arXiv:2010.02863v4 [cs.LG] 7 Apr 2021

DIRECTIONAL GRAPH NETWORKS

ANISOTROPIC AGGREGATION IN GRAPH NEURAL NETWORKS VIA DIRECTIONAL VECTOR FIELDS

Dominique Beaini* Saro Passaro* Vincent Létourneau
Valence Discovery University of Cambridge Valence Discovery
Montreal, QC, Canada Cambridge, United Kingdom Montreal, QC, Canada
dominique@valencediscovery.com sp976@cam.ac.uk
William L. Hamilton Gabriele Corso Pietro Lio
McGill University, MILA University of Cambridge University of Cambridge
Montreal, QC, Canada Cambridge, United Kingdom Cambridge, United Kingdom
ABSTRACT

The lack of anisotropic kernels in graph neural networks (GNN5s) strongly limits their expressiveness,
contributing to well-known issues such as over-smoothing. To overcome this limitation, we propose
the first globally consistent anisotropic kernels for GNNs, allowing for graph convolutions that
are defined according to topologicaly-derived directional flows. First, by defining a vector field in
the graph, we develop a method of applying directional derivatives and smoothing by projecting
node-specific messages into the field. Then, we propose the use of the Laplacian eigenvectors as
such vector field. We show that the method generalizes CNNs on an n-dimensional grid and is
provably more discriminative than standard GNNs regarding the Weisfeiler-Lehman 1-WL test. We
evaluate our method on different standard benchmarks and see a relative error reduction of 8% on the
CIFAR10 graph dataset and 11% to 32% on the molecular ZINC dataset, and a relative increase in
precision of 1.6% on the MoIPCBA dataset. An important outcome of this work is that it enables
graph networks to embed directions in an unsupervised way, thus allowing a better representation of
the anisotropic features in different physical or biological problems.

1 Introduction

One of the most important distinctions between convolutional neural networks (CNNs) and graph neural networks
(GNNps) is that CNNs allow for any convolutional kernel, while most GNN methods are limited to symmetric kernels
(also called isotropic kernels) [25)14]. There are some implementations of asymmetric kernels using gated mechanisms
[4}143]], motif attention [38]], edge features [[14], port numbering [41]] or the 3D structure of molecules [26].

However, to the best of our knowledge, there are currently no methods that allow asymmetric graph kernels that are
dependent on the full graph structure or directional flows. They either depend on local structures or local features. This
is in opposition to images, which exhibit canonical directions: the horizontal and vertical axes. The absence of an
analogous concept in graphs makes it difficult to define directional message passing and to produce an analogue of
the directional frequency filters (or Gabor filters) widely present in image processing [37]. In fact, there is numerous
evidence that directional filtering is fundamental image processing [24} 2| |47].

We propose a novel idea for GNNs: use vector fields in the graph to define directions for the propagation of information.
An overview of this framework is presented in figure[I] Using this approach, the usual message-passing structure of a
GNN is projected onto globally-defined directions so that the contribution of each neighbouring node n,, is weighted by
its alignment with the vector fields at the receiving node n,,. This enables our method to propagate information via
directional derivatives or smoothing of the features.

In order to define globally consistent directional fields over general graphs, we propose to use the gradients of the
low-frequency eigenvectors ¢y, of the graph Laplacian, since they are known to capture key information about the global

*equal contribution

Directional Graph Networks A PREPRINT

Pre-computed steps O (kE) Graph neural network steps O(kE + kN)

Compute the first Compute the Create the aggregation
(a) Inputgraph | (b) p c) P . (d) . sereg
k eigenvectors gradient matrices B
The a-directional The eigenvectors ¢ of L are The gradientof ¢ isa Each row (i,:) of the field F is A graph with the node The aggregation matrices This is the only step with
adjacency matrix A computed and sorted such function of the edges (a normalized by it's L norm. features is given. x© B‘lwd"x are used to aggregate learned parameters.
isgivenasaninput. that ¢»; has the lowest non- matrix) such that & _ F;. is the feature matrix the features X(@ via the
We then compute zero eigenvalue and ¢ has Voij = ¢; — @; if the nodes Fi.= WF;i g +€ of the graph at the 0- matrix prodict BX. For B.,, we Basedionlthe (,ECN‘ method,
the Laplacian matrix the k-th lowest i,j = | th GNN | f si n y = e e owed
L g . g/oi\;:rc;ir;:ected, orVeij = By, is the directional |s’rfioothing matrix. i ENEpEEHS :ra]ke the absbt?lut.: va:u; dueto by 5 multi layer perceptron
. We compute the k-first g By = |F| 0g ElsignlambigUityIol(N (MLP) on all the features.
pumberfoflnodes :‘lagr:n:/:;ttolzfvgt(l;(;) If.the _g"ap_h has a known * B, is the directional derivative matrix. The a.ggreg:t‘i"on Y@ is the column- The MLP is applied on the
F: number of edges plexity b dlrgctlon, it can be encoded _ . _ matrices By, are concatenation of all directional o1 umns of ¥(© thus we
Node co astleIIZ F. | (Bax)i; = Fy; — diag ZFJ taken f:ocr’n the pre- and a-directional aggregations. 2ue 3 complexity of 0(kN).
lode colormap ield matrix colormap i computed steps. -
IERR 0 max -max 0 max - The complexity is O(kE), or « X hasn, columns
] e 5 o
u O(E) if the aggregations are
L) B, B parallelized. « YO has (2k + 1)ng
[= o X columns
o F =V = o m . R
Graph ‘\ \ { 1 - Jics ﬁ{% + XD has n, columns
| o X
7] Xos o)
L 1
u By
P Q.7 '{ 1
: ' o0
B}, X©
. . L4 Bl x©
A . L) . Y© = concat{ “av; X® = MLP(Y(®)
mm o o L Ky
I.::.. L} .] a |dex()l Next GNN
L) L] 1 Bk, x© layer
" l- [Fk =V, = N .ﬂ BY, fo @
= "R . Fa, Ba tt+1
= u k X® o x(t+)
e \ ® - = By X - x®
K) 1
b vy ot BX, BE, YO 5 y®
® - !

