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Abstract

Among the many aspects that characterize the COVID-19 pandemic, two seem particularly

challenging to understand: i) the great geographical differences in the degree of virus con-

tagiousness and lethality that were found in the different phases of the epidemic progres-

sion, and, ii) the potential role of the infected people’s blood type in both the virus infectivity

and the progression of the disease. A recent hypothesis could shed some light on both

aspects. Specifically, it has been proposed that, in the subject-to-subject transfer, SARS-

CoV-2 conserves on its capsid the erythrocytes’ antigens of the source subject. Thus these

conserved antigens can potentially cause an immune reaction in a receiving subject that

has previously acquired specific antibodies for the source subject antigens. This hypothesis

implies a blood type-dependent infection rate. The strong geographical dependence of the

blood type distribution could be, therefore, one of the factors at the origin of the observed

heterogeneity in the epidemics spread. Here, we present an epidemiological deterministic

model where the infection rules based on blood types are taken into account, and we com-

pare our model outcomes with the exiting worldwide infection progression data. We found

an overall good agreement, which strengthens the hypothesis that blood types do play a

role in the COVID-19 infection.

Introduction

The new infectious coronavirus disease 2019, called COVID-19, began to spread from China

in December 2019 [1]. The most evident COVID-19 symptoms are pneumonia and respiratory

failure, which reiterate the symptoms reported in the SARS (Severe Acute Respiratory Syn-

drome) epidemic of 2003 [2, 3]. The first cluster to clearly show these symptoms were patients

from Wuhan, People’s Republic of China (WMHC) [2]. In early January 2020, scientists at the

National Institute of Viral Disease Control and Prevention (IVDC) isolated the new virus for

the first time from patients in Wuhan and found it to be a novel β-genus coronavirus, which

has been named SARS-CoV-2 [4]. Currently, the outbreak has rapidly spread in many other

countries. Hence, on 11 March 2020, the World Health Organization declared it a pandemic

[5, 6].
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Understanding the transmission dynamics of this infection plays a key role in assessing the

diffusion potential that may be sustained in the future. In this context, models and simulations

represent a powerful tool, which can be useful to study and monitor human and animal viral

infections [7, 8]. These tools have become fundamental, especially during this pandemic, to

evaluate the trade-off between cost and effectiveness of various social distancing strategies, and

to enable policymakers to make the best decisions in the interest of public health [9]. Nonethe-

less, since each disease is characterized by specific biological rules, it is necessary to consider

them to build an effective mathematical model able to describe real situations. As the virus

spreads across the world, the pandemic has presented a similar pattern in all the countries that

recorded a significant number of infections. The pattern is made up of a first phase, character-

ized by an exponential increase of infections, and a later phase, where the implementation of

social distancing measures reduces the spread of the disease to a sub-exponential growth, gen-

erally followed by a gradual decrease of daily infections. Eventually, the number of daily infec-

tions becomes smaller than the daily recovered ones, thus allowing the number of the total

infected individuals to decrease. Even if this general pattern has been reproduced around the

world, the spread of the virus showed important local differences, mostly in the rate of the ini-

tial exponential spread. Given the complex nature of this historic event, it is extremely difficult

to understand if these patterns are the consequence of geographical inhomogeneities or if

these are spurious correlations that are caused by the singularity of the observed event. Indeed,

some works underlined as in the early stage of the epidemics the recorded geographical pattern

is characterized by the localization of most of the infection in temperate regions, distinguished

by specific characteristics of temperature and humidity [10–13]. Other hypothesized co-mor-

bidities that may explain local differences are hypertension, obesity, and age distribution,

which are known to display heterogeneous local distributions [14, 15]. Also, the local history

of past infections of different coronaviruses could contribute to the observed heterogeneity,

due to cross-reactivity immunity effects [16, 17].

In particular, blood groups were recognized to influence susceptibility to certain viruses,

including SARS-CoV-1 [18] and norovirus [19]. Blood group A and B glycosyltransferases also

affect glycosylation in a large number of cell types, including epithelial cells in the respiratory

tract and shed viral particles [20]. Recently, Zhao et al. [21] found that ABO blood groups pre-

sented a different risk to contract COVID-19 as a result of being exposed to SARS-CoV-2. Pre-

viously, for the similar coronavirus SARS-CoV responsible for SARS, Guillon et al. [22]

showed experimentally that for SARS-CoV synthesized by cells that expressed the A histo-

blood group antigen, the interaction between S protein and its membrane receptor, ACE2,

could be blocked by anti-A blood group antibodies.

Starting from these experimental results regarding the SARS-CoV spike, Breiman et al. [23]

extended the hypothesis to the new SARS-CoV-2, suggesting that the different susceptibility of

individuals with different ABO blood groups may have the same explanation. This new

hypothesis, based on the infection rules schematically illustrated in Fig 1, may explain a part of

the variability in the infection contagiousness among the countries of the world [23].

Here, we analyze the spread of the epidemic from a mathematical modeling perspective,

taking into account the influence of blood type variability in different geographical areas. In

particular, we provide a theoretical framework able to account for the differences in available

data. The main purpose of this work is to verify whether the hypothesized blood group role in

the transmission of the infection can be consistent with the acquired information on blood

group distributions and infection data.

To this aim, we will first analyze available datasets of individuals infected by SARS-CoV-2,

stratified by blood types. Then, we will deal with the contagion curves of a large set of countries

and try to assess whether the present model could represent the real outcome of the COVID-
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19 pandemics. Specifically, we will first compare data collected in the Chinese regions of

Wuhan and Shenzhen reported in [21], in Denmark [24], in the Ankara region (Turkey) [25],

in New York City (NY, USA) [26], in Italy and Spain [27] and USA [28]. This allows for a

direct comparison between our model predictions and real data. Then we move to analyze the

early stages of the infection in different countries at a worldwide level. To take into account

differences like lifestyle, climate, geographic location, and other factors that likely influence

the epidemics rates as well, we identified four major areas, i.e. Europe, Asia, Africa, and South

America.

Materials and methods

Infection data

To test the hypothesis that blood groups could impact the COVID-19 infection spread, we col-

lected data from clinical observations of individuals found positive for SARS-CoV-2 for which

also ABO blood group information was available. In Table 1, the ABO frequencies of positive

patients (di) and those of control populations (fi) are reported.

