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Abstract: Intensity–duration–frequency (IDF) curves are widely used in the hydrological design of
hydraulic structures. This paper presents a wide review of methodologies for constructing IDF curves
with a specific focus on the choice of the dataset type, highlighting the main characteristics, possible
uncertainties, and benefits that can be derived from their application. A number of studies based on
updating IDFs in relation to climate change are analyzed. The research was based on a comprehensive
analysis of more than 100 scientific papers and reports, of which 80 were found to be suitable for the
aim of this study. To classify the articles, the key was mainly intensity–duration–frequency curves in
relation to the types of datasets most used for their construction, specific attention was paid to the case
study area. The paper aims to answer the following research questions. (i) What is the contribution of
a data-rich era? (ii) Are remotely sensed data reliable to build IDFs in ungauged or partially gauged
watersheds? (ii) How is uncertainty dealt with when developing IDFs? Remotely sensed data appear
to be an alternative to rain-gauge data in scarcely gauged or ungauged areas; however, rain-gauge
data are still a preferred dataset in the development of IDFs. The main aim of the present work is to
provide an overview of the state of the art on the use of different types of data to build IDFs. The
paper is intended to support the inclusion of different data types in hydrological applications.

Keywords: intensity–duration–frequency curves; dataset; rain gauge; satellite; radar; climate change

1. Introduction

Intensity–duration–frequency (IDF) curves are mathematical relationships that relate
the intensity of precipitation and the duration and rarity of the event (or return period)
and are crucial for the design of hydraulic infrastructure. Indeed, from IDF curves, design
storms are derived for the design of urban drainage systems (e.g., Giulianelli et al. [1]), the
assessment and design of hydraulic structures (e.g., Ridolfi et al. [2]), and the evaluation of
flood vulnerabilities (e.g., Keifer and Chu [3]), Eagleson [4], and Chow [5]). For instance,
Bertini et al. [6] estimated intensity–duration–area–frequency (IDAF) curves from satellite
and rain-gauge data and compared their reliability to design the spillway of a dam in
Sicily (IT).

The development of IDF curves was performed in the first half of the 1900s [7]. Since
then, IDF curves have been estimated in several countries, and maps have been presented
as a tool to derive rainfall intensity from various return periods and vice versa. Maps have
been developed by the US Weather Bureau [8] and by NOAA for the western USA [9]
and for the eastern and continental USA [10]. Several scholars reproduced these maps in
their studies (e.g., Chow [11], Chow et al. [12], Linsley et al. [13], Viessman et al. [14], and
Wanielista [15] and Smith [16]). In Europe, maps have been constructed by the Institute
of Hydrology [17]. Later in time, these maps have been derived also in other countries,
e.g., Australia [18], India [19], Sri Lanka [20], and SWA-Namibia [21], and in the region of
Tuscany, Italy [22]. For Nigeria [23] and Pennsylvania [24], curves were derived instead
of maps. Sivapalan and Blöschl [25] propose a methodology to transform point rainfall in
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areal rainfall, thus estimating IDF curves for catchments of any size and for rainfall of any
spatial correlation structure.

The guidelines for Canadian water resources practitioners [26] highlight the necessity
to update IDF curves more frequently than in the past, as climate change is expected
to induce an increased intensity and frequency of rainfall extremes in most areas over
the next decades [27]. Among the other guidelines, we can list the Canadian Standard
Association [26], the Australian rainfall-runoff guidelines [28], and the USA IDF curve
guide [29].

1.1. Methodology for IDF Construction

IDF curves relate the value of rainfall intensity with specific duration (d) with its
frequency of occurrence, expressed in terms of return period (T). Therefore, it is possible
to obtain either the rainfall intensity from a specific return period value or, conversely,
the return period from the intensity value [30]. A single rainfall event can be described
by identifying the maximum rainfall intensity (or height) occurring during the event
with different durations (d), e.g., 1, 3, 6, 12, and 24 h. Relationships of this type are, in
fact, called intensity–duration (ID) or depth–duration (DD) relationships, depending on
whether precipitation intensities or precipitation heights are used, respectively. IDF curves
are represented by an equation whereby rainfall intensity increases monotonically with the
return period (T) and monotonically decreases with the timescale (d) [31]:

i(d, T) =
a(T)
b(d)

(1)

where a(T) depends on the return period T and b(d) on the duration or timescale d; i is in
mm h−1, d in h, and T in years. The function b(d) is:

b(d) = (d + θ)η (2)

where θ and η are the parameters to be estimated (θ > 0, 0 < η < 1). It is possible to estimate
a(T) from the probability distribution function of the maximum rainfall intensity I(d).

Specifically, if the distribution of intensity I(d) is FI(d)(i;d), this will be the same distri-
bution of the variable Y obtained by rescaling the intensity by the parameter b(d): Y = I(d)
b(d). Therefore, denoting by P the probability, it can be written:

P{I(d) ≤ i} = P{I(d)b(d) ≤ ib(d)} = P{Y ≤ y} (3)

and
FI(d)(i; d) = FY(yT) = 1− 1

T
(4)

Considering yT the (1 − 1/T)-quantile of the FY distribution function:

yT ≡ a(T) = F−1
Y

(
1− 1

T

)
(5)

Interestingly, Koutsoyiannis et al. [31] derive the function a(T) from several probability
distribution functions of maximum intensities typically used in hydrology. For further de-
tails on the procedure to build IDF curves, the reader may refer to Koutsoyiannis et al. [31,32].

Based on empirical evidence, several probability distributions have been proposed to fit
rainfall extreme values; the reader can refer to Sherman [33], Webster [34], Bell [35], Wenzel [36],
Koutsoyiannis et al. [31], and the review by Menabde et al. [37]. Koutsoyiannis et al. [31] pro-
pose a general formula for IDF, consistent with the theoretical probabilistic foundation of
the analysis of rainfall maxima. To this end, the authors investigate several distribution
functions. They present two methods for IDF parameter evaluation. The proposed formu-
lation allows an efficient parameterization, accounting for the geographical variability and
regionalization of IDFs. Moreover, it allows integrating data from nonrecording stations,
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thus solving the problem of evaluating IDF curves in areas with a sparse rain-gauge net-
work, using data of the denser network of nonrecording stations. The case study area is a
significant part of Greece.

1.2. Challenges in IDF Curve Definition

IDF estimation involves the use of long-term historical rainfall observations. In this
regard, rain-gauge records provide long time series, as many had been deployed at the
beginning of the 1900s. However, at fine timescale resolution, rainfall records may be not
available; thus, the characteristics of extreme rainfall events and their distribution functions
may not be caught. The lack of data can result in regression errors, more pronounced at
short durations. Despite many countries being covered by a reliable and dense rain-gauge
network, many others either suffer from a lack of rain gauges or are scarcely gauged. In
this regard, a unique opportunity is offered by satellite observations that have a global
coverage and can fill in the gap left by the absence of a dense rain-gauge network. In
recent years, many authors assessed the potentiality and reliability of satellite data to
estimate IDF curves. Satellite products are increasingly used by the scientific community
in hydrological applications and extreme events characterization (e.g., Moccia et al. [38]).
Gridded products are now available at the global scale with various temporal resolutions
based on different data sources (e.g., ground observations, satellites, radar, and reanalysis)
and data-merging methods. While these datasets are extremely useful to assess the spatial
and temporal characteristics of precipitation, the differences with traditional sensors when
estimating extreme precipitation is still under investigation (e.g., Rajulapati et al. [39]).
Nevertheless, satellite data are widely used as they can capture extreme events in poorly
gauged areas [40].

A further challenge is represented by the development of IDF curves accounting for
climate change. The hydrological cycle could intensify in the future as a greater amount
of water vapor in the atmosphere could lead to a potential increase in precipitation [41].
Since the 1950s, an increasing number of changes have affected the global climate system,
within which the increase in greenhouse gas concentrations has in turn led to an increase in
the surface atmospheric temperature. The Intergovernmental Panel on Climate Change
(IPCC), i.e., the United Nations body involved in the assessment of climate change, states
in its latest report, “The Sixth Assessment Report” (AR6), that the phenomenon of global
warming is constantly growing and frequent heat waves, increasingly intense and frequent
rainfall, drought phenomena, floods, and tropical cyclones in many regions of the world
may be the consequences. The alteration of the hydrological cycle could lead to a change in
the characteristics of the precipitation events: frequency and intensity. Despite the lack of
unambiguous opinions on this issue, there are numerous studies that highlight the presence
of increasingly violent extreme weather events, e.g., IPCC [42] and Ide et al. [43].