Figure 1: Overview of the steps required to aggregate messages in the direction of the eigenvectors.

structure of graphs [6, [8 [16]. In particular, these eigenvectors can be used to define optimal partitions of the nodes
in a graph, to give a natural ordering [32]], and to find the dominant directions of the graph diffusion process [[7, [40]].
Further, we show that they generalize the horizontal and vertical directional flows in a grid (see figure [2), allowing
them to guide the aggregation and mimic the asymmetric and directional kernels present in computer vision. In fact, we
demonstrate mathematically that our work generalizes CNNs, by reproducing all convolutional kernels of radius R in an
n-dimensional grid, while also bringing the powerful data augmentation capabilities of reflection, rotation or distortion
of the directions. Additionally, we also prove that our directional graph networks (DGNs) are more discriminative than
standard GNNs in regards to the Weisfeiler-Lehman 1-WL test, confirming an increase of expressiveness.

We further show that our DGN model theoretically and empirically allows for efficient message passing across distant
communities, which counteracts the well-known problem of over-smoothing in GNNs. Alternative methods reduce
the impact of over-smoothing by using skip connections [33]], global pooling [}, or randomly dropping edges during
training time [39], but without solving the underlying problem.

Our method distinguishes itself from other spectral GNNs since the literature usually uses the low frequencies to
estimate local Fourier transforms in the graph [44]). Instead, we do not try to approximate the Fourier transform, but
only to define a directional flow at each node and guide the aggregation.

We tested our method on 5 standard datasets from [12] and [20], using two types of architectures, and either using
or ignoring edge features. In all cases, we observed state-of-the-art results from the proposed DGN, with relative
improvements of 8% on CIFARI1O0, 11-32% on ZINC, 0.8% on MolHIV and 1.6% on MolPCBA. Most of the
improvement is attributed to the directional derivative aggregator, highlighting our method’s ability of capturing
directional high-frequency signals in graphs.

2 Theoretical development

2.1 Intuitive overview

One of the biggest limitations of current GNN methods compared to CNNSs is the inability to do message passing in a
specific direction such as the horizontal one in a grid graph. In fact, it is difficult to define directions or coordinates
based solely on the shape of the graph.

The lack of directions strongly limits the discriminative abilities of GNNs to understand local structures and simple
feature transformations. Most GNNs are invariant to the permutation of the neighbours’ features, so the nodes’ received
signal is not influenced by swapping the features of two neighbours. Therefore, several layers in a deep network will be

Directional Graph Networks A PREPRINT

Examples of eigenvector-based directions Examples of inductive bias based directions
acos ¢ acos ¢, acos ¢3
—re—ri—s —>i—re—se — —>o—re—re — oo)
(a) I I I I I I I rr 1 t Field propagation due to the
. e Node Edge —* —*—*®® presence of a charge or
Non-diagonal | T A A I Tt I di N
X —ro— — — —so—so values gradient oo defectin the crystal
grid graph I I AN IR I Pl e x4 o .o (inan hexagonal attce, itis
7x5 possible to add edges between
=5 1iiidil EEEERE SR SR O | ! t o ngona meghhoue
3 L
Y A
(b) .\ , - Dlretcn%n out of the global
X - centroi
Molecular . ° et :.," "» L4 3™ (We can also use local centroids,
graph .o e o y- <2 ™\ e local polarity, or 3D structure to
. 4 % ‘ define the fields)
l‘..‘
minl 0 : T Y *"'Direction in/out of every city
(c) 4 (This mimics traffic in the

Minnesota { i)] Z, morning/aﬁ:rnuont;and mle
. expansion of suburbs population]
road map * P Pop!)

Figure 2: Possible directional flows in different types of graphs. The node coloring is a potential map and the edges
represent the gradient of the potential with the arrows in the direction of the flow. The first 3 columns present the

arcosine of the normalized eigenvectors (acos qS) as node coloring, and their gradients represented as edge intensity.
The last column presents examples of inductive bias introduced in the choice of direction. (a) The eigenvectors 1
and 2 are the horizontal and vertical flows of the grid. (b) The eigenvectors 1 and 2 are the flow in the longest and
second-longest directions. (c) The eigenvectors 1, 2 and 3 flow respectively in the South-North, suburbs to the city
center and West-East directions. We ignore ¢ since it is constant and has no direction.

employed to understand these simple changes instead of being used for higher level features, leading to problematic
phenomena such as a over-squashing [[1].

