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Abstract

Background Classifying samples in incomplete datasets is a common aim for machine

learning practitioners, but is non-trivial. Missing data is found in most real-world datasets and

these missing values are typically imputed using established methods, followed by classifi-

cation of the now complete samples. The focus of the machine learning researcher is to

optimise the classifier’s performance.

Methods We utilise three simulated and three real-world clinical datasets with different

feature types and missingness patterns. Initially, we evaluate how the downstream classifier

performance depends on the choice of classifier and imputation methods. We employ

ANOVA to quantitatively evaluate how the choice of missingness rate, imputation method,

and classifier method influences the performance. Additionally, we compare commonly used

methods for assessing imputation quality and introduce a class of discrepancy scores based

on the sliced Wasserstein distance. We also assess the stability of the imputations and the

interpretability of model built on the imputed data.

Results The performance of the classifier is most affected by the percentage of missingness

in the test data, with a considerable performance decline observed as the test missingness

rate increases. We also show that the commonly used measures for assessing imputation

quality tend to lead to imputed data which poorly matches the underlying data distribution,

whereas our new class of discrepancy scores performs much better on this measure. Fur-

thermore, we show that the interpretability of classifier models trained using poorly imputed

data is compromised.

Conclusions It is imperative to consider the quality of the imputation when performing

downstream classification as the effects on the classifier can be considerable.
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Plain language summary
Many artificial intelligence (AI)

methods aim to classify samples of

data into groups, e.g., patients with

disease vs. those without. This often

requires datasets to be complete, i.e.,

that all data has been collected for all

samples. However, in clinical practice

this is often not the case and some

data can be missing. One solution is

to ‘complete’ the dataset using a

technique called imputation to

replace those missing values. How-

ever, assessing how well the impu-

tation method performs is

challenging. In this work, we demon-

strate why people should care about

imputation, develop a new method

for assessing imputation quality, and

demonstrate that if we build AI

models on poorly imputed data, the

model can give different results to

those we would hope for. Our find-

ings may improve the utility and

quality of AI models in the clinic.
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Datasets with missing values are ubiquitous in many
applications and feature values can be missing for many
reasons. This may be due to incomplete or inadequate

data collection, corruption of the dataset, or differences in the
recording of data between different cohorts or sources. Further-
more, these reasons do not always remain constant or consistent
across data sources. Each of these sources of missingness can also
introduce different types of missingness, e.g., missing completely
at random (MCAR), missing at random (MAR) and missing not
at random (MNAR)1,2.

Training machine learning classification models is non-trivial if
the underlying data is incomplete, as many methods require
complete data3. Simply excluding incomplete samples could lead
to both a large reduction in statistical power and also risks
introducing a bias if the cause of the missingness is related to the
outcome. The typical solution to this problem is to follow a two-
stage process, firstly imputing the missing values and then using a
machine learning method to classify the now-complete dataset.
There is extensive literature discussing imputation methods, most
of which is focussed on the imputation of data at a single time-
point (as we focus on). However, more nuanced scenarios have
also been considered, in particular for the imputation of long-
itudinal data4,5, imputation of decentralised datasets using a
federated approach6 and imputation of variables which have a
hierarchical (multi-level) relationship to one another7.

Despite the two-stage methods forming the bedrock of approa-
ches to making predictions from incomplete data8–11, it is still
unclear which approaches perform ‘best’ and how this should be
measured. In particular, it is unclear how the classification model’s
performance is influenced by the underlying imputation method
and how performance is affected by levels of missingness in the
data. When fitting a model to incomplete data using a two-stage
approach, the primary aim of many studies is to optimise the
downstream classification performance, rather than carefully
assessing if the imputed data reflects the underlying feature dis-
tribution. However, the latter is profoundly important, as a model
trained using poorly imputed data could assign spurious impor-
tance to particular features. When we artificially induce missing-
ness into a complete dataset, the quality of an imputation method is
typically measured by comparing the imputed values with the
ground truth using common metrics such as the (root/normalised)
mean square error (MSE)3,6,12–20, mean absolute (percentage)
error3,14–16 or (root/normalised) square deviance4,6,12. However, as
other authors have commented7, optimal results for some metrics
are achieved even when the distribution of the imputed data is far
from the true distribution, see Supplementary Fig. 1.

There are many different discrepancy scores for measuring
imputation quality considered in the literature, with a distinction
made for those used with categorical data and those used for
continuous data. For example, for categorical data, one could
consider the proportion of false classifications and Cramér’s V
metric. For continuous data, there are many additional metrics and
discrepancy scores such as the two-sample Kolmogorov–Smirnov
statistic, the (2-)Wasserstein distance (Mallows’ L2) and the
Kullback–Leibler divergence. In particular, the paper of Thurrow
et al.18 considers imputation quality in detail, reporting many of
these discrepancy scores, on a feature-by-feature basis to identify
distributional differences between the imputed and true missing
values.

In this paper, we systematically and carefully address two open
research questions. Firstly, for two-stage methods, does the
optimal configuration (e.g., imputation method and classifier
combination) for a particular dataset, ensure optimal classifying
performance for the incomplete data? To address this, we evaluate
the performance of several two-stage methods for classifying
incomplete data. Using multi-factor ANOVA analysis, we

quantify how the downstream classification performance is
influenced by the imputation method, classification method and
data missingness rate. Secondly, how faithfully do different data
imputation methods reproduce the distribution of the underlying
dataset? This is a crucial question and requires careful and
extensive evaluation. We assess imputation quality using standard
discrepancy scores, such as RMSE, MAE and the coefficient of
determination (R2), and feature-wise discrepancy scores using the
Kullback–Leibler divergence, Kolmogorov–Smirnov statitstic and
Wasserstein distance. In addition, we introduce a class of dis-
crepancy scores inspired by the sliced Wasserstein distance21 for
evaluating how well-imputed data faithfully reconstructs the
overall distribution of feature values. We demonstrate how the
new proposed class of measures is more appropriate for assessing
imputation quality than existing popular discrepancy statistics.

