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SUMMARY
Epitranscriptomics represents a further layer of gene expression regulation. Specifically, N6-methyladeno-
sine (m6A) regulates RNA maturation, stability, degradation, and translation. Regarding microRNAs (miR-
NAs), while it has been reported that m6A impacts their biogenesis, the functional effects on mature miR-
NAs remain unclear. Here, we show that m6A modification on specific miRNAs weakens their coupling to
AGO2, impairs their function on target mRNAs, determines their delivery into extracellular vesicles (EVs),
and provides functional information to receiving cells. Mechanistically, the intracellular functional impair-
ment is caused by m6A-mediated inhibition of AGO2/miRNA interaction, the EV loading is favored by
m6A-mediated recognition by the RNA-binding protein (RBP) hnRNPA2B1, and the EV-miRNA function
in the receiving cell requires their FTO-mediated demethylation. Consequently, cells express specific miR-
NAs that do not impact endogenous transcripts but provide regulatory information for cell-to-cell commu-
nication. This highlights that a further level of complexity should be considered when relating cellular dy-
namics to specific miRNAs.
INTRODUCTION

RNA modification, also known as epitranscriptomics, is an

important layer of gene expression regulation that impacts mul-

tiple important events in RNA metabolism and function, and it

has been prevalently observed on the most abundant RNAs

(small nuclear RNAs, tRNAs, and rRNAs). More recently, thanks

to the advancements in detection techniques, several modifi-

cations have also been characterized on less abundant non-

coding RNAs (ncRNAs), including microRNAs, Piwi-interacting

RNAs, and long intergenic non-coding RNAs.1–3 In mRNAs,

RNA modifications have been demonstrated to affect stability,

splicing, export, decay, and translation, while, with respect to

ncRNAs, they have been mainly associated with microRNA

(miRNA) biogenesis4–6 and ncRNA interaction with RNA-bind-

ing proteins (RBPs), impacting their function in the chromatin

context.7–9 The methylation status of mature miRNAs has
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been explored only partially, and its functional significance re-

mains speculative.2 Here, we address these last issues. Specif-

ically, the dynamic and reversible N6-methyladenosine (m6A),

the addition of a methyl group to carbon 6 of adenosine,

is the most abundant internal modification in mRNAs and

the best characterized10–12; it is catalyzed by the methyltrans-

ferase-like 3 (METTL3) subunit of the METTL3/METTL14

complex,13 whose enrichment and sequence specificity on

RNA targets has been characterized in detail,11,13–17 and

decoded by reader proteins (e.g., YT homology family mem-

bers18 and heterogeneous nuclear ribonucleoprotein [hnRNP]

A2B14) and removed by the erasers (e.g., ALKBH519 and

fat mass and obesity-related [FTO]20). Notably, while m6A

methylation of mRNAs is well dissected, the impact of this

methylation on the function of other RNA classes needs to be

explored in depth. Here, we combine transcriptome-wide ana-

lyses, miRNA-specific biochemical assays, and functional
une 25, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
NC license (http://creativecommons.org/licenses/by-nc/4.0/).
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experiments to show that these writers, readers, and erasers

influence intracellular miRNA function and extracellular miRNA

destiny, favoring their loading in extracellular vesicles (EVs) and

mediating miRNA function in recipient cells.

RESULTS

Mature miRNAs are m6A modified in a tissue-specific
manner
As a first step to gather insights into m6A methylation on mature

miRNAs, m6A-methylated RNA was immunoprecipitated from

human METTL3-expressing21 hepatoma HepG2 cells and

sequenced in methylated RNA immunoprecipitation sequencing

(MeRIP-seq) assays. To increase the robustness of the analysis,

these data were compared with those obtained from HepG2

METTL3-silenced cells (shMETTL3; Figures S1A and S1B;

Table S1). As further evidence of METTL3 silencing, the expres-

sion of Cyclin G1 (Figure S1C) and cellular proliferation (Fig-

ure S1D) were found to be attenuated, in accordance with Bar-

bieri et al.22; moreover, specific methylated mRNAs23 provided

a further control of immunoprecipitation (IP) (Figure S1E).

Notably, among the sequenced miRNAs, several (i.e., 236 an-

notated in miRbase 22.1,24 119 of which are classified as high

confidence in miRbase and/or are also present in the miRGe-

neDB 2.1 database25) display significant levels of m6Amodifica-

tion (log2 fold change [FC] and adjusted p-value for the IP/immu-

noglobulin G [IgG] comparison p > 0 and p < 0.05, respectively;

log2 FC for the IP/input comparison p > 0) and are not enriched in

the IP fraction when METTL3 is silenced (shMETTL3_IP vs.

shMETTL3 IgG adjusted pR 0.05 and/or log2 FC < 0) (Figure 1A,

left; Table S1).

The occurrence in the immunoprecipitated (IPed) miRNA

sets of previously characterized motifs associated with m6A

sites (i.e., RACH, RRACH, DRACH, and METTL3;9,11,14–17

Table S1) was evaluated as compared to two controls sets,

one composed of non-IPed miRNAs with expression levels

within the range of the IPed ones and the other obtained by

randomly shuffling the sequences of the IPed miRNAs. As

shown in Figure 1B, RACH, RRACH, and DRACH motifs (but

not the METTL3 one) are significantly enriched in the IPed
Figure 1. miRNAs are differentially m6A modified

(A) Left: scatterplot showing the average abundance and the log2 FC values for e

input comparison. The red dots correspond to miRNAs with IP/input log2 FC > 0 th

shCTR HepG2 cells but not in the IP/IgG comparison of shMETTL3 HepG2 cells.

the average expression values in log2-transformed counts per million reads. For e

with 2 replicates per condition tested. Right: list of miRNAs selected from MeRIP

(B) Left: barplots showing the fraction of immunoprecipitated (IPed)miRNAs and c

p values reported in the plot were calculated using Fisher’s exact test to evaluat

enrichment was assessed both for the complete set of IPed miRNAs (left) and fo

(C) MeRIP-qPCR analysis on 14 miRNAs (301b-5p, 199a-5p, and 1180-3p were n

independent experiments and are represented as % input.

(D) MazF-qPCR levels on the indicated miRNAs. The unmethylated miR-1180-3p

SEM of three independent experiments.

(E) MeRIP-qPCR analysis on miRNAs from human Hep3B cells. Data are shown as

(F) MeRIP-qPCR analysis on miRNAs from mouse livers. Data are relative to six

(G) MeRIP-qPCR analysis on miRNAs from murine BW1J cells. Data are relative

(F and G) The unmethylated miR-2861, devoid of As, was used as negative cont

(C and E–G) Data are considered statistically significant with p < 0.05 (two-tailed

p value: * < 0.05; ** < 0.01; *** < 0.001.
miRNA set, with the RACH motif being found in �31% of the

IPed miRNAs and in �33% of the IPed miRNA subset

composed of 119 high-confidence (HC) miRNAs.