In the first part of the theoretical development, we develop the mathematical theory for general vector fields F'.
Intuitively, defining a vector field over a graph corresponds to assigning a scalar weight to edges corresponding to the
magnitude of the flow in that direction. Note that F' has the same shape as the adjacency matrix and the same zero
entries. As an example a left-to-right flow in a grid corresponds to a matrix with positive values over all left-to-right
edges, negative over the right-to-left edges and O on the vertical edges.

In the second part, we set F to be the gradient of the low-frequency eigenvectors of the Laplacian. Using this directional
field, we show that the expressiveness of GNNs can be improved, while providing an intuitive directional flows over a
variety of graphs (see figure[2). For example, we prove that in grid-shaped graphs some of these eigenvectors correspond
to the horizontal and vertical flows. Again, we observe in the Minnesota map that the first 3 non-constant eigenvectors
produce logical directions, namely South/North, suburb/city, and West/East.

Another important contribution—also noted in figure [2}—is the ability to define any kind of directional flow based on
prior knowledge of the problem. Hence, instead of relying on eigenvectors to find directions in a map, we can simply
use the cardinal directions or the rush-hour traffic flow.

2.2 Overview of the theoretical contributions

Vector fields in a graph. Using directions in a graph is novel and not intuitive, so our first step is to define a simple
nomenclature where we use a vector field to define a directional flow at each node.

Directional smoothing and derivatives. To make use of vector fields over graphs, we define aggregation matrices that
can either smooth the signal (low pass filter) or compute its derivative (high pass filter) according to the directions
specified by the vector field.

Gradient of the Laplacian eigenvectors. We show that using the gradient of the low-frequency eigenvectors of the
graph Laplacian generates interpretable vector fields that counteract the over-smoothing problem.

Generalization of CNNs. We demonstrate that, when applied to a grid graph, the eigenvector-based directional
aggregation generalizes convolutional neural networks.

Comparison to the Weisfeiler-Lehman (WL) test. We prove that the proposed DGN is more expressive than the
1-WL test, and thus more expressive than ordinary GNNSs.

Directional Graph Networks A PREPRINT

2.3 Vector fields in a graph

This section presents the ideas of differential geometry applied to graphs, with the goal of finding proper definitions of
scalar products, gradients and directional derivatives. For reference see for example [5,[16}115].

Let G = (V, E) be a graph with V' the set of vertices and £ C V' x V the set of edges. The graph is undirected meaning
that (i, j) € Eiff (j,i) € E. Define the vector spaces L?(V') and L?(E) as the set of maps V — R and £ — R with
x,y € L?(V) and F, H € L?(E) and scalar products

(T, Y)r2(v) i = Zﬂczyz
iev

(F,H)p2p):= Y FujHay
(i,7)eE

(D

Think of E as the “tangent space" to V and of L?(E) as the set of “vector fields” on the space V' with each row F; .
representing a vector at the i-th node, and the element F; ; being the component of the vector going from node i to j
through edge e;;. Note that with n the number of nodes in G, any € L?(V') can be represented as an n coordinates
vector and F' € L?(E) can be represented as an . X n matrix.

Define the pointwise scalar product as the map L?(E) x L?(E) — L*(V) taking 2 vector fields and returning their
inner product at each point of V, at the node i is defined by equation[2]

(F,H);:== > F,;H,; @)
J:(i.j)€E
In equation [3| we define the gradient V as a mapping L?(V) — L?(E) and the divergence div as a mapping
L?(E) — L?(V), thus leading to an analogue of the directional derivative in equation@
(V)5 = z(j) — =(i)
(divF)i== Y Fu 3)
J:(i,j)EE

Definition 1. The directional derivative of the function x on the graph G in the direction of the vector field F where
each vector is of unit-norm is

Dpa(i):= (Va,F)i= > (x(j) —z(i)F, @)

J:(i.4)€E

|F| will denote the absolute value of F' and ||F; .||r» the LP-norm of the i-th row of F. We also define the for-
ward/backward directions as the positive/negative parts of the field F'*.

2.4 Directional smoothing and derivatives

Next, we show how the vector field F' is used to guide the graph aggregation by projecting the incoming messages.
Specifically, we define the weighted aggregation matrices By, and B, that allow to compute the directional smoothing
and directional derivative of the node features, as presented visually in figure[T}d.

The directional average matrix B,, is the weighted aggregation matrix such that all weights are positives and all
rows have an L!-norm equal to 1, as shown in equation and theorem |2.1| with a proof in the appendix

F
Bav FZ::7
E)i = E I T e

5

&)

The variable e is an arbitrarily small positive number used to avoid floating-point errors. The L!-norm denominator is
a local row-wise normalization. The aggregator works by assigning a large weight to the elements in the forward or
backward direction of the field, while assigning a small weight to the other elements, with a total weight of 1.

Theorem 2.1 (Directional smoothing). The operation y = B, is the directional average of x, in the sense that y.,
is the mean of x.,, weighted by the direction and amplitude of F.