Moreover, we explore the link between imputation quality and
downstream classification performance and show the remarkable
result that a classifier built on poor imputation quality can
actually give a satisfactory downstream performance. We postu-
late that this could be due to the ability of powerful classifier
methods to overcome issues with the imputed data (as imputation
leads to noise injection into the dataset). Training machine
learning-based models on such noisy data can be viewed as a
form of data augmentation (known to improve the gen-
eralisability and robustness of the models22). The stability of
different imputation methods is explored and we found that the
algorithms consisting of neural network components can give
highly variable imputation results. In addition, in our experi-
ments, we find that the popular discrepancy measures used to
assess imputation quality are uncorrelated from the downstream
model performance, whereas the measures which consider dis-
tributional discrepancies do show a correlation. Finally, we
demonstrate how high-performing classification models trained
using poorly imputed data assign spurious importance to parti-
cular features in the dataset. We release a codebase to the com-
munity, along with the datasets considered, in a GitLab
repository23. This provides a framework for practitioners to allow
for easy, reproducible benchmarking of imputation method per-
formance, for evaluating a wide range of classifiers along with
assessing imputation quality in a completely transparent way.

Methods
In this section, we briefly introduce the datasets used in the study,
the benchmarking exercise and the methods for assessing impu-
tation quality.

Datasets. In this study, we focus on five datasets denoted as
Breast Cancer, MIMIC-III, NHSX COVID-19, Simulated (N) and
Simulated (N,C). The first three of these are derived from real
clinical datasets, while the final two are synthetic. The MIMIC-III,
Simulated (N) and Simulated (N,C) datasets are complete (i.e., do
not contain missing values), giving us control over the induced
missingness type and rate. The Breast Cancer and NHSX
COVID-19 datasets exhibit their natural missingness. Permission
has been obtained from the data originators, where required to
use the clinical data in this study.

Simulated (N) is a synthetic dataset created using the
scikit-learn24 function make_classification, giving
a dataset with 1000 samples, 25 informative features, no
redundant features and no useless features. This allows us to
perform a simulation study to determine which factors can
potentially influence classification after imputation. Simulated
(N,C) is another synthetic dataset created in a similar manner but
now containing categorical, ordinal and uninformative variables
in addition to continuous variables. More details are provided in

ARTICLE COMMUNICATIONS MEDICINE | https://doi.org/10.1038/s43856-023-00356-z

2 COMMUNICATIONS MEDICINE |           (2023) 3:139 | https://doi.org/10.1038/s43856-023-00356-z | www.nature.com/commsmed



the Supplementary Notes. MIMIC-III. The Medical Information
Mart for Intensive Care (MIMIC) dataset25 is a large, freely
available database comprising de-identified health-related data
from patients who were admitted to the critical care units of the
Beth Israel Deaconess Medical Center in the years 2001–2012.
Following the preprocessing detailed in the Supplementary Notes,
we obtain the MIMIC-III dataset used in this paper. This contains
data for 7214 unique patients with 14 clinical features and a
survival outcome recorded for each patient. Breast Cancer. This
dataset is derived from an oncology dataset collected at Memorial
Sloan Kettering Cancer Center between April 2014 and March
201726. The dataset contains genomic profiling of 1918 tumour
samples from 1756 patients with detailed clinical variables and
outcomes for each patient and the therapy administrated over the
time of treatment. The Breast Cancer dataset is obtained after the
preprocessing described in the Supplementary Notes and has 16
features for 1756 patients with the natural missingness of the data
retained. NHSX COVID-19. This dataset is derived from the
NHSX National COVID-19 Chest Imaging Database (NCCID)27

which contains clinical variables and outcomes for COVID-19
patients admitted in many hospitals around the UK. The dataset
is continually updated by the NHSX; the download we performed
was on August 5, 2020 which contained data for 851 unique
patients. The NHSX COVID-19 dataset contains 23 features for
851 patients.

Data preprocessing. Among the five datasets we consider, Simu-
lated (N) and MIMIC-III contain only numerical features,
whereas Breast Cancer, NHSX COVID-19 and Simulated (N,C)
contain numerical, categorical (single and multi-level) and ordi-
nal features. In preprocessing, the categorical features are one-hot
encoded, and the ordinal features are coded with integer values
before the imputation task.

Outcome variables. For the MIMIC-III, Breast Cancer and NHSX
COVID-19 datasets we use survival status as the outcome of
interest, the Simulated (N) and Simulated (N,C) datasets outcome
is a binary variable generated at the data synthesis stage by the
make_classification function in scikit-learn24.

Dataset partitioning. In our experiments, we simultaneously
compare many combinations of imputation and classification
methods, each with several hyperparameters that can be tuned.
Therefore, we must be careful to avoid overfitting. To address
this, we partition each dataset at two levels. At the first level, we
randomly split the datasets three times to give different devel-
opment and holdout cohorts and, at the second, we randomly
partition each of the development sets into fivefolds (for cross-
validation) with four used for training and one for validation, see
Supplementary Fig. 2 and the Supplementary Notes for more
details.

Induced missingness. The Simulated (N), Simulated (N,C) and
MIMIC-III datasets are complete and, therefore, we can induce
different missingness rates in the development and holdout
datasets. We randomly removed 25% and 50% of entries from
each of the development and holdout datasets. This allows us to
compare four different scenarios for development-holdout miss-
ingness rates: 25–25%, 25–50%, 50–25% and 50–50%.

Imputation methods. Data imputation is the process of sub-
stituting missing values in a dataset with new values that are,
ideally, close to the true values which would have been recorded.
To formalise the notation, we consider a dataset D, consisting of
N samples xi 2 Rd drawn from some (unknown) distribution.

Some of the elements in these samples may be missing and we
impute them to give the complete samples x̂i. Whilst it is not
possible to be certain about the true value of the missing entries, it
is desirable that the uncertainty in the imputed values be con-
sidered in any downstream task which relies on the imputed
data28 as the uncertainty of a variable increases after data
imputation29.

