐼 (𝑚, 𝑛, 𝜆 − 1, 0) =
𝛤 (𝜆)𝛤

(𝑚 + 𝑛 − 𝜆 + 2
2

)

2𝜆𝛤
(−𝑚 + 𝑛 + 𝜆 + 1

2

)

𝛤
(𝑚 + 𝑛 + 𝜆 + 2

2

)

𝛤
(𝑚 − 𝑛 + 𝜆 + 1

2

)
, (90)

onsistent with the closed-form result in [46, 6.574.2]. It should be noted that the expressions derived in the present paper are
trictly valid for 𝛼 > 0, but the results continue to hold for 𝛼 = 0 by analytic continuation.

We now evaluate the performance of the proposed formulas by comparing them with the results obtained with the quadrature
procedure illustrated in Section 2. For all the presented results the precision 𝜀rel of the quadrature algorithm has to be set and the
relevant results are taken as reference values.

In a numerical code it is simple to fix the relative error 𝜀rel for each presented series. In fact, we assume for both 𝐼R and 𝐼J a
epresentation

𝐼R∕J =
∞
∑

𝑝=0
𝑎R∕J𝑝 ≃

𝑁R∕J
∑

𝑝=0
𝑎R∕J𝑝 = 𝐼

𝑁R∕J
R∕J ,

here 𝑁R∕J is such that

|

|

|

𝑎𝑁R∕J
|

|

|

< 𝜀rel
|

|

|

|

𝐼
𝑁R∕J−1
R∕J

|

|

|

|

. (91)

We first consider the integral 𝐼 (𝑚, 𝑛, 𝑘, 𝛼) in (1) with parameters 𝑚 = 𝑛 = 3, 𝑘 = 0, (Case 1, 𝜎 even and 𝑘 even) and different
values of 𝛼. In Table 1, for each value of 𝛼 and 𝜀rel, we report the results obtained through the quadrature scheme together with
the number 𝑁 of function evaluations to reach the desired precision 𝜀rel and the results obtained through the proposed rapidly
converging series together with the total number of addends 𝑁TOT = 𝑁R +𝑁J needed to reach the relative error 𝜀rel both in the real
nd imaginary parts of the integral. In the results, the correct digits are underlined. As it can be seen, on one hand the quadrature
cheme may reach a certain accuracy which can be smaller than the prescribed tolerance [51], on the other hand the number of
erms in the series can be very small, especially for smaller values of 𝛼.

In Fig. 2(a) we report the relative error between the proposed series formulation (74)–(75) and the quadrature scheme when the
−8
11

elative error and the precision has been set to 𝜀rel = 10 for a wide range of 𝛼, from 𝛼 = 0.1 to 𝛼 = 10. As expected, the relative error
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Table 1
Comparison between quadrature and series calculation for the integral 𝐼 (𝑚, 𝑛, 𝑘, 𝛼) with 𝑚 = 𝑛 = 3 and 𝑘 = 0, where the
correct digits are underlined.
𝛼 𝜀rel Quadrature (20) 𝑁 Series (74)–(75) 𝑁TOT

0.1 1.E−4 i0.142888990 332 i0.142888911 5
0.1 1.E−6 i0.142888910 1624 i0.142888911 5
0.1 1.E−8 i0.142888911 1816 i0.142888911 7
1 1.E−4 0.00002391 + i0.14628566 332 0.00002391 + i0.14628500 9
1 1.E−6 0.00002391 + i0.14628558 1624 0.00002391 + i0.14628558 12
1 1.E−8 0.00002391 + i0.14628558 1816 0.00002391 + i0.14628558 14
10 1.E−4 0.079307052 + i0.041829593 412 0.079306618 + i0.041829731 55
10 1.E−6 0.079307052 + i0.041829589 544 0.079307048 + i0.041829590 59
10 1.E−8 0.079307052 + i0.041829589 728 0.079307052 + i0.041829589 63

Fig. 2. (a) Relative error of the proposed series formulation (74)–(75) as a function of 𝛼 for the integral 𝐼 (3, 3, 0, 𝛼) when the relative error in the sum of the
eries and in the calculation of the integral has been set to 10−8; (b) relative error as a function of the total number of addends 𝑁 for different values of 𝛼.