Moreover, the percentage of methylation of specific miR-

NAs (Figure 1A, right) was evaluated by means of qPCR (Fig-

ure 1C); here, estimation of the methylated miRNA fraction

was performed by the ratio of IP/input (% input), allowing us

to quantify the fraction of each miRNA species that is methyl-

ated with respect to the amount of miRNA expressed in the

cell. These analyses allowed us to distinguish among high

(miRs 6767-5p, 548e-3p, 215-5p, 4786-5p, 3619-3p, and the

liver specific 122-5p), low (miRs 3074-5p, 374b-5p, let7e-5p

3692-5p, and 28-5p) and non-methylated miRNAs (miRs

301b-3p, 199a-5p, and 1180-3p, with the last not containing

As). As a further proof of concept of methylation, we made

use of the MazF assay, consisting of m6A-sensitive RNA

endonuclease digestion (where the ACA sequences are cut

if not methylated).

Overall, this analysis confirms MeRIP qPCR data in an anti-

body-independent assay. The three miRNAs 122-5p, 6767-5p,

and 215-5p bear an ACA sequence and, being highly methyl-

ated, are not cleaved; the miRNAs 374b-5p and 28-5p bear an

ACA sequence and, being lowly methylated, are partially

cleaved; and 1180-3p (no A bases, negative control) is not cut

by MazF (Figure 1D).

The MeRIP qPCR analysis for the samemiRNAs was also per-

formed on the human hepatoma cell line Hep3B, thus high-

lighting different levels of methylation (Figure 1E). Finally,

MeRIP qPCR analysis of miRNAs selected for the presence of

themethylation motifs (Table S2) was performed onmurine livers

and murine BW1J cells (Figures 1F and 1G, respectively). As for

the two human cell lines, murine cells highlighted different levels

of methylation for specific miRNAs, allowing us to conclude that

distinct cells show a cell-specific methylation pattern. The

miRNA methylation pattern is not simply a reflection of a higher

expression, as indicated by these specific miRNAs; the highly

expressed miRNAs let-7e-5p, 1180-3p, and 374b-5p are not

highly methylated, and, vice versa, the highly methylated miR-

NAs 6767-5p, 548e-3p, 215-5p, 4786-5p, 3619-3p, and 122-

5p are not highly expressed (Figure S2A).
ach miRNA, as calculated through limma analysis of the HepG2 MeRIP-seq IP/

at are enriched (log2 FC > 0 and adjusted p < 0.05) in the IP/IgG comparison of

Labeled miRNAs were analyzed in the reported experiments. The x axis shows

ach miRNA, the average expression was calculated across all samples (n = 4),

-seq analysis.

ontrols (non-IPed and shuffledmiRNAs) that contain at least onem6Amotif. The

e the differences in proportions between IPed miRNAs and control sets. Motif

r the HC ones (right).

egative controls) from HepG2 cells. Data are shown as the mean ± SEM of six

, devoid of As, was used as a negative control. Data are shown as the mean ±

the mean ± SEM of six independent experiments and are reported as% input.

independent experiments and are shown as in (E).

to six independent experiments and are shown as in (E).

rol.

Mann-Whitney paired test).
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Figure 2. m6A consensus sequences in the human and murine miRNome

(A–D) Barplots showing the fraction of mature miRNAs and shuffled miRNA sequences that contain at least one m6Amotif. The p values reported in the plot were

calculated using Fisher’s exact test to evaluate the differences in proportions between miRNAs and controls. Motif enrichment was assessed for the complete

(A) and HC (B) sets of human mature miRNAs as well as for the complete (C) and HC (D) sets of murine mature miRNAs.
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Notably, we observed a substantial enrichment of m6A

consensus motifs within the full human mature miRNA set (Fig-

ure 2A; Table S2); e.g., the RACHmotif is present in�32% of hu-

man mature miRNAs. This enrichment remains consistent even

when restricting the motif enrichment analysis to the human

HC miRNAs (Figure 2B). A similar trend was also observed for

murine miRNAs (Figures 2C and 2D; Table S2).

These findings suggest that many miRNAs could, in principle,

be methylated in a dynamic manner in different cell types.
4 Cell Reports 43, 114369, June 25, 2024
Mature miRNAs are functionally impaired by m6A
modification
These findings prompted us to address the impact of m6A on

miRNA function. Since METTL3 silencing impacts gene expres-

sion at several levels, specific evidence on miRNA function was

gathered by means of a selective approach. Luciferase vectors

(Figure 3A, left) containing the 30 UTR of mRNAs targeted by

the miRs 122-5p, 6767-5p, 548e-3p, 301b-5p, and 1180-3p

(with the last two as negative controls) were expressed in short
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hairpin control (shCTR) and shMETTL3 HepG2 cells. Notably,

METTL3 silencing lowered the luciferase activity for the highly

methylated miR-122-5p, 6767-5p, and 548e-3p, indicating that

miRNA function is enhanced upon METTL3 silencing (Figure 3A,

right); potential effects of METTL3 depletion directly on the 30

UTR target were estimated by luciferase assay performed under

the same experimental conditions in the presence of the specific

antagomiR targeting miR122-5p. As shown in Figure S2B, the

result indicates a significant rescue of luciferase activity caused

by the miRNA silencing, highlighting that m6A modification im-

pacts miRNA function more than the mRNA target.

Next, we wondered whether the regulatory effect of m6A on

miRNA function we observe may derive from m6A affecting the

miRNA/AGO2 association; indeed, the impact of methylation

on AGO2-miRNA association, while previously proposed by bio-

informatic prediction on miR17-5p and let-7a-5p,2 has not been

previously characterized. To test this hypothetic mechanism, an

in vitro analysis by RNA pull-down was performed onmethylated

miRs 6767-5p and 122-5p, which showed lower association with

AGO2 with respect to the unmethylated form (Figure 3B). RNA IP

of AGO2-bound RNA followed by qPCR validation highlighted an

inverse correlation between miRNA methylation levels and

AGO2 binding, thus indicating that methylation impairs miRNA/

RNA-induced silencing complex (RISC) interaction (Figure 3C).

Notably, METTL3 silencing (Figures S1A and S1B) significantly

restores interaction with AGO2 for all highly methylated miRNAs

analyzed (Figure 3C) without impairing AGO2 expression or IP ef-

ficiency (Figures S3A and S3B). These data demonstrate that

miRNA function is impaired by m6A modification and that

METTL3 silencing enhances miRNA activity by restoring miRNA

interaction with AGO2.

Overall, these data indicate that several mature miRNAs are

targets of methylation and that the highly m6A-modified miRNA

fraction is functionally impaired. We next investigated the

conceivable hypothesis that methylation influenced miRNA

compartmentalization.
m6A modification influences miRNA extracellular
compartmentalization
Previous findings have unveiled cellular machineries capable of

specifically loading EVs with specific miRNAs by means of spe-

cific RBPs (i.e., SYNCRIP,26 A2B1,27 FUS, and ALY28). Here, we

asked whether m6A modification may also have an impact on

miRNA extracellular compartmentalization.