In general, imputation methods fall into two categories, namely
‘single imputation’ and ‘multiple imputation’. In the case of single
imputation, plausible values are imputed in place of the missing
values just once, whereas for multiple imputation methods30,31,
imputation is performed multiple times to generate a series of
imputed values for each missing item. For imputation methods
that have some stochastic nature, this allows for insight into the
uncertainty of the imputed values. For multiple imputation
methods, there are two approaches for performing a downstream
classification task. The first approach involves pooling the
multiple imputation results and creating a single, summary,
dataset from which we perform the classification task. The second
approach, which we follow in this paper, is to perform the
classification task on each of the multiple imputation results
separately, before pooling the outputs of the classification model.
The final output is determined using e.g., averaging or majority
vote. See van Buuren7, for a comparison of the approaches and
justification for the latter being preferable.

In our study, we consider five popular imputation methods
from the literature, namely, mean imputation, multivariate
imputation by chained equations (MICE)32,33, MissForest34,
generative adversarial imputation networks (GAIN)35 and the
missing data importance-weighted autoencoder (MIWAE)36. The
interest of this paper is not to assess all imputation methods, but
to draw attention to the importance of assessing imputation
quality when fitting classification models to incomplete data. The
five methods we consider represent some of the most popular
imputation methods, using statistical and machine learning-based
methods, but we also highlight there is a vast literature describing
additional imputation methods, such as AMELIA37, K-Nearest
Neighbour imputation38, and fractional hot deck imputation
(FHDI)39 and its parallel variation, P-FHDI40.

Classification methods. Classification is the process of grouping
items with similar characteristics into specific classes. In our case,
the classification methods take an input sample x̂i 2 Rd and
output a particular class label ℓi∈ {0, 1}. The classification
methods we consider in this paper are logistic regression, Ran-
dom Forest, XGBoost, NGBoost and an artificial neural network
(for more details, see the Supplementary Notes.)

Hyperparameter optimisation. Each of the classifiers that we
consider (except for logistic regression) has several tuneable
hyperparameters, with classifier performance highly dependent
on them. In order to identify the best classifier for each dataset,
we perform an exhaustive grid search over a wide range of
hyperparameters. For each configuration of a dataset (train/test
missingness level, imputation method, holdout set, validation set
and each of the multiple imputations), we fit a classifier,
exhaustively, over a large range of hyperparameters as detailed in
Supplementary Table 1. To identify the optimal hyperparameter
choice for each of these configurations, we evaluate the model on
each of the five validation folds. The hyperparameter choice,
which results in the best average performance over these valida-
tion folds, is selected as the optimal model configuration (i.e., for
each holdout set H1–H3 (Supplementary Fig. 2) we obtain an
optimal model). This exhaustive grid search required millions of
experiments to ensure the comparisons are fair.
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ANOVA analysis. One of the key aims of this paper is to identify
and quantify the influence of key factors on the performance of
the downstream classification. To quantify the impact, we used a
generalised linear model (binomial logistic regression-based) to
perform multi-factor ANOVA for the holdout AUC of the opti-
mal classifiers named in the Classification methods section.
Firstly, to identify the most influential factors in the models built
on the real clinical models, we pool the results for the MIMIC-III,
Breast Cancer and NHSX COVID-19 datasets and perform a
logistic ANOVA, whilst additionally assessing each of the datasets
individually. After constructing the ANOVA model including all
factors and their interaction, we excluded factors not significant at
the 1% level using backward elimination (see the Supplementary
Notes for more details).

Measuring the quality of imputation. In addition to determining
how the imputation method, missingness rates and datasets affect
the downstream classification performance, we are also interested
in exploring how the quality of the imputation affects the
downstream classification performance. However, there is no
widely accepted approach for measuring the quality of imputa-
tion. In this paper, to assess imputation quality, we follow18,41 by
taking a complete dataset, introducing missingness artificially,
imputing the resulting incomplete dataset and then computing a
discrepancy statistic between the original dataset and the imputed
dataset.

For this purpose, we induced missingness completely at
random (MCAR) with rates 25% and 50% into the MIMIC-III,
Simulated (N) and Simulated (N,C) datasets. In order to
quantitatively assess how well an imputation method reconstructs
the missing values, we must define a discrepancy score which
achieves a low value when the distribution of imputed values
closely resembles that of the true values. Explicitly, our aim is to
compute a distance between the original samples D ¼ fxigNi¼1 and
the imputed samples D̂ ¼ fx̂igNi¼1 that measures the quality of the
imputation.

In this paper, we consider many of the popular discrepancy
statistics used in the literature for measuring imputation quality.
These typically fall into two classes: (A) measures of discrepancy
between the imputed and true values of individual samples and
(B) measures of discrepancy in distributions of individual features
for the imputed and true data. However, we strongly believe that
the class of measures which would be of most practical value to
practitioners is (C) measures of discrepancy for imputed and true
data across the whole data distribution. In the literature, we were
unable to find any examples of discrepancy measures of this type,
and we propose such a class in this paper.

(A) Sample-wise discrepancy: In much of the literature, the
quality of imputation is determined by measuring the discrepancy
in the real and imputed values sample-by-sample, then
summarising over all samples in the dataset. In this paper, we
consider the three discrepancy statistics, Root mean square error
(RMSE), mean absolute error (MAE) and the coefficient of
determination (R2). These statistics compare the imputed values
explicitly to the true values.

(B) Feature-wise distribution discrepancy: In the literature,
some authors have considered discrepancy measures to quantify
how faithfully the distributions of individual features are
reconstructed. In particular, Thurow et al.18 consider several
distribution measures on a feature-by-feature basis, including
the Kullback–Leibler (KL) divergence, the two-sample
Kolmogorov–Smirnov (KS) statistic and 2-Wasserstein (2W)
distance. We report results for all of these in this study. As these
discrepancies are measured feature-by-feature, we get many
scores for each dataset and report the minimum, maximum and

median discrepancy for each distance’s overall features. More
details about these statistics, including definitions and the
implementations used, can be found in the Supplementary
Notes.

