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Life-history traits have been identified as major indicators of
mammals’ susceptibility and exposure to viruses due to
evolutionary constraints that link life-history speed with
species’ ecology and immunity. Nonetheless, it is unclear
where along the fast-slow continuum of mammalian life-
history lies the greatest diversity of host species. Consequently,
life-history patterns that govern host–virus associations remain
largely unknown. Here we analyse the virome of 1350 wild
mammals and detect the characteristics that drive species’
compatibility with different groups of viruses. We highlight
that mammals with larger body size and either very rapid or
very slow life histories are more likely to carry different
groups of viruses, particularly zoonotic ones. While some
common life-history patterns emerge across carriers, eco-
evolutionary characteristics of viral groups appear to
determine association with certain carrier species. Our
findings underline the importance of incorporating both
mammals’ life-history information and viruses’ ecological
diversity into surveillance strategies to identify potential
zoonotic carriers in wildlife.
1. Introduction
Two-thirds of emerging human diseases are zoonotic [1], and
mammals account for approximately 88% of emerging viral
zoonoses [2]. Nonetheless, very little is known of the total
diversity of the mammalian virome [3], with many unknown
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zoonotic viruses predicted to circulate in wildlife [4]. Many studies [4–6] tried to uncover the
evolutionary dynamics that link mammalian life-history traits to the diversity of viruses that they
host. Understanding the patterns that drive viruses’ associations with mammalian species can advance
knowledge on host–virus coevolutionary dynamics and direct viral surveillance towards groups of
mammals that are more likely to harbour viruses of concern to human and animal health.

A growing body of research in the fields of ecoimmunology and evolutionary biology suggests a
fundamental trade-off between immune defenses against pathogens and life-history traits due to the
allocation of limited resources within an organism [7–10]. Fast-lived species—with small body sizes,
short lifespans, rapid growth and early reproduction—are hypothesized to allocate relatively little
energy to immune defences [8]. Probably, these species rely mainly on non-specific innate immune
responses against pathogens [9], as these have little metabolic costs for development and maintenance
[8]. Fast-lived species might have a higher predisposition to acquire, maintain and transmit viruses
due to their weaker defences and tendency to produce numerous offspring that are naïve to infection,
which might play an important role in maintaining the infection within the reservoir population
[7,11]. By contrast, slow-lived species tend to be large and long-lived, investing more resources into
costly defences provided by adaptive immune responses, which are typically slower and pathogen-
specific [9]. A large investment in adaptive immunity may be positively selected in slow-lived species,
as they are more likely to come into contact with a wide diversity of pathogens multiple times [9].

Several studies have investigated the association between mammalian life-history traits and
susceptibility to viruses, reporting mixed evidence as to which of the two ends of the fast-slow
continuum is associated with higher propensity to serve as a host [11–18]. Some studies found an
association between faster life histories—particularly high offspring production and early sexual
maturity—and greater viral competence in mammals [11–13]. But other works provided support of a
relationship with slow pace-of-life instead. As an example, zoonotic viral richness in bats has
been found to be positively associated with smaller litter size, larger body mass and greater longevity
[14–16]. Longer gestation and larger body mass have also been linked to Ebolavirus and Ross River
virus seroprevalence across wild mammals [17,18]. In these cases, it has been hypothesized that the
immune systems of slow-lived mammals may provide higher tolerance to viral infection, making them
suitable hosts for viruses’ replication and shedding [9].