Fig. 3. Absolute value of 𝐼 (3, 3, 0, 𝛼) as a function of 𝛼.

s always below 𝜀rel, but this allow us to compare the computation time required by the two formulations. In particular, to compare
he efficiency of the algorithms we computed 𝐼 (3, 3, 0, 𝛼) in 106 points: the quadrature scheme required more than 15 000 s, while
he series representation requires about 4.3 s, thus showing the enormous computational advantage since the proposed formulation
s more than 3000 faster (the simulations have been performed through the commercial software MATLAB with a processor 12th
en Intel(R) Core(TM) i7-1255U 1.70 GHz). We have also compared our series formulation to the very specific fast converging finite
roper integrals proposed in [20] (formula (11) with 𝑛 = 0, 𝑘 = 1, and ℎ = 1) obtaining a speed-up factor larger than 50.

In order to show the number of addends in the series necessary to achieve a given accuracy, in Fig. 2(b) we report the relative
rror 𝜀rel as a function of the number of addends 𝑁 . The relative error is calculated with respect to the results obtained with
quadrature scheme computed with an accuracy 10−8. At each step, the reported number of addends 𝑁 takes into account an

ddend for the calculation of 𝐼R and an addend for the calculation of 𝐼J, so that 𝑁 results to be an even number. In Fig. 2(b),
ifferent values of 𝛼 are considered, i.e., 𝛼 = 0.1, 1, 5, and 10. As it can be expected, by increasing 𝛼 the number of addends 𝑁
ecessary for a given accuracy increases as well and, for small 𝛼, an acceptable error is obtained with only one addend for each
12
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Fig. 4. (a) Absolute value of 𝐼 (4, 3, 1, 𝛼) as a function of 𝛼 and relevant relative error; (b) relative error for 𝐼 (4, 3, 1, 𝛼) as a function of the total number of
ddends 𝑁 for different values of 𝛼.

eries. It should be noted that in electromagnetic scattering the parameter 𝛼 corresponds to the normalized radius of the circular
isk (or aperture) and usually values of interest range between 0.1 and 10 since for 𝛼 < 0.1 and 𝛼 > 10 low- and high-frequency
pproximations are often used.

One possible drawback of the series representation consists in the loss of accuracy due to catastrophic cancellation when 𝛼 is
arge. In fact, 𝛼 large implies a larger and larger number of addends to sum in the series and such terms can significantly grow
efore decreasing (as observed in Fig. 2(b)), thus generating overflow or numerical cancellation. For the case considered above,
his happens for 𝛼 > 20, as it can be seen in Fig. 3 where the absolute value of 𝐼 (3, 3, 0, 𝛼) is reported as a function of 𝛼 for
oth the quadrature scheme and the series representation. However, the hypergeometric-function representation (44)–(59) does
ot suffer of these problems since, for the computation of 𝑝𝐹𝑞 functions, packaged routines do not rely exclusively on the series
efinition (41) [40]. The result of the hypergeometric-function representation (obtained with the MATLAB routine hypergeom) is
lso reported in Fig. 3, which is completely superimposed to the quadrature scheme results (although not shown the relative error
s always smaller than 10−8). Moreover, it should be taken into account that the closed-form expressions (44)–(59) can be further
implified for particular values of the involved parameters because, for instance, the order is reduced when an upper and a lower
ochhammer symbol are equal. For example, when 𝑚 = 𝑛 and 𝑘 = 0, from (44)–(59) we have

𝐼R (𝑚,𝑚, 0, 𝛼) =
(2𝛼)2𝑚+1 (𝑚!)2

𝜋 (2𝑚 + 1)! [(2𝑚 + 1)!!]2
2𝐹3

(

𝑚 + 1, 𝑚 + 1; 2𝑚 + 2, 𝑚 + 3
2
, 𝑚 + 3

2
; −𝛼2

)

, (92)

𝐼J (𝑚,𝑚, 0, 𝛼) =
(2𝑚 − 1)!!
(2𝑚 + 1)!! 2𝐹3

( 1
2
, 1
2
; 1, 𝑚 + 3

2
,−𝑚 + 1

2
; −𝛼2

)

. (93)

lthough the closed-form formulas (44)–(59) do not present a significant computational saving with respect to the quadrature
cheme, they do not require any need of develop an ad-hoc code (with all the relevant details illustrated in Section 2) and the
ackaged routines can be used without any specific knowledge from the user.