In particular, we consider:

• Four sets of data collected in three Wuhan hospitals and one Shenzhen hospital [21, 29]. The

number of patients in the three sub-cases are 1775, 113,265, and 285, respectively. Notably,

Fig 1. Scheme of the possible infection rules according to RhD blood types and ABO ones. Full line connection indicated the possibility of infection,

Wij = 1, while dotted connection its impossibility. In the RhD infection system, individuals of the same group can infect each other, people with the

RhD- group can transmit the infection to people with RhD+ one, but not viceversa. The scenario of the ABO system is similar although richer. For

instance, the O type can infect the A type, while the opposite is not possible.

https://doi.org/10.1371/journal.pone.0251535.g001
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the abundance of each ABO blood group on the local population is reported as controls,

allowing us to study the impact of local ABO phenotypic heterogeneities. Differences

between infected and control frequencies were found with a higher level of statistical signifi-

cance in the A and O groups.

• Another set was collected in recent work by Barnkob et al. [24] retrieved ABO group infor-

mation for 7422 Danish individuals found positive to SARS-CoV-2 between 27 February

2020 and 30 July 2020. The reference ABO frequencies, fi were instead obtained from about

2 million Danish people. In this case, statistical confidence is found for O,A, and AB groups

(p-value <0.05), while B group is associated to a p-value of 0.091 (see [24]).

• Further data stratified by ABO blood groups are reported in [25] for 186 patients with a con-

firmed diagnosis of COVID-19 in the region of Ankara. The fraction of infected, di for each

ABO blood group are reported in Table 1, together with the frequencies of the groups in a

control sample of 1881 hospitalized individuals, whose blood groups were collected in the

same period of time of the 186 infected cases. The reduced size of the sample assures

Table 1. Data used to determine the quantities plotted in Figs 2 and 3: ln(di/fi) and pð4ÞT , with di being the fractions of infected having blood group i, fi is the fraction

of population with blood group i and pð4ÞT represent the susceptibility of the population to become infected.

Dataset freq. O A B AB Ref.

1 Wuhan Jinyintan Hospital fi 0.3384 0.3216 0.2491 0.091 [21]

di 0.258 0.3775 0.2642 0.1003

2 Renmin Hospital of Wuhan fi 0.3384 0.3216 0.2491 0.091 [21]

di 0.2478 0.3982 0.2212 0.1327

3 Shenzhen Third People Hospital fi 0.3877 0.2877 0.2514 0.0732 [21]

di 0.2842 0.2877 0.2912 0.1368

4 Central Hospital of Wuhan fi 0.3384 0.3216 0.2491 0.091 [29]

di 0.2566 0.3925 0.2528 0.0981

5 Denmark fi 0.417 0.4238 0.1145 0.0447 [24]

di 0.3841 0.4441 0.1209 0.0509

6 Hacettepe Hospital of Ankara fi 0.3725 0.3804 0.1472 0.0999 [25]

di 0.2473 0.5699 0.1075 0.0753

7 New York Presbyterian Hospital fi 0.4814 0.3274 0.1491 0.0421 [26]

di 0.4575 0.3416 0.1701 0.0308

8 Italy fi 0.4709 0.3594 0.1299 0.0398 [27]

di 0.3749 0.4647 0.1090 0.0515

9 Spain fi 0.4863 0.4189 0.0684 0.0263 [27]

di 0.3755 0.4865 0.0916 0.0465

10 USA (White non hispanic) fi 0.4525 0.3974 0.1091 0.041 [28]

di 0.3779 0.451 0.1141 0.057

11 USA (Black non hispanic) fi 0.502 0.258 0.197 0.043 [28]

di 0.4791 0.2713 0.2171 0.0326

12 USA (Asian non hispanic) fi 0.3976 0.2777 0.2537 0.0709 [28]

di 0.2982 0.2807 0.3246 0.0965

13 USA (Hispanic) fi 0.5650 0.3110 0.0990 0.0250 [28]

di 0.6127 0.2941 0.0686 0.0245

https://doi.org/10.1371/journal.pone.0251535.t001
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statistical confidence only for A and O groups (p-value <0.05), with AB being the less trust-

wort with a p-value of 0.364 (see [25]).

• Another work by Zietz et al. [26], collected information of ABO groups for 682 infected indi-

viduals tested in New York-Presbyterian/Columbia University Irving Medical Center (NYP/

CUIMC). Statistical confidence is found for A, B, and O groups (p-value <0.05), while AB

data has a p-value of 0.272 (see [26]).

• Finally, additional data was collected by two works that considered critically ill patients in

Italy and Spain [27] and the United States [28]. Comparing blood frequencies of infected

and control populations, a sub-representation of blood group O and an over-representation

of group A was registered in both Italian and Spanish datasets, in agreement with the obser-

vations in Wuhan/Shenzhen and Denmark. Data collected by Leaf et al. [28] are stratified by

both ABO blood groups and ethnicity.

As data of infections stratified by blood groups come from clinical observations taken in

different hospitals, the statistical significance of the observed frequencies (especially on the less

abundant blood groups) is not always guaranteed. As the amount of available data was limited,

we opted not to discard data with low statistical significance; instead, we associate to all data a

Poissonian error to be used as a weight in the analyses.

Moreover, we noted that only datasets 1 to 5 (see Table 1) were collected (i) not considering

only severely ill patients and (ii) using not hospitalized patients as the control population. The

remaining datasets may thus be affected by biases as, for instance, considering hospitalized

patients affects the control blood group frequencies since pathologies are known to interest

people with some blood groups more than others.

In addition to data stratified by blood groups, we collected data of the contagion by country

from World Health Organization (WHO) Coronavirus Disease (COVID-19) Dashboard on

date 12th of June 2020 [30]. To ensure statistical reliability, we selected only countries that had

registered at least 2000 positive cases from the start of the epidemic. Requiring also to know

the frequencies of both ABO and RhD±, we ended up with 78 countries, whose information is

reported in Table 2.