Assuming that global warming could alter the hydrological cycle and the intensity
and frequency values of precipitation events, it is essential to correctly determine these
characteristics and understand at a regional level how the weather–climatic forcings vary.
The assumption of a stationary climate could, in fact, lead to an underestimation of extreme
rainfall with a consequent increase in the hydraulic risk of flooding or in the malfunctioning
of the drainage infrastructure systems. It is therefore highlighted that the design of various
strategies, including adaptation to climate change, must be implemented (Floods Directive,
EC 2007/60). IDF curves are constructed on the assumption of stationarity of rainfall series,
that is, considering rainfall intensity and frequency to be constant over time [44]. In view
of an evolving climate, the IDFs built on historical observations may no longer be repre-
sentative of future conditions, highlighting the need for an update of the IDFs themselves.
The determination of the annual rainfall maxima in future conditions can be carried out
starting from the outputs of the so-called atmospheric circulation models, generally used
to reproduce past climatic conditions (using as input the observed climatic forcings) or
simulate future climatic conditions (via the representative concentration pathways (RCP),
or the future projections of emissions or concentrations of greenhouse gases elaborated
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by the IPCC). The reliability of the updated IDF curves is closely linked to the horizontal
resolution of the climate models, which varies between the order of 100 km of the global
climate models (GCM), and the order of 10 km of the regional climate models (RCM). The
definition of precipitation using the updated IDF curves, intended as a hydrological forcing
in a context of potential climate change, represents the starting point for addressing the
issue of adaptation and optimal management of urban drainage infrastructures. The need
to adapt IDF curves is now well-recognized worldwide, given the possible increase in
intensity and frequency of rainfall extremes that climate change could entail, so adapta-
tion strategies are an interesting element in the design of new infrastructures and in the
improving their resilience to climate change.

In this paper, we analyze literature studies whereby the construction of IDF curves is
conducted using rain-gauge data, radar data, and satellite data, highlighting the pros and
cons and the difference of their use in this regard. The objective is to provide an overview
of the state of the art on the use of different types of data in the construction of IDF curves
and the locations whereby IDFs have been derived.

Specifically, the paper aims at answering the following research questions. (i) Which is
the contribution of a data-rich era? (ii) Do remote observations help to fill in the gap of IDF
construction in ungauged or partially gauged catchments? (iii) How is uncertainty dealt
with when IDFs are developed?

Moreover, the paper is intended to provide information on existing IDF curves derived
around the globe. The purpose is to provide practitioners with information regarding:
i. the location where IDF have been already derived to design hydraulic structures; and
ii. the extent of the dataset used as the record length influences the robustness of the
resulting IDF.

2. The Contribution of a Data-Rich Era

In this era, globally available datasets allow analysis in partially or completely in-
strumented areas because of their spatial morphology, but also because of economic and
social insecurity. Over time, the temporal resolution of the instruments has also improved,
allowing more detailed scale analyses. However, there still remains the question of what
the uncertainty of measurements is and which are the open issues that still need to be
covered, among which we can list the record length and spatial and temporal resolution.

2.1. Literature Review Process

The review search was conducted by analyzing more than 100 papers. Specifically, the
selection method was based on the abstracts, introductions, and conclusions, with special
attention to the methodologies and datasets used. In Table 1, we report the database used
to search for the papers and the search keywords for each type of recording sensor (either
rain gauge or radar or satellite), for the spatial scales (i.e., local, regional, and global), and
for the climate change analysis.

Table 1. Search procedure used to identify relevant articles.

Database Category Search Keywords

Google
Scholar

Dataset
Spatial scale

“Intensity–duration–frequency curves” & “radar” & “Continent” OR “Country”
OR “Basin”;

“Intensity–duration–frequency curves” & “satellite” & “Continent” OR
“Country” OR “Basin”;

“Intensity–duration–frequency curves” & “rain gauge” & “Continent” OR
“Country” OR “Basin”

Climate
Change

“Intensity–duration–frequency curves” & “radar” & “climate change”;
“Intensity–duration–frequency curves” & “satellite” & “climate change”;

“Intensity–duration–frequency curves” & “rain gauge” & “climate change”
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The original number of articles was reduced as we set a quality threshold as a further
selection method. We considered as eligible articles those published in scientific journals
characterized by a high Qindex. This synthetic index defines the rank of a journal in a
specific field. Q1 means that the journal ranking is among the top 25% of journals in the
same field. In this paper, only journals characterized by the highest degrees of Qi, i.e., Q1
and Q2, were considered.

Figure 1 shows a global map of the locations for which IDFs have been derived.
Locations where the IDFs are available at the country or regional scale are shaded in grey;
the red triangles represent local studies. All types of datasets of papers (rain gauge, satellite,
and radar) are included. It is worth noting that developing countries are characterized by
only a few studies, probably because of data scarcity. Indeed, in many countries, a key
issue is the very sparse network of rain-gauge stations, making the construction of IDFs
not possible or unreliable.

We acknowledge that the restrictions in the search scheme may limit the outcomes for
developing countries if the analyses are published in journals with a lower Qindex.
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Figure 1. Case studies (regional and local) used to derive IDF curves that are examined in this review.

Rain gauges are traditionally the most widely used instruments for estimating IDF
curves because they can provide long records of precipitation data. However, their limita-
tion lies in the fact that not all areas have rain-gauge networks deployed, and furthermore,
as one moves farther away from the rain-gauge survey point, the information decreases,
thus reducing the representativeness of the IDF curves. It is possible to obtain alternative
precipitation estimates derived, for example, from satellite and radar data that have the
potential to improve precipitation observations up to the global scale. Radar data lends
itself to the communication of rainfall intensity over a large area using images; satellites
retrieve precipitation estimates on the basis of observations in the visible/infrared or in the
microwave. The diagram in Figure 2 represents the number of papers divided by type of
sensor. Only a small percentage of the examined studies (7%) used radar datasets to de-
velop IDF curves; a larger amount (14%) used satellite data, while most of the studies (79%)
developed IDFs using the rain-gauge sensor type. The three main categories regarding
the type of data collection can be divided into categories linked to the key analysis of each
study (Figure 2). The width of the categories and subcategories indicates the number of
papers explored in the review analysis.
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In the following paragraph, we analyze papers deriving IDFs from rain-gauge, satellite,
and weather-radar data. We support the discussion with graphical tools, such as tables and
figures, to present the findings available in the literature divided either by argument, in the
case of rain-gauge data, or by country, in the case of remotely sensed data.
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2.2. IDFs Derived from Rain-Gauge Data

From the review analysis we developed, 77% of the papers base the calculation of IDF
curves on rain-gauge data. It therefore remains the most widely used record type for its
length, availability, and its fine time scale resolution.

Table 2 shows the papers developing IDFs using a rain-gauge dataset. More specifically,
for each paper, the following information is provided:

− Authors and year of publication (i.e., reference);
−Main purpose of the study (i.e., target);
−Main topic covered in the paper or calculation methodology (i.e., key analysis);
− Years of observation of the dataset;
−Whether the uncertainty is accounted for or not;
− Case study area;
− Spatial scale.
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Table 2. Papers developing IDFs using a rain-gauge dataset.

Reference Target Key Analysis Years
(Observations) Uncertainty Location Spatial Scale

Agilan & Umamahesh (2017)
Develop non-stationary IDFs using five physical

processes, including urbanization and climate
change, as covariates

Covariates 1972–2013 - Hyderabad (India) Local

Al Mamoon et al. (2017) Assessing the influence of climate change on the
IDF relationship for Qatar Climate Change 1962–2012 - Qatar Regional

Aldosari et al. (2020)
Reconstruct the IDF curves for the urban area of

the State of Kuwait using historical rainfall
intensity data

Periodogram technique 2006–2017 - Kuwait Regional

Aron et al. (1987)
Define the IDF curves for each homogeneous
rainfall region of the Pennsylvania territory to

evaluate the design storms
Regionalization - - Pennsylvania (USA) Regional

Baghirathan & Shaw (1978)
Rainfall depth-duration-frequency studies for Sri

Lanka with data of historic records of annual
maximum rainfall depths

Regionalization - - Sri Lanka Local

Bell (1969)

Show that DDF curves have surprisingly
consistent values in such diverse places as
Alaska, Hawaii, Puerto Rica, South Africa,

Australia and contiguous United States

Empirical method - -
Alaska,

South Africa,
Australia, USA

Regional

Bezak et al. (2017)
Combines empirical rainfall thresholds and IDF
curves to develop early warning systems (EWS)
in hazardous area of debris flows or landslides

Copula function - - Slovenia Regional

Blanchet et al. (2016)
Propose an integrated derivation of IDF

relationships in the context of distributed GEV
maxima, validated at regional scale

Regionalization 1958–2014 - Cévennes (France) Regional

Breinl et al. (2021)
Compare intensity-duration-frequency statistics
of maximum annual precipitation with those of

maximum annual streamflow

Quantiles from
IDF models 1950–2016 - Austria Regional
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Table 2. Cont.

Reference Target Key Analysis Years
(Observations) Uncertainty Location Spatial Scale

Citakoglu & Demi (2022)
Carry out regional IDF equality using IDF

relationship obtained from point
frequency analysis

Optimization and Multi-
Genetic-Programming

methods
1991–2020 - Turkey Regional

Cardoso et al. (2014)
Analyze the frequency distribution and intensity

temporal variability of intense rainfall for
Lages/SC

Empirical method 2000–2009 - Lages/SC
(Brazil) Local

Cheng & AghaKouchak (2014)
Use Bayesian-structured inference to develop the

nonstationary IDF curves and assess
their uncertainty

Bayesian inference 1949–2000 Yes USA Regional

Cook et al. (2020)

Analyze the effect of the spatial resolution of the
regional climate model and the spatial

adjustment technique on the updated IDF curves
for climate change

Climate Change 1954–2013 - USA Regional

De Gaetano & Castellano
(2017)

Develop a series of future extreme precipitation
probabilities by downscaling and climate

model projections

Downscaling
(Climate Change) 1970–1999 - New York Local

Elsebaie (2012)
Derive IDF relationship of rainfall at Najran and

Hafr Albatin regions in the kingdom of Saudi
Arabia (KSA)

Regionalization 1967–2001 - KSA (South Arabia) Regional

Escobar-Gonzalez et al. (2022) Develop an approach to build IDFs in the urban
area of high-altitude Andean cities

3-parameter mnp
methodology for
extreme events

correction

2000–2020 - Quito
(Ecuador) Local

Ewea et al. (2016)

Development of regional IDF formulas and
curves for 13 administrative regions for the

Kingdom of Saudi Arabia (KSA) and a global
IDF curve for the entire country

Regionalization 1975–2003 - KSA (South Arabia) Regional
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Table 2. Cont.