We next consider the integral 𝐼 (𝑚, 𝑛, 𝑘, 𝛼) in (1) with parameters 𝑚 = 4, 𝑛 = 3, 𝑘 = 1, (Case 2, 𝜎 odd and 𝑘 odd) and different
alues of 𝛼. In Fig. 4(a) we report the results for the integral obtained through the proposed series formulation (76)–(77) and the
uadrature scheme when the relative error and the precision have been set to 𝜀rel = 10−8. Again, we have considered a range of
from 𝛼 = 0.1 to 𝛼 = 10 using 106 points. The relative error between the formulation is also reported for a fair comparison: as

xpected, the relative error is always below 𝜀rel. The most important aspect, as in the previous case, is that the computation time
f the quadrature scheme more than 11 300 s, while the series representation requires about 4.7 s, thus allowing for an enormous
omputational saving with a speed up larger than 2000. In Fig. 4(b) we report the relative error 𝜀rel as a function of the number of
ddends 𝑁 used in the series representation as in Fig. 2(b). Different values of 𝛼 are considered, i.e., 𝛼 = 0.1, 1, 5, and 10. Also in this
ase, by increasing 𝛼 the number of addends 𝑁 necessary for a given accuracy increases as well and, for small 𝛼, an acceptable error
s obtained with only one addend for each series. Also for these integrals loss of accuracy due to catastrophic cancellation occurs
or 𝛼 > 20, so that the hypergeometric-function representation (44)–(59), which does not suffer from this problem, is convenient.

We next consider the integral 𝐼 (𝑚, 𝑛, 𝑘, 𝛼) in (1) with parameters 𝑚 = 3, 𝑛 = 3, 𝑘 = 1, (Case 3, 𝜎 even and 𝑘 odd). In Fig. 5(a)
we report the results for the integral obtained through the proposed series formulation (78)–(81) and the quadrature scheme when
the relative error and the precision have been set to 𝜀rel = 10−8: the relative error is also reported which is always below 𝜀rel. To
compute 106 points between 𝛼 = 0.1 and 𝛼 = 10 the quadrature scheme requires more than 13 000 s while the series representation
requires about 6.7 s with a speed up larger than 2000. In Fig. 5(b) we also report the relative error 𝜀rel as a function of the number
of addends 𝑁 used in the series representation as in Fig. 2(b) for different values of 𝛼.

Again, loss of accuracy due to catastrophic cancellation occurs for 𝛼 > 20: however, in this case the closed form for 𝐼R (44) in
terms of a suitable generalized hypergeometric function and the closed form (69) for 𝐼J in terms of a suitable Meijer G-function can
be used. It should also be noted that, for sufficiently low precisions, asymptotic expressions can be used [56,62,63].
13
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Fig. 5. (a) Absolute value of 𝐼 (3, 3, 1, 𝛼) as a function of 𝛼 and relevant relative error; (b) relative error for 𝐼 (3, 3, 1, 𝛼) as a function of the total number of
ddends 𝑁 for different values of 𝛼.

Fig. 6. (a) Absolute value of 𝐼 (4, 3, 0, 𝛼) as a function of 𝛼 and relevant relative error; (b) relative error for 𝐼 (4, 3, 0, 𝛼) as a function of the total number of
ddends 𝑁 for different values of 𝛼.

Fig. 7. (a) Absolute value of 𝐼 (𝑚, 3, 0, 1) as a function of 𝑚 and relevant relative error; (b) Absolute value of 𝐼 (𝑚, 3, 1, 1) as a function of 𝑚 and relevant relative
rror.