Generalize SIR model. To describe the dynamics of the COVID-19 epidemics, we devel-

oped a generalized SIR (Susceptible-Infected-Recovered) model where the transmission of the

infection depends on the blood types of the individuals. Indicating with xi, yi, and zi the per-

centages of susceptible, infected and recovered individuals in the population having blood type

i (e.g. O, A, B or AB), we can describe the evolution of the epidemics as

dxi
dt

¼ � bxi
Xk

j¼1

Wijyj ð1Þ

dyi
dt
¼ bxi

Xk

j¼1

Wijyj � g yi ð2Þ

dzi
dt
¼ g yi ð3Þ

where β and γ are the infection and recovering rates whileWij = 1 if transmission from i to j is
favored,Wij = 0 otherwise (see Fig 1). A more complete discussion of the model and some par-

ticular cases, such as the standard SIR (k = 1) or a two sub-population model, can be found in

the S1 File.
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Table 2. Percentages of blood groups (fi), susceptibility, pðkÞT , and inverse characteristic time, m, of the exponential phase of the infection for the analyzed countries

as derived for the fit to the observed data.

Country Cluster Code O+ A+ B+ AB+ O− A− B− AB− pð2ÞT pð4ÞT
m Δm R2

Argentina SA AR 45.40 34.26 8.59 2.64 8.40 0.44 0.21 0.06 0.917 0.679 0.196 0.011 0.98

Armenia AS AM 29.00 46.30 12.00 5.60 2.00 3.70 1.00 0.40 0.934 0.618 0.143 0.025 0.97

Australia AU AU 40.00 31.00 8.00 2.00 9.00 7.00 2.00 1.00 0.846 0.660 0.223 0.005 0.99

Austria EU AT 30.00 37.00 12.00 5.00 6.00 7.00 2.00 1.00 0.866 0.612 0.216 0.033 0.98

Bahrain AS BH 48.48 19.35 22.61 3.67 3.27 1.33 1.04 0.25 0.945 0.635 0.356 0.054 0.97

Bangladesh AS BD 29.45 26.01 33.66 8.29 0.95 0.67 0.70 0.27 0.975 0.553 0.245 0.008 1.00

Belgium EU BE 38.00 34.00 8.60 4.10 7.00 6.00 1.50 0.80 0.870 0.647 0.209 0.019 0.99

Bolivia SA BO 51.53 29.45 10.11 1.15 4.39 2.73 0.54 0.10 0.928 0.680 0.148 0.012 0.95

Bosnia and Herzegovina EU BA 31.00 36.00 12.00 6.00 5.00 7.00 2.00 1.00 0.872 0.609 0.152 0.010 0.99

Brazil SA BR 36.00 34.00 8.00 2.50 9.00 8.00 2.00 0.50 0.843 0.653 0.272 0.015 0.98

Bulgaria EU BG 28.00 37.00 13.00 7.00 5.00 7.00 2.00 1.00 0.872 0.600 0.063 0.038 0.97

Cameroon AF CM 42.80 38.80 12.00 3.30 1.40 1.20 0.40 0.10 0.970 0.636 0.400 0.059 0.95

Canada NA CA 39.00 36.00 7.60 2.50 7.00 6.00 1.40 0.50 0.873 0.661 0.250 0.016 0.96

Chile SA CL 85.50 8.70 3.35 1.00 1.20 0.10 0.05 0.10 0.986 0.877 0.411 0.034 0.97

China AS CN 47.70 27.80 18.90 5.00 0.28 0.19 0.10 0.03 0.994 0.620 0.419 0.069 1.00

Colombia SA CO 61.30 26.11 2.28 1.47 5.13 2.70 0.70 0.31 0.919 0.754 0.218 0.015 0.97

Croatia EU HR 29.00 36.00 15.00 5.00 5.00 6.00 3.00 1.00 0.872 0.588 0.159 0.017 0.99

Cuba SA CU 45.80 33.50 10.20 2.90 3.60 2.80 1.00 0.20 0.930 0.654 0.220 0.020 0.95

Czechia EU CZ 27.00 36.00 15.00 7.00 5.00 6.00 3.00 1.00 0.872 0.583 0.287 0.029 0.98

Congo AF CD 59.50 21.30 15.20 2.40 1.00 0.30 0.20 0.10 0.984 0.685 0.123 0.010 0.99

Denmark EU DK 35.00 37.00 8.00 4.00 6.00 7.00 2.00 1.00 0.866 0.643 0.320 0.049 0.99

Dominican Republic SA DO 46.20 26.40 16.90 3.10 3.70 2.10 1.40 0.20 0.931 0.630 0.295 0.047 0.94

Ecuador SA EC 75.00 14.00 7.10 0.50 2.38 0.70 0.30 0.02 0.967 0.802 0.471 0.028 0.99

Egypt AF EG 52.00 24.00 12.40 3.80 5.00 2.00 0.60 0.20 0.928 0.672 0.158 0.029 0.97

El Salvador SA SV 62.00 23.00 11.00 1.00 1.00 1.00 0.70 0.30 0.971 0.706 0.148 0.007 0.98

Ethiopia AF ET 39.00 28.00 21.00 5.00 3.00 2.00 1.00 1.00 0.935 0.593 0.087 0.002 1.00

Finland EU FI 28.00 35.00 16.00 7.00 5.00 6.00 2.00 1.00 0.880 0.584 0.127 0.007 0.98

France EU FR 36.00 37.00 9.00 3.00 6.00 7.00 1.00 1.00 0.872 0.647 0.251 0.007 0.99

Germany EU DE 35.00 37.00 9.00 4.00 6.00 6.00 2.00 1.00 0.872 0.637 0.230 0.022 0.99

Ghana AF GH 53.80 17.60 18.30 2.80 4.50 1.30 1.30 0.20 0.928 0.668 0.091 0.013 0.98

Greece EU GR 37.40 32.90 11.00 3.70 7.00 5.00 2.00 1.00 0.872 0.631 0.282 0.063 0.94

Guinea AF GN 46.88 21.64 22.86 4.52 2.00 0.90 1.00 0.20 0.961 0.621 0.094 0.005 0.99

Honduras SA HN 57.50 27.00 7.80 2.50 2.70 1.70 0.60 0.20 0.951 0.702 0.128 0.015 0.98