(C) Sliced Wasserstein distance: In Fig. 1, we show that simply
considering the feature-by-feature marginal distributions is not
sufficient to quantify how well a high-dimensional data structure
has been imputed. The marginal distributions of the imputed data
(directions 1 and 2) match that of the original data perfectly but
do not identify the discrepancy of the distributions shown in
Fig. 1a, b. This motivates us to consider a new measure, which
harnesses the multi-dimensional nature of the data to better
identify distribution differences like this.

Modelling the discrepancy between imputed and true data in
high dimensions is challenging for two key reasons. Firstly, the
curse of dimensionality results in computations that are infeasible
for high-dimensional datasets. Secondly, high-dimensional (com-
plete) datasets are very sparse (with low density) in the space Rd

unless there are an unrealistically large number of samples. We
address both of these issues by repeatedly projecting the entire
data distribution to random one-dimensional subspaces, thereby
increasing the density of the data while considering more axes
than those simply defined by the features themselves. We then
consider the distance of the imputed data from the original data
in the random direction, commonly known as the sliced
Wasserstein distance42,43; this gives a distribution of distances
across all randomly chosen directions. Initially, we perform the
following steps:

Step 1: Determine partitions and random directions. ChooseM
random unit vectors (directions) nr 2 Rd , r= 1, …, M, where M
≥ d. Choose P random partitions of the index set {1, 2,…,N} into
two equally-sized subsets Ip and Jp for p= 1,…, P (where N is the
number of samples). If N is even, then Ip and Jp are the same sizes.
In the case that N is odd, these subsets have sizes (N+ 1)/2 and
(N− 1)/2, respectively. In our experiments, we set P= 10 and to
account for the dimensionality differences between MIMIC-III,
Simulated (N) and Simulated (N,C), we usedM= 50 andM= 90,
respectively.

Step 2: Calculate projections of data. For each r, we project all
data onto the one-dimensional subspace of Rd spanned by nr;
this gives the projected original data xi. nr and projected imputed
data x̂i:nr .

Step 3: Calculate sliced Wasserstein Distances. For each pair
(r, p), with r∈ {1,…,M} and p∈ {1,…, P}, we calculate (2-)
Wasserstein distances between the projected original and imputed
data. The data are normalised by dividing by the standard
deviation, s, of the projected data xi. nr for i∈ Ip. The datapoints
in Ip are taken as the ‘true’ distribution and we determine the
distance w(r, p) of the remaining data in Jp from this. This is our
baseline distance inherent to the data. We then calculate ŵðr; pÞ,
the 2-Wasserstein distance between xi. nr/s for i∈ Ip and the
imputed data x̂j:nr=s for j∈ Jp.

See the Supplementary Notes for a step-by-step example of the
calculation of the sliced Wasserstein distance.

Over all (r, p) pairs, these steps result in two distributions of
distances, for w(r, p) and ŵðr; pÞ, as illustrated in Fig. 2. Firstly,
these can be regarded as probability distributions, allowing us to
compute the same class B feature-wise discrepancy scores
discussed previously. Secondly, we evaluate the relative change
in the Wasserstein distance due to imputation for each r and p,
namely ŵðr; pÞ=wðr; pÞ, allowing us to quantify how much
different imputation methods induce discrepancy in the data
distribution. Finally, we assess the stability of the different
imputation methods by exploring the variance in the induced
sliced Wasserstein distance across repeated imputations.
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Downstream effects of imputation quality. A critical question
that this paper aimed to answer is: in what way does the quality
of the data imputation affect the downstream classification
performance? Firstly, we determined whether there is a corre-
lation between the discrepancy scores in classes A–C and the
performance of the classification model. Secondly, we investi-
gated whether using poorly imputed data in the training of a
classification model would affect the importance of the feature
to each classifier. To answer this, we analyse the models fit to
the Simulated (N) and Simulated (N,C) datasets. As the features
are of equal importance by design, the clusters of values within
each feature are normally distributed, centred at vertices of a
hypercube and separated24. For each classifier, we identify two
models which perform well at the classification task where one
is trained using poorly imputed data and the other is fit to data
that is imputed well. See the Supplementary Notes for details on

the model selection. To assess the feature importance for each
of the trained models, we used the popular Shapley value
approach of Lundberg et al.44. For each feature, this assigns an
importance to every value, identifying how the model output is
affected on the basis of the value of this feature. A positive
importance value indicates the value influences the model
towards a positive class. Due to the design of the Simulated (N)
dataset, we expect the distribution of the Shapley values to be
symmetric, as the clusters are separated by a fixed distance and
are normally distributed within those clusters. Using the
skewness, we measure the symmetry of the feature importance
values for each feature for all models.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Fig. 2 Procedure for deriving the sliced Wasserstein discrepancy statistics. a Example density plot of the projection onto nr of the original data in Ip
(blue) and Jp (orange) and the imputed data in Jp (green). b Density plot of the sliced Wasserstein distances for the original and imputed data.
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Fig. 1 The effects of projecting imputed data in multiple directions. a The underlying 2-dimensional data distribution; b the distribution of imputed data;
c some example directions: 1 and 2 are in the direction of the features, directions 3 and 4 are not; d, e show the original and imputed data distributions
projected onto the four directions shown in (c): their marginals (directions 1 and 2) are indistinguishable but the distributions are clearly different when
projected in directions 3 and 4.
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Results
Classifier influence on downstream performance. In Fig. 3a, we
show how the classifier affects the downstream performance in
terms of the Area Under the Receiver Operating Characteristic
(AUC-ROC) curve for each dataset across the different train and
test missingness rates. For the MIMIC-III, Simulated (N) and
Simulated (N,C) datasets, the performance of a classifier trained
using the complete original dataset always exceeds that of those

built on imputed data (with the sole exception of the Neural
Network for MIMIC-III). The performances for the Simulated
(N) and Simulated (N,C) datasets are much higher than for the
real datasets as, by design, there is a direct link between the
outcome and the feature values. For the Simulated (N), Simulated
(N,C) and MIMIC-III datasets, we see that increasing the train
and test missingness rates leads to a decline in performance. For
all classifiers with a fixed train missingness rate, a change in the