Here, we explore the hitherto known mammalian virome to detect patterns of compatibility between
mammal species and different groups of viruses, identifying ecological profiles of viral carriers along the
fast-slow continuum of mammalian life-history [19]. Our aim is to unveil commonalities and peculiarities
across mammalian viral carriers, highlighting common patterns as well as unique features that drive
mammals’ susceptibility to individual viral groups. We focus on viral ‘carriers’, instead of ‘hosts’, as
the latter implies the species to be competent to the infection and capable of viral shedding, which
cannot be assumed from currently available data. We include in the analyses multiple levels of viral
complexity by breaking down viral diversity into groups according to three classification schemes: i)
structural diversity (based on viral genomic structure and replication), ii) evolutionary diversity (based
on viral taxonomy and evolution), iii) ecological diversity (based on a selection of traits that relate to
viruses’ relationship with their hosts and the environment). We perform separate analyses for all
viruses and for the subset of viruses with known zoonotic potential, to highlight any differences in
characteristics of general versus zoonotic mammalian carriers.
2. Methods
2.1. Carrier-virus associations data
We obtained carrier-virus associations from the Global Virome in One Network (VIRION), the most
comprehensive database of the global vertebrate virome [20]. We filtered VIRION for unique
associations between terrestrial wild mammal species and viruses that allowed for species-level
identification of both carriers and viruses (detected by isolation, PCR, or serology). None of the
analysed carrier-viral group associations was based on serology alone. Data entries of laboratory and
domestic species were removed from our dataset to avoid introducing biased or inaccurate
information in our analyses, since experimental infections often represent interactions that do not
occur under natural conditions, and domesticated species exhibit life-history traits that have been
shaped by artificial selection rather than natural evolutionary dynamics. We identified livestock and
domestic species according to FAO’s World Watch List for Domestic Animal Diversity [21], while a
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Figure 1. Taxonomic representation of mammalian species in our dataset. (a) Comparison between the proportional number of
species in the six most represented mammalian orders in the dataset versus their overall relative number. We show the
proportion of general (light red) and zoonotic (dark red) carriers represented by a given order, and a comparison with the
proportion of mammalian species richness represented by the order (blue). The absolute number of species is shown on top of
the corresponding bar. (b) Number of unique carrier-virus associations per each mammalian order. (c) Number of unique
zoonotic carrier-virus associations per each mammalian order. In the circular plots, radial axes are log scaled for representation
purposes.
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list of the most common laboratory species used for research purposes worldwide was obtained from the
Directive of the European Parliament and of the Council on the protection of animals used for scientific
purposes [22] and the Guide for the Care and Use of Laboratory Animals of the United States [23]. The
filtering process left us with 9795 unique associations involving 1350 mammal species and 4482 viruses.

We also identified a subset of 3501 associations between 936 zoonotic carriers and 287 zoonotic
viruses (figure 1). Zoonotic carriers were defined as those mammals that share at least one viral
species (ratified by the International Committee for the Taxonomy of Viruses, ICTV) with humans
according to the VIRION database [20]. Since zoonotic carrier status of mammals was defined using
information on viral species (i.e. whether they were zoonotic or not), we only included ICTV ratified
species to avoid erroneously including unofficially recognized viral strains and quasi-species. We
acknowledge that our definition of zoonotic carriers does not strictly imply competence nor capacity
of viral transmission to humans. Integrating experimental data on host competence would help
ascertain between susceptibility and competence; however, these data are not currently available for
most species and interactions [24].

2.2. Carrier characteristics
For each of the 1350 carrier species in the dataset, we collected a set of covariates potentially correlated to
carrier status. We obtained life-history characteristics (body mass, longevity, gestation length, litter size,
litters per year, interbirth interval and weaning age) from COMBINE, a harmonized repository of
published and imputed data for mammal species [25]. To control for environmental confounding
factors, we extracted the mean value of ten bioclimatic variables representing temperatures and
precipitations within the carrier species’ range (electronic supplementary material, table S1). We
selected these variables because of their proven ability to predict mammal species distribution at a
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global scale [26]. All bioclimatic variables were obtained at a spatial resolution of 5 arcminutes
(approximately 10 Km at the equator) from the WorldClim database [27]. Species’ range size (km2)
was obtained from the spatial database of the International Union for Conservation of Nature (IUCN
[28]) and included as an additional ecological variable. We also controlled for phylogenetic signals in
carrier traits by including ten phylogenetic eigenvectors as indicators of species’ phylogenetic position
within the mammalian tree of life. The eigenvectors were retrieved from PHYLACINE v. 1.2 [29].

We controlled for correlation among covariates via variance inflation factors (VIF) using the usdm
package in R [30]. We discarded highly correlated variables (VIF > 9), keeping those that showed
relatively higher variable importance during preliminary analyses. Three interrelated bioclimatic
variables (i.e. mean annual temperature, temperature of the wettest quarter, and temperature of the
driest quarter within the species’ range) were kept as they are usually used to define the essential
climatic requirements for mammal species at a global scale [26]. Ultimately, we retained eight
ecological variables (range size, mean annual temperature, temperature of the wettest quarter,
temperature of the driest quarter, temperature of the warmest quarter, precipitation of the driest
quarter, precipitation of the warmest quarter, precipitation of the coldest quarter), and four life-history
characteristics (body mass, longevity, gestation length and interbirth interval). A detailed description
of all variables is provided in electronic supplementary material, table S1.