Reference Target Key Analysis Years
(Observations) Uncertainty Location Spatial Scale

Fauer et al. (2020) Look for new parametric forms of IDF curves
that are applicable to a large range of durations Empirical method 1893–2010 Yes Germany Regional

Ganguli & Coulibaly (2017)

Analyze the non-stationarity and trends of
short-duration precipitation extremes in

urbanized locations and evaluate the potential of
non-stationary IDF curves

Climate Change - Yes South Ontario Regional

Garcìa & Pedraza (2008)

Analyze the temporal variation in the total
number of days a year with rainfall above the
100 mm threshold at the rain gauging stations

in NEA

Singular spectral
analysis 1931–2007 - North-Estern region

(NEA) of Argentina Regional

Güçlü et al. (2016)
Deriving IDF curves according to climate change

scenarios at the Florya rainfall station in
Istanbul, Turkey

Climate Change 1964–2009 - Istanbul Local

Hassanzadeh et al. (2014)
Use of the quantile-based downscaling technique

to derive future IDF curves under climate
change scenarios

Climate Change 1926–1986 Yes Saskatoon Local

Hosseinzadehtalaei et al.
(2017)

Analyze the uncertainty of future IDFs
using a variance decomposition technique and

study the influence of the spatial
resolution of RCMs

Downscaling
(Climate Change) 1961–1990 - Belgium Regional

Huard et al. (2010)
Analysis and estimation of uncertainties of IDF

curves using a Bayesian inference
analysis

Bayesian inference 1961–2005 Yes Québec Regional

Kao & Ganguly (2011)
Characterize the non-stationary behavior of

precipitation extremes under climate
change scenarios

Climate Change 1900–2000 Yes Europe Regional

Kourtis & Tsihrintzis (2022) Review the studies performed on updating IDF
curves in the presence of climate change Climate Change - Yes - -
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Table 2. Cont.

Reference Target Key Analysis Years
(Observations) Uncertainty Location Spatial Scale

Koutsoyiannis et al. (1998)
Propose a general formula for IDFs consistent

with the probabilistic theoretical
basis of rainfall maxima analysis

Regionalization/account
for non-recording station 1957–1987 - Greece Regional

Kuo et al. (2015)
Derive IDF curves over the observation period
and simulate future IDFs by estimating future
slopes of air temperature and rainfall trends

Climate Change 1914–2010 Yes Edmonton Local

Langousis & Veneziano (2007)

Develop methods to estimate the IDF curves for
three rainfall models with local multifractal

behavior and varying
complexity

Multifractality 1962–1985 - Florence Local

Latifa & Taha (2015) Propose a methodology for developing IDFs
using the covariates of climate indices Climate Change 1981–1999 - Rivière–Héva Local

Liew et al. (2014)
Derive IDF curves by interpolating data from

regions of climatologically similar characteristics
for the ungauged site of Peninsular Malaysia

Climate Change 1961–1990 - Malaysia Regional

Limaa et al. (2018)
Estimate the parameters of a generalized

distribution of extreme values on a sub-daily
scale to derive current and future regional IDFs

Climate Change 1973–2016 Yes South Corea Regional

Madsen et al. (2002)
Regional estimation of IDF curves using the

generalized least-squares regression method of
short duration statistics

Regionalization 1961–1990 - Denmark Regional

Madsen et al. (2009)
Updating the IDF curves from the previous work

in order to analyze any changes or trends in
extreme precipitation

Regionalization 1979–2005 Yes Denmark Regional

Mailhot et al. (2007)
Analyze Canadian Regional Climate Model

simulations and derive regional IDF curves at
grid box and rainfall station scales

Climate Change 1961–1990 - Canada Regional
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Table 2. Cont.

Reference Target Key Analysis Years
(Observations) Uncertainty Location Spatial Scale

Maity S. & Maity R. (2022) Investigate spatiotemporal changes in IDF
relationship Climate Change 1979–2014 Yes India Regional

Mantegna et al. (2017)
Examine the ability of the Conformal Cubic
Atmospheric Model (CCAM) to reproduce

sub-daily IFD curves
Climate Change 1961–2009 - Tasmania Regional

Martel et al. (2021) Review the state of the art and guidelines for the
adaptation of IDF curves to climate change Climate Change - Yes - -

Mauriño (2004)
Compare the generalized rainfall

intensity-duration-frequency relationships
proposed by Bell (1969) with IDFs

Empirical method 1937–1980 - Argentina Regional

Mazdiyasni et al. (2019)
Propose a multivariate approach to construct

heat wave intensity, duration, frequency
(HiDf) curves

Multivariate Copula
functions 1979–2016 - USA Regional

Minh et al. (2006)
Propose a generalized IDF formula using base
rainfall depth and base return period for the

monsoon region of Vietnam
Regionalization 1956–1985 - Vietnam Regional

Mirhosseini et al. (2013)
Develop future IDFs under climate change

scenarios by applying the technique of dynamic
downscaling of GCMs by RCMs

Climate Change 1968–2000 Yes Alabama (USA) Regional

Mohymont et al. (2004) Produce IDF-curves for three different
climatological stations in Congo in Central Africa Empirical method 1934–1983 - Congo Regional

Neelin et al. (2022)
Examining precipitation extremes and water

vapor relations in the current climate and
implications for climate change

Climate Change - - - -

Ouarda et al. (2018) Define non-stationarity IDFs integrating
information concerning teleconnections and

climate change

Climate Change 1977–2007 - Ontario Regional

Ouarda et al. (2018) Climate Change 1949–2000 - California Regional
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Table 2. Cont.

Reference Target Key Analysis Years
(Observations) Uncertainty Location Spatial Scale

Ragno et al. (2018)

Estimate climate change impacts on extreme
rainfall magnitude and frequency using bias

corrected historical and multi-model projected
precipitation extremes

Bayesian
inference - Yes USA Regional

Rodríguez-Solà et al. (2016)
Analyze of the structure of rainfall in the
Mediterranean area, taking into account

geographical and climate characteristics also
Multifractality 1927 –2012 - Iberian Peninsula,

Balearic Islands Regional

Roksvåg et al. (2021)

Develop accurate and consistent IDFs by
post-processing of Bayesian-estimated IDF

curves and by a non-parametric and consistent
IDF relationship

Bayesian
inference 1970–2019 - Norway Regional

Sandink et al. (2016)
Analyze stakeholder engagement to support the

development of a computerized tool that
develops future IDFs under climate change

Climate Change - Yes Canada Regional

Sarhadi & Soulis (2017)
Incorporate the impact of several complex

non-stationary conditions on the occurrence of
extreme precipitation in the Great Lakes area

Downscaling
(Climate Change) 1960–2010 - Great Lakes region

(North America) Regional

Shahabul Alam & Elshorbagy
(2015)

Develop future IDFs under climate change
scenarios based on continuous rainfall records Climate Change 1961–1990 Yes Saskatoon Local

Shehu et al. (2022)
Investigate the use of different data types and
methods for estimating reliable DDF curves

covering whole Germany
Regionalization - - Germany Regional

Shrestha et al. (2017)
Develop future IDFs using a stochastic weather
generator and a rainfall disaggregation tool, for

Bangkok area in Thailand

Downscaling
(Climate Change) 1981–2010 Yes Bangkok Local

Simonovic et al. (2016)

Standardize the IDF update process by a
web-based tool for the development of Intensity

Duration Frequency curves under
changing climate

Climate Change - Yes Canada Regional



Water 2022, 14, 3705 13 of 33

Table 2. Cont.

Reference Target Key Analysis Years
(Observations) Uncertainty Location Spatial Scale

Simonovic et al. (2016) Develop a web-based tool to update IDF curves
according to climate change Climate Change - Yes Canada Regional

Singh et al. (2016)
Update IDF curves for a typical Indian town

using an ensemble of five General
Circulation Models

Climate Change 1979–2005 - Roorkee (India) Local

Singh & Zhang (2007)
Derive IDF curves from bivariate rainfall

frequency analysis using the Frank Archimedean
Copula method

Multifractality 1947–2005 - Louisiana Regional

Sivapalan & Bloeschl (1999) Present an alternative methodology based on the
spatial correlation structure of rainfall for IDFs

Transform point rainfall
in areal rainfall - - Austria Regional

Soltani et al. (2020)
Introduce a new method for projecting

short-time rainfall IDF through a regional scale to
estimate short-term rainfall at ungagged basins

Climate change 1981–2010 Yes Iran Regional

Tfwala et al. (2016)
Deriving IDFs from a nearly 100-year-long

rainfall data set in the Ghaap Plateau, Northern
Cape Province, South Africa

IDF uncertainties
estimation 1918–2014 Yes Ghana Regional

Veneziano & Furcolo (2002)
Derivation of scaling properties of IDF curves

considering precipitation as a stationary
multifractal process

Multifractality 1962–1985 - Florence Local

Yanl et al. (2018)
Propose next-generation IDF curves that

consider the actual water reaching the land
surface, including snow melt

Include snowmelt
contribution - - USA Regional

Yanl et al. (2019)
Compare peak design flood values computed by
traditional method and new generation IDFs in

the western United States

Include snowmelt
contribution 1979–2017 USA Regional

Zope et al. (2016) Develop IDF rainfall curves for the Mumbai city
using longer length of observed rainfall data

New IDF relationship for
Mumbai 1901–2008 - Mumbai Local
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The table is intended to be a summary tool of all studies reviewed here for a reader
who might be interested in the key analysis performed at a specific location and in the
corresponding dataset. Figure 3 shows the years of coverage of each rain-gauge dataset
described in Table 2. It is worth noting that three papers use datasets starting with record-
ings in the early 1900s. However, most of the scholars use datasets ranging from the 1970s
to the 2010s. There is a large gap in data between 1910 and 1950, resulting in a lack of
analysis over the corresponding period. Review papers were also examined; the years of
observation are not given in the table.