Fig. 3 Dependence of downstream classification AUC performance on classification and imputation methods. These plots show the dependence of the
downstream performance on the a classification and b imputation methods. For the Simulated (N), Simulated (N,C) and MIMIC-III datasets, we show
performance for 25% and 50% levels of missingness in the development and test data. Datasets are separated by dashed lines from each other. The size of
each marker corresponds to the standard deviation in the results, and the values after each dataset name indicate the [train/test] missingness.
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test missingness rate affects performance drastically compared to
changing the train missingness rate for a fixed test missingness
rate. For each imputed dataset, we see that when varying the
missingness rates of the development and test data, the ranking of
each classifier’s performance is almost consistent, e.g., for the
Simulated (N) dataset, the Neural Network always performs the
best while logistic regression and the Random Forest perform
worst (logistic regression has higher variance). The XGBoost
classifier performs best for the MIMIC-III and NHSX COVID-19
datasets, with consistency in performance ranking at all miss-
ingness rates. The Breast Cancer dataset follows the trend of the
other real-world datasets, with the important exception that the
worst-performing classifier for the other datasets, namely logistic
regression, performs the best here. For most datasets, the variance
of the classifier performance is similar across the classifiers, the
exception being the Breast Cancer dataset for which the Random
Forest has a small variance and Neural Network a relatively large
variance. In the Supplementary Figs. 5–9 we also present per-
formance in terms of accuracy, Brier score, precision, sensitivity/
recall and specificity.

Imputation influence on downstream performance. In Fig. 3b,
we show the dependence of the downstream classification per-
formance on the imputation methods used to generate the
complete datasets. For the Simulated (N) and NHSX COVID-19
datasets, at all levels of development and test missingness rates,
MIWAE imputation gives the best downstream performance. For
the Simulated (N), Simulated (N,C) and MIMIC-III datasets, as
the missingness rate increases in the test dataset, the performance
of models trained using imputed data declines drastically. In the
real-world datasets, there is no ‘best’ imputation method that
leads to a model which outperforms the others although MIWAE
gives a consistently high-performing model, being either first or
second best. For the MIMIC-III dataset, we see that the simple
mean imputation method gives the worst downstream perfor-
mance for all missingness rates but for NHSX COVID-19 is
competitive with the best-performing MIWAE method, poten-
tially due to mode collapse of the deep learning methods. We
observe a large performance difference between the synthetic and
real-world datasets when missingness rates are low, which
decreases considerably as the train and test missingness rates
increase. Moreover, in the real-world datasets, we observe that the
difference in performance for different imputation methods is
marginal, and the choice of the imputation method does not play
an important role in the classification performance. The variance
in the performances is consistent across the real-world datasets,
in the range [0.01, 0.02], but is markedly higher for all levels of
missingness in the Simulated (N) dataset, in the range of [0.02,
0.04]. In Supplementary Figs. 5–9, we illustrate the effect of the
different imputation methods on the downstream accuracy, Brier
score, precision, sensitivity/recall and specificity.

ANOVA for downstream classification performance. In Fig. 4,
we show the significant factors identified for the pooled data and
individual datasets. For the pooled data, it is clear that the
missingness rate of the test set explains most of the deviance in
the results of our classification models, confirming the observa-
tions previously derived from Fig. 3. The dataset under con-
sideration and the classification method used are the next most
important factors. The ANOVA is also performed for the indi-
vidual datasets, shown in Fig. 4b–d. For the Simulated (N) and
Simulated (N,C) datasets, we see that many factors affect the
classification performance, but surprisingly the imputation
method itself has a relatively small impact on the deviance of
downstream classification. Only the Simulated (N), Simulated

(N,C) and MIMIC-III datasets have induced missingness, and we
see that the test set missingness rate is the most significant source
of deviance in the downstream classification performance, fol-
lowed by the choice of classification method, imputation choice
and train missingness rate. For both the NHSX COVID-19 and
Breast Cancer datasets, the classification method is the primary
source of deviance. Indeed for the Breast Cancer dataset, it is the
only significant factor at the 1% level. The results of these
ANOVA analyses are provided in the Supplementary Tables 2–6.

Comparing imputation quality
Sample-wise statistics. In Fig. 5 and Supplementary Figs. 10–12,
the sample-wise discrepancy scores are shown for the MIMIC-III,
Simulated (N) and Simulated (N,C) datasets for different train
and test missingness rates. RMSE and MAE are generally con-
sistent across the different imputation methods for fixed train and
test missingness rates. There is a minimal performance difference
between holdout sets. Using these sample-wise measures for the
MIMIC-III dataset, the MissForest imputation method performs
the best overall, followed by GAIN. The gap between the per-
formance of MissForest and GAIN narrows as the train and test
missingness rates increase. MICE imputation performs worst at
all train and test missingness rates. For the Simulated (N) dataset,
mean imputation tends to perform the best, whilst MICE is
consistently the worst. For the Simulated (N,C) dataset, the best-
performing methods are MissForest and mean imputation, whilst
MICE is the worst. MICE generally attains the lowest R2 score at
all missingness rates for all datasets. The poor performance of
MICE by the RMSE metric can also be seen in Supplementary
Fig. 1, although, qualitatively, the distribution is better recreated
using this imputation method.

Feature distribution metrics. In Fig. 6 and Supplementary
Figs. 13–23, we show the minimum, median and maximum
feature-wise discrepancies statistics for the MIMIC-III, Simulated
(N) and Simulated (N,C) datasets. In general, the mean impu-
tation method is the worst in all metrics for minimum, median
and maximum at all rates of train and test missingness in all
datasets. MissForest performs best by sample-wise RMSE and
MAE, and very competitively for the feature-wise discrepancy
scores. MICE imputation, which performed worst by the sample-
wise discrepancy scores, is the best-performing method by the
Kolmogorov–Smirnoff statistic and Wasserstein distance for all
missingness rates across all the minimum, median and maximum
discrepancies. It is generally the best method by Kullback–Leibler
divergence, with MissForest and MIWAE also competitive. For
GAIN, the minimum discrepancies are competitive with the other
imputation methods. However, when considering the maximum
discrepancy, we note that the difference in the performance of the
mean and GAIN methods narrows considerably. Increasing the
test missingness rate leads to a drastic increase in the feature-wise
distances, whereas there is a more subtle increase in the distances
with an increase in the train missingness rate from 25 to 50%.