2.3. Sampling bias
We checked for the existence of bias in the representation of carrier mammalian species included in our
dataset. This kind of bias could arise from an unbalanced sampling effort across mammal species, driven
by different aspects such as intrinsic biological traits, geographic location, taxonomy and convenience
[31]. We found that the statistical distribution of values for the life-history traits we considered did
not differ substantially between mammal species in our sample and all existing terrestrial mammal
species, meaning that the composition of our sample was not biased in terms of life-history (electronic
supplementary material, figure S3). As for taxonomic representation, we found bats to be
overrepresented as general carriers, while carnivores, primates and artiodactyls were slightly
overrepresented both as general and zoonotic carriers (figure 1). Instead, rodents were proportionally
underrepresented as both general and zoonotic carriers (approx. 30%, compared to them representing
approx. 39% of all mammalian species).

To account for the different research efforts in identifying viral associations among different species,
we counted the number of virus-related publications of each species. The number of publications was
retrieved from Web of Science by querying a string made of the scientific binomial of the carrier
species AND the terms ‘virus�’ OR ‘viral’. The search was performed in R using the packages httr [32]
and jsonlite [33]. Including this variable in the model allowed us to reduce the effect of differential
sampling effort, which might otherwise have influenced our results.

2.4. Viral grouping
To have a more detailed view of the complexity of the mammalian virome, we aggregated viral species
(42 families) into coherent groups according to three classification schemes: (i) structural, (ii)
evolutionary, (iii) ecological (electronic supplementary material, figure S4). Structural groups were
derived from the Baltimore classification [34]. The Baltimore classification groups viruses were based
on viral genomes’ nature and polarity, splitting viruses into seven classes of replication [35]. All
genomic information and replication routes needed for viral grouping were retrieved from ViralZone,
an online repository of viral bionformatic data [36]. The evolutionary classification reflected the
aggregation of viral families into ten phyla, as represented in the ICTV. As for the ecological
classification, we split viral families according to traits that have implications for viral ecology, such as
evolvability and interaction with the host and the environment. We chose three binary viral traits
recognizable at the family level, and then identified seven unique mutually exclusive ecological
groups. The selected traits accounted for (i) genomic organization (i.e. linear or circular), (ii) genomic
partition (i.e. monopartite or segmented), (iii) pericapsidic envelop (i.e. present or absent). These viral
characteristics were chosen as they proved to be relatively important predictors of virus host-range in
previous work [37], and were thus able to capture meaningful elements of the interaction between
viruses and their carriers. Family-specific viral traits were obtained from ViralZone and Wardeh et al.
[36]. After grouping viral families together according to the three classification schemes, we identified
7 structural groups, 10 evolutionary groups and 5 ecological groups (totalling 22 groups) (electronic
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supplementary material, figure S4). We ran separate models for each group, to predict the probability of
mammal species to be carriers of viruses in the group. We called these the ‘general models’, as they did
not distinguish between zoonotic and non-zoonotic viruses. We then repeated the models after limiting
prediction to zoonotic carriers only, thereby defining a set of ‘zoonotic models’. Two viral groups
(Preplasmiviricota and Cressdnaviricota) were excluded from zoonotic models due to an insufficient
number of carrier species on which to train the models, leaving us with 20 zoonotic models. A
complete description of viral grouping is available in the electronic supplementary material (electronic
supplementary material, methods).
 .org/journal/rsos