Firstly, we verified, by RNA dot blot and native mass spec-

trometry, whether m6A-modified miRNAs were significantly en-

riched within purified EVs (Figures S4A–S4D). In order to esti-
Figure 3. miRNAs are functionally impaired by m6A modification

(A) Left: luciferase vectors used in luciferase assays. Right: luciferase relative act

containing a 30 UTR targeted by miR-122-5p, miR-6767-5p, miR-548e-3p, miR-3

shown as the mean ± SEM of five independent experiments.

(B) RNA pull-down with the methylated and unmethylated miR-6767-5p and miR

independent experiments.

(C) CLIP of AGO2 protein in shCTR and shMETTL3 HepG2 cells on differentially

experiments and are represented as% input. miR301b-5p, 199a-5p, and 1180-3p

(two-tailed Mann-Whitney paired test). p value: * < 0.05; ** < 0.01; *** < 0.001.
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mate specific miRNAs’ methylation, several were tested by

meRIP-qPCR analysis.

As shown in Figure 4A, m6A modification levels of specific

miRNAs in EVs are higher than in the intracellular compartment,

and METTL3 silencing results in a reduction in their loading in

EVs (Figure 4B). Furthermore, miRNAs found to be unmethylated

in the cellular compartment (miR 301b-5p and 199a-5p) are

found to be methylated in EVs. This depends on METTL3 cata-

lytic activity, as demonstrated by the effect of the METTL3-spe-

cific inhibitor STM245723 (Figure 4C). Overall, these data indicate

that m6A is a functional hallmark of EV export of a subset of

miRNAs.

m6A modification influences RNA binding protein-
mediated miRNA loading in the EVs
To define a molecular rationale for this observation, we explored

whether m6A methylation may regulate one of the known path-

ways involved in miRNA loading into EVs. We focused on

hnRNPA2B1 (A2B1), which has been shown to recognize m6A

methylation4,29 and is involved in miRNA sorting into EVs.27

First, we observed that A2B1 knockdown (Figure S5A) impairs

miRNA loading into EVs, thus confirming A2B1 as an important

player in this process (Figure 5A). RNA pull-down showed that

A2B1 preferentially associates with methylated rather than with

unmodified miR-122-5p (Figure 5B), and this in vitro evidence

has been confirmed in HepG2 cells by A2B1 crosslinking RNA

IP (CLIP) followed by qPCR analysis of miRNAs selected through

the next-generation sequencing approach, which allowed us to

conclude that A2B1 direct interaction with specific miRNAs is

influenced by METTL3 silencing (Figure 5C). Therefore, A2B1’s

ability to bind to miRNAs in a sequence-specific manner is

here extended to its ability to act as an m6A reader. In addition,

the methylation-dependent A2B1 miRNA-binding and loading

functions require its SUMOylation (in line with Villarroya-Beltri

et al.27), as demonstrated by treatment with the SUMOylation in-

hibitor ML-792 (Figures S5B and S5C).

Taken together, these data indicate that m6A miRNA modifi-

cation plays a dual role: it impairs intracellular function and influ-

ences extracellular compartmentalization in EVs. Molecular

players of these two outcomes were identified here in AGO2

and A2B1, respectively. Conceivably, other RBPs may parallel

the A2B1 function identified here in dependence on m6A.

The regulatory layer described here implies that, in future ob-

servations, together with miRNA expression levels, their effec-

tive intracellular functionality and/or extracellular delivery as im-

plemented by m6A editing should be taken into account. This

scenario begets a fresh question: do receiving cells modify EV-

miRNA methylation and restore their gene regulation potential?
ivity in shCTR and shMETTL3 HepG2 cells transfected with luciferase vectors

01b-5p, and miR-1180-3p (with the last used as a negative control). Data are

122-5p, followed by western blot for AGO2. Data are representative of three

methylated miRNAs. Data are shown as the mean ± SEM of six independent

are negative controls. Data are considered statistically significant with p < 0.05
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EV-miRNA function on recipient cells requires
demethylation
To establish whether the m6A-regulated EV-transported miRNAs

are functional in the recipient cells, we first compared the func-

tional properties of the EVs derived from producing shCTR and

shMETTL3 HepG2 cells on recipient murine hepatocytes.30

As shown in Table S3, mRNA sequencing of recipient cells pro-

vides evidence of a broad EV-mediated mRNA steady-state-

level perturbation. Then we focused on specific targets of the

high methylated miRNAs and evaluated the level of atp5o and

eny2 mRNAs, targeted by miR-215-5p (which has a conserved

sequence in human andmouse), using qPCR. The results highlight

that the mRNAs are downregulated in response to a treatment

with shCTR-derived EVs, while treatment with shMETTL3-derived

EVs has a lower effect (Figure 6A). Further proof of concept that

such an effect is EV dependent and highmethylatedmiRNAmedi-

ated has been gathered by evaluation of the luciferase activity of

five episomal reporter vectors as in Figure 3A. Notably, as shown

in Figure 6B, the EVs produced by shCTR and shMETTL3 cells

have different effects, and, specifically, only shCTR EVs downre-

gulate luciferase activity in recipient cells.

To gather direct insight into how EV-delivered miRNA function

changes in relation with the methylation status, EVs from

shCTR HepG2 cells were tested in recipient murine hepatocytes

where the demethylase FTO (both nuclear and cytoplasmic in

this cell line; Figure S6A) was pharmacologically inhibited

(Figures 6C and S6B). Notably, FTO inhibition impacts the EV-

mediated downregulation of the same mRNAs, as demonstrated

by messenger RNA sequencing (Figure 6D and File S3). Further-

more, the effect of FTO impairment was tested through a lucif-

erase assay; as shown in Figure 6E, FTO inhibition counteracts

EV-delivered miRNA function in recipient mouse hepatocytes.

This evidence was formally proven by an equivalent analysis per-

formed in commercial primary bronchial epithelial (HBEpC) recip-

ient cells chosen for not expressing miRNA 122-5p. Here EV-

delivered 122-5p function requires endogenous FTO activity,

since its inhibition impairs both miRNA/AGO2 interaction and

target downregulation. This is shown in Figures 6F and 6G, where

AGO2 binding is assessed by CLIP assay and miRNA function by

luciferase assay.

These analyses formally demonstrated that EV-delivered

miRNA function reacquisition in recipient cells requires endoge-

nous FTO activity.

DISCUSSION

This evidence highlights that epitranscriptomic miRNAmodifica-

tion impacts both cell-autonomous gene expression regulation

and cell-to-cell communication.
Figure 4. m6A-modification mediates miRNA loading in the EV compa

(A) Comparison between methylation status of the indicated mature miRNAs in

HepG2 cells.