Sliced Wasserstein distribution metrics. In Fig. 7 and Supple-
mentary Figs. 24–29, we show the discrepancies between the
distributions of the sliced Wasserstein distances, measured using
the Kullback–Leibler divergence, the Kolmogorov–Smirnov sta-
tistic and the Wasserstein distance for the imputation methods at
different train and test missingness rates for the MIMIC-III,
Simulated (N) and Simulated (N,C) datasets. For the MIMIC-III
dataset, over all discrepancy scores and missingness rates, the
MICE imputation method shows a clear dominance, with Mis-
sForest and MIWAE are competitive and poor performance is
observed with mean and GAIN imputation. For the Simulated
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(N) dataset, the MICE method again performs the best overall by
all measures at 25% train missingness but its relative performance
is unclear for 50% train missingness. For the Simulated (N,C)
dataset, MICE and MIWAE are generally the best-performing

methods. At the 25% test missingness rate, the MIWAE impu-
tation method is competitive with MICE, sometimes out-
performing it. For MIMIC-III and Simulated (N), mean
imputation performs the worst, with GAIN found to generally

Fig. 4 Pooled and dataset-segregated ANOVA analysis. In these plots, we show the significant factors in the ANOVA analysis for the a pooled dataset
(n= 1050), b MIMIC-III dataset (n= 300), c NHSX COVID-19 dataset (n= 75), d Simulated (N) dataset (n= 300) and e Simulated (N,C) dataset
(n= 300). Note that we do not display for Breast Cancer, as the choice of the classifier is the only significant factor).
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Fig. 5 Sample-wise statistics for the MIMIC-III dataset with 25% train and test missingness rates. Results for a RMSE, b MAE and c R2 with n= 750 for
all boxplots. Note that for presentation purposes, the scales between plots are different. Whiskers extend to the extreme values, with outliers omitted that
are above 1.5 times the interquartile range from the median (horizontal line). Note that for presentation purposes, the scales between plots are different.

Fig. 6 The feature-wise statistics for the MIMIC-III dataset with 25% train and test missingness rates. Discrepancy scores for the a–c Kullback–Leibler,
d–f Kolmogorov–Smirnov and g, h Wasserstein methods. a, d, g are the minimum scores over all features, b, e, h are the median scores and c, f, i are the
maximum scores. Each boxplot consists of n= 210 datapoints. Whiskers extend to the extreme values, with outliers omitted that are above 1.5 times the
interquartile range from the median (horizontal line).
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perform similarly poorly whilst for Simulated (N,C) there is no
clear method which performs best.

Sliced Wasserstein distance ratio analysis. In Supplementary
Figs. 32–34 are the boxplots of the ratios of the distances from Jp
to Ip for the imputed data compared to the original data for the
MIMIC-III, Simulated (N) and Simulated (N,C) datasets,
respectively. Firstly, for MIMIC-III and Simulated (N) we see that
the MICE imputation method induces a much smaller distance
ratio than any other method whereas for Simulated (N,C) this is
true for both MICE and MIWAE. Secondly, we note that with an
increase in the train missingness rate, the ratio of the distances
remains largely consistent, however, with an increase in the test
missingness rate, we see a very considerable increase in the ratio.

Outlier analysis. It is important to understand how stable the
imputation methods are when imputation is repeated and also
whether the stochastic nature of the imputation methods can lead
to outlier imputed values for particular features. In Fig. 7 and the
Supplementary Figs. 24–29, we see that some of the imputation
methods can lead to distances with large variances, especially as
the missingness rates in the train and test sets increase. This
variance can result from either the random projections (in some
cases, the distributions match well and in others quite poorly) or
stochasticity in the imputation algorithm. We are keen to
understand the influence of each. In Fig. 8 and Supplementary
Fig. 3, we see that the MICE method performs consistently well
across all holdout and validation sets with no imputations above
the distance of 10−7 and at the threshold of 1.5 × 10−8, 90% of the
MICE imputations are above this distance. This demonstrates a
consistency of the MICE imputations, with most imputations at a
distance between 1.5 × 10−8 and 10−7 from the true values.

Link between imputation quality and downstream classifica-
tion performance. In Fig. 9 and Supplementary Figs. 30 and 31,
we plot the results for all class A, B and C imputation discrepancy
statistics against the AUC of the downstream classification task.
Our previous analysis has shown that the test missingness rate
has a large influence on both imputation quality and downstream
performance, so we display the correlations separately for 25%
and 50% missingness.

For the sample-wise metrics, we see a clear negative correlation
between discrepancy and classification AUC for the Simulated
(N) and Simulated (N,C) datasets but a near-zero, if slight
negative correlation, for the MIMIC-III dataset. For the feature-

wise and the proposed sliced Wasserstein discrepancy statistics,
we see a negative correlation for all measures in both the MIMIC-
III and Simulated (N) datasets but interestingly, it is not observed
for the Simulated (N,C) dataset.

In Fig. 10 and Supplementary Fig. 35, we give heatmaps
showing the correlations between the nine different discrepancy
statistics used for the MIMIC-III, Simulated (N) and Simulated
(N,C) datasets, respectively. Within each class of discrepancy
metric (for A, B and C), the measures are all correlated with one
another, however, the sample-wise metrics (class A) do not highly
correlate with any of the feature-wise (class B) or sliced
Wasserstein distances (class C). There is also a strong correlation
between most of the class B and C metrics.