Water 2022, 13, x FOR PEER REVIEW 12 of 31 
 

 

 

Figure 3. Years of coverage for each rain-gauge dataset [45–90]. 

Among the papers using rain-gauge data to construct IDFs, some papers derive the 

scaling properties of the IDF curves. Veneziano and Furcolo [88] presented a variant of 

the rainfall-modeling approach in which scale precipitation models (in particular, mul-

tifractals) are used. The scaling properties of the IDF curves are derived by considering 

rainfall as a stationary multifractal process for the study area, the city of Florence (Italy). 

The results obtained in the study are validated through direct calculation and analysis of 

rainfall records. The authors point out that actual precipitation over time and spacetime 

show deviations from multifractality on both small and large scale. However, they argue 

that, despite these limitations, the theory proposed should provide a basis for understand-

ing the origin of the scaling of IDFs. Precipitation modeling using scaled and, more spe-

cifically, multifractal representations is proposed by Langousis and Veneziano [64]. The 

aim of their work is to develop computational procedures for IDFs using three precipita-

tion models with local multifractal behavior and varying complexity. The study area is the 

same, Florence (Italy). The scalar analysis provides information about the shape of the IDF 

curves, the effects of duration and return period, and the dependence of the IDF values 

on the return period. The two papers described above introduce the validity of the mul-

tifractal method as an alternative to classical IDF curve estimation methods that fit para-

metric IDF models to annual maxima. 

Besides the multifractality method, another key analysis found in the literature stud-

ies reviewed here is the regionalization method. About 14% of the papers estimating IDFs 

refer to this method. 

The work proposed by Madsen et al. [69] concerns the regional estimation of IDF 

curves using the generalized least-squares regression method of short duration statistics. 

The method used partial duration series (PDS), according to which all events above a cer-

tain threshold are analyzed. Within their model, the following quantities are considered 

Figure 3. Years of coverage for each rain-gauge dataset [45–90].

Among the papers using rain-gauge data to construct IDFs, some papers derive the
scaling properties of the IDF curves. Veneziano and Furcolo [88] presented a variant of the
rainfall-modeling approach in which scale precipitation models (in particular, multifractals)
are used. The scaling properties of the IDF curves are derived by considering rainfall as a
stationary multifractal process for the study area, the city of Florence (Italy). The results
obtained in the study are validated through direct calculation and analysis of rainfall
records. The authors point out that actual precipitation over time and spacetime show
deviations from multifractality on both small and large scale. However, they argue that,
despite these limitations, the theory proposed should provide a basis for understanding
the origin of the scaling of IDFs. Precipitation modeling using scaled and, more specifically,
multifractal representations is proposed by Langousis and Veneziano [64]. The aim of
their work is to develop computational procedures for IDFs using three precipitation
models with local multifractal behavior and varying complexity. The study area is the
same, Florence (Italy). The scalar analysis provides information about the shape of the IDF
curves, the effects of duration and return period, and the dependence of the IDF values on
the return period. The two papers described above introduce the validity of the multifractal
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method as an alternative to classical IDF curve estimation methods that fit parametric IDF
models to annual maxima.

Besides the multifractality method, another key analysis found in the literature studies
reviewed here is the regionalization method. About 14% of the papers estimating IDFs
refer to this method.

The work proposed by Madsen et al. [69] concerns the regional estimation of IDF
curves using the generalized least-squares regression method of short duration statistics.
The method used partial duration series (PDS), according to which all events above a certain
threshold are analyzed. Within their model, the following quantities are considered regional
variables: the average annual number of exceedances, the average value of the magnitude
of exceedances, and the coefficient of variation. This paper analyzes the characteristics of
extreme precipitation in Denmark.

The work was followed by a subsequent study by Madsen et al. [68] updating IDF
curves from data recorded in Denmark, showing an increasing trend in rainfall intensity.
The results obtained in this new work are compared with those of the previous study
to analyze any changes and trends in extreme precipitation characteristics. The rainfall
database was almost doubled. The validity of the regional model for estimating extreme
precipitation values from previous work was confirmed as the regional variability of ex-
treme precipitation characteristics. The uncertainty associated with regional heterogeneity
is considered. Results show an increase in the characteristics of extreme precipitation. In
particular, a 10% increase in precipitation intensity is observed for durations and return
periods typical of urban drainage design. These results may have consequences for the
overall design costs of urban drainage systems.

Aron et al. [24] present a procedure to evaluate a design storm in Pennsylvania, USA.
Results show that Pennsylvania is divided into five homogeneous rainfall regions and the
authors outline a set of rainfall intensity–duration curves for each region, for return periods
of 1 to 100 years and durations ranging from 5 min to 24 h. The derived curves performed
better than the nationwide TP-40 maps, specifically for storm events of 10-year and shorter
return periods.

The work by Minh et al. [75] stems from the need to construct appropriate IDF curves
for the monsoon region of Vietnam, which lacks long time series of data. In fact, Vietnam
is among the developing countries for which a map with rainfall intensity contours has
not been built. The main objective is to develop IDF curves at seven stations in the study
area and to propose a generalized IDF formula using a given rainfall depth and a baseline
return period. The area investigated is the Red River Delta (RRD) in Vietnam. To develop
the IDF curves, first empirical relationships and then the IDF parameter regionalization
method were used.

Ewea et al. [55] developed IDFs for the Kingdom of Saudi Arabia (KSA) using rainfall
records measured in 28 meteorological stations distributed throughout the country. Records
are available for a 20–28-year period and rainfall event durations range from 10 min to
24 h. They define homogeneous regions for the IDF parameters and estimated averaged
IDF parameters over the kingdom to be used in ungauged regions.

Elsebaie [30] presents a study on the development of the intensity–duration–frequency
curves of two regions in Saudi Arabia (KSA). Development of the IDF curves was done
by Gumbel frequency analysis and the log-Pearson type-III distribution (LPT III). The
nonlinear multiple regression method is used to derive the parameters of the IDF equations
for different return periods. The area investigated is large and may contain regions with
different climatic conditions. Therefore, they derive a relationship for each region.

Statistical estimation of extreme events is hindered by the lack of information that is
due to, e.g., an intermittent rainfall record. Thus, it is necessary to assess the uncertainties
related to extreme rainfall values and to acknowledge those uncertainties in the design
choices and in risk estimation. To this end, Huard et al. [61] analyze the uncertainties
related to IDFs using a Bayesian inference analysis and estimate the extent of these uncer-
tainties in the province of Québec. Their work, however, leaves out the definition of prior
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distributions related to the application of the Bayesian method and intuitively prioritizes
the return period.

Cheng and Aghakouchak [50] use Bayesian-structured inference to develop the non-
stationary IDF curves and assess their uncertainty. The uncertainty associated with IDFs
increases with the return period considered. The work presents the advantages of using
Bayesian inference; among these, they list a more realistic parameter estimation and the
possibility of using results derived, for example, from a nearby or similar rainfall station
to augment the record and thus improve inferences on an area characterized by a lesser
precipitation record.

In engineering practice, infrastructure design relies on the notion of stationarity, thus
assuming that the statistics of extremes do not change significantly over time. However,
in a climate changing framework, infrastructures will likely be forced by more severe
climatic conditions, affecting human and socioeconomic systems. Ragno et al. [91] present a
framework to estimate climate change impacts on extreme rainfall magnitude and frequency
using bias-corrected historical and multi-model projected precipitation extremes. The
method estimates changes in IDF curves and their uncertainty bounds using a nonstationary
model based on Bayesian inference. They apply the model to the United States area, and
results show that highly populated areas of the country may be subjected to extreme rainfall
events up to 20% more intense and twice as frequent.

The contribution of the snow component can be a source of uncertainty in the con-
struction of IDFs. In areas with substantial snow contribution, precipitation-based IDFs
may lead to an over- or underestimation of annual maxima with consequences in terms of
over- or under-design of hydraulic infrastructure. Yan et al. [92] propose next-generation
IDF curves considering the actual water reaching the land surface, including the snow melt,
at 376 snowpack telemetry (SNOTEL) stations across the western United States with at
least 30 years of records. In a following study, Yan et al. [89] compared peak design flood
values computed by means of a traditional method and by the next-generation IDFs at
399 SNOTEL stations across the western United States. Results show that about 70% of the
stations may potentially under-design structures.