Hungary EU HU 27.00 33.00 16.00 8.00 5.00 7.00 3.00 1.00 0.866 0.577 0.132 0.006 1.00

India AS IN 27.85 20.80 38.14 8.93 1.43 0.57 1.79 0.49 0.959 0.565 0.191 0.005 1.00

Indonesia AS ID 36.82 25.87 28.85 7.96 0.18 0.13 0.15 0.04 0.995 0.572 0.292 0.044 0.97

Iran AS IR 33.50 27.00 22.20 7.00 4.00 3.00 2.50 0.80 0.908 0.575 0.054 0.004 1.00

Iraq AS IQ 32.10 25.00 25.60 7.40 3.60 2.70 2.70 0.90 0.911 0.567 0.092 0.003 1.00

Ireland EU IE 47.00 26.00 9.00 2.00 8.00 5.00 2.00 1.00 0.866 0.672 0.307 0.018 1.00

Israel AS IL 32.00 34.00 17.00 7.00 3.00 4.00 2.00 1.00 0.910 0.582 0.180 0.012 1.00

Italy EU IT 39.00 36.00 7.50 2.50 7.00 6.00 1.50 0.50 0.872 0.661 0.389 0.020 0.99

Ivory Coast AF CI 46.50 22.50 22.50 4.30 2.00 1.00 1.00 0.20 0.960 0.619 0.073 0.016 0.97

Japan AS JP 29.90 39.80 19.90 9.90 0.15 0.20 0.10 0.05 0.995 0.570 0.150 0.023 0.99

Kazakhstan AS KZ 30.70 29.80 24.20 8.30 2.30 2.20 1.80 0.70 0.935 0.560 0.085 0.014 0.98

Kenya AF KE 45.60 25.20 21.28 4.20 1.80 1.00 0.90 0.02 0.964 0.614 0.277 0.045 0.98

Luxembourg EU LU 35.00 37.00 9.00 4.00 6.00 6.00 2.00 1.00 0.872 0.637 0.207 0.022 0.97

(Continued)
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The set of 3k differential Eq (1), together with the initial conditions:

xið0Þ ¼ fixo � fi
yið0Þ ¼ fiyo
zið0Þ ¼ 0

ð4Þ

and the sum rule

Xk

i¼1

fi ¼ 1 ð5Þ

Table 2. (Continued)

Country Cluster Code O+ A+ B+ AB+ O− A− B− AB− pð2ÞT pð4ÞT
m Δm R2

Malaysia AS MY 34.32 30.35 27.37 7.46 0.17 0.15 0.14 0.04 0.995 0.563 0.220 0.018 0.96

Mexico SA MX 59.09 26.23 8.53 1.73 2.73 1.21 0.40 0.08 0.958 0.708 0.225 0.031 0.97

Moldova EU MD 28.50 31.80 17.60 7.00 5.00 6.00 3.00 1.10 0.872 0.574 0.168 0.008 0.99

Morocco AF MA 42.30 29.80 14.30 4.10 4.50 3.10 1.50 0.40 0.914 0.625 0.176 0.009 1.00

Nepal AS NP 35.20 28.30 27.10 8.60 0.30 0.20 0.20 0.10 0.992 0.567 0.135 0.025 0.96

Netherlands EU NL 39.50 35.00 6.70 2.50 7.50 7.00 1.30 0.50 0.864 0.669 0.439 0.036 0.99

Nigeria AF NG 51.30 22.40 20.70 2.60 1.60 0.70 0.60 0.10 0.971 0.640 0.155 0.020 0.92

Macedonia EU MK 30.00 34.00 15.00 6.00 5.00 6.00 3.00 1.00 0.872 0.588 0.224 0.034 0.97

Norway EU NO 33.20 41.60 6.80 3.40 5.80 7.40 1.20 0.60 0.873 0.661 0.304 0.047 0.96

Pakistan AS PK 26.63 21.60 34.40 9.52 2.17 1.66 3.57 0.45 0.928 0.557 0.075 0.005 0.99

Peru SA PE 70.00 18.40 7.80 1.60 1.40 0.50 0.28 0.02 0.978 0.761 0.385 0.021 0.99

Philippines AS PH 45.90 22.90 24.90 5.97 0.10 0.10 0.10 0.03 0.997 0.608 0.353 0.027 0.95

Poland EU PL 31.00 32.00 15.00 7.00 6.00 6.00 2.00 1.00 0.872 0.594 0.233 0.022 0.99

Portugal EU PT 36.20 39.80 6.60 2.90 6.10 6.80 1.10 0.50 0.876 0.666 0.389 0.035 0.99

Romania EU RO 28.00 36.50 13.60 6.80 5.00 6.50 2.40 1.20 0.872 0.594 0.184 0.009 0.99

Russian Federation EU RU 28.00 30.00 20.00 7.00 4.90 5.80 3.20 1.10 0.872 0.565 0.185 0.004 1.00

Saudi Arabia AS SA 47.80 23.90 17.00 4.00 4.00 2.00 1.00 0.30 0.932 0.638 0.190 0.037 0.96

Serbia EU RS 31.92 35.28 12.60 4.20 6.08 6.72 2.40 0.80 0.866 0.610 0.143 0.004 1.00

Singapore AS SG 44.70 23.90 24.50 5.60 0.60 0.30 0.30 0.10 0.987 0.604 0.178 0.066 0.98

South Africa AF ZA 39.00 32.00 12.00 3.00 6.00 5.00 2.00 1.00 0.880 0.629 0.208 0.024 0.98

South Korea AS KR 27.90 33.87 26.92 10.98 0.10 0.13 0.08 0.02 0.997 0.548 0.195 0.011 0.97

Spain EU ES 35.00 36.00 8.00 2.50 9.00 7.00 2.00 0.50 0.849 0.652 0.377 0.011 0.99

Sudan AF SD 48.00 27.70 15.20 2.80 3.50 1.80 0.80 0.20 0.941 0.642 0.110 0.003 1.00

Sweden EU SE 32.00 37.00 10.00 5.00 6.00 7.00 2.00 1.00 0.866 0.625 0.303 0.010 0.99