R.Soc.Open
Sci.11:231512
2.5. Definition of non-carrier status
Our analyses relied on confirmed carrier–virus associations, therefore, they lacked any information
regarding associations that do not occur in the wild, as no database of unsusceptible associations
currently exists [38]. To tackle this issue, we generated pseudo-negatives (i.e. instances of non-carrier
status) as substitutes for null interactions for each viral group in both general and zoonotic models.
This pseudo-negative design aimed at mimicking virological sampling through an approach based on
a combination of taxonomic and spatial cues. Specifically, if the carrier status of a mammal species
was unknown, we considered it to be a pseudo-negative whenever the species simultaneously met
two criteria: (i) one or more species in the same mammalian family were found susceptible to the
viral group (i.e. had a positive carrier status) and (ii) these susceptible species were in the same
biogeographical realm as the focal species. This method allowed us to have enough null associations
to include in each model, as well as to partially buffer the effect of uneven sampling effort across
carrier families. In this respect, we provide estimates of model accuracy for each one of the families
included in the analyses in electronic supplementary material, tables S5–S6.
2.6. Modelling carrier status
We predicted whether a species had carrier status for different viral groups as a function of the above-
described variables. We used random forest models for analysis, a powerful machine learning
technique capable of modelling complex interactions among predictors [39]. We ran 22 classification
models to assess general carrier status and 20 classification models to assess zoonotic carrier status,
where each model targets a different viral group. As species tended to be unevenly distributed among
the two responses’ classes (carrier versus non-carrier), we assigned different weights to each
observation to avoid bias in predictions towards the overrepresented class. Hence, in every model, we
assigned each observation a weight equal to the number of observations of the opposite class.

We used a 10-fold cross-validation and a tuning grid to train each model and find the optimal
combination of two hyperparameters: the number of randomly selected variables available for
splitting at each tree’s node (mtry) and the minimal number of observations required for a node to be
split further (n_min). The 10-fold cross-validation divided the training set (75% of total data) into 10
random samples and iteratively held one out to use it for testing. We repeated the iteration process
using different combinations of hyperparameters, then kept the combination that yielded the best
performance (quantified by the true skill statistic metric, TSS) to obtain the final model. TSS is
calculated as follows:

TSS ¼ Specificityþ Sensitivity� 1, ð2:1Þ
where sensitivity represents the proportion of true positives, i.e. carrier species that are correctly
classified as such, and specificity is the proportion of true negatives, i.e. non-carrier species that are
correctly classified as such. TSS ranges between −1 and +1. A TSS equal to +1 denotes perfect
classification performance while a TSS equal to −1 denotes perfect misclassification [40].

The predictive performance of each final model was then evaluated in two distinct ways. First, we
calculated the models’ TSS by predicting the carrier status of species in the test set (25% of total data)
and comparing the predictions with the observed carrier status. Then, we performed a taxonomic
block validation at the family level. This validation method works by iteratively holding out a target
group of observations (in this case, each mammalian family) from the training set, to use it for model
testing. Families with fewer than ten observations per class were not included in the validation
pipeline. In addition to making training and testing sets independent, the block validation allowed us
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to assess the generalizability of our results across different carrier taxa. Based on the cross-validation
performance, we excluded from analysis models with a low TSS value (<0.30).

From the models’ outputs, we extracted the estimate of the importance of each variable in predicting
carrier status for the different viral groups. We quantified variable importance as the mean decrease
accuracy of the model, i.e. the decrement of the accuracy of model predictions caused by the
variable’s permutation, averaged across all trees. A larger value indicated a relatively more important
predictor, as its exclusion led to a bigger loss of model accuracy. Lastly, the variables’ importance
scores (x) obtained from the models were rescaled within classification schemes to allow comparison
between viral groups, according to:

xnorm ¼ x� xmin

xmax � xmin
: ð2:2Þ

We used partial dependence plots to assess the relationship between the predicted probability of a
species being a general/zoonotic carrier and selected species’ characteristics, according to each model.
To obtain the partial dependence on a selected variable, the outcome of the model was marginalized
over the distribution of the remaining variables, so that the resulting function depended only on the
targeted predictor [41]. Then, the functions were plotted through locally estimated scatterplot
smoothing (LOESS) curves, to display the average trend of carrier status probability given different
values of the explanatory trait. We used the R package ranger [42] and the R suite tidymodels to run
and validate the models [43].
231512
3. Results
3.1. Model accuracy
We used a set of life-history, ecological, and bioclimatic covariates to assess carrier status of 1350 wild
mammalian species, totalling 9795 general carrier–virus associations and 3501 zoonotic carrier-virus
associations (figure 1, electronic supplementary material, figures S1–S2). We ran 22 general models
(including all viruses) and 20 zoonotic models (including just zoonotic viruses) to identify how
mammalian species traits affect the probability of being carrier species of different structural,
evolutionary and ecological viral groups. Eight models (five general and three zoonotic) were
excluded from further interpretation due to low performance (TSS < 0.30) during cross-validation.