Regarding the distribution functions used to fit rainfall extremes, about 18% of the
papers reviewed here use the generalized extreme value distribution (GEV) to fit annual
precipitation maxima. Despite this, some authors, such as Roksvåg et al. [80], point out
that generalized extreme value distributions (GEVs) may not be accurate in fitting annual
maxima of all durations considered. As a result, IDF curves may be inconsistent across
durations and return periods. They propose a post-processing method to ensure consistency
of the estimated IDFs and apply it in Norway; they also develop an R implementation of
the method. Regarding the distribution selection, Singh and Zhang [85] derive IDF curves
from the bivariate analysis, i.e., they use the copula function, a bivariate distribution whose
margins can be different and non-normal. In the construction of IDF curves, precipitation
intensity and duration represent the two random variables, and Frank’s copula is used to
represent the conditional distribution function. IDF curves obtained by the copula method
must then be verified with rainfall data and then with IDFs derived by an empirical method.
Rainfall data are from Louisiana watersheds and compared with those recorded by the
National Weather Service of the United States Technical Paper 40 (TP-40). Comparison
between the two types of curves seems to have concordant results. The main differences
seem to depend on duration, return period, and location. The study thus introduces
the usefulness of the copula method in the construction of IDF curves in that the copula
parameter can be evaluated in advance based on rainfall and physiographic characteristics,
thus resulting in a practical tool for evaluating IDFs.

Gaps associated with the multi-scaling technique emerge in the work proposed by
Fauer et al. [56]. While this technique seems to improve the model for very short or long
durations, it seems to deteriorate the model for other durations. Thus, there is a lack of
model flexibility in describing IDFs for very long durations (2–5 d).
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2.3. IDFs Estimated from Weather Radar

In contrast to the point-scale measurements of rain gauges, weather radars average
precipitation over a relatively large area. Radar data have numerous advantages in this
regard, among which is their higher spatial and temporal resolution capable of overcoming
the poor representativeness of regions characterized by large gradients in precipitation
climatology and in the case of extreme precipitation events characterized by short durations.
Radar measures rainfall by sending out an intense electromagnetic pulse and then recording
the echoes of the pulse as it is reflected back to the antenna [93]. The intensity of the echo
increases with rainfall intensity [94]. Weather radar has been established as an invaluable
tool for the provision of weather services, as it facilitates the monitoring of precipitation
events and predicts their short time evolution. Weather radar is able to provide, in real time
and over a wide region, high spatial- and temporal-resolution rainfall intensity estimates,
and it has been established as an invaluable tool for the provision of weather services, as it
facilitates the monitoring of precipitation events and predicts their short time evolution [95].
Radar and rain gauges estimate rainfall through fundamentally different processes: rain
gauges collect water over a period of time, whereas radar obtains instantaneous snapshots
of electromagnetic backscatter from rain volumes that are then converted to rainfall via
some algorithms [96].

In the following, we present different methods used to estimate the IDF curves from
radar data. In particular, the aim is to show the reliability of radar data as an alternative
to rainfall data to build IDFs in areas where rain gauges either have not been deployed or
have been decommissioned or precipitation records have gaps.

The first study in which depth–duration–frequency (DDF) curves were derived from
radar data was conducted by Overeem et al. [97]. The study was based on extreme rainfall
analysis and estimation of DDF curves using one of the longest radar datasets described
in the literature; an extreme rainfall climatology for the Netherlands was derived. More
specifically, an 11-year radar dataset of precipitation depths for durations ranging from
15 min to 24 h was derived for the Netherlands. For the first time, it is shown that
radar data are suitable to derive rainfall DDF curves if a regional frequency analysis is
applied. The radar data are adjusted using rain gauges by combining an hourly mean
field bias adjustment with a daily spatial adjustment [97]. In the work, the index flood
method was then applied by fitting generalized extreme value (GEV) distributions with a
constant shape parameter and dispersion coefficient defined using the maximum likelihood
method. The comparison between rain gauges and radar data was provided in two phases:
the first one in the estimation of GEV parameters and the second one in DDF curves.
Radar rainfall depth–duration–frequency curves and their uncertainties were derived and
compared with those based on rain-gauge data. They show that radar data allow us to
obtain reliable statistics of extreme areal rainfall for sub-hourly durations against the lower
spatial density of rain-gauge networks. By the comparison of GEV parameters based on
radar and rain-gauge data at the same locations, Overeem et al. [97] showed that there
is reasonable agreement but, at the same time, the location parameters differ from those
obtained from gauge data. Possible limitations in radar-data use are the heterogeneities
caused by continuous improvements to the data-processing algorithms, the small number
of levels of daily rainfall accumulations, and the lack of an adjustment of radar rainfall
depths using rain gauges. The advantage in higher temporal and spatial resolution of radar
data over most rain-gauge networks declines for long durations in which uncertainties
become large. However, results suggest that radar data are suitable to construct DDF
curves [97]. The authors point out the possible limitations or shortcomings of their work.
These are mainly attributable to: (i) the heterogeneities that are due to the continuous
modifications of data-processing algorithms for applying improvements; (ii) the small
number of daily precipitation accumulation levels; and (iii) the non-adjustment of radar
precipitation depths with rain gauges.

Marra and Morin [98] derived IDF curves from radar data and compared them with
gauges in different climates. Their work explores the use of radar quantitative precipitation



Water 2022, 14, 3705 18 of 33

estimation (QPE) for the identification of IDF curves over a region with steep climatic
transitions (Israel) using a unique radar-data record (i.e., 23 years) and combining physical
and empirical adjustment of radar data. The comparison between radar and rain-gauge
IDF curves is focused on 2-, 10-, 25-, and 100-year return periods. They showed that the IDF
relationships estimated by radar lay within the rain-gauge IDF confidence interval in 70% of
the cases. This value decreases to 60% if they consider a 100-year return period. Observing
the overestimation and skewness of radar IDF relationships against the corresponding
rain-gauge relationships, they showed that radar uncertainty dominates the identification
of radar QPE annual maxima and causes overestimation for high-return periods. This effect
was more pronounced in the arid climate and IDF for arid areas are confirmed steeper than
semi-arid and Mediterranean curves. This work emphasizes the importance of climate
classification as a key factor in identifying IDF relationships and in analyzing extremes. In
fact, deriving the pros and cons of the work, Marra and Morrin [98] state that radar can
provide detailed information for small-scale models of rainfall extremes and for areas with
particular climatology. This work underlines the importance of climatic classification as a
key factor for the identification of IDF relationships and in the analysis of extremes.

Fadhel et al. [99] provide IDF curves under climate change scenarios by daily precipi-
tation data simulated with a 1 km regional climate model. The study area is a 60 km2 area
of radar grids in a catchment of West Yorkshire (UK). Three single-polarization C-band
weather radars at Hameldon Hill, High Moorsley, and Ingham are located 30 km, 95 km,
and 90 km away from the study area, respectively. These data were temporally bias-
corrected by using eight reference periods with a fixed length of 30 years and a moving
window of 5 years between the cases for the period 1950–2014 and then they were further
disaggregated into an ensemble of 5 min series by using an algorithm. The algorithm
combines the nonparametric prediction (NPRED) model and the method of fragments
(MoF). The algorithm allows us to resample the disaggregated future rainfall fragments
conditioned to the daily rainfall and temperature data. In this paper, the uncertainty of
intensity–duration–frequency curves that is due to varied climate baseline periods is evalu-
ated. This study has shown the importance of including the uncertainty of benchmarking
periods in bias-correcting future climate projections. The uncertainty in the IDF curves
resulted from the use of different reference periods to bias correct the regional climate
model (RCM) as the effect of the reference period on future climate projections is significant.

Peleg et al. [100] quantify subpixel variability of extreme rainfall by using a novel
space–time rainfall generator (STREAP model) that downscales in space the rainfall within
a given radar pixel. Radar data in this study are from a unique radar data record (23 years)
and a very dense rain-gauge network in the eastern Mediterranean area (northern Israel).
To build radar-IDF curves and IDF curves based on points representing the radar subpixel
extreme rainfall variability, GEV distributions were fitted to annual rainfall maxima. This
work shows that the mean areal extreme rainfall derived from the radar underestimates
most of the extreme values computed for point locations within the pixel where the radar
is deployed. A radar-derived IDF curve is representative of the mean areal rainfall over a
given radar pixel and neglects the within-pixel [100]. Considering longer return periods
and shorter durations, the extreme rainfall subpixel variability is increased when stochastic
(natural) climate variability is considered. Thus, the work shows that bounding the range
of the subpixel extreme rainfall derived from radar IDF can be of major importance for
different applications that require local estimates of rainfall extremes.

From the literature papers analyzed here, the usefulness of radar data in extreme
rainfall analysis and in IDF curve estimation emerges. In Figure 4, we show the years of
coverage of each weather radar dataset described in Table 3. Apart from a dataset from
West Yorkshire (UK) starting from the 1950s, the other dataset was mainly recorded in the
1990s, when this instrument started to become widespread.
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Table 3. Papers developing IDFs using a radar dataset.