Switzerland EU CH 35.00 38.00 8.00 4.00 6.00 7.00 1.00 1.00 0.872 0.650 0.241 0.044 0.98

Thailand AS TH 40.80 16.90 36.80 4.97 0.20 0.10 0.20 0.03 0.995 0.605 0.270 0.006 0.99

Turkey AS TR 29.80 37.80 14.20 7.20 3.90 4.70 1.60 0.80 0.902 0.596 0.201 0.036 0.98

Ukraine EU UA 32.00 34.00 15.00 5.00 5.00 6.00 2.00 1.00 0.880 0.597 0.229 0.016 0.99

United Arab Emirates AS AE 44.10 21.90 20.90 4.30 4.30 2.10 2.00 0.40 0.920 0.618 0.135 0.007 0.98

United Kingdom EU BG 38.00 32.00 8.00 3.00 9.00 7.00 2.00 1.00 0.846 0.653 0.230 0.008 0.99

United States NA US 37.40 35.70 8.50 3.40 6.60 6.30 1.50 0.60 0.872 0.649 0.306 0.016 0.97

Venezuela SA VE 58.30 28.20 5.60 1.90 3.70 1.80 0.40 0.10 0.944 0.721 0.171 0.029 0.84

https://doi.org/10.1371/journal.pone.0251535.t002
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allows one to work out the short time expansion for the infected person fraction on each of the

k sub-populations:

yiðtÞ ¼ yofi e
p
ðkÞ
i t i ¼ 1; . . . ; k ð6Þ

with

p
ðkÞ
i ¼

X

j

Wijfj � r ¼ p
ðkÞ
i � r; ð7Þ

From those expressions, it follows that

ln ðdi=fiÞ ¼ K þ p
ðkÞ
i t

� i ¼ 1::k ð8Þ

with K = ln yo−ρτ� not depending on i. We thus expect a linear relation between ln(di/fi) and

pðkÞi .

It follows that the growth rate associated to subpopulation ‘i’ in the initial exponential

phase depends on the sum of the frequencies of blood groups that can infect group ‘i’ (via the

term ∑j Wij fj) and this can provoke a large variability in the onset of the epidemics in different

geographical areas since the blood frequencies are highly heterogeneous.

The total number of infected people can be derived summing the percentages of infected

individuals of each group:

yTðtÞ ¼
X

i

yiðtÞ ¼ yo e
p
ðkÞ
T t i ¼ 1; . . . ; k ð9Þ

with

p
ðkÞ
T ¼

X

i

X

j

fiWijfj � r ¼ p
ðkÞ
T � r ð10Þ

which implicitly defines pðkÞT . This simple expression for the inverse of the characteristic time of

the infection at its initial stage is the sum of two terms:, p
ðkÞ
T ¼ p

ðkÞ
T � r.

The first one,

pðkÞT ¼
X

i

X

j

fiWijfj ð11Þ

depends only on the abundance of the sub-population (�f ) and on the infection rules (Wij), the

second (ρ = γ/β) on the overall recovery and infection rates of populations.

To study the global effect of the population composition on the progression of the infection,

we concentrate on the term pðkÞT which acts as a “susceptibility”.

It is worth to note that, for any k, the susceptibility is maximum when

�f ¼ ð0 . . . 0; 1; 0; . . . 0Þ, pðkÞT ¼ 1, i.e. when one sub-population fraction dominates, while it

minimum when the sub-populations are all of the same size: �f ¼ ð1=k; 1=k . . . 1=kÞ. In the lat-

ter case, for the infection rules reported before, pðkÞT ¼ ð3=4Þ
ðk=2Þ

. Thus the susceptibility

decreases on increasing the number of sub-populations and decreases on equalizing their

abundances. Infection rules and compositions of the population are expected to shape the

infection dynamics along with the usual infection and recovering rates.
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Results

The proposed system of equations (Eq 1) can be analytically solved in the small-time limit, i.e.

when the epidemic is in the exponential phase. Detailed calculations are reported in the Meth-

ods and S1 File.

Infection data stratified by blood type

To test the hypothesis that blood groups could impact the COVID-19 infection spread, we col-

lected data from clinical observations of individuals found positive to SARS-CoV-2 for which

also ABO blood group information was available. In Table 1, the ABO frequencies of positive

patients (di) in a certain geographical area and those of control populations (fi) in that area are

reported.

Interestingly, our model predicts that the two quantities are related as

ln ðdi=fiÞ ¼ K þ p
ðkÞ
i t

� i ¼ 1::k ð12Þ

with τ� is the specific (reduced) time when the data have been collected, K a constant not

depending on i, and pðkÞi ¼
P

jWijfj measures of the susceptibility of group i to the infection.

We thus expect a linear relation between ln(di/fi) and pðkÞi . A detailed derivation of the pre-

sented relationship is provided in the Methods section and further discussed in the S1 File.

At first, we considered the Wuhan/Shenzhen data. In the papers by Zhao et al. [21] and Li

et al. [29] data of the COVID-19 contagion are reported, stratified by ABO blood type (no info

on the RhD± type are given).

As discussed before, the model predicts a linear relation between ln(di/fi) and pð4Þi . In

(Fig 2a) we report a plot of these two quantities. The different colors represent the different

datasets. The black line is the result of the least square fitting to all the data. Finally, the light

grey indicates the ± one standard deviation area.

The Pearson correlation coefficient for the N = 16 data points is 0.82. The corresponding p-

value (10−4) gives us confidence that the model is compatible with the observations.

Further data, with higher statistics, was collected by [24], based on Danish individuals

found positive to COVID-19 (see Table 1). Fig 2b shows once again the logarithm of the ratio

between frequencies of infected people for each ABO group, di over frequency of the group on

the healthy population, fi against the expected susceptibility, pð4Þi . Even in this case, a correlated

trend is appreciable. The Pearson correlation coefficient is 0.85 when considering all four

blood groups (N = 4, p-value 0.15). If we do not consider B group data, the only one that is not

statistically significant (see [24]), the correlation increases to 0.99 (N = 3, p-value 0.08). Com-

bining the Wuhan/Shenzen datasets with the Denmark one, we obtained an overall correlation

of 0.78 (N = 20, p-value <10−4).