(B) EV miRNA levels in shCTR and shMETTL3 HepG2 cells analyzed by RT-qPCR

intracellular compartment (shCTR arbitrary value 1). Results are shown as the m

(C) EVmiRNA levels uponMETTL3 inhibitor (STM2457) treatment, analyzed by RT

the intracellular compartment. Results are shown as the mean ± SEM of six indep

(two-tailed Mann-Whitney paired test). p value: * < 0.05; ** < 0.01; *** < 0.001.
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Data provide evidence that (1) mature miRNAs are modified in

a cell-specific manner; (2) m6A modification impairs the interac-

tion between the methylated miRNA fraction and AGO2 and, in

turn, their function; (3) mature miRNA m6A modification en-

hances their extracellular delivery through the EV loader A2B1;

and (4) recipient cells utilize EV-miRNA informational content in

dependence on the FTO demethylation activity.

m6A modification inhibits intermolecular dsRNA forma-

tion31,32; this is sufficient to make the RNA accessible to single

strand-binding partners,33 thus impacting RNA function. With

respect to miRNA m6A modification, previous data have high-

lighted that it impacts their biogenesis; indeed, Alarcon et al.

have reported that METTL3 depletion results in an upregulation

of several primary microRNAs, being detrimental for their pro-

cessing.5 Moreover, m6A has been characterized to play a role

in mRNA translation impairment,2,5 and it has been proposed

that m6A-mediated structural changes may impact the stability

of the RISC complex.2

Here, microRNA sequencing analyses allowed us to describe,

in HepG2 cells, several highly, lowly, and non-methylated miR-

NAs that are modified in a distinct manner in a second hepatoma

cell line, Hep3B. Similar observations suggesting a cell-specific

regulation of the miRNA methylation profile have been made in

mouse liver and hepatoma cells. The miRNAs analyzed here

share two previously defined consensus sequences (RACH

and METTL3) that are also found significantly in human (32%

and 21%, respectively) and murine (32% and 18%, respectively)

miRNome fractions.

These observations (1) extend the occurrence of the methyl-

ation to a broad repertoire of miRNAs and (2) suggest that

many miRNAs have the potential to be methylated in a dynamic

manner in different cell types.

The impact of methylation on AGO2-miRNA association has

not been previously characterized in depth. A structural anal-

ysis34,35 has indicated that the miRNA/AGO2 interaction is a

dynamic multi-step process, and, in this frame, it appears

conceivable that m6A could influence miRNA conformation

and, in turn, AGO2 binding. Moreover, Konno et al. predicted,

by a molecular mechanics approach, that, for miRNA 17-5p

and let-7a-5p, m6A causes a structural change of the RISC

complex due to variation in the binding interaction between

AGO2 and these miRNAs.2 Here, data show that the m6A-

dependent functional dampening of miRNA regulation is medi-

ated by an impairment of its association with the key adaptor

protein of the silencing complex.

Indeed, a CLIP analysis demonstrated that the interaction be-

tween six miRNAs (high methylated in this cellular model) and

AGO2 occurs only in response to METTL3 silencing. Moreover,

in vitro RNA pull-down with fully methylated and non-methylated
rtment

the intracellular (cell) and EV compartment (EVs) by MeRIP qPCR analysis on

. Data are expressed as ratio of miRNA expression in EVs with respect to the

ean ± SEM of six independent experiments.

-qPCR. Data are expressed as ratio of miRNA expression in EVs with respect to

endent experiments. Data are considered statistically significant with p < 0.05
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miR122-5p and miR6767-5p clearly shows that the methylation

interferes with AGO2/miRNA interaction.

Notably, while miRNAs’ expression is nowadays considered a

diagnostic functional biomarker,36 these findings highlight the

need of an in-depth analysis of the miRNAs’ cell-specific epi-

transcriptomic modifications. To address the paradox of miRNA

expression related to their functional inhibition, we investigated

the hypothesis that m6A modification influenced miRNA loading

in EVs.

The evaluation of miRNA methylation level in cells vs. EVs ob-

tained by MeRIP and native mass spectrometry highlighted an

enrichment of themethylatedmiRNA fraction in EVs. Furthermore,

a direct correlation between miRNA methylation and EV loading

hasbeenexploredbyagenetic (METTL3silencing)andpharmaco-

logic (STM2457METTL3 inhibitor) approach.miRNA EV loading is

known to takeadvantageofmultiplepathways; to shed light on the

m6A-dependentmechanism ofmiRNAEV loading, we focused on

the regulatory rolemediatedby theRBPA2B1.Weanalyzed theef-

fect of A2B1 silencing in our cellular model, confirming its loading

role. More interesting is that we found thatMETTL3 silencing influ-

enced A2B1/miRNAs interaction; specifically, while for somemiR-

NAs, this binding appears to be independent from methylation

(conceivably being only sequence dependent), for others, deme-

thylation reduces A2B1 recruitment.

Together, these data indicate that m6A impairs AGO2/miRNA

interaction and, therefore, intracellular gene regulation and influ-

ences A2B1-mediated miRNA EV compartmentalization. This

additional mechanism does not rule out that A2B1 loading may

be also m6A independent and that m6A-dependent loading

may be paralleled by an effect of m6A methylation on other

RBP-dependent mechanisms of miRNA retention/export. There-

fore, m6A should also be taken into account when considering

the relation between the miRNA levels and their intracellular

gene regulation potential and/or their export to target cells.

Finally, the gene expression and luciferase analysis demon-

strated that EV-delivered methylated miRNAs are functional in

recipient cells and that they require endogenous FTO-mediated

demethylation for both AGO2 recruitment and function on their

targets. This extends the previously described role of erasers

(e.g., FTO) to one of mediators of cell-to-cell communication,

conceivably implying a demethylation stepwithin the EV internal-

ization route. Of note, despite tumultuous literature reporting EV

miRNA-mediated impact on physiological and pathological pro-

cesses, several crucial aspects of the molecular mechanisms al-

lowing miRNAs to exert their function in receiving cells (e.g., how

much miRNA is delivered and how miRNAs reassociate with Ar-

gonaute protein) remain not fully understood; their comprehen-

sion will enhance the EV translational potential.

Overall, these data provide evidence of an epitranscriptomic

regulatory mechanism that distributes the miRNA function be-
Figure 5. m6A-modification mediates A2B1-dependent miRNA loading

(A) EV miRNA levels in shCTR and shA2B1 HepG2 cells, analyzed by RT-qPCR.

(B) RNA pull-down with the unmethylated and methylated miR122-5p (miR122

densitometric analysis (right) for A2B1 signals. Data are representative of four in

(C) CLIP of A2B1 protein in shCTR and shMETTL3 HepG2 cells. Data are shown a

input.

(A and C) Data are considered statistically significant with p < 0.05 (two-tailed M
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tween intracellular and cell-to-cell communication, allowing pro-

ducing cells to restrict functional effects to target cells.