Impact of imputation quality on interpretability. For each
classifier, we find that the best sliced Wasserstein distance ratio is
always obtained for data imputed with MICE. For NGBoost and
XGBoost, the worst distance ratio of the high-performing models
is for GAIN imputed data whereas, for Random Forest, this is for
mean imputed data. For each of the 25 features in the Simulated
(N) dataset, we calculate the absolute value of the skew for
the Shapley values and display these in Supplementary Fig. 4. For
the Random Forest classifier, we see that for 21/25 features, the
absolute skew of the Shapley values for the MICE imputation is
smaller than that of mean imputation. For NGBoost, we see a

Fig. 7 Distances derived from the Sliced Wasserstein distance distributions for the MIMIC-III dataset with 25% train and test missingness rates.
Results for a Kullback–Leibler, b Kolmogorov–Smirnoff and c Wasserstein distance. Each boxplot consists of n= 75 datapoints, and for presentation
purposes the scales between plots are different. Whiskers extend to the extreme values, with outliers omitted that are above 1.5 times the interquartile
range from the median (horizontal line).

Fig. 8 Identifying outliers in the imputations. The proportion of repeated
imputations that give outlier Wasserstein distances, at threshold 10−7, for
different imputation methods.

ARTICLE COMMUNICATIONS MEDICINE | https://doi.org/10.1038/s43856-023-00356-z

10 COMMUNICATIONS MEDICINE |           (2023) 3:139 | https://doi.org/10.1038/s43856-023-00356-z | www.nature.com/commsmed



smaller absolute skew in 19/25 features for MICE against GAIN.
Finally, for XGBoost, we see a smaller absolute skew in 15/25
features for MICE against GAIN. Supplementary Tables 7–9
contain the details of the model configurations used for this
analysis.

Discussion
In this paper, we have highlighted the importance for machine
learning and data science practitioners to reconsider the quality of
the imputed data which is used to train a classifier. Each of the
datasets considered in this study contains different missingness
rates and missingness types. In particular, the NHSX COVID-19
and Breast Cancer datasets have data that is missing not at ran-
dom, while the induced missingness to the MIMIC-III, Simulated
(N) and Simulated (N,C) datasets is missing completely at

random (MCAR). It was found that there is no particular clas-
sifier that outperforms all others across all of the datasets and
similarly, no particular imputation method leads to the best
downstream classification performance. Even for the datasets
with the same types of missingness, no optimal imputation or
classification method emerges. Importantly, however, models fit
to poorly imputed data give rise to misleading feature impor-
tances, demonstrating the adverse impact of poor imputation
quality on model interpretability. Any features judged as
important from those models are therefore compromised. This is
crucial to appreciate, especially where models are fit to clinical
data, as incorrect conclusions may be drawn about the influence
of particular features on patient outcomes. Overall, this suggests
that the quality of imputation does feed through to the down-
stream model interpretability, i.e., whilst classifiers may be able to

Fig. 9 Imputation discrepancy metrics for classes A, B and C against the downstream classification AUC value for MIMIC-III. a–c are the sample-wise
measures, d–f are the feature-wise distances and g–i are the sliced Wasserstein-derived distances. The y axes show the AUC values and the x-axes show
the a RMSE, b MAE, c R2, d, g Kullback–Leibler, e, h Kolmogorov–Smirnov, f–i 2-Wasserstein. Trend lines are shown for 25% and 50% test missingness
separately.
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achieve high performance in spite of poorly imputed data, they
are compromised downstream.

Interestingly, classification models built on data imputed using
mean imputation demonstrate the largest variance in the down-
stream performance, even though the imputed data is exactly the
same in each of the multiple imputations. This is likely due to the
large uncertainty introduced by mean imputation to each variable
compounding with stochastic algorithms.

Using ANOVA, we found that performance is most influenced
by the test missingness rate. This would suggest that when
deploying a trained model to a new dataset, it is of primary
importance to be conscious of the missingness rate of the new
data, as classifier performance is very sensitive to it. ANOVA also
highlights a minimal dependence of the downstream classification
performance on the imputation method chosen.

There is no accepted approach for evaluating the quality of an
imputation method. Typically, imputation methods are evaluated
using sample-wise discrepancy statistics such as RMSE, MAE and
R2, but this approach implicitly assumes that the aim of impu-
tation is to recover the true value of the missing data point, rather
than recreating the correct distribution. In our experiments, we
find that the sample-wise discrepancy scores are not sufficient to
assess the quality of the reconstruction of the distribution of
imputed values. In fact, for MSE, we have seen that it takes an
optimal value for imputations that give a very poor distribution
match. Using MSE to evaluate the imputation quality is only
statistically justified in the case of imputing data from a Gaussian
distribution (minimising MSE corresponds to maximising the
log-likelihood). Since the Gaussian assumption often doesn’t hold
in practice, MSE can be a very inaccurate measure of imputation
quality. Beyond sample-wise discrepancy scores, some studies
have considered the reconstruction quality of distributions for
datasets on a feature-by-feature basis. However, in this study, we
have shown how considering these marginal distributions alone is
not sufficient to understand how well the overall data distribution
has been reconstructed. As stated by van Buuren7, imputation is

not prediction. The goal of an imputation method is to recover
the correct distribution, rather than the exact value of each
missing feature. However, the metrics used in the literature
simply do not currently enforce this. In this paper, we introduced
a class of discrepancy statistics, based on the sliced Wasserstein
distance, which allows us to evaluate how well all features have
been reconstructed in a dataset.

Interestingly, although GAIN performs well in the sample-wise
discrepancy scores, we see poor performance in the discrepancy
when measured feature-wise and with our proposed class of sliced
Wasserstein distance-based scores. In fact, we find that the GAIN
imputation method tends to perform in line with mean imputa-
tion and gives a poor reconstruction of the underlying data dis-
tribution. It has been identified in ref. 45 that GAIN, which uses a
generative adversarial approach for training, tends to rely mostly
on the reconstruction error in the loss term (the mean square
error) and the adversarial term contributes in a minimal way. The
MICE imputation method has shown a clear dominance in
recreating the distribution of the datasets as a whole, echoing46

who find MICE outperforms machine learning-based imputation
methods. In both datasets for which it could be evaluated and
across all train and test missingness rates, it performs better than
the competitor imputation methods at replicating the data dis-
tribution. We note that MICE and MissForest are extremely
computationally expensive for high-dimensional data45 so may be
infeasible in some circumstances. In particular, MICE also suffers
from a key theoretical shortcoming, that it is ignorant of whether
joint distributions actually exist, but will produce imputations
regardless7 and has a tendency to crash for high-dimensional
non-continuous variables47.