Reference Target Key Analysis Years
(Observations) Uncertainty Location Spatial

Scale

Fadhel et al. (2017)
Derivation of IDF curves under climate change
scenarios, by daily precipitation data simulated

with 1-km regional climate model

Statistical bias correction
method; Disaggregation

model
1950–2014 Yes West Yorkshire (UK) Regional

Ghebreyesus & Sharif (2021)

Use the high-resolution US NationalWeather
Service (NWS) Next Generation Weather Radar

(NEXRAD) Stage-IV precipitation data to
develop IDFs with a high spatial resolution

in Texas

Exceedance probability
for radar pixels 2002–2020 - Texas (USA) Regional

Marra & Morin (2015)
Use of radar quantitative precipitation estimation
(QPE) for the identification of IDF curves over a

region with steep climatic transitions
Radar QPE 1990–2013 Yes Israel Regional

Marra et al. (2017)

Quantify subpixel variability of extreme rainfall
by using a novel space–time rainfall generator
that downscales in space the rainfall within a

given radar pixel

Non-dimensional
normalized metrics 1998–2013 Yes Eastern

Mediterranean Regional

Overeem et al. (2009) Derivation of depth-duration-frequency (DDF)
curves from radar data for The Netherlands Radar QPE 1998–2008 - Netherlands Regional

Peleg et al. (2018)
Building Radar-IDF curves and IDF curves based
on point representing the radar subpixel extreme

rainfall variability
Downscaling 2011–2015 - Gal’ed

(Northern Israel) Regional
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2.4. IDFs Estimated from Satellite Products

The lack or the absence of ground-based precipitation networks hampers the develop-
ment and use of flood and drought warning models, hydrological models, and extreme
weather monitoring and decision-making systems. A large database can provide accurate
and physically realistic parameter estimates. In practice, however, data may be limited or
in some cases unavailable. In poorly instrumented areas, rainfall records are often absent
or short. In these areas, estimating rainfall extremes may lead to unreliable results. A need
arises to establish a robust method for constructing IDFs so that poorly gauged areas can
take ownership of risk assessment and adaptation strategies. Therefore, a unique opportu-
nity is offered by satellites that have the potential to improve precipitation observations
at the global scale. In recent years, uninterrupted precipitation estimates are collected by
satellite with high spatial resolutions and global coverage. However, there is a lack of
information on the associated uncertainties and reliability of these products, making their
application not fully integrated into operational applications. Higher spatial resolution and
uninterrupted coverage of satellite data are some of the several advantages they provide.
Many internationally sponsored satellite missions, including of the National Aeronautics
and Space Administration (NASA) and the National Oceanic and Atmospheric Administra-
tion (NOAA), have made such data increasingly available [103]. From our review, 21% of
them construct IDF curves from satellite data, as it is a viable alternative to rain-gauge data.
Studies using satellite observations are subdivided per continent for the sake of simplicity.

2.4.1. Africa

Endreny and Imbeah [104] aim to establish a robust method for constructing IDF
curves in developing countries. They assess the predictive value of short-length satellite
records that are freely available, combined with limited ground-gauged data, in a frequency
analysis method designed for robust rainfall IDF estimation [104]. In this research, two
separate rainfall datasets of Ghana were used to fit two different probability distribution
frequency analysis methods to estimate IDF parameters. Two IDF methods are used to
verify the accuracy of using short rainfall records. The first one is a global method; it
was proposed by Koutsoyiannis et al. [31] and it uses a globally derived parameter. The
second one is the regional or Hosking and Wallis frequency method [105] and it uses three
regionally derived parameters. By this analysis, the global method, applied regionally,
gives the best fit with lower error. Temporal parameters are derived by Ghanaian Mete-
orological Service Department (GMSD) data and distribution parameters from Tropical
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Rainfall Measuring Mission (TRMM) satellite data. The global method with regional appli-
cation performs better in the Ghana study area because the regional method overestimates
rainfall intensity for short durations. Furthermore, the regional method generates internal
consistency errors in the IDF that are due to the short TRMM record sets with duplicate
observed depths at increasing durations. The main shortcoming shown by the work of
Endreny and Imbeah [104] is the lack of critical information that serves to derive sub-hourly
IDFs. The regional method using the TRMM data is based on durations greater than 3 h.
This first research based on satellite data for IDF curve generation in Ghana shows that it is
essential to combine ground and satellite data to provide a wider IDF spatial coverage and
range of durations, a better goodness of fit, and lower errors [104].

Ayman et al. [106] develop IDF curves by mixing ground rainfall-station data and
satellite data in northwest Angola, where very limited ground-station rainfall records are
available. Satellite data was used from the Tropical Rainfall Measuring Mission (TRMM),
which is a joint USA–Japan satellite mission to monitor tropical and subtropical precip-
itation. As a first step, they assessed if it was possible to combine the maximum daily
precipitation from ground stations and satellite data. Then, they assessed whether the
combined daily maximum records at the locations of interest belong to the same region
using the Wiltshire test and the ordinary moment diagram. Geographically consistent
regional average estimates of daily precipitation at different return periods were estab-
lished by applying the index flow method. Values of short-run IDF precipitation were then
derived. Ratios between 24 h and shorter-duration precipitation depths were developed
from satellite data, and regional IDF curves were then developed by regional models.

2.4.2. North America

Aghakouchak et al. [103] analyzed CMORPH, PERSIANN, TMPA-RT, and TMPA-V6
satellite data to assess the best performance in capturing precipitation extremes. The analy-
ses covered the wide study area of the southern Great Plains (SGP), including states of Texas,
Oklahoma, Kansas, Nebraska, Iowa, Missouri, Arkansas, and Louisiana in USA). Some
extreme value thresholds are considered to estimate the probability of detection, false alarm
ratio, volumetric probabilities, and areal bias. The authors concluded that no one product of
precipitation can be considered ideal for detecting extreme events because all precipitation
products tend to lose a significant volume of precipitation [103]. The study emphasizes the
need to develop algorithms that are able to capture extremes more reliably, given the poor
ability of satellite products to adapt to higher extreme precipitation thresholds.

Ombadi et al. [40] present a methodological framework potentially applicable to unex-
cavated regions, based on the bias adjustment and the transformation of precipitation from
areal to point. Basin-scale IDF curves are commonly constructed through the inverse trans-
formation, which precisely transforms the information from point to areal. This method is
applied to develop IDF curves over the contiguous United States (CONUS). The precipita-
tion estimation from remotely sensed information using artificial neural networks–climate
data record (PERSIANN-CDR) dataset is used for the study area. The accuracy of the
IDF curves is evaluated against the National Oceanic and Atmospheric Administration
(NOAA) Atlas 14. The study demonstrates good accuracy of IDFs constructed from satellite
data. The methods used could be applied in other scarcely gauged areas. The study also
points out some limitations regarding satellite data. One of these concerns the limited
information contained within the satellite precipitation as it does not allow a distinction
between frozen and liquid precipitation, which is usually considered in the development
of IDF curves. It is specified, however, that this could be significant only in regions that
receive considerable amounts of frozen forms of precipitation (i.e., snow, ice, and hail)
during extreme precipitation events [40]. The authors show the advantages of satellite data
to derive IDF to fill the problems associated with their use. They highlight the needs of
accounting for the different sources of uncertainty in satellite IDFs. They suggest that the
bias should be regularized; the precipitation should be converted into point-precipitation
values, and only later should the distribution parameters be estimated [40].
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2.4.3. Asia

Sun et al. [107] used remote-sensing sub-daily rainfall from Global Satellite Mapping of
Precipitation (GSMaP), integrated with the Bartlett-Lewis rectangular pulses (BLRP) model
to derive IDF curves. Specifically, to obtain more reliable IDF curves, they used satellite
data to disaggregate the daily in situ rainfall for the study area of Singapore city. The
disaggregation technique transforms the daily observations into hourly ones using satellite
rainfall characteristics; this is done through the BLRP. Subsequently, the analysis of the
extreme values allows the extraction of the annual maximum precipitation (AMAX), which
will serve as input in the construction of the IDF curves. The disaggregation technique
thus allows for more accurate IDF curves. The study reports an average reduction in
RMSE error over 70%; this is observed comparing results with curves derived from daily
rainfall observations [107]. The study thus highlights the advantage of the disaggregation
technique for hourly rainfall in producing IDF curves.

The ability to generate reliable IDFs is evaluated by analyzing the performance of
four remote-sensing-based gridded rainfall data processing algorithms (GSMaP_NRT,
GSMaP_GC, PERSIANN, and TRMM_3B42V7) [108]. The study area is peninsular Malaysia.
IDF curves were first generated by means of probability distribution functions (PDFs) of
rainfall totals for different durations, and then the gridded IDFs were compared with those
observed at 80 different locations in the study area. The analysis of the results has led
to the following findings. The distribution of the generalized extreme values (GEV) is
better suited to the intensity of precipitation; GSMaP_GC produced the best results as its
IDF curves were less distorted (8–27%) than the TRMM_3B42V7 curves (65–67%) [108].
The study concludes that, although satellite precipitation products tend to underestimate
IDF curves, they can be used in the design of hydraulic structures in scarcely gauged or
ungauged areas.