These observations, made in specific experimental systems,

shall conceivably be important for the RNA biology community

aswell as for medical researchers currently investigating the infor-

mational role of EVs in cell-to-cell communication and considering

them as a promising tool for RNA therapy.

This thought is supported by amotif search analysis onmature

miRNAs that indicated that a share of them bearmethylationmo-

tifs; this ensemble could, in principle, be methylated in different

cell types and under pathophysiological conditions, thus dynam-

ically impacting cell-autonomous vs. multicellular regulatory

pathways.

Limitations of the study
The observation that m6A modification is cell specific and is not

dependent on the relative expression levels of each miRNA sug-

gests regulatory pathways as yet unaddressed. Moreover, in this

study, as for the multitude of reports on EV-mediated miRNA

function in recipient cells, no evidence of the molecular machin-

ery promoting miRNA/RISC reassociation in receiving cells is

provided. Similarly, the FTO activity on methylated miRNAs is

only deduced from the use of inhibitors, and no evidence of its

cellular localization is provided.
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Antibodies

m6A antibody Synaptic System Cat # 202 003; RRID:AB_2279214

Normal Rabbit IgG Millipore Cat # 12-370; RRID:AB_145841

Anti-METTL3 antibody Abcam Cat # 195352; RRID:AB_2721254

Anti-hnRNP A2B1 antibody Abcam Cat # Ab31645; RRID:AB_732978

Anti-Glyceraldehyde-3-Phosphate

Dehydrogenase

Millipore Cat # MAB-374; RRID:AB_2107445

Anti Mouse Ago2 Wako Cat # 018-22021; RRID:AB_2096310

Goat Anti-Rabbit IgG (H + L)-HRP Conjugate Bio-Rad Laboratories Cat # 172-1019; RRID:AB_11125143

Goat Anti-Mouse IgG (H + L)-HRP Conjugate Bio-Rad Laboratories Cat # 170-6516; RRID:AB_11125547

Normal Mouse IgG Millipore Cat # 12-371; RRID:AB_145840

Anti-CD9 Antibody Millipore Cat # CBL 162; RRID:AB_2075914

CD81 Antibody Santa-Cruz Biotechnology Cat # sc-166029; RRID:AB_2275892

Anti-LAMP1 antibody Abcam Cat # Ab25630; RRID:AB_470708

Calnexin Antibody Novus Biologicals Cat # NB100-1965; RRID:AB_10002123

Fatso (C-3) Santa Cruz Biotechnology Cat # sc-271713; RRID:AB_10707817

Chemicals, peptides, and recombinant proteins

Dimethyl sulfoxide Sigma Cat #D2650-5X10MG

Fetal Bovine Serum Gibco Cat # 10270

DMEM Gibco Cat # 21969-035

RPMI-1640 Gibco Cat # 31870-025

EGF Peprotech Cat # AF-100-15-1MG

IGFII Peprotech Cat # 100-12-100UG

Insulin Merck Cat #M376497001

Penicillin/Streptomycin Euroclone Cat # ECB3001D

L-Glutamine Euroclone Cat # ECB3000D

Collagen from rat tail Life Technologies Cat # A1048301

Bronchial tracheal epithelial growth medium Sigma-Aldrich Cat # 511/500

FB23-2 MedChemExpress Cat # HY-127103

STM2457 MedChemExpress Cat # HY-134836

Doxyciclin Sigma-Aldrich Cat #D9891

Tris Sigma Cat #T1503-5KG

NaCl Carlo Erba Cat # 479687

NP-40 Fluka Cat # 74385

EDTA Carlo Erba Cat # 405463

SDS Fisher Bioreagents Cat # BP166-500

DynabeadsTM Protein G Invitrogen Cat # 100040

DynabeadsTM Protein A Invitrogen Cat # 100020

Bovine Serum Albumin Promega Cat #R396E

Chloroform Carlo erba Cat # 438601

Qiazol Qiagen Cat # 79306

Glycogen Sigma-Aldrich Cat #G8751

Sodium Acetate Invitrogen Cat # AM9740

Ethanol Carlo Erba Cat # 414605

InterferaseTM -MazF enzyme Takara Cat # 2415A
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Lipofectamine LTX Reagent Thermo Fisher Scientific Cat # 15338100

FuGENE� HD Transfection Reagent Promega Cat #E2311

DynabeadsTM M-280 Streptavidin Thermo Fisher Cat # 11205D

KCl Carlo Erba Cat # 471177

MgCl2 Carlo Erba Cat # 459337

DTT Thermo Fisher Scientific Cat #R0861

EGTA Fluka Cat # 03778

Glycerol Carlo Erba Cat # 453752

RNAse inhibitor Promega Cat #N261B

Leupeptin ThermoFisher Cat # 78435

Aprotinin Sigma Cat # A4529

PMSF Sigma Cat #P76-26

Sodium Orthovanadate Sigma Cat #S6508

Yeast tRNA Life Technologies Cat # 15401011

Laemli Alfa Aesar Cat #J61337

Triton X-100 Auros Organics Cat # 327372500

Acrylamide Bio-Rad Laboratories Cat # 1610148

APS Sigma Cat # A-7460

Temed Sigma Cat # 203-744-6

Nitrocellulose membrane Bio-Rad Laboratories Cat # 1620115

Nylon Membrane Amersham Cat # RPN.203N

Glycine Fisher Bioreagents Cat # BP381-5

Methanol Merck Cat # 32213-2,5L-M

Tween 20 Merck Cat # 8.22184.0500

Ponceau Sigma Cat #P7170

Nonfat-dried milk PanReac AppliChem Cat # A0830,0500

PageRulerTM Plus Prestained Protein Ladder Thermo Scientific Cat # 26619

ECL Bio-Rad Laboratories Cat # 1705062

Spike-In NORGEN Cat # 59000

GoTaq qPCR MasterMix Promega Cat # A600A

Formamide Sigma Cat # F-9037

Formaldehyde AppliChem Cat # A0877,0250

Methylene blue Sigma Cat #M9140-25G

PBS Euroclone Cat # ECB4004L

DAPI ThermoFisher Scientific Cat # 62248

Critical commercial assays

Look-out Mycoplasma PCR Detection Kit Merck Cat # MP0035

NEBNext Ultra II Directional

RNA Library Prep kit

New England Biolabs Cat #E7760L

NEXTFLEX Small RNA Seq Kit v3 Bioo Scientific Cat # 5132-05

Dual-Luciferase� Reporter Assay System Promega Cat #E1910

CellTiter 96� AQueous One Solution

Cell Proliferation Assay

Promega Cat #G3580

ReliaPrepTM RNA Miniprep Systems Promega Cat #Z6112

iScriptTM cDNA Synthesis Kit Bio-Rad Laboratories Cat # 1708891

miRNeasy Mini Kit Qiagen Cat # 1038703

RNeasy MinElute Cleanup Kit Qiagen Cat # 74204

mistiCq Sigma-Aldrich Cat # MIRRT-100RXN
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Deposited data