With x,, the features at the nodes v neighbouring u, and y,, the directional smoothing at node w.

Directional Graph Networks A PREPRINT

The directional derivative matrix By, is defined in (6) and theorem[2.2] with the proof in appendix Again,
the denominator is a local row-wise normalization but can be replaced by a global normalization. diag(a) is a square,
diagonal matrix with diagonal entries given by a. The aggregator works by subtracting the projected forward message
by the backward message (similar to a center derivative), with an additional diagonal term to balance both directions.

Bdm(F)i,: = E,: - dlag(zﬁ‘,j) .
; iy

’ 1F:l[r + €

Theorem 2.2 (Directional derivative). Suppose F have rows of unit L' norm. The operation y = de(ﬁ)w is the
centered directional derivative of x in the direction of F', in the sense of equation |4} i.e.

Y= Dpa - (ﬁ_diag(zj:ﬁ,j))m

(6)

These aggregators are directional, interpretable and complementary, making them ideal choices for GNNs. We discuss
the choice of aggregators in more details in appendix |[Al while also providing alternative aggregation matrices such as
the center-balanced smoothing, the forward-copy, the phantom zero-padding, and the hardening of the aggregators using
softmax/argmax on the field. We further provide a visual interpretation of the B, and By, aggregators in figure 3]
Interestingly, we also note in appendix that B,, and By, yield respectively the mean and Laplacian aggregations
when F' is a vector field such that all entries are constant F;; = +C.

Graph features focused on the neighbourhood of n,, Directional smoothing aggregation B, (F)x Directional derivative aggregation B, (F)x
@Fv,lu
F ‘Fv,u‘|xu‘ + ‘Fr‘u%‘xlu +|Fv,uv;‘xuv; Fu,ul(xul _xv)+Fu,zzg(xz‘7Xzz>)+Fu,uz;(xu_xu;;)

vuy

5%743 Fous |+ [Foiy | + [Fous| o, |+ |Fopiy | + |Fous |

Weighted forward Weighted backward Weighted backward
v: Node receiving the message Absolute weighted sum derivative with u; + derivative with u, + derivative with uz
Uy 5,3: Neighbouring node
x,,: Feature at node u
F,,: Directional vector field between the node v and u

Sum of the absolute weights Sum of the absolute weights

Figure 3: Illustration of how the directional aggregation works at a node n,,, with the arrows representing the direction
and intensity of the field F'.

2.5 Gradient of the Laplacian eigenvectors as interpretable vector fields

In this section we give theoretical support for the choice of gradients of the eigenfunctions of the Laplacian as sensible
vectors along which to do directional message passing since they are interpretable and allow to reduce the over-
smoothing. This section gives a theoretical ground to the intuitive directions presented in figure|2| and is the motivation
behind steps (b-c) in figure[T}

As usual the combinatorial, degree-normalized and symmetric normalized Laplacian are defined as
L=D-A, Lyw=D 'L, Ly,=D *LD: (7)

The eigenvectors of these matrices are known to capture many essential properties of graphs, making them a natural
foundation for directional message passing. For example, the Laplacian eigenvectors corresponding to the smallest
eigenvalues (i.e., the low frequency eigenvectors) effectively capture the community structure of a graph, and these
eigenvectors also play the role of Fourier modes in graph signal processing [18]]. Indeed, the Laplacian eigenvectors
hold such rich information about graph structure that their study is the focus of the mathematical subfield of spectral
graph theory [8].

In order to illustrate the utility of these eigenvectors in the context of GNNs, we show that the low-frequency eigenvectors
provide a natural direction that allows us to pass messages between distant nodes in a graph. In particular, we show in
theorem (proved in appendix that by passing information in the direction of ¢, the eigenvector associated to
the lowest non-trivial frequency of Lo, DGNs can efficiently share information between distant nodes of the graph
by reducing the diffusion distance between them. This idea is reflected in figure 2] where we see that the eigenvectors
of the Laplacian give directions that correspond to a natural notion of distance on real-world graphs.

In the next paragraphs, we will prove that following the gradient of the eigenvectors allows to effectively reduce the
heat-kernel distance between pairs of nodes.

Directional Graph Networks A PREPRINT

Consider the transition matrix W = D~!A. Its entries can be used to define a random walk with probability to
move from node z to node y equal to p;(x,y) = di if x and y are neighbors and 0 if not. Notice that the probability
to transition from z to y in k steps is given by the z,y entry of the matrix WP, This matrix is also called the
discrete heat kernel py(z,y) = (WP*),,. Given a Markov process X}, defined by the transition matrices W*,
J=1,...,k, we can define a continuous time random walk on the same graph in the following way. Let IV; be a mean 1
Poisson random variable, the continuous time random variable is defined by X; := X, with transition probability
q(z,y) = P(Xy = y|zo = 2).