This example also offers us the possibility to briefly clarify the role of the poles that lie on the left of the original Barnes integration
ath 𝐵 [43]. In fact, in order to obtain an asymptotic representation, it is convenient to consider the integral along a closed
ectangular path 𝐿 in the counterclockwise direction, with the downward vertical line going from 𝑐1 + i∞ to 𝑐1 − i∞ (with 𝑐1 < 𝑐).

Such a contour 𝐿 encloses the poles that lie between 𝑐1 and 𝑐: it can be shown that the contributions along the horizontal line
portions of the contour are negligible and the integral along the part of the path from 𝑐1 + i∞ to 𝑐1 − i∞ can be of higher order with
14

respect to the poles contribution [63] so that the sum of the contribution of the enclosed poles (which are constituted by a sum of
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Fig. 8. Absolute value of 𝐽 (3, 3, 2, 𝛼) as a function of 𝛼 and relevant relative error.

erms of inverse powers of 𝛼) may represent an asymptotic expansion of the integral valid for large 𝛼. Just as an example, when
onsidering the asymptotic evaluation of 𝐼J (which allows a simpler evaluation with respect to 𝐼R), by observing the poles and zeros
n (49) and (50), it can be easily inferred that the poles 𝑠(1)𝑝 and 𝑠(3)𝑟 are always on the right of the original Barnes integration path
𝐵 , the poles 𝑠(4)𝑡 are canceled either by 𝑧(2)𝑞 or 𝑧(3)𝑟 and the only poles on the left of 𝐵 are 𝑠(2)𝑞 = −𝑆 − 1 − 𝑞 for 𝑞 = 0,… , 𝑆, which
re finite. Therefore, by choosing 𝑐1 < −2𝑆 − 1 and applying the Residue theorem to the path 𝐿, from (48) we have

𝐼J (𝑚, 𝑛, 𝑘, 𝛼) ≃
1

2𝜋𝛼2𝐾

𝑆
∑

𝑞=0

(

𝑞 + 1
2

)

𝐷
(−𝑞 + 𝑆 + 1)2𝑞

(𝑞 +𝐾)1−𝐾
(

𝑞 −𝐷 + 1
2

)

𝐾+𝐷

1
𝛼2𝑞

(94)

with 𝑆 = (𝑚 + 𝑛) ∕2, 𝐷 = (𝑚 − 𝑛) ∕2, and 𝐾 = (𝑘 + 1) ∕2, which usually gives an error less than 10−2 for 𝛼 > 15.
We then consider the fourth case for the integral 𝐼 (𝑚, 𝑛, 𝑘, 𝛼) in (1) with parameters 𝑚 = 4, 𝑛 = 3, 𝑘 = 0, (Case 4, 𝜎 even and 𝑘

dd) and different values of 𝛼. In Fig. 6(a) we report the results for the integral obtained through the proposed series formulation
82)–(84) and the quadrature scheme when the relative error and the precision have been set to 𝜀rel = 10−8: the relative error is
lso reported which is almost always below 𝜀rel. To compute 106 points between 𝛼 = 0.1 and 𝛼 = 10 the quadrature scheme requires

more than 12 500 s while the series representation requires about 6.7 s with a speed up about 2000. In Fig. 6(b) we also report the
relative error 𝜀rel as a function of the number of addends 𝑁 used in the series representation as in Fig. 2(b) for different values of
𝛼.

Also in this case, the loss of accuracy occurring for 𝛼 > 20 can be simply overcome with the use of the closed-form representations
in terms of generalized hypergeometric and Meijer G-functions, i.e., (44) and (69), respectively (in MATLAB they are computed
through the routine meijerG).