RNA and small RNA-sequencing This paper Zenodo

(https://zenodo.org/deposit/7594655)

Experimental models: Cell lines

HepG2 ATCC N/A

HepG2 shCTR this paper N/A

HepG2 shMETTL3 this paper N/A

Hep3B ATCC N/A

Bw1J ATCC N/A

D3 https://doi.org/10.1093/emboj/16.3.495 N/A

HBEpC ATCC N/A

Oligonucleotides

Primers for miRNA expression

are listed in Table S1

This paper N/A

Primers for gene expression

analyses are listed in Table S2

This paper N/A

Recombinant DNA

pLKOTet-On Lentiviral shRNA

clones (shMETTL3)

Dharmacon Cat # TRCN0000289812

pLKOTet-On Lentiviral shRNA

clones (Non-Target shRNA Control)

Dharmacon Cat # SHC202 TRC2

pmirGLO Dual-Luciferase miRNA

Target Expression Vector

Promega Cat #E1330

Software and algorithms

ImageJ/FiJI NIH Schindelin et al.37 https://imagej.net/software/fiji/

Prism 9 GraphPad https://www.graphpad.com/ N/A

ChemiDoc Imaging System Bio-Rad Cat# 12003153

Image Lab Software Bio-Rad Cat# 12012931

FastQC tool N/A v0.11.8

miRBase https://doi.org/10.1093/nar/gkq1027 Release 22.

cutadapt https://doi.org/10.14806/ej.17.1.200 v4.1

Bowtie https://doi.org/10.1186/gb-2009-10-3-r25 v1.3.1

Samtools https://doi.org/10.1093/gigascience/giab008 v1.3.1

limma R package https://doi.org/10.1093/nar/gkv007 v3.54.0

miRGeneDB https://doi.org/10.1093/nar/gkab1101 2.1

UniversalMotif R package https://doi.org/10.18129/B9.bioc.universalmotif 1.20.0.

Python N/A v3.8.5

FastQC tool N/A v0.11.8

STAR https://doi.org/10.1093/bioinformatics/bts635 v2.7.0e

Gencode N/A release M30

RSEM https://doi.org/10.1186/1471-2105-12-323 v1.3.

tximport package N/A v1.12.3

DESeq2 package https://doi.org/10.1186/s13059-014-0550-8 v1.24.0

R https://doi.org/10.1093/nar/gkv007 v3.54.0

Xcalibur Thermo Scientific 3.0

NaViA https://doi.org/10.1093/bioinformatics/btab436 N/A

Nikon NIS-elements software Nikon Corporation N/A
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Cecilia

Battistelli (cecilia.battistelli@uniroma1.it).

Materials availability
This study generated new cell lines (HepG2 shCTR and HepG2 shMETTL3) and we are available to share under request without

restrictions.

Data and code availability
d RNA-sequencing data has been deposited to Zenodo (https://zenodo.org/deposit/7594655). The deposited data will be made

publicly accessible by the paper’s publication date.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell culture conditions
Human HepG2 and Hep3B, murine BW1J hepatoma cells and Non-tumorigenic D330 hepatocytes were grown as previously

described.38–40 In detail, HepG2, Hep3B and BW1J were grown in DMEM supplemented by 10% FBS, L-Glutamine (2mM) and Peni-

cillin (100u/ml)/Streptomycin (100mg/ml). D3 cells were grown on collagen I coated plates in RPMI supplemented by 10% FBS,

L-Glutamine (2mM), Penicillin (100u/ml)/Streptomycin (100mg/ml) and Insulin (10mg/ml), IGFII (30 ng/ml) and EGF (50 ng/ml). HBEpC

cells were grown in Bronchial/Tracheal Epithelial Growth Medium (511-500, Sigma-Aldrich) supplemented with 10% FBS and 10%

DMSO. All cell lines were tested for mycoplasma using the DAPI staining and the LookOut Mycoplasma PCR Detection Kit (MP0035,

Merck). All cell lines were authenticated after thawing by morphology check, cell proliferation rate evaluation and species verification

by PCR. Bacteria contamination was excluded. FTO inhibitor FB23-2 (resuspended in DMSO) treatment was performed at a concen-

tration of 20 mM for 48h on D3 and HBEpC cells. METTL3 inhibitor STM2457 (resuspended in DMSO) treatment was performed at a

concentration of 5 mM for 72h on HepG2 cells.

METHOD DETAILS

Lentiviral and retroviral packaging and infections
Lentiviral particles were prepared from mission pLKOTet-On Lentiviral shRNA clones (Merck KGaA, Darmstadt, Germany)

TRCN0000289812 (shMETTL3), and SHC202 TRC2 (Non-Target

shRNAControl) as in.41 The induction of shRNAwas obtained by doxycycline treatment (2 mg/mL) for 72h. Retroviral particles were

prepared as in.26 shA2B1 sequence is: 50-GAT CCCCCC ATA CCA TCA ATGGTC ATT TCA AGAGAA TGA CCA TTG ATGGTA TGG

TTT TTA-3’.

MeRIP (methylated RNA immunoprecipitation)
MeRIP was performed in accordance to,14 with some modifications of the protocol. Antibody against m6A (202 003; Synaptic Sys-

tem) or Normal Rabbit IgG (12–370; Millipore) was added to the IP buffer (10 mMTris [pH 7.5], 150mMNaCl, 0.5%Nonidet P-40) and

then incubated with protein A magnetic beads. miRNAs were eluted with elution buffer (5 mM Tris-HCl pH 7.5, 1 mM EDTA, 0.05%

SDS) extracted using the phenol-chloroform method, purified, and then analyzed with qRT-PCR. For primer details see Table S2.

MeRIP on mRNAs was performed in accordance with.23 Primers details are reported in Table S1.

Sequencing
mRNA samples were prepared using the NEBNext Ultra II Directional RNA Library Prep kit with the NEBNext Poly(A) mRNAMagnetic

Isolation Module as per manufacturer instructions. Samples were standardized to 10 ng input material, with a 1:100 adapter dilution,

15min fragmentation time, and 16 PCR cycles. Samples were pooled and sequencedwith the Illumina NextSeq 500High 75 cycle kit.

Small RNA samples were prepared following the NEXTFLEX Small RNA Seq Kit v3 as permanufacturer instructions. Samples were

standardized to 1 ng inputmaterial, with a 1:10 adapter dilution and 25 PCRcycles. Samples were pooled and an additional 0.8x SPRI

bead cleanup was performed to remove adapter contamination. Two biological replicates per condition were sequenced with the

Illumina NextSeq 500 High 75 cycle kit.