In [3], the following identity is shown

& e—ttk
0(z,y) =) ——pr(z,y)
n=0
Or in matrix form ¢, = e!W—1) = ¢—tLwm_This transition probability is also called the continuous time heat kernel
because it satisfies the continuous time heat equation on graphs %qt = —Lyomq:. In [9] the following distance is
defined

Definition 2 (Diffusion distance). The diffusion distance at time t between the nodes x,y is

di(z,y) == <Z (Qt(fv,z) - qt(yvz))2> ’ (3

zeV

The diffusion distance is small when there is high probability that two random walks starting at « and y meet at time .
The diffusion distance is used as a model of how the data at a node z influences a node y in a GNN. The symmetrisation
of the heat kernel in the diffusion distance and the use of continuous time are slight departure from the actual process of
information diffusion in a GNN but allow us to describe the important phenomenons with much simpler statements.

Definition 3 (Gradient step). Suppose the two neighboring nodes x and z are such that ¢(z) — ¢(x) is maximal among
the neighbors of x, then we will say z is obtained from x by taking a step in the direction of the gradient V ¢.

Theorem 2.3 (Gradient steps reduce diffusion distance). Let x,y be nodes such that ¢1(x) < ¢1(y). Let =’ be the
node obtained from x by taking one step in the direction of V ¢1, then there is a constant C' such that for C' < t we have

dt(m/a y) < dt(xa y)
With the reduction in distance being proportional to e~ .
From this theorem, we see that moving from node x to node z’ by following the gradient of the eigenvector ¢ is
guaranteed to reduce the heat kernel distance with a destination node y. While the theorem always holds for ¢4, it
should be true for higher frequency eigenvectors if the graph has added structure for example if it is an approximation
of a surface or a higher dimensional manifold.

In the context of GNNs, Theorem [2.3] also has implications for the well-known problems of over-smoothing and
over-squashing [1, [18]. In most GNN models, node representations become over-smoothed after several rounds of
message passing, as the representations tend to reach a mean-field equilibrium equivalent to the stationary distribution of
a random walk [[18]. Researchers have also highlighted the related issue of over-squashing, which reflects the inability
for GNNs to propagate informative signals between distant nodes in a graph [1]].

Both these problems are related to the fact that the influence of one node’s input on the final representation of another
node in a GNN is correlated with the diffusion distance between the nodes [46]. Theorem [2.3highlights how the DGN
approach can alleviate these issues. In particular, the Laplacian eigenfunctions reveal directions that can counteract
over-smoothing and over-squashing by allowing efficient propagation of information between distant nodes instead of
following a diffusion process.

Finally it is interesting to note that by selecting different eigenvectors as basis of directions, our method further
aligns with a theorem that multiple independent aggregators are needed to distinguish neighbourhoods of nodes with
continuous features [[10].

2.6 Choosing a basis of the Laplacian eigenspace

When using eigenvectors of the Laplacian ¢; to define directions in a graph, we need to keep in mind that there is never
a single eigenvector associated to an eigenvalue, but a whole eigenspace. If an eigenvalue has multiplicity of k, the
associated eigenspace has dimension & and any collection of &k orthogonal vectors could be chosen as basis of that space
and as vectors for the definitions of the aggregation matrices B defined in the previous sections.

Directional Graph Networks A PREPRINT

Disconnected graphs. When a graph is disconnected, then the eigenfunctions will simply be the combination of the
eigenfunctions of each connected components. Hence, one must consider ¢; as the i-th eigenvector of each component
when taken separately.

Normalizing the eigenvectors. For an eigenvalue of multiplicity 1, there are always two unit norm eigenvectors of
opposite sign, which poses a problem during the directional aggregation. We can make a choice of sign and later take
the absolute value (i.e. B, in equation[5). An alternative that applies to multiplicities higher than 1 is to take samples
of orthonormal bases of the eigenspace and use each choice to augment the training (see section [2.10).

Multiplicities greater than 1. Although multiplicities higher than one do happen for low-frequencies (square grids
have a multiplicity 2 for ;) this is not common in “real-world graphs” since it suggests symmetries in the graph which
are uncommon. Furthermore, we found no A; multiplicity greater than 1 in the ZINC and PATTERN datasets. We
further discuss these rare cases and how to deal with them in appendix [B.4]

Orthogonal directions. Although all ¢ are orthogonal, their gradients, used to define directions, are not always locally
orthogonal (e.g. there are many horizontal flows in the grid). This concern is left to be addressed in future work.

2.7 Generalization of the convolution on a grid

In this section we show that our method generalizes CNNs by allowing to define any radius-R convolutional kernels in
grid-shaped graphs. The radius- R kernel at node « is a convolutional kernel that takes the weighted sum of all nodes v
at a distance d(u,v) < R.

Consider the lattice graph I' of size N1 x N2 X ... X IN,, where each vertices are connected to their direct non-diagonal
neighbour. We know from Lemma [C.T]that, for each dimension, there is an eigenvector that is only a function of this
specific dimension. For example, the lowest frequency eigenvector ¢, always flows in the direction of the longest
length. Hence, the Laplacian eigenvectors of the grid can play a role analogous to the axes in Euclidean space, as shown

in figure

With this knowledge, we show in theorem [2.4] (proven in[C.6)), that we can generalize all convolutional kernels in an
n-dimensional grid. This is a strong result since it demonstrates that our DGN framework generalizes CNNs when
applied on a grid, thus closing the gap between GNNs and the highly successful CNNs on image tasks.