In Fig. 7 we also report the results for the integrals 𝐼 (𝑚, 3, 0, 1) and 𝐼 (𝑚, 3, 1, 1) by varying 𝑚. In particular, in Fig. 7(a) the results
obtained through the proposed series formulation and the quadrature scheme when the relative error and the precision have been
set to 𝜀rel = 10−8 are reported for 𝐼 (𝑚, 3, 0, 1) together with the resulting actual relative error which is almost always below 𝜀rel,
while in Fig. 7(b) the same is reported for 𝐼 (𝑚, 3, 1, 1). By varying 𝑚 with 𝑘 = 0 and 𝑘 = 1 different combinations of evenness and
oddness for 𝜎 and 𝑘 are considered. While the series representation always converges very rapidly, increasing 𝑚 (in particular, the
difference |𝑚 − 𝑛|) requires suitable modifications of the quadrature scheme to obtain accurate and reliable results (if compared to
the closed-form expressions in terms of generalized hypergeometric and Meijer G-functions).

Finally, we also address an example for the integral 𝐽 (𝑚, 𝑛, 𝑘, 𝛼) in (12) with parameters 𝑚 = 3, 𝑛 = 3, 𝑘 = 2 and different values
f 𝛼. In Fig. 8 we report the results for the integral obtained through the proposed series formulation according to (12) and the
uadrature scheme when the relative error and the precision have been set to 𝜀rel = 10−8: the relative error is also reported which
s almost always below 𝜀rel. As in all the other cases, to compute 106 points between 𝛼 = 0.1 and 𝛼 = 10 the quadrature scheme
equires about 14 900 s while the series representation takes about 13.4 s, thus being more than 1000 times faster.

. Conclusion

Rapidly convergent series representations for a class of integrals involving the product of spherical Bessel functions of the first
ind have been presented. The efficient evaluation of such integrals is required, e.g., for the solution of different acoustic and
lectromagnetic scattering problems from circular disks and apertures. However, the considered class of integrals is more general
nd it is shown that the series representations can be used to obtain closed-form expressions in terms of generalized hypergeometric
unctions and/or Meijer G-functions. A detailed numerical analysis is also provided to show the accuracy of the proposed solutions,
hich turns out to be more than 1000 times faster than the most efficient quadrature schemes, thus furnishing an enormous

omputational saving. The formulation can easily be extended to treat similar integrals involving Bessel functions of integer (or,
15

ore generally, real) order. The case where the Bessel functions have different arguments is left for future investigations.
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ppendix. Derivation of 𝑰 (𝟐)
𝐉

In this Appendix we give the details for the derivation of (66). The starting point is (62) together with (64). To evaluate the
esidue in the double poles we consider the following decomposition:

𝐹 (𝑠) = 1
2𝜋i

𝛤 (−𝑠)𝛤 (−𝑠 − 𝐿)𝐺 (𝑠) , (A.1)

where

𝐺 (𝑠) =
𝛤
(

𝑠 + 𝜎
2 + 1

)

𝛤
(

𝑠 + 𝜎+3
2

)

2𝛤
(

𝑠 + 𝜎+𝛿+3
2

)

𝛤
(

𝑠 + 𝜎−𝛿+3
2

)

𝛤 (𝑠 + 𝜎 + 2)𝛤
(

−𝑠 − 𝐿 + 1
2

) 𝛼2𝑠+2𝐿 . (A.2)

Since 𝑠 = 𝑠(1)𝑝 = 𝑝 is a double pole, we have

Res
𝑠→𝑝

𝐹 (𝑠) = lim
𝑠→𝑝

d
d𝑠

[

(𝑠 − 𝑝)2 𝐹 (𝑠)
]

= 𝐴𝑝𝐵𝑝 , (A.3)

where
𝐴𝑝 = lim

𝑠→𝑝
(𝑠 − 𝑝)2 𝐹 (𝑠) ,

𝐵𝑝 = lim
𝑠→𝑝

[

2
𝑠 − 𝑝

+
𝐹 ′ (𝑠)
𝐹 (𝑠)

]

.
(A.4)

Now

𝐴𝑝 = 𝐺 (𝑝)𝐴𝑝1𝐴𝑝2 , (A.5)

where
𝐴𝑝1 = lim

𝑠→𝑝
(𝑠 − 𝑝)𝛤 (−𝑠) = lim

𝑡→0
𝑡𝛤 (−𝑡 − 𝑝) ,

𝐴𝑝2 = lim
𝑠→𝑝

(𝑠 − 𝑝)𝛤 (−𝑠 − 𝐿) = lim
𝑡→0

𝑡𝛤 (−𝑡 − 𝑝 − 𝐿) .
(A.6)