Small RNA-Sequencing data analysis
The fastq files from Illumina Platform were assessed for quality by using FastQC tool (v0.11.8) and trimmed for NEXTFLEX adapter

sequences with cutadapt (v4.1).42 Bowtie (v1.3.1)43 was used to align the trimmed reads on mature microRNAs. Homo Sapiens
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mature microRNAs from miRBase (Release 22.1)24 were used as reference for the MeRIP human shCTR and MeRIP human

shMETTL3. The spike-in sequence (cel-miR-39-3p) was included in the Homo Sapiens miRbase reference before Bowtie indexing.

The trimmed readswith 1mismatch in the first 10 bases and reporting less than 5 reportable alignments were considered in the count.

Only 1 alignment was reported per read, considering the Bowtie best-to-worst order. Samtools (v1.3.1)44 was used to create the

expression matrix. Differential expression analysis was performed on microRNAs expressed in at least half of the samples and using

the linear modeling implemented in limma R package (v3.54.0)45 with voom normalization,46 using as library size the normalized

counts from spike-in and the total counts from libraries. miRNAs were considered as methylated (IPed) if, in the shCTR samples,

the log2 FC and the FDR adjusted p-value for the IP/IgG comparison were >0 and <0.05, respectively, and the log2 FC for the IP/

Input comparison was >0, and if, in the shMETTL3 samples, the log2 FC for the IP/IgG comparison was <0 and/or the adjusted

p-value for the same comparison was >0.05.

Motifs search and enrichment analyses
Human andmurinemature miRNA sequences were retrieved frommiRBase (Release 22.1); miRNAs annotated as high-confidence in

miRBase and/or present in miRGeneDB (release 2.1) database 25 were classified as high-confidence (HC).

Motif enrichment analysis for IPed miRNAs was conducted using two distinct control sets. The first set comprised non-IPed miR-

NAs with expression levels falling within the range of the IPedmiRNAs (only HCmiRNAs were used as a control for IPed HCmiRNAs).

The second set was generated by employing the shuffle_sequences function from the UniversalMotif R package47 twice on the se-

quences of IPed miRNAs, creating shuffled sequences while maintaining the original dinucleotide composition. This second strategy

was also employed to create the control sets used to evaluate motif enrichment for the full human and mouse mature miRNA sets.

RACH, RRACH and DRACH motif occurrences11,15 were searched within miRNA sequences using regular expressions in Python

v3.8.5. METTL3 motif instances were searched by providing the probability matrix, as computed based on the logo reported by

Liu and colleagues,13 to the enrich_motifs function from the UniversalMotif R package,47 setting the pvalue threshold to 0.01 and

restricting the search to the forward strand. Motif enrichment with respect to the control sets was evaluated by using the Fisher’s

exact test.

RNA-sequencing data analysis
All samples were modeled after the long-rna-seq-pipeline used by the PsychENCODE Consortium and available at https://www.

synapse.org/#!Synapse:syn12026837. Briefly, the fastq files from Illumina were assessed for quality by using FastQC tool

(v0.11.8) and trimmed for NEXTFLEX adapter sequence and low base call quality (Phred score <30 at ends) with cutadapt

(v4.1).42 Only the reads with length more than 10 were retained. STAR (v2.7.0e)48 was used tomap the trimmed reads and to produce

the BAM files in both genomic and transcriptomic coordinates, subsequently sorted using Samtools (v1.9).

GRCm39 was used as the reference genome and the comprehensive gene annotations on the primary assembly from Gencode

(release M30) used as gene annotation. Gene and transcript-level quantifications were calculated using RSEM (v1.3.1).49 Both

STAR and RSEM executions were performed using the psychENCODE parameters. RSEM gene and isoform level estimated counts

were imported using the tximport package (v1.12.3). Differential gene expression analysis was performed using the DESeq2 package

(v1.24.0)50 and differentially expressed protein coding genes were considered significant if their p value after Benjamini & Hochberg

correction was <0.05. All the differential analyses were performed by using R (v4.2.2).

MazF assay
MazF assay was performed on 500 ng of miRNAs. After a denaturation step of 70�C for 2 min, the miRNA samples were incubated

with mRNA Interferase -MazF enzyme (Takara 2415A) at 37�C for 30 min. After inactivation step at 70�C for 4 min, the samples were

purified by phenol/chloroform method, retrotranscribed and analyzed by qPCR.

Cell transfection
D3 and HBEpC cells were transfected with Lipofectamine LTX Reagent (15338100, Thermo Fisher Scientific), according to the man-

ufacturer’s protocol. Equal amounts of DNA were used. HepG2 cells were transfected with FuGENE HD Transfection Reagent

(E2311, Promega), according to the manufacturer’s protocol. HepG2, D3 and HBEpC were transfected with pmirGLO Dual-

Luciferase miRNA Target Expression Vector (E1330, Promega) expressing 30UTR targeted by the analyzed miRNAs.

Luciferase assay
Luciferase assay was performed with Dual-Luciferase Reporter Assay System (Promega) according to the manufacturer’s protocol.

Plasmid sequences are schematically reported in Figure 3A.

miRNA pull-down
Biotin miRNA pull-down experiments were performed on cytoplasmic extracts. Cells were lysed in hypotonic buffer (10 mM Tris-Cl

[pH 7.5], 20 mM KCl, 1.5 mM MgCl2, 5 mM DTT, 0.5 mM EGTA, 5% glycerol, 0.5% NP-40, and 40 U/mL Rnasin [Promega]) supple-

mented with protease inhibitors (Roche Applied Science). Cytoplasmic extracts were incubated for 1 h at 4�Cwith 10 nmol synthetic

miRNA oligonucleotides containing a biotin modification attached to the 50 end. Streptavidin beads (DYNABEADS M-280
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STREPTAVIDIN, Thermo Fisher), previously blocked with 1 mg/mL yeast tRNA (Roche Applied Science), were added to reaction

mixture for 90 min at 4�C, and then the beads were washed five times with 1 mL lysis buffer. Elution was performed with Laemmli

buffer.

Protein extraction and western-blot analysis
Cells were lysed in Triton 1X Buffer, subsequently the proteins were analyzed as in.39 The following primary antibodies were used for

immunoblotting: a-METTL3 (195352, Abcam), a-A2B1 (Ab31645; Abcam), a-GAPDH (MAB-374, Millipore Corp.), used as a loading

control and a-AGO2 (018–22021; Wako). The immune complexes were detected with horseradish peroxidase-conjugated species-

specific secondary antiserum: (a-Rabbit 172–1019 and a-Mouse 170–6516 Bio-Rad Laboratories), then by enhanced chemilumines-

cence reaction (Bio-Rad Laboratories). Densitometric analysis of protein expression was performed by using the Fiji-Image J image

processing package.

MTS assay
shCTR and shMETTL3 HepG2 cells were trypsinized, harvested and seeded onto 96-well flat-bottomed plates at a density of 2,000

cells/well, then incubated at 37�C for 72h in DMEM supplemented with 10% FBS and doxycycline (2mg/ml) to induce shRNA expres-

sion. Subsequently, cells were subjected to CellTiter 96 AQueous One Solution Cell Proliferation Assay (Promega), according to the

manufacturer’s protocol. The absorbance at 490 nm was evaluated to estimate cell number.