Theorem 2.4 (Generalization radius- R convolutional kernel in a lattice). For an n-dimensional lattice, any convo-
lutional kernel of radius R can be realized by a linear combination of directional aggregation matrices and their
compositions.

As an example, ﬁgure shows how a linear combination of the first and m-th aggregators B(V ¢ ,,) realize a kernel
onan N x M grid, where m = [N/M| and N > M.

Note that when the size of a given dimension is an integer multiple of another direction, e.g. N = M or N = 3M, then
you will find a multiplicity of 2 for the m — th eigenvector. Hence, the eigenvector used to define the direction is not
unique. This does not void theorem [2.4] since the eigenvectors flowing in the horizontal/vertical directions are still valid
choices.

wql + 2w, BL, + 2w, B},
Graph aggregation =2Bl, x = 2B} =2B" x =2B7. x =("1 2 %av 3 "dx
p ggreg; y av y dx X y av y dx y +2W4Branv + ZWSB%

Wy
CNN equivalent on

image Iyxy, with L=(L+«A A I L«B B) L=|I I I 1 Lo ™2 o
NxM» = * [1 = * [1 = * = * = * w-
N>M; NeM %0~ \ Yo Yo o VU T, s

—ws

Figure 4: Realization of a radius-1 convolution using the proposed aggregators. I, is the input feature map, * the
convolutional operator, I, the convolution result, and B* = B(Vg,).

2.8 Extending the radius of the aggregation kernel

Having aggregation kernels for neighbours of distance 2 or 3 is important to improve the expressiveness of GNNG, their
ability to understand patterns, and to reduce the number of layers required. However, the lack of directions in GNNs
strongly limits the radius of the kernels since, given a graph of regular degree d, a mean/sum aggregation at a radius-R
will result in a heavy over-squashing of O(d’?) messages. Using the directional fields, we can enumerate different paths,
thus assigning a different weight for different R-distant neighbours. This method, proposed in appendix avoids the
over-squashing. (Empirical results on this extension are left for future work.)

Directional Graph Networks A PREPRINT

2.9 Comparison with Weisfeiler-Lehman (WL) test

We also compare the expressiveness of the Directional Graph Networks with the classical WL graph isomorphism test
which is often used to classify the expressivity of graph neural networks [45]]. In theorem 2.5] (proven in appendix [C.7)
we show that DGNs are capable of distinguishing pairs of graphs that the 1-WL test (and so ordinary GNNs) cannot
differentiate.

Theorem 2.5 (Comparison with 1-WL test). DGNs using the mean aggregator, any directional aggregator of the first
Laplacian eigenvector and injective degree-scalers are strictly more powerful than the 1-WL test.

2.10 Data augmentation

Another theoretical result is that the directions in the graph allow to replicate some of the most common data
augmentation techniques used in computer vision, namely reflection, rotation and distortion. The main difference is
that, instead of modifying the image (such as a 5° rotation), the proposed transformation is applied on the vector field
defining the aggregation kernel (thus rotating the kernel by —5° without changing the image). This offers the advantage
of avoiding to pre-process the data since the augmentation is done directly on the kernel at each iteration of the training.

The simplest augmentation is the vector field flipping, which is done changing the sign of the field F', as stated in
deﬁnition@ This changes the sign of By,, but leaves B,, unchanged.
Definition 4 (Reflection of the vector field). For a vector field F', the reflected field is — F'.

Let Fy, F5 be vector fields in a graph, with F, and F, being the field normalized such that each row has a unitary
L2-norm. Define the angle vector o by ((F1);.., (F»);.) = cos(a;). The vector field F5" is the normalized component
of Fy perpendicular to F. The equation below defines F2 The next equation defines the angle

(ED,, = (B (B B)R),
T (B — (Fy By)|

Notice that we then have the decomposition (F3);.. = cos(a;)(F1);.. + sin(ey)(Fs5h);...

Definition 5 (Rotation of the vector fields). For Fy and F» non-colinear vector fields with each vector of unitary length,
their rotation by the angle 0 in the plane formed by {Fy, F»} is

F? = Fydiag(cos 0) + Fj-diag(sin 0)

A N ©
Fy = Fidiag(cos(8 + o)) + F;-diag(sin(6 + o))

Finally, the following augmentation has a similar effect to a wave distortion applied on images.

Definition 6 (Random distortion of the vector field). For vector field F' and anti-symmetric random noise matrix R, its
randomly distorted field is F' = F + R o A.