Since

𝛤 (𝑥 −𝑀) =
𝛤 (𝑥 + 1)

𝑥 (𝑥 − 1)⋯ (𝑥 −𝑀)
, (A.7)

it thus results

𝐴𝑝1 = lim
𝑡→0

𝑡𝛤 (−𝑡 − 𝑝) = − lim
𝑡→0

𝛤 (−𝑡 + 1)
(−𝑡 − 1)⋯ (−𝑡 − 𝑝)

=
(−1)𝑝+1

𝑝!
,

𝐴𝑝2 = lim
𝑠→𝑝

(𝑠 − 𝑝)𝛤 (−𝑠 − 𝐿) = − lim
𝑡→0

𝛤 (−𝑡 + 1)
(𝑡 − 1)⋯ (𝑡 − 𝑝 − 𝐿)

=
(−1)𝑝+𝐿+1

(𝑝 + 𝐿)!
,

(A.8)

so that

𝐴𝑝 = 𝐺 (𝑝)𝐴𝑝1𝐴𝑝2 =
(−1)𝐿

2𝛤
(

𝑝 + 𝜎+𝛿+3
2

)

𝛤
(

𝑝 + 𝜎−𝛿+3
2

)

𝛤
(

𝑝 + 1 + 𝜎
2

)

𝛤
(

𝑝 + 1 + 𝜎+1
2

)

𝛤 (𝑝 + 1)𝛤 (𝑝 + 𝐿 + 1)𝛤 (𝑝 + 𝜎 + 2)𝛤
(

−𝑝 − 𝐿 + 1
2

) 𝛼2𝑝+2𝐿 , (A.9)

i.e.,

𝐴𝑝 =
(−1)𝑝 𝛤

(

𝑝 + 1 + 𝜎
2

)

𝛤
(

𝑝 + 1 + 𝜎+1
2

)

𝛤
(

𝑝 + 𝐿 + 1
2

)

2𝜋𝛤
(

𝑝 + 𝜎+𝛿+3
2

)

𝛤
(

𝑝 + 𝜎−𝛿+3
2

)

𝛤 (𝑝 + 1)𝛤 (𝑝 + 𝐿 + 1)𝛤 (𝑝 + 𝜎 + 2)
𝛼2𝑝+𝜎−𝑘+1 . (A.10)

On the other hand it also results

𝐵𝑝 = lim
[

2 +
𝐹 ′ (𝑠)

]

= lim
[

2 +
𝛤 ′ (−𝑠)

+
𝛤 ′ (−𝑠 − 𝐿)

+
𝐺′ (𝑠)

]

, (A.11)
16

𝑠→𝑝 𝑠 − 𝑝 𝐹 (𝑠) 𝑠→𝑝 𝑠 − 𝑝 𝛤 (−𝑠) 𝛤 (−𝑠 − 𝐿) 𝐺 (𝑠)
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so that we can express

𝐵𝑝 = 𝐵𝑝1 + 𝐵𝑝2 +
d
d𝑠

ln [𝐺 (𝑠)]
|

|

|

|𝑠=𝑝
, (A.12)

where

𝐵𝑝1 = lim
𝑠→𝑝

[

1
(𝑠 − 𝑝)

− 𝜓 (−𝑠)
]

,

𝐵𝑝2 = lim
𝑠→𝑝

[

1
(𝑠 − 𝑝)

− 𝜓 (−𝑠 − 𝐿)
] (A.13)

and the Digamma (or Psi) function 𝜓 (𝑠) has been introduced in (67).
For the evaluation of 𝐵𝑝1 let us consider the functional relation