General and zoonotic models showed moderate accuracy during cross-validation, with a TSS of 0.42
(range: 0.31–0.53) and 0.46 (range: 0.32–0.74) respectively. As expected, when assessed with a taxonomic
block validation, general and zoonotic models showed a lower average accuracy of 0.22 (mean range:
0.04–0.39) and 0.19 (mean range: 0.00–0.40), respectively. Some carrier families exhibited noticeably
low performance during taxonomic block-validation, compared to cross-validation, suggesting that
certain family-specific patterns have not been effectively captured by our models. To test whether
filtering models based on the taxonomic block validation would have affected the patterns found in
this work, we ran a sensitivity test on a subset of our dataset (Baltimore class I). Importantly, our test
demonstrates that the shapes of relationships between carrier status and key life-history traits do not
change substantially when using the more stringent inclusion criteria (taxonomic block-validation
threshold: TSS > 0.3) (electronic supplementary material, figure S5). Model performance metrics
extracted from both cross-validation and block-validation processes are available in electronic
supplementary material, tables S3–S6.
3.2. Characteristics of general carriers
After accounting for research effort, body mass was the most important predictor of general carrier status
across most viral groups in the three classification schemes. The next most important predictors were
indicators of species’ phylogenetic position (i.e. phylogenetic eigenvectors), followed by species’
longevity and interbirth interval (figure 2).

The relationships between mammals’ life-history traits and carrier status were largely consistent
across viral groups, with few exceptions. The relationship between body mass and the probability of
being a carrier was typically positive (figure 3), with a rapid increase in probability for species larger
than 0.3–3 kg depending on the viral group considered (electronic supplementary material, figure S8).
The relationship appeared stronger with viruses in the 4th ecological group (non-enveloped viruses
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with a linear segmented genome), the 3rd Baltimore class (dsRNAviruses) and the phyla Duplornaviricota,
Peploviricota and Nucleocytoviricota. Species’ longevity showed an idiosyncratic effect on carrier status,
with species on both extremes of mammals’ lifespan range more likely to be predicted as carriers of
several viral groups (figure 3). This average trend was mostly driven by the negative response of
Cressdnaviricota carriers as well as the bimodal relationship between longevity and carrier status for
the 3rd ecological group (enveloped viruses with a linear non-segmented genome), the 2nd Baltimore
class (ssDNA viruses), and the phylum Cossaviricota (electronic supplementary material, figure S9). In
the remaining groups, long-lived species were associated with a higher probability of being carriers.
As for interbirth interval, its effect on carrier status probability was generally positive (figure 3),
although the 6th (enveloped viruses with a linear segmented genome) and 1st (non-enveloped viruses
with a linear non-segmented genome) ecological groups, and the phylum Cressdnaviricota showed an
opposite (negative) trend (electronic supplementary material, figure S10).
3.3. Characteristics of zoonotic viral carriers
Once research effort was accounted for, zoonotic carrier status for most viral groups was best predicted
by two of the life history traits already identified as drivers of general carrier status—longevity and
interbirth interval—together with species’ phylogenetic position (figure 2). In most viral groups, the
relationship between life-history traits and zoonotic carrier status showed the same qualitative trends
as in general carriers, but with a comparatively stronger quantitative effect. This pattern was evident
in the average relationship between body mass and zoonotic carrier status, which showed more
accentuated upward trends compared to that of general carriers (figure 3). Similar to general carrier
models, longevity showed an idiosyncratic relationship with zoonotic carrier status probability. The
relationship between interbirth interval and zoonotic carrier status was also similar to that of general
carriers, with more likely reservoirs falling on both extreme ends of the variable’s range. This pattern
was consistent across most viral groups, with the exceptions of the 1st (non-enveloped viruses with a
linear non-segmented genome) and the 6th (enveloped viruses with a linear segmented genome)
ecological groups where the effect was negative, and the 3rd ecological group (non-enveloped viruses
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ecological, evolutionary and structural viral classification schemes. The importance of each variable is quantified as the mean
decrease accuracy of models’ predictions caused by variable random permutation. Mammalian traits are further classified
visually by ecology, life history, phylogeny and taxonomy. Variable importance scores outputted by each model, for each viral
group, were rescaled between 0 and 1. Here we only show the most important variables across the various schemes (see
electronic supplementary material, figures S5–S6 for a full representation of all predictors). For representation purposes, we
excluded research effort (quantified as the number of virus-related citations) which we used to account for sampling bias in
our dataset.
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with a circular non-segmented genome) where the effect was strongly positive (electronic supplementary
material, figure S10).
4. Discussion
Despite high scientific interest in the ecological and evolutionary drivers of mammal–virus associations,
contrasting evidence exists on the characteristics that make wild mammals more subject to acquiring and
transmitting viruses. Once research effort and phylogeny are accounted for, our results show that the
probability of mammals’ carrier status for different viral groups is best predicted by species’ body
mass, longevity, and interbirth interval, although variable importance in some groups showed a
substantial difference from the others. Such differences might be explained by group-specific patterns
of associations with mammalian carriers as well as unaccounted for sampling biases in carrier-viral
group associations. Our models predicted large-sized mammals on both extreme ends of the fast-slow
continuum of life-history as being more likely to carry viruses. These results suggest that although
mammals on opposite ends of the fast-slow continuum have likely evolved diverging immunological
strategies, viruses are able to exploit both strategies for replication and spread. This means that the
peculiarities of each viral group may drive patterns of ‘carrier preference’ reflecting viruses’
replication speed, adaptability and possibly evolutionary history.
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Mammalian species with larger body sizes had higher carrier probability for most general and
zoonotic groups. Evidence from comparative studies in the field of eco-immunology suggests that
elements of immunity [44], and pathogenesis [45] scale with body size. It has been hypothesized that
larger species evolved greater tolerance to infection to minimize the costs of infection in favour of
survival, which may, in turn, make them more capable of being viral carriers. Still, the mechanisms
driving the relationship between body mass and immunity phenotypes remain uncertain and their
effect on virus suitability and tolerance are open to question [46].