3 Implementation

We implemented the models using the DGL and PyTorch libraries and we provide the code at the address
https://github.com/Saro00/DGN. We test our method on standard benchmarks from [12]] and [20], namely ZINC,
CIFAR10, PATTERN, MolHIV and MolPCBA with more details on the datasets and how we enforce a fair comparison
in appendix [B.1]

For the empirical experiments we inserted our proposed aggregation method in two different type of message passing
architectures used in the literature: a simple convolutional architecture similar to the one present in GCN (equation
[25]] and a more complex and general one typical of MPNNs (@]) [14] with or without edge features e;;. The time
complexity of our approach is O(Em), which is identical to PNA [10], where F is the number of edges and m the
number of aggregators, with an additional O(Ek) to pre-compute the k-first eigenvectors, as explained in the appendix

t+1) < @ x t)> (10a)
(4H)EE
Xi(t+1) _U<Xi(t), @ M(Xf”,X}”, eji) (10b)
(j,i)EE optional

https://github.com/Saro00/DGN

Directional Graph Networks A PREPRINT

Here, € is an operator which concatenates the results of multiple aggregators, X is the node features, M is a linear
transformation and U a multiple layer perceptron (MLP). This simple architecture of equation is observed visually
in steps (f-g) of figure[T]

We further use degree scalers S(d, «) defined below to scale the aggregation results according to each node’s degree, as
proposed by the PNA model [[10]. Here, d is the degree of a given node, § is the average node degree in the training set,
and « is a parameter set to —1 for degree-attenuation and 1 for degree amplification. Note that each degree scaler is
applied to the result of each aggregator, and the results are concatenated.

S(d,a) = (me, 5= 1 3 log(d; + 1) (11)

o |train|

i € train

We tested the directional aggregators across the datasets using the gradient of the first £ eigenvectors V1., as the
underlying vector fields. Here, k is a hyperparameter, usually 1 or 2, but could be bigger for high-dimensional graphs.
To deal with the arbitrary sign of the eigenvectors, we take the absolute value of the result of equation [6} making it
invariant to a reflection of the field. In case of a disconnected graph, ¢; is the i-th eigenvector of each connected
component. Despite the numerous aggregators proposed in appendix [A] only By, and B, are tested empirically.

The metrics used to measure the performance of a model depend are enforced for each dataset and provided by [12] and
[20]. In particular, we use the mean absolute error (MAE), the accuracy (acc), the area under the receiver operating
curve (ROC-AUC), and the average precision (AP).

4 Results and discussion

4.1 Directional aggregation

Using the benchmarks introduced in section [3] we present in figure[5a fair comparison of various aggregation strategies
using the same parameter budget and hyperparameters. We see a consistent boost in the performance for simple,
complex and complex with edges models using directional aggregators compared to the mean-aggregator baseline.

With our theoretical analysis in mind, we expected to perform well on PATTERN since the flow of the first eigenvectors
are meaningful directions in a stochastic block model (i.e., these eigenvectors tend to correlate with community
membership). The results match our expectations, outperforming all the previous models.

In particular, we see a significant improvement in the molecular datasets (ZINC, MolHIV and MolPCBA) when using
the directional aggregators, especially for the derivative aggregation B (noted dx; in figure . We believe this is due
to the capacity to efficiently move messages across opposite parts of the molecule and to better understand the role of
atom pairs. We further believe that the derivative aggregator is better able to capture high-frequency directional signals,
similarly to the Gabor filters in computer vision.

Further, the thesis that DGNs can bridge the gap between CNNs and GNNs is supported by the clear improvements on
CIFAR10 over the baselines.

In the work by [12], they proposed the use of positional encoding of the eigenvectors. However, our experiments with
the positional encoding of the first 2 non-trivial eigenvectors, noted pos;, pos; in figure[5} showed no clear improvement
on most datasets. In fact, Dwivedi et al. noted that many eigenvectors and high network depths are required for
improvements, yet we outperform their results with fewer parameters, less depth, and only 1-2 eigenvectors, further
motivating their use as directional flows instead of positional encoding.

4.2 Comparison to the literature

In order to compare our model with the literature, we fine-tuned it on the various datasets and we report its performance
in figure [f] We observe that DGN provides significant improvement across all benchmarks, highlighting the importance
of anisotropic kernels that are dependant on the graph topology.

Note that the results in Figure [f] are better those in Figure [5]since the latter uses a more exhaustive parameter search,
and uses the min/max aggregators proposed in PNA [10] alongside the directional aggregators.

4.3 Preliminary results of data augmentation

To evaluate the effectiveness of the proposed augmentation, we trained the models on a reduced version of the CIFAR10
dataset. The results in figure [/| show clearly a higher expressive power of the dx aggregator, enabling it to fit well

Directional Graph Networks A PREPRINT

ZINC PATTERN CIFAR10 MolHIV MolPCBA
J— Simple Complex Complex-E Simple Complex Simple Complex Simple Complex Complex-E
MAE MAE MAE % acc % acc % acc % acc % ROC-AUC % AP % AP Best

mean 0.316 0.353 0.262 80.77 83.34 55.9 62.8 75.1 26.04 26.38

mean pos, 0.349 0.332 0.297 80.76 83.74 75.8 26.97 27.50

mean pos, pos, 0.344 0.330 0.284 84.51 81.25 76.1 26.03 25.65

mean dx, 0.296 0.233 0.191 84.22 83.44 78.0 26.79 27.91

mean dx, dx, 0.337 0.271 0.205 81.61 86.62 52.9 69.8 76.5 27.16 26.55
mean av, 0.317 0.332 0.276 84.54 83.21 78.4 25.97 26.66 Worst

mean av, av, 0.367 0.332 0.260 85.12 85.38 60.6 65.1 77.1 25.61 26.67

mean dx, av, 0.290 0.245 0.192 85.17 86.68 79.0 26.40 27.47

Figure 5: Test set results using a parameter budget of ~ 100k with the same hyperparameters as [10]], except MolPCBA
with a budget of ~ 7M. The low-frequency Laplacian eigenvectors are used to define the directions, except for
CIFARI10 that uses the coordinates of the image. For brevity, we denote dx; and av; as the directional derivative B,
and smoothing B! aggregators of the i-th direction. We also denote pos; as the i-th eigenvector used as positional
encoding for the mean aggregator.