To our knowledge, the five datasets, considered so far, are the only available ones for which

(i) not only severely ill patients were considered and (ii) the control population was not com-

posed of hospital patients. This allows us to test the contribution of the blood type to the sole

infection transmission.

Next, we took into consideration all datasets in Table 1. In Fig 3, the logarithm of the ratio

between the number of infected for each group over the group frequency of the local popula-

tion (ln(di/fi)) is compared with the 4-group susceptibility, pð4Þi computed using the data in

Table 1. We observe a linear correlation of 0.53 with a p-value smaller than 10−4.

PLOS ONE Does blood type affect the COVID-19 infection pattern?

PLOS ONE | https://doi.org/10.1371/journal.pone.0251535 May 13, 2021 9 / 19

https://doi.org/10.1371/journal.pone.0251535


Cases where infection data are not stratified by blood type

To our knowledge, all the studies reporting the blood type stratification of the infection data

are reported in Table 1. However, our model allows us to analyze also not stratified infection

data for which the geographical blood type distribution is known. In fact, considering the ini-

tial stages of the infection, we found that the total number of infected individuals grows as

yT ¼
Xk

i

yi � exp ðmtÞ with m ¼ bpðkÞT � g ð13Þ

where pðkÞT ¼
P

i

P
jfiWijfj (see Methods). The data of the contagion (yT[t]) by country is taken

from World Health Organization (WHO) Coronavirus Disease (COVID-19) Dashboard on

date 12th of June 2020 [30]. To ensure statistical reliability, we selected only countries that had

registered at least 2000 positive cases from the start of the epidemic.

The incidence of the different blood types in different nations can be found in Wikipedia

[31], where a collection of data and the original sources references are reported. These fre-

quencies f are also listed in Table 2, together with the country ISO code. From these data we

can calculate pð2ÞT (keeping into account the RhD± type) and pð4ÞT (keeping into account only the

ABO type) for each country. Since we had to know both the infection curve data and the blood

group frequencies, we ended up with 78 countries, whose information is reported in Table 2.

Fig 2. a) Ratio between frequencies of infected people for each ABO group, di over frequency of the group on the whole population, fi as measured in

four hospitals of the Wuhan/Shenzhen region versus its theoretical prediction, pð4Þi obtained from Eq (8) using the ABO set of rules and the blood type

frequencies in Table 1. The black line represents the best solution of a linear fit. b) Ratio between frequencies of infected people for each ABO groups, di
over frequency of the group on the whole population, fi as measured in Denmark versus its theoretical prediction, pð4Þi obtained from Eq (8) using the

ABO set of rules and the blood type frequencies in Table 1. The black line represents the best solution of a linear fit. The error bars on ln(di/fi) are one

standard deviation calculated by assuming a Poissonian distribution for the number of cases, thus Dðlnðdi=fiÞÞ ¼ 1=
ffiffiffiffini
p

being ni the number of infected

people with blood type i.

https://doi.org/10.1371/journal.pone.0251535.g002
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Finally, from each curve, we extracted the effective value of the growth rate of the exponential

phase,m with its statistical error Δm as derived from the fit (see in Table 2). Additional infor-

mation on data analysis is reported in the S1 File.

Europe and Asia. From our infection model, we expect a linear relationship between the

infection rate,m extracted from the countries infection curves and our pðkÞT . In particular, from

a plot ofm vs. pðkÞT , we can both check the validity of the model and extract the parameters β
and γ from which we can provide an estimate of R0 ¼

b

g
.

At first, we compared them found for the 29 countries of the European area with the corre-

sponding pðkÞT s computed starting from the frequencies of the different blood types found in

each country and reported in Table 2. While a contagion scheme based only on the Rhesus

group rules (pð2ÞT ) does not explain the observed trends of the epidemics, a high Pearson corre-

lation (0.71) is present between data and model predictions when contagions are driven by the

ABO group rules (pð4ÞT ). Indeed, as shown in Fig 4a, countries with higher susceptibility also

present, on average, a higherm value. A linear fit of the data allows us to extract the overall val-

ues of infection (β) and recovery (γ) rates that if combined yield a value of R0 of *2 in

Fig 3. Ratio between frequencies of infected people for each ABO, di over frequency of the group on the whole population, fi
versus its theoretical prediction, pð4Þi obtained from Eq (8) using the ABO set of rules and all the blood type frequencies in

Table 1. Black line represents the best solution of a linear fit. The error bars on ln(di/fi) are one standard deviation calculated by

assuming a Poissonian distribution for the number of cases, thus Dðlnðdi=fiÞÞ ¼ 1=
ffiffiffiffini
p

being ni the number of infected people

with blood type i.

https://doi.org/10.1371/journal.pone.0251535.g003
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excellent agreement with the current estimates of reproduction number in the early stages of

the outbreak [33]. We note that points tend to form two clusters. Interestingly, retrieving the

geographic information, we see a clear east-to-west gradient of the susceptibility, which drives

back to the different geographical distribution of the ABH phenotypes [34]. Fig 4b clearly

shows at a glance this trend for the four-group susceptibility, pð4ÞT .

To test the obtained linear trends, we performed an F-test assuming a constant slope as null-

hypothesis. In Table 3, p-values for both the Pearson coefficient and F-statistic are reported.

Note that the significance of pð2ÞT is just an artifact of the data disposition, which tends to cluster

around the values of pð2ÞT ¼ 0:87, thus yielding a high slope. Reversing the axis and repeating the

linear fit, one obtains a value of F of 1.28 which has a p-value above the threshold.

Repeating the same analyses carried out for European countries with those in the Asia

region, we found an overall similar trend (see Fig 5). In particular, pð4ÞT values present a non-

random linear correlation with the inverse characteristic times,m, of 0.45. The corresponding

p-values are below the threshold of 0.05 for the 21 Asiatic countries. Testing the linear fits with

the F-test, we can reject the null hypothesis with the usual threshold level of 0.05. All results

are again summarized in Table 3.