Additionally, large-bodied species have higher dispersal abilities and need large home ranges in
order to meet their high metabolic requirements [47]. The ability to move farther may play a role in
increasing exposure to viral infections, as these species are more likely to come into contact with
disease hosts (e.g. primary, secondary or reservoirs) and vectors. Past works have found mammals’
body mass to be related to susceptibility to tick-borne encephalitis virus, yellow fever virus, and Zika
virus [48], suggesting that large-bodied species might significantly contribute to vector-borne viruses’
transmission. Moreover, home range was a key predictor of wildlife hosts of Rift Valley fever virus
[49], in agreement with the hypothesis that larger home ranges may enhance exposure to viruses by
increasing inter- and intraspecific contacts. Large-sized mammals also consume large amounts of food
to meet high energetic requirements [50], which makes them more likely to ingest viruses that rely on
indirect routes of transmission via fomites (such as contaminated food sources).

In addition to the aforementioned mechanisms of susceptibility and exposure to viral infection, the
larger body mass of zoonotic carriers may be explained by dynamics that underlie zoonotic viral
spillover from wildlife. Humans interact more frequently with large wild mammals through several
forms of direct exploitation, such as hunting and wildlife trade [51], and hunters typically have a
preference towards large-bodied target species [52–54]. Practices such as wildlife hunting and trade
may pose a public health risk because of the often-lacking sanitary controls and inadequate animal
manipulation [55], which may facilitate viral spillover to people at different stages of the supply chain.
Large mammals may also contribute to the emergence of zoonotic viral diseases as amplification hosts
(i.e. organisms in which the infectious agent can replicate rapidly and reach high concentrations) [56].
It is possible that large mammals can develop higher viral loads and release greater quantities of
virus, increasing the probability of transmission in case of encounter with humans or other species
[17]. Traditionally, livestock animals are considered to be amplification hosts for zoonotic viruses
[57,58], but evidence of wild amplifiers has been found for Old World monkeys as chikungunya virus
hosts in Senegal [59], great apes and forest antelopes as Zaire Ebola virus hosts in West Africa [60],
and white-tailed deer as Cache Valley virus hosts in the United States [61].