CLIP (crosslinking RNA immunoprecipitation)
CLIP was performed as reported in.51 Cells were subjected to UV cross-linking (one pulse irradiation at 800 mJ/cm2 in 254 nm Stra-

talinker [Stratagene 2400, Stratagene])and lysed in ice-cold lysis buffer (10 mM HEPES [pH 7.3], 100 mM KCl, 0.5% NP-40, 5 mM

MgCl2, and 0.5 mM DTT) supplemented with protease inhibitors (Leupeptin Thermofisher 78435, Aprotinin Sigma A4529, PMSF

Sigma P76-26 and Sodium Orthovanadate Sigma S6508) and RNase inhibitor (Promega N261B). The lysates were centrifuged for

30 min at 13000 RPM and quantified with Bradford assay. 1 mg protein extract was incubated with the specific antibody over-night

at 4�Cwith end-over-end rotation in a final volume of 1.5mL of NT2 buffer (50 mMTris-HCl pH 7,4, 150mMNaCl, 1mMMgCl2, 0.05%

NP-40). 20 mL protein A/GDynabeads (Invitrogen) was added for 3 h, followed by three washes with ice-cold LiCl buffer (500mMLiCl,

0.2% SDS, 0.1% Sodium deoxycholate in PBS 1X). Immunoprecipitated miRNAs were purified using phenol/chloroform extraction

and reverse transcribed and analyzed by RT-qPCR amplifications. List of primers is reported in Table S1. Primary antibodies for IP:

anti-A2B1 (Ab31645; Abcam), anti-AGO2 (018–22021; Wako) and as negative control Normal Rabbit IgG (12–370; Millipore) or

Normal Mouse IgG (12–371; Millipore).

RNA dot blot analysis
miRNA samples were incubated with RNA buffer (formamide, MOPS, and 37% formaldehyde) at 65�C for 5 min and then were added

with 20X Saline Sodium Citrate Solution. 100 ng of miRNAs were spotted onto a nylon membrane (Hybond-N, RPN.203N., Amer-

sham) by Bio-dot apparatus (Bio-Rad, USA) and RNA was UV-crosslinked to the membrane. The membrane was incubated with

0.02%Methylene blue and with anti-m6A antibody (202 003, Synaptic System) at 4�C, over-night. The immune complexes were de-

tected as in Western-blot analysis.

Native mass spectrometry
Following extraction, the small RNAs were subjected to dialysis into a solution of 500 mM ammonium acetate pH 7.2 and then

analyzed via mass spectrometry under non-denaturing conditions (native MS).

Native MS experiments were performed using a Q Exactive UHMR Hybrid Quadrupole-Orbitrap mass spectrometer (Thermo

Fisher) coupled to a nano-electrospray source in negative polarity. The instrument parameters used for MS spectra collection

were the following: capillary voltage of 1.2 kV, scan range of 350–5000 m/z, HCD collision voltage of 0 V, source fragmentation of

0 V, and in-source trapping of 0 V. The ion transfer optics were set as follows: injection flatapole of �5 V, inner-flatapole lens of

�4 V, bent flatapole of �2 V, and transfer multipole of 0 V. The resolution of the instrument was 200,000 at m/z = 400, the nitrogen

pressure in the HCD cell was maintained at approximately 3.0 3 10–10 mbar, and the source temperature was kept at 100�C. Cali-
bration of the instrument was performed using a 2 mg/mL solution of cesium iodide in water. Data were analyzed using the Xcalibur

3.0 (Thermo Scientific) and NaViA52 software packages.

Extracellular vesicles purification and recipient cell treatment
EVs have been purified according to.53 In brief, media was collected from donor cells (HepG2) after 48h from seeding. Media was

centrifuged at 4�C, 20 min at 2000 rcf, then the supernatant was centrifuged at 4�C, 30 min at 20000 rcf. The media was filtered

with 0.2 mm filter and then ultracentrifuged at 4�C, 100000 rcf, 70 min. EVs characterization was performed by western blot for

CD9 (CBL 162, Millipore), CD81 (sc-166029, Santa-Cruz), LAMP1 (Ab25630, Abcam) and calnexin (NB100-1965, Novus Biologicals)

as in54 and by EXOID-V1–SC (IZON) analysis. Receiving cells (D3 and HBEpC) were treated with 20 mg/mL (1,67x107 EV/ml) of extra-

cellular vesicles for 24h.
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RNA extraction, reverse transcription, quantitative polymerase chain reaction
Total RNA was extracted by ReliaPrep RNA Tissue Miniprep System (Promega, USA) and reverse transcribed with iScriptTM c-DNA

Synthesis Kit (Bio-Rad Laboratories Inc., USA). Quantitative polymerase chain reaction (RT-qPCR) analyses were performed accord-

ing toMIQE guidelines. cDNAswere amplified by qPCR reaction using GoTaq qPCRMaster Mix (Promega, Madison,WI, USA). Rela-

tive amounts, obtained with 2^(-DCt) method, were normalized with respect to the housekeeping gene GAPDH (human) or 18S

(murine). For primer details see Table S1 miRNAs were extracted by miRNeasy Mini Kit and RNeasy MinElute Cleanup Kit (QIAGEN)

and reverse transcribed with MystiCq microRNA cDNA Synthesis Mix (Sigma-Aldrich). Quantitative polymerase chain reaction (RT-

qPCR) analyses were performed according to MIQE guidelines. cDNAs were amplified by qPCR reaction using GoTaq qPCRMaster

Mix (Promega, Madison, WI, USA). Relative amounts, obtained with 2^(-DCt) method, were normalized with respect to the cel-miR-

39 Spike-In (59000; NORGEN), previously added into miRNA samples.

Immunofluorescence
Cells were methanol-fixed, permeabilized with 0.1% Triton, incubated with 3% BSA in PBS, treated with mouse a-FTO (Fatso (C-3)

sc-271713, Santa Cruz Biotechnology). Alexa CY3-conjugated secondary antibodies (Molecular Probes, Eugene, OR, USA) were

used. Nuclei were stained with DAPI (40,6-diamidino-2-phenylindole; 268298; CalbiochemMerck, Germany). Images were examined

with Nikon Microphot-FXA microscope (Nikon Corporation, Japan) equipped with a CCD camera. Digital images were acquired by

Nikon NIS-elements software (Nikon Corporation).

QUANTIFICATION AND STATISTICAL ANALYSIS

q-PCR data for the evaluation of miRNA expression and enrichment was performed by two-tailed Mann-Whitney paired test (Wil-

coxon test).

ANOVA followed by post-hoc test was used for the experiments in which there is a single control for multiple experimental

conditions.

All the statistical details and the number of replicates of each experiment are reported in the figure legends.

Prism 9 GraphPad was used for all the statistical analyses.
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