Fig 4. a) Inverse characteristic time of the epidemic exponential phase extracted from cumulative infection curves,m, vs theoretical prediction, pð4ÞT
obtained from Eq (11) using the ABO set of rules and the blood type frequencies in Table 2. Each dot corresponds to one of the 29 analyzed countries in

the European region named according to the 2-letter ISO code and reported in Table 2. The black line represents the best solution of a linear fit

performed with the York method and the grey shaded area is the ± one standard deviation confidence band. The uncertainty on pð4ÞT are obtained as

Dpð4ÞT � 2
ffiffiffi
4
p

Df where Δf = 10−3. b) Map representation of European countries. Each country is colored according to its pð4ÞT susceptibility value

obtained from Eq (11) using the ABO set of rules and the blood type frequencies reported in Table 2. pð4ÞT values increase going from blue to red. Gray

countries have not been considered due to a lack of either blood or infection information. The map shows large variability in the susceptibility pð4ÞT (that

ranges from 0.56 to 0.68) and a clear east-to-west gradient. The increase of susceptibility going west is a direct consequence of the tendency of increase

of the O blood type in this direction: the more one blood type dominates, the higher is the susceptibility. The map has been realized using the python

‘Cartopy’ library [32] with Natural Earth data.

https://doi.org/10.1371/journal.pone.0251535.g004
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Table 3. Main results for the different countries aggregation.

Continent β γ ρ Pearson p-value F p-value

Europe (EU) pð2ÞT -35.39 -31.01 - -0.26 0.17 22.4 <10−4

(29 countries) pð4ÞT 2.31 1.20 0.52 0.71 <10−4 42.5 <10−4

Asia (AS) pð2ÞT 2.06 1.80 - 0.54 0.01 19.5 <10−3

(21 countries) pð4ÞT 4.42 2.38 0.54 0.45 0.04 1.3 0.05

South America (SA) pð2ÞT -0.46 -0.62 - 0.29 0.34 0.79 0.39

(13 countries) pð4ÞT 1.24 0.67 0.54 0.62 0.02 8.1 0.02

Africa (AF) pð2ÞT 0.37 0.25 0.74 -0.09 0.78 0.5 0.5

(12 countries) pð4ÞT 0.52 0.22 0.42 -0.07 0.82 1.2 0.3

https://doi.org/10.1371/journal.pone.0251535.t003

Fig 5. Inverse characteristic times of the epidemic exponential phase extracted from cumulative infection curves, m vs

theoretical prediction, pð4ÞT obtained from Eq (11) using the ABO sets of rules and using the blood type frequencies in

Table 2. Each dot corresponds to one of the 21 analyzed countries in the Asiatic region named according to the 2-letter ISO code

and reported in Table 2. The black line represents the best solution of a linear fit. The uncertainty on pð4ÞT are obtained as Dpð4ÞT �
2
ffiffiffi
4
p

Df where Δf = 10−3.

https://doi.org/10.1371/journal.pone.0251535.g005
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South America and Africa. Finally, we consider two other distinct regions, i.e. South

America and Africa, both characterized by a still exponentially proliferating infection. The for-

mer exhibits a trend similar to the European one, characterized by an unsubstantial contribu-

tion of the Rhesus group rules, while a correlation of 0.62 is present between them coming

from the fitting of the infection curves and pð4ÞT . The infection and recovering rates obtained by

a linear fit are both smaller than those found in the Eurasian region. However, they combine

to give a value of R0 of *2. The p-value of both the Pearson correlation and the F-test on the

linear fit is below the significance threshold of 0.05 for all sets of rules except for pð2ÞT one.

Results for the African region instead show no meaningful correlation. As it is the slope of the

best linear fit which does not pass an F-test with zero slope as a null hypothesis.

Final comments on the countries cases. Overall, we found a statistically significant corre-

lation among them and pð4ÞT data for Europe, Asia, and South Americas, taken individually.

The reason for analyzing separately these continents lies in the fact that we expect that besides

blood type distribution other factors affect the infectivity onset and initial growth rate. The

lifestyle and the local climate are certainly some of them. We have therefore considered coun-

tries aggregations that preserve at the best these two aspects. To check this hypothesis, we have

analyzed (see Table 4) what is the effect of adding North America and/or Australia to the Euro-

pean countries. As can be seen in Table 4, the Pearson correlation does not change signifi-

cantly in these cases. A rather worst result is obtained by considering Asia and Europe

together, although the Pearson correlation still maintains a high degree of statistical signifi-

cance (p-value better than 10−4). The correlation becomes even worst when considering the

whole world (Pearson 0.43) but also in this case there is a great advantage (p-value better than

10−3) with respect to the null hypothesis (no-correlation betweenm and pðkÞT ). We conclude

that the model presented here is compatible with the existing data.

As far as the effect of temperature, humidity, etc. it is tempting to speculate on the obtained

results: i) Europe and Asia share a good correlation, as well as the values of β and γ; ii) South

America has again a good correlation, but its β and γ are smaller than in Europe and Asia; iii)
Africa shows a bad correlation. These three points could be rationalized remembering that, at

the pandemic initial stage Europe and Asia were in their wintertime, South America in the

summertime, while African countries experienced different climate situations.

Discussion

Most of the proteins that decorate cell membranes are bound to glycans [35]. The presence of

those carbohydrate chains provides a further channel of interaction between proteins, besides

Table 4. Pearson correlations between m and pð4ÞT for different continent aggregations.

Aggregation Countries Pearson p-value

Europe and North America 31 0.70 <10−4

Europe and Australia 30 0.69 <10−4

Europe and Asia 50 0.62 <10−4

Temperate (North) 48 0.63 <10−4

Tropical 26 0.24 0.24

Temperate (Sud) 4 0.97 0.03

World 78 0.43 <10−3

https://doi.org/10.1371/journal.pone.0251535.t004
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the usual direct protein-protein one, and evolved to play a large array of life-sustaining func-

tions including support, signaling, protein folding, and protection.

It has been suggested that protection against pathogens was the driving force that favored

the evolution of the complex landscape of glycan interactions (see e.g. [36] for a more detailed

discussion). Since viruses do not have genes for glycan synthesis or modification, they inherit

host cell glycans after each round of replication in a new host. This means that the host cell in

which the virus last replicated generated the glycans on viral glycoproteins [36].