In both general and zoonotic models, mammals placed on the slower end of the life-history
continuum (longer longevity and interbirth intervals) were more likely to have carrier status for
relatively slow-evolving viral groups associated with chronic or persistent infection, such as RNA
retroviruses (phylum Artverviricota) and dsDNA viruses (phyla Peploviricota, Baltimore classes VII
and I). To ensure transmission, most dsDNA viruses and retroviruses are required to remain in the
host for extended periods of time, resulting in persistent or chronic infections with low or delayed
disease severity and virulence [62]. Because of the extended infectious period, viruses that cause
chronic or persistent infection (e.g. Herpesvirus, Lentivirus) are expected to have a greater viral fitness
(i.e. the capacity of a virus to produce infectious progeny) in long-lived hosts [15]. Our results sustain
this hypothesis, suggesting that viruses which stay in the host for longer got a selective advantage by
co-evolving with—and adapting to—slow-lived species which may carry the infection for prolonged
periods of time and increase the probability of transmission.

For general and zoonotic carriers of viruses with linear genomic segments and an envelope (i.e. those
in our 6th ecological group, such as Arenaviridae, Hantaviridae and Peribunyaviridae), carrier status
probability was highest for species with faster life-history as represented by short longevity and
interbirth interval. These RNA viruses, which include Lassa fever virus and Sin Nombre virus, are
considered relatively fast-evolving due to rapid nucleotide substitution rate and ability to reassort
homologous genome segments [62,63]. Our findings suggest that such evolutionary mechanisms may
be further favoured in fast reproducing carriers, where population density and generation overlap
may increase viral fitness due to the large availability of naïve individuals. Still, we cannot fully
exclude that these results were driven by taxa representation in the training set, as bats, moles, shrews
and especially rodents—that are considered the main natural hosts of these viruses—display shorter
lifespans and faster life-histories. To further explore the adaptive links between viral evolvability and
host traits it will be necessary to address critical data gaps on host–virus interactions which currently
limit our ability to make inference.
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It is important to consider that our study has limitations, associated with the available data on mammal-
virus associations. We defined mammal-virus associations as the detection of a virus in a given mammalian
species via PCR, isolation or serology. These detection methods do not necessarily imply that the species is
an actual viral reservoir, rather, they inform us that the species is susceptible to infection. Thus, it is likely that
we included different levels of susceptibility within the term ‘carrier’, such as: reservoir, natural host, and
incidental host. Additionally, we recognize that sampling bias is present in the data, as the observed
patterns of viral distribution across host taxa are not an accurate representation of the—largely
unknown—mammalian virome [64]. Such limitations affect any study investigating general host-pathogen
associations from a limited number of observations, as even well-known taxa of zoonotic carriers (such as
rodents) remain understudied. For example, due to the underrepresentation of rodents as carrier species,
our models might have not detected patterns that involve combinations of life-history traits typical of
rodents, such as small body mass, short lifespan, and high offspring production. By working above the
viral species level using dichotomous outcomes (carrier status), and accounting for species’ virus-related
citations (i.e. reporting effort), we mitigated the impact of such bias.

In this work, we identified common patterns along the fast-slow continuum of mammalian viral
carriers, highlighting that mammals’ associations with viruses are generalizable only to a certain
extent. The eco-evolutionary peculiarities of each viral group drive patterns of compatibility between
mammals and viruses, as we partially captured by separately assessing different eco-evolutionary
groups of viruses. By including multiple sides of viral diversity, we were able to pick up on trends
that went undetected in previous studies where pathogen richness was analysed as a whole [4,65]. We
found that larger mammals are carriers for several viral groups, but both fast- and slow-living species
are exploited by multiple viral groups with different ecological, evolutionary and structural features.
General and zoonotic carriers’ profiles did not differ substantially in terms of life-histories, providing
new evidence in support of the hypothesis that there are no intrinsic traits that disproportionately
affect mammals’ susceptibility to zoonotic viruses [66]. We argue that underestimating viruses’
functional diversity may lead to neglecting potentially important sources of zoonoses, with the risk of
impairing hazard assessments and outbreak preparedness. Using the insights provided by life-history
theory may enhance surveillance strategies in areas where species with a higher proneness for
carrying viruses are more abundant.
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