2.4.4. Europe

Comparing the IDF curves from radar and satellite (CMORPH) estimates over the eastern
Mediterranean (covering Mediterranean, 15 semiarid, and arid climates), Marra et al. [101]
quantified the uncertainty related to their limited record on varying climates. In this work,
they compared the combinate use of radar and satellite data. Both are remote-sensing
instruments able to provide high spatial–temporal resolution (i.e., 1–10 km and 5–60 min),
distributed, regional, or even global rainfall estimates. This was the first study in which
at-site IDF curves derived from different gridded remote-sensing datasets are compared.
The agreement between IDF curves derived from different sensors on Mediterranean and,
to a good extent, semiarid climates demonstrates the potential of remote-sensing datasets
and instils confidence in their quantitative use for ungauged areas. Spatial and temporal
aggregation of rainfall information represents viable ways to take advantage of remote-
sensing datasets and decrease the uncertainties related to the derived IDF curves [101].
This work shows that for short durations, radar identifies thicker tail distributions than
satellite and the shape parameters depend on the spatial and temporal aggregation scales.
There is spatial correlation between radar-IDFs and satellite-IDFs and it decreases with
longer return periods, especially for short durations, but the use of short records gives
important uncertainty when there is not a big difference between record length and return
period. Thus, the authors affirm that there is agreement between IDF curves derived from
different sensors on Mediterranean and, to a good extent, semiarid climates.

To reduce the scarcity of precipitation data, Courty et al. [109] study global-scale IDF
relationships using a gridded, multitemporal (1–360 h) 31 km resolution precipitation
dataset: PXR-2 (parameterized extreme rain). The aim is to translate site-specific studies
into a global scale and thus provide a global IDF relationship that can be used to estimate
precipitation intensity for a continuous range of durations. By scaling the parameters,
sub-daily IDFs could be estimated from daily records. High-density rainfall stations in the
United Kingdom are used in this work.
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The work proposed by Bertini et al. [6] aims to calculate intensity–duration–area–
frequency (IDAF) curves and estimate the design peak discharge for the Pietrarossa Dam
watershed in southern Italy (Catania, Italy) for which the design length of the dam spillway
is to be determined. The Climate Prediction Center morphing method (CMORPH) satellite
rainfall data are used to build IDFs and to derive design peak discharge for different return
periods. The results are compared with those of the VAPI regionalization method used
in Italy. The study shows an underestimation of rainfall intensity for each duration and
each return period by satellite and a poor match between satellite and rainfall data for
30 min time scales. As the temporal aggregation increases, however, an improvement
in performance is observed. In their paper, moreover, Bertini et al. [6] point out the
shortcomings that emerged from their study, attributable to the limited availability of
satellite records and the underestimation of rainfall intensity for each duration and return
time, thus highlighting a poor correlation between the satellite and rainfall-gauge datasets
at a 30 min time scale. Given the uncertainty that emerged from the study for large
return periods, the reader is urged to exercise caution when using satellite data in the
design of hydraulic works. The importance of using satellite data as a viable alternative to
rainfall data is also emphasized, and further developments to improve its performance are
also suggested.

In Figure 5, we show the years of coverage of each satellite dataset. As expected,
the majority of the works use datasets from the 2000s. All papers and analyses used to
construct IDF curves from satellite data are summarized in Table 4.
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Table 4. Papers developing IDFs using a satellite dataset.

Reference Target Key Analysis Years
(Observations) Uncertainty Location Spatial Scale

AghaKouchak et al. (2011) Analysis of satellite data to assess the best
performing in capturing precipitation extremes

Monthly Quantile Bias
(MQB) 2005–2008 - USA Regional

Ayman et al. (2011)
Development of IDF curves by mixing ground

rainfall stations data and satellite data for a
region with limited rainfall records

Regionalization 1998–2008 - North-West of
Angola Local

Bertini et al. (2020)

Calculate intensity–duration–area–frequency
(IDAF) curves and estimate the design peak

discharge for a dam watershed whose spillway
design lenght length is to be determined

Regionalization 2002–2017 Yes Catania Local

Courty et al. (2019)

Study global-scale IDF relationships using a
gridded, multitemporal resolution precipitation

dataset to estimate rainfall intensity for a
continuous range of durations

Scaling of distribution
parameters 1979–2018 - United Kingdom Regional

Endreny & Imbeah (2009)

Evaluating the predictive value of freely
available short duration satellite records

combined with limited ground-based measured
data in a frequency analysis method designed for

robust estimation of rainfall IDF

Global and Regional
frequency method 1998–2006 - Ghana Regional

Hosseinzadehtalaei et al.
(2020)

Update of IDF curves based on the impact of
climate change on extreme short-duration

precipitation in
Europe

Bayesian approach 1971–2000 Yes Europe Regional

Islam et al. (2022)

Provide a viable alternative to estimate unbiased
IFD curves at the sub-hourly timescale by a

novel framework, SIFD (Satellite-derived IFD
curves) to combine long-term daily gauge data

and sub-hourly SPP

Bayesian Generalised
Least Squares

Regression;
Regionalization

2001–2019 - Australia Regional
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Table 4. Cont.

Reference Target Key Analysis Years
(Observations) Uncertainty Location Spatial Scale

Marra et al. (2017)

Quantify subpixel variability of extreme rainfall
by using a novel space–time rainfall generator
that downscales in space the rainfall within a

given radar pixel

Non-dimensional
normalized metrics 1998–2013 Yes Eastern

Mediterranean Regional

Noor et al. (2021)
To generate reliable IDFs by analyzing the
performance of four remote sensing-based
gridded rainfall data processing algorithms

Bias correction 2000–2018 - Malaysia Regional

Ombadi et al. (2018)

Development of basin-scale IDFs on the
contiguous United States (CONUS) by the
transformation of precipitation from areal

to point

Bias correction 1983–2018 Yes USA Regional

Sun et al. (2019)
Development of more reliable IDF curves from
satellite data by the disaggregation of daily in

situ rainfall for Singapore city

Disaggregation hourly
rainfall 1998–2010 Yes Singapore Local
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3. Challenges: Climate Change

The challenge of estimating rainfall values in the scenario of climate change is faced
with rainfall data from rain gauges and satellite observations. It is interesting to note
that radar data have not been used for IDF evaluation in climate change scenarios. In the
following, we present in detail IDF estimated considering climate change using rain gauges
and satellite data.

3.1. Rain Gauge

In the prediction that the future climate will affect extreme rainfall events, Mailhot et al. [70]
account for such changes in IDF curves in southern Quebec, Canada. They analyze Cana-
dian regional climate model (CRCM) simulations considering a control period (1961–1990)
and a future period (2041–2070). Considering a regional frequency analysis more accurate
than a local analysis, maximum annual precipitation for durations of 2, 6, 12, and 24 h were
extracted and analyzed. The generalized extreme value (GEV) and the generalized logistic
(GLO) distributions were selected. CRCM model estimates are consistent with those based
on observed data. Regional estimates in the control climate, compared with those in the
future climate, show a return period halved for 2 h and 6 h events and reduced by one-third
for 12 and 24 h events. Regional IDF curves are derived at grid-box and rainfall-station
scales. The study shows that spatial correlations would decrease in a future climate; this
suggests that annual extreme rainfall events may result from more convective, thus more
localized, weather systems.

In the work developed by Kao and Ganguly [62], changes in the characteristics of
precipitation extremes under 21st-century warming scenarios for the area of Europe are
evaluated. The objective of their work is to characterize the nonstationary behavior of
precipitation extremes in function of climate change scenarios to evaluate their adaptation.
Considering a mobile window of 30 years within which to examine the variability of the
frequency of extreme events from multiple climate models, the intensity of precipitation
is quantified through the GEV type distribution. Different simulations of forced climate
models with different scenarios of greenhouse gas emissions are considered (IPCC Special
Report: Emissions Scenarios). The analysis shows significant uncertainties in the models
of precipitation processes, especially at regional scales. In the tropics, the analyses show
discrepancies in physical mechanisms of rainfall extremes. The work was also intended
to be a reference document for those interested in assessing the improvement of regional
estimates of precipitation extremes and enhancing the development of IDF curves on a
regional and local scale, or even for those interested in analyzing other aspects such as
seasonal maxima that may be interesting in other regions outside the tropics.

In the work reported by Mirhosseini et al. [76], the technique of dynamical downscaling
of general circulation models (GCMs) by regional climate models (RCMs) is used to derive
high-resolution projections to develop IDF curves and to assess the effects of climate
change on them. Alabama (USA) future IDF curves were d eveloped from the simulated
precipitation data from six combinations of global and regional climate models and were
then compared with the current IDF curves. Four of the six climate model projections
show that rainfall intensity may increase or decrease in the future, depending on the return
period. In contrast, according to the remaining projections, future rainfall intensity will
decrease for all return periods and durations. However, these results should be justified
considering that not all existing climate models and scenarios were used. Thus, they
suggest that additional climate model projections should be used. In particular, future
precipitation models for Alabama give less intense rainfall for short-duration events but, for
longer-duration events, results are inconsistent. The wide uncertainty in the precipitation
intensity projections of the climate models would suggest the development of an ensemble
model incorporating all six models.

In their study, Hassanzadeh et al. [59] use the quantile-based downscaling technique
to derive future IDF curves under climate change scenarios. The reference climate model
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is the third-generation coupled global climate model (CGCM3). Future IDF curves were
obtained for the city of Saskatoon in Canada and show obvious changes, particularly an
increase in extreme precipitation of short duration with short return periods. The technique
of downscaling quartiles of extreme precipitation directly from the corresponding large-
scale estimates thus allows the projected precipitation to be derived in view of possible
climate changes. They also point out that the most widely used downscaling technique
is continuous downscaling of precipitation records, which creates several issues by being
very complicated as a method.