ZINC PATTERN CIFAR10 MolHIV MolPCBA
No edge features Edge features No edge features No edge features Edge features No edge features All models
Model MAE MAE % acc % acc % acc % ROC-AUC % AP
GCN 0.469+0.002 65.880+0.074 54.46:0.10 76.060.97 * 20.20:0.24*
GIN 0.408+0.008 85.590:0.011 53.283.70 75.58+¢1.40* 22.66:0.28*
GraphSage 0.410:0.005 50.516%0.001 66.08:0.24
GAT 0.463+0.002 75.824+1.823 65.48:0.33
MoNet 0.407+0.007 85.482+0.037 53.42:043
GatedGCN 0.422+0.006 0.36310.009 84.480+0.122 69.19:0.28 69.37:0.48
PNA 0.320+0.032 0.188+0.004 86.567+0.075 70.46:0.44 70.47+0.72 79.05+1.32* 28.38:035*
DGN 0.219:0.010 0.168:0.003 86.680:0.034 72.70:0.54 72.84:0.42 79.70:0.97 28.85:0.30*

Figure 6: Fine-tuned results of the DGN model against models from [12] and [20]: GCN [25]], GraphSage [17], GIN
[45], GAT [43], MoNet [35], GatedGCN [4] and PNA [[LO]. All the models use ~ 100k parameters, except those with *
who use 300k to 6.5M . In ZINC the DGN aggregators are {mean, dxi, max, min}, in PATTERN {mean, dxi, av,}, in
CIFAR10 {mean, dx, dxo, max}, in MolHIV {mean, dx,, avi, max, min}, in MolPCBA {mean, sum, max, dx;}. Mean
and uncertainty are taken over 4 runs for ZINC, PATTERN and CIFAR10 and 10 runs for MolHIV and MolPCBA.

the training data. For a small dataset, this comes at the cost of overfitting and a reduced test-set performance, but we
observe that randomly rotating or distorting the kernels counteracts the overfitting and improves the generalization.

As expected, the performance decreases when the rotation or distortion is too high since the augmented graph changes
too much. In computer vision images similar to CIFAR10 are usually rotated by less than 30° [42] [36]. Further, due
to the constant number of parameters across models, less parameters are attributed to the mean aggregation in the
directional models, thus it cannot fit well the data when the rotation/distortion is too strong since the directions are less
informative. We expect large models to perform better at high angles.

5 Conclusion

The proposed DGN method allows to address many problems of GNNs, including the lack of anisotropy, the low
expressiveness, the over-smoothing and over-squashing. For the first time in graph networks, we generalize the
directional properties of CNNs and their data augmentation capabilities. Based on the intuitive idea that the low-
frequency eigenvectors of the graph Laplacian gives an interpretable directional flow, we backed our work by a set
of strong theoretical results showing that these eigenvectors are important in connecting nodes that are far away and
improving the expressiveness in regards to the WL-test.

The work being also supported by strong empirical results, we believe it will give rise to a new family of directional
GNNs. In fact, we introduce in the appendix different avenues for future work, including the hardening of the
aggregators the introduction of a zero-padding at the boundaries the implementation of radius- R kernels [A.7]
and the full study of directional data augmentation. Future methods could also improve the choice of multiple directions
beyond the selection of the k-lowest frequencies.

10

Directional Graph Networks A PREPRINT

Rotation Training Rotation Test Distortion Training Distortion Test
0.9 4 0.9 4
- g;ean 0.52 4 - ;nxean 0.52 4
> 0.8 v 0.8 v
o .50 4 0.50 A
g 074 7
<
0.48 A
0.6 1
0° 2° 5 10° 20° 45° 0° 2° 5 10° 20° 45° 0% 1% 5% 10% 20% 40% 0% 1% 5% 10% 20% 40%
Rotation angle Rotation angle Percentage distortion Percentage distortion

Figure 7: Accuracy of the various models using data augmentation with a complex architecture of ~ 100k parameters
and trained on 10% of the CIFAR10 training set (4.5k images). An angle of corresponds to a rotation of the kernel by
arandom angle sampled uniformly in (—2°, 2°) using deﬁnitionwith F 5 being the gradient of the horizontal/vertical
coordinates. A noise of 1002:% corresponds to a distortion of each eigenvector with a random noise uniformly sampled
in (—x - m,x - m) where m is the average absolute value of the eigenvector’s components. The mean baseline model is
not affected by the augmentation since it does not use the underlining vector field.

Broader Impact. This work will extend the usability of graph networks to all problems with engineering and physically
defined directions, thus making GNN a new laboratory for signal processing, physics, material science and molecular
and cell biology. In fact, the anisotropy present in a wide variety of systems could be expressed as vector fields
(spinor, tensor) compatible with the DGN framework, without the need of eigenvectors. One example is