A mutation in the host population, having as an outcome the loss of a glycan modification,

could then provide a selective advantage to the glycan-lacking subpopulation. In fact, pathogens

using that glycan as a receptor would not be able to invade the host cells anymore. Moreover,

the host can develop specific antibodies against the abolished glycan [37]. Human blood groups

constitute an important example. Individuals having O blood group lack A or B antigens and

when presented with glycan motifs similar to either A or B antigens, they develop anti-A and

anti-B antibodies. Individuals with A or B blood group develop either anti-B or anti-A antibod-

ies, respectively. On the other hand, people with subgroup AB are not able to develop such anti-

bodies. According to those “rules”, in case of an infection, one would expect that looking at the

blood type of the people found infected by the virus, individuals with group O should be under-

represented with respect to their occurrence in the whole population. This feature has been

indeed observed by Zhao and coworkers [21] for the COVID-19 outbreak, caused by the novel

SARS-CoV-2 coronavirus. Notably, a similar behavior was found in the hospital outbreak of

SARS in Hong Kong in 2003 [38] and in that of the West Nile virus in Greece in 2010 [39].

Moreover, both SARS-CoV and SARS-CoV-2 S protein trimers are covered by an extensive gly-

can shield, surrounding the receptor-binding domain and can either infect or not infect cells

that express ABH antigens depending on the specific individual phenotype [40, 41]. Impor-

tantly, these hypothesized asymmetrical transmission rules should affect the number of people

with a certain blood type that can be potentially be infected because they do not allow all

infected to infect any potentially contacted person. Consequently, we have a dilution effect on

the contagion that must be reflected in the growth of the epidemics. In the present work, we

have studied how the existence of asymmetrical virus transmission rules affects such growth,

and how the fraction of infected patients with a certain blood type should not depend only on

the patient blood type but on the number of infected people that may infect him.

To this aim, we expanded the usual SIR formalism to take into consideration the possible

effect of blood antigenicity in the COVID-19 transmission and provided analytical solutions in

the small-time limit, where the epidemic is in its exponential-growing regime. We obtained an

expression linking the inverse characteristic time of the exponential phase with the abundances

of the different blood groups in the population. We propose a set of susceptibility indices: pðkÞi
for the sub-population having blood group i and pðkÞT for the total population (where k are the

number of the considered blood types).

The model predicts a linear dependence for both the logarithm of the ratio
di
fi

and the

observed epidemic inverse timescalem when compared against the susceptibilities. To test the

model, we first compare its predictions with the experimental data provided in [21, 29], where

the blood type of infected people of two Chinese regions was collected. Comparing the popula-

tion frequencies of blood groups with those found in the infected sub-population, we verified

that the proposed contagion scheme well describes the observed frequencies, since the differ-

ence observed between the ABO blood type population distribution and the ABO blood type

infected people distribution supports the validity of the infection scheme proposed in [23]. A

similar approach has been used to test the model for the Denmark data [24], characterized by

overall higher statistics, and again we found good accordance with the model.
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Next, we consider all data reported in Table 1. Notably, the linear trend remains although

data points are more scattered. We noted that most of the added sets of data were obtained

considering only severely ill individuals and hospitalized individuals as a negative control.

While our model only accounts for the effects of blood groups in the transmission of the virus,

the ABH phenotype could in principle impact both the course of the COVID disease and the

general health of individuals. Consequently, considering severely ill patients and hospitalized

people as controls may introduce biases in both the di and fi distributions, which reflect on a

higher dispersion of the data in Fig 3.

To further validate our model, we analyzed the infection curves of a large set of countries

worldwide, comparing the characteristic time of the infection outbreak with the prediction of

our model based on the known blood group distribution for each country. Note that in this

second case, we do not have the information about the blood groups of the infected population

but only on the whole population. Thus, we can compare the growth rate in the short time,

exponential, phase with the “susceptibility” pðkÞT proposed by the model.

We managed to collect data on the blood frequencies and the infections for 78 different

countries belonging to four well distinct geographical areas, i.e. Europe, Asia, South America,

and Africa. Since we expect that differences both geographical and on lifestyles affect the infec-

tion and recovering rates, we kept the countries separated according to the four identified

areas. This allows us to discard possible bias due to data collection and geographical factors.

Using a set of rules based on Rhesus blood types, we observed an always not significant corre-

lation. From the point of view of the biological interpretation of the results, this is not surpris-

ing. A set of rules solely based on the RhD factor would not support the working hypothesis,

which is based on the presence of glycan antigens on the viral capsid. This could be because

RhD antigens are proteins and so can not be easily inherited by the virus as ABO group anti-

gens, which are glycans. Moreover, RhD- individuals do not have innate antibodies without

exposure to RhD+ blood.

On the contrary, considering the ABO set of rules, three out of the four areas present a very

good agreement between data and model prediction (see Table 3). Summing up, it seems that

the ABO blood type has an effect on the virus spreading pattern.

Conclusion

In a nutshell, we proposed a generalized SIR model with infection rules dictated by antige-

nicity between different blood types. Obtaining an analytical solution of the model for the

exponential phase, we were able to provide a rigorous theoretical test of the hypothesis pro-

posed in [23]. We have made the test both for local data, where the number of infected peo-

ple is stratified by blood type, and, on a wider scale, analyzing the infection growth curves of

78 countries worldwide. Overall, the present study concludes that the hypothesis of a blood

type effect on the COVID-19 advanced in [23] it is compatible with the available observa-

tional epidemic data. Obviously, to strengthen the validation a direct detection of the anti-

gens linked to the SARS-CoV-2 is needed, but this goes far beyond the goals of the present

paper, which aims at presenting a mathematical framework to validate the hypothesis dis-

cussed in [23] on patients and countries data. Moreover, this formalism allows us to under-

stand the relation between the regional infection growth rate and the population blood type

distribution. As a final note, we observe that, besides blood types, other population-depen-

dent antigens distribution may play a role in the geographically heterogeneous infection

spreading [42].
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between the SARS-CoV spike protein and its cellular receptor by anti-histo-blood group antibodies. Gly-

cobiology. 2008; 18(12):1085–1093. https://doi.org/10.1093/glycob/cwn093 PMID: 18818423
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