The city of Saskatoon was also the study area investigated by Shahabul Alam and
Elshorbagy [82] to assess the variations in IDF curves caused by climate change. More
specifically, the intention was to develop future IDFs based on continuous 5 min rainfall
records for a simulation period between 2011 and 2100. A K-nearest neighbor (K-NN)
disaggregation technique was also used, and the uncertainty that was due to internal
weather variability, to the downscaling methods, and to fitting the GEV distribution for
constructing the IDF curves were also evaluated. Many of the studies that include climate
change variations in IDFs take into account gaps related to the application of climate
models. Shahabul Alam and Elshorbagy [82], in fact, define that the common uncertainties
are related to the GCM used, the various RPCs, and the methods of downscaling. They
advise the use of different downscaling methods to quantify this uncertainty. To fill the
gaps in climate models in estimating extreme precipitation according to climate change,
Mailhot et al. [70] suggest the use of multi-model ensemble systems (different GCMs with
different RCMs) and a multi-member ensemble.

The area of Canada is extensively studied in the literature to determine IDF curves
under climate change conditions. In central Alberta, for the city of Edmonton, the study
by Kuo et al. [63] was conducted. They adopted the technique of dynamic downscaling
by means of a regional model (RCM) applied on four global models (GCMs) and refer to
the SRES climate projection scenario. In this way, IDF curves in the observation period
1971–2000 are derived and for the future period 2071–2100 are simulated. Over the period
2011–2100, potential changes in future IDF curves are analyzed by estimating future slopes
of air temperature and rainfall trends that may be in that area. A quantile bias correction
was also applied in the development of the future IDF curves and they considered the
uncertainty associated to them by upper and lower IDF bounds observation.

Additionally in the Canadian study area, Simonovic et al. [112] developed a web-
based tool for IDF updating (IDF_CC). They used 22 GCMs with all three future emission
scenarios available and the equidistant quantile matching downscaling method (EQM).
They proposed in this way a freely available and computerized tool that can be used by
stakeholders. The IDF_CC tool is available for public use at this link: on http://www.idf-
cc-uwo.ca/ (accessed on 30 June 2022). Their project has some shortcomings. The main one
is the scarcity of information on locally relevant climate change impacts. Then there are
minor technical problems related to downloading [112].

We have pointed out that the region of Canada is among the most investigated for
updating IDF curves according to climate change; indeed, an increased risk of flooding
related to heavy precipitation events has been observed in recent decades. Ganguli and
Coulibaly [113] raise the issue of non-stationarity in IDF curves. The area examined is the
urbanized area of southern Ontario. The analysis addresses the non-stationarity of precipi-
tation extremes. Especially for short durations, the stationary and nonstationary models
define values of design intensity that do not differ substantially from each other. On the
other hand, considering larger recurrence intervals, and thus return times beyond 50 years,
the differences between the updated and non-updated IDF curves become larger. In light
of these results, the authors state that non-stationarity is evident in extreme precipitation
values, but nonstationary GEV models do not provide advantageous results compared
to stationary models. They also conclude that one should investigate the physical factors
influencing short-duration precipitation extremes to consider non-stationarity in IDF curves
and propose a stepwise variation model for GEV location and scale parameters.

http://www.idf-cc-uwo.ca/
http://www.idf-cc-uwo.ca/
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3.2. Satellite

The study proposed by Hosseinzadehtalaei et al. [110] considers the need to update
IDF curves according to the impact of climate change on extreme short-duration precipi-
tation. Therefore, IDF curves of current and future precipitation at the regional scale are
developed in Europe for durations of 0.5, 1, 3, 6, 12, and 24 h and for different return
periods between 1 and 100 years. The theoretical distribution used to develop the IDFs is
the generalized Pareto distribution (GPD). The methodology used to develop future IDFs
is downscaling with quantile perturbation by applying climate change signals from the
EURO-CORDEX regional climate model (RCM) to current IDF curves. The latter are derived
from high-resolution satellite data from CMORPH, which, in turn, derived microwave
observations from passive low-orbit (PMW) satellites. An additional global precipitation set
(MSWEP) obtained by combining satellite, reanalysis, and rainfall data is also used in their
study. The study proposed here emphasizes the need to implement climate change in water
infrastructure design because there is evidence of a high intensification of extreme sub-day
precipitation events in the future. In particular, according to the RCP 8.5 climate projection
scenario, the frequency of extreme events with return periods of 50 and 100 years will be
tripled. As a result, IDF curves will rise and stiffen in the presence of future climate change.

A limitation in the IDF curve downscaling technique is the underestimation of precipi-
tation intensities for short durations. To fill this gap, especially in areas where there is high
temporal-resolution rainfall data for long periods, Shrestha et al. [83] propose the use of a
precipitation downscaling tool, the Hyetos spatial downscaling-temporal disaggregation
method (DDM), to define IDF curves under climate change scenarios.

The reviews presented here regarding the papers dealing with the climate change
issue are very limited for the sake of brevity, as this paper is intended to represent literature
studies on the basis of the type of dataset used. The reader can refer to Martel et al. [27],
Kourtis and Tsihrintzis [114], and Sandink et al. [115] for valuable and extensive reviews.

The review paper proposed by Martel et al. [27] is intended to be a reference paper
regarding the measures of updating IDF curves according to climate change applied by
real government agencies and highlights their limitations. In addition, the work aims to
define a nonstationary model of IDF curves available for different regions of the world.

The review work presented by Sandink et al. [115] introduces a new aspect. It in-
volves stakeholders in the development of the computerized tool for the development
of intensity–duration–frequency curves under climate change (IDFCC tool). The same
tool was then used in the Simonovic et al. [116] review paper in which rainfall data from
numerous hydrometeorological stations in Canada were analyzed and future IDF curves
were derived.

Finally, the review paper recently proposed by Kourtis and Tsihrintzis [114] examines
the main challenges related to updating IDF curves in view of climate change. Indeed, the
paper summarizes the state of the art of scientific approaches related to IDF-curve updating
in the presence of climate change projections, evaluates the uncertainty of the approaches,
and finally establishes general guidelines for updating the curves. Information is then
given for updating the IDF curves, underlining the importance of high resolution in the
acquisition of observations, the need to use a multi-model ensemble incorporating different
GCM, RCM, and climate scenarios or use of a multi-model ensemble from CPM, the use of
the spatial–temporal disaggregation and downing-bias correction technique, and finally the
evaluation of uncertainty by defining the confidence intervals. Finally, the authors suggest
carrying out a careful analysis of the current climate trends when choosing a stationary or
a nonstationary approach for modeling rainfall extremes.

4. Discussion and Conclusions

Over the years, there has been an evolution in the methodologies for developing IDF
curves. In recent years, a major contribution to the determination of IDFs has come from
remotely sensed data: first from satellites and then from radar. The data collected so far
allow many gaps to be filled (see, for example, areas without data coverage because of
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instrumentation lack; these are developing or recently war-torn countries); however, the
uncertainties associated with satellite data still need to be assessed.

About 80 papers are analyzed in this review paper. Certainly, one of the greatest
difficulties was to manage the large amount of literature data available on the topic. One
of the caveats if this study may be the physical limitation in the number of papers; this
can be considered a bias in the coverage of scientific papers. Nevertheless, we believe that
this review can be an interesting reference paper for the study of IDF curves and their
hydraulic applications.

Specifically, the paper aims at answering the following research questions. (i) Which
is the contribution of a data-rich era? (ii) Do remote observations help to fill in the gap of
IDF construction in ungauged or partially gauged catchments? The results of this paper
emphasize the wide use of rainfall data in the construction of IDF curves. More than 80% of
the papers examined are based on rain-gauge datasets. Therefore, despite the recent studies
suggesting the use of remotely sensed data, rain-gauge data are confirmed to be the most
widely used data type. Special attention has been paid to the location of the case studies to
highlight where IDF curves have already been derived and at what temporal resolution.
From the extensive search study we conducted, it was found that the efforts made so far on
IDF curves are mainly at the local and regional levels. The rationale of this finding could be
the fact that IDF curves are usually implemented in local and regional engineering works.
Indeed, there is a lack of studies carried out at a global scale. In this sense, the selection of
remotely sensed data, especially satellite data, could be a mean to reduce the limitations of
rain-gauge data. Furthermore, global datasets of rain-gauge data are available and freely
accessible, thus providing input data to build IDFs also at the global scale [117].

The third research question is: (iii) how is uncertainty dealt with when IDFs are devel-
oped? The majority of the studies take into account the uncertainty in IDF estimation, thus
providing relevant information regarding limitations of the approach and opportunities for
improving the method. In the case of papers using remotely sensed data, it was preferred
to describe them individually, while in the case of papers associated with rain-gauge data,
they were grouped by methodology to emphasize the most widely followed approaches.
The reviewed works showed that about 8% are based on the Bayesian approach, less than
7% on multifractality, and about 20% apply regionalization methods. In the case of studies
integrating climate change, on the other hand, most deal with the statistical downscaling
technique. The reader can refer to the main text for further details on the shortcomings
of methods.

The analysis shows how satellite and radar data can be complementary of traditional
rainfall data. As a matter of fact, radar and satellite data have high spatial resolution
and are able to represent precipitation events characterized by short durations. On the
other hand, however, remotely sensed data should be used with caution, considering their
uncertainty. A further development would be to build IDF curves by combining multiple
datasets while evaluating the benefits that can be derived.
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