𝜓 (𝑥) = 𝜓 (𝑥 + 1) − 1
𝑥

(A.14)

from which we have

𝜓 (−𝑠) = 𝜓 (−𝑠 + 1) + 1
𝑠

= − 1
−𝑠

+ 𝜓 (−𝑠 + 2) − 1
−𝑠 + 1

= ⋯ = 𝜓 (−𝑠 + 𝑝 + 1) −
𝑝
∑

𝑞=0

1
−𝑠 + 𝑞

= 𝜓 (−𝑠 + 𝑝 + 1) +
𝑝
∑

𝑞=0

1
𝑠 − 𝑞

(A.15)

so that

𝐵𝑝1 = lim
𝑠→𝑝

[

1
(𝑠 − 𝑝)

− 𝜓 (−𝑠)
]

= lim
𝑠→𝑝

[

1
(𝑠 − 𝑝)

− 𝜓 (−𝑠 + 𝑝 + 1) −
𝑝
∑

𝑞=0

1
𝑠 − 𝑞

]

= −𝜓 (1) −
𝑝−1
∑

𝑞=0

1
𝑝 − 𝑞

= −𝜓 (1) −
𝑝
∑

ℎ=1

1
ℎ

= 𝛾 −𝐻𝑝 ,

(A.16)

where 𝐻𝑝 is the 𝑝th harmonic number (i.e., the sum of the reciprocals of the first 𝑝 natural numbers).
In the same way

𝐵𝑝2 = lim
𝑠→𝑝

[

1
(𝑠 − 𝑝)

− 𝜓 (−𝑠 − 𝐿)
]

= lim
𝑠→𝑝

[

1
(𝑠 − 𝑝)

− 𝜓 (−𝑠 − 𝐿 + 𝑝 + 𝐿 + 1) −
𝑝+𝐿
∑

𝑞=0

1
𝑠 + 𝐿 − 𝑞

]

= −𝜓 (1) −
𝑝+𝐿−1
∑

𝑞=0

1
𝑝 − 𝑞

= −𝜓 (1) −
𝑝+𝐿
∑

ℎ=1

1
ℎ

= 𝛾 −𝐻𝑝+𝐿 .

(A.17)

Now, the final step is the evaluation of the term
d
d𝑠

ln [𝐺 (𝑠)]
|

|

|

|𝑠=𝑝
. (A.18)

First, from (A.2) we have

ln [𝐺 (𝑠)] = ln 1
2

+ ln𝛤
(

𝑠 + 𝜎
2

+ 1
)

+ ln𝛤
(

𝑠 + 𝜎 + 3
2

)

− ln𝛤
(

𝑠 + 𝜎 + 𝛿 + 3
2

)

− ln𝛤
(

𝑠 + 𝜎 − 𝛿 + 3
2

)

− ln𝛤 (𝑠 + 𝜎 + 2) − ln𝛤
(

−𝑠 − 𝐿 + 1
2

)

+ (2𝑠 + 2𝐿) ln 𝛼 .
(A.19)

Therefore
d
d𝑠

ln [𝐺 (𝑠)]
|

|

|

|𝑠=𝑝
= 2 ln 𝛼 + 𝜓

(

𝑝 + 𝜎
2

+ 1
)

+ 𝜓
(

𝑝 + 𝜎 + 3
2

)

− 𝜓
(

𝑝 + 𝜎 + 𝛿 + 3
2

)

− 𝜓
(

𝑝 + 𝜎 − 𝛿 + 3
2

)

− 𝜓 (𝑝 + 𝜎 + 2) + 𝜓
(

−𝑝 − 𝐿 + 1
2

)

(A.20)

so that from (A.12) we have

𝐵𝑝 =2𝛾 −𝐻𝑝 −𝐻𝑝+𝐿 + 2 ln 𝛼 + 𝜓
(

𝑝 + 𝜎
2

+ 1
)

+ 𝜓
(

𝑝 + 𝜎 + 3
2

)

− 𝜓
(

𝑝 + 𝜎 + 𝛿 + 3
2

)

− 𝜓
(

𝑝 + 𝜎 − 𝛿 + 3
2

)

− 𝜓 (𝑝 + 𝜎 + 2) + 𝜓
(

−𝑝 − 𝐿 + 1
2

)

.
(A.21)

From (62), (A.3), (A.10), and (A.21), (66) is derived.
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