When evaluating the ratio between the sliced Wasserstein
distance in the imputed data versus the original data, we found
that consistent with the earlier observations, an increased test
missingness rate leads to a large increase in the distance induced
by imputation. However, an increase in the development set
missingness rate leads to a minimal increase in the induced

Fig. 10 Correlations between discrepancy scores. Heatmap showing the correlation between all discrepancy metrics considered in this paper for the
MIMIC-III dataset. Correlations are computed using n= 30 datapoints.
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distance ratio. We found that MICE outperforms the other
imputation methods, inducing the smallest relative increase in
distance with minimal variance. It also gave highly consistent
imputation results, with minimal variance in the distances
between the imputed and original values. Performing multiple
imputations highlights that GAIN and MIWAE suffer from mode
collapse in some of the rounds of imputation and can fall into
outlying local minima, likely due to the highly non-convex pro-
blem they are solving. This is a problem common to all deep
neural network architectures and serves as a reminder, for
imputation methods, of the importance of performing multiple
imputations to overcome the risk of some poor-quality
imputations.

We find that it is not necessarily the best quality imputation
that leads to the best-performing classification method. This
observation could be explained by the fact that imputation does
not add any information that was not present in the dataset to
begin with. Therefore, a powerful classifier may be able to extract
all information relevant to the classification task regardless of the
imputation quality. Secondly, we conjecture that an inaccurate
imputation could in fact provide a form of regularisation for the
classifier. It has been shown that perturbing the development data
with a small amount of Gaussian noise is equivalent to L2
regularisation48 and can be beneficial to the performance in
supervised learning tasks. In the same spirit, an inaccurate
imputation method resulting in noisy imputed values could
provide a regularising effect beneficial to performance in the
downstream classification task. In addition, we observed that,
with fixed train missingness, an increase in the test missingness
leads to a large decrease in the performance of the classification
methods, likely due to the imputed values being more variable for
larger test missingness.

We also find that not only are the common discrepancy scores
used by the community, i.e., the sample-wise statistics (RMSE,
MAE, R2), uncorrelated from the distributional discrepancy
metrics (of classes B and C) but that they are also disconnected
from the downstream classification performance of the model.
This highlights how important it is to consider additional sta-
tistics when measuring imputation quality, not simply the
sample-wise statistics, as the distribution discrepancy scores
occupy a completely orthogonal space to the sample-wise ones.
Importantly, we find a correlation between the proposed class of
sliced Wasserstein discrepancy scores and the downstream model
performance suggesting that a link has been forged from the
imputed data to the downstream model performance. Given this,
we would suggest that instead of focusing on optimising perfor-
mance by considering the best combination of the imputation
method and classifier, attention should shift towards optimising
the imputation quality in terms of how well the distribution is
reconstructed.

In addition to the main aims of this paper, through this work,
we have also identified some issues that need the attention of the
imputation community, such as how categorical and ordinal
variables should be correctly imputed. For example, if a catego-
rical variable is one-hot-encoded then a valid imputation must be
in {0, 1}. However, most imputation methods will give a value in
the range [0, 1] and these must be post-processed. It is not clear
how this should be performed. Similarly, if a category with
multiple values is one-hot encoded, e.g., nationality, then only
one of these variables should equal one but no imputation
method enforces this. Issues were also identified and fixed, in the
public code releases of the GAIN and MIWAE imputation
methods and so, to improve the quality of future benchmarking
of imputation methods, we release our codebase in a GitLab
repository23. This allows for rapid computation of the results for

several imputation methods across incomplete datasets with data
preprocessing, partitioning and analysis, all built in. This should
serve as a sandbox for the development and fair evaluation, of
new imputation methods.

This study has been designed to highlight the importance of
considering the quality of the imputation for datasets which are
then used in downstream tasks, therefore there are several limita-
tions to this study. Firstly, we only focus on classification tasks as
these represent the majority of the problems encountered in
machine learning research applied to clinical data, i.e., predicting
death vs. survival or malignant vs. benign disease. It is our hope
that by highlighting the consequences for classification models of
using poorly imputed data, it will motivate the community to also
focus on this for other predictive models with single or multiple
outputs. Secondly, we do not aim to provide a fully exhaustive
empirical analysis of all imputation methods and classifiers as the
aim of this manuscript is to draw the reader’s attention to the
importance of measuring imputation quality before fitting models.

In conclusion, this study highlights how machine learning
classification models are compromised in numerous different
ways if fit to poorly imputed data. We also identify that existing
common approaches for measuring imputation quality are flawed
and propose to use a discrepancy measure derived from the sliced
Wasserstein distance. It is also our hope that by providing an
open-source codebase that standardises the imputation methods,
classification methods and analysis pipelines for determining the
imputation quality, future studies can build on this work to
consider different data types, missingness types, different out-
comes and other imputation/classification methods.

Data availability
The data that support the findings of this study are openly available for the simulated,
MIMIC-III and Breast Cancer datasets in our GitLab repository23. The NHSX COVID-
19 dataset is available from the originators upon completion of an approved request (see
https://nhsx.github.io/covid-chest-imaging-database/data-access). The MIMIC-III
dataset is available after completion of a training course at https://physionet.org/content/
mimic3-carevue/1.4/. The Breast Cancer dataset is freely available at https://www.
cbioportal.org/study/summary?id=breast_msk_2018. All code required to pre-process
the data and generate all Figures and Tables are also publicly shared23.

Code availability
Our GitLab repository23 contains all data and code used to generate the results in this
paper. Moreover, we provided a scheme of the whole code architecture in the GitLab
repository in Supplementary Fig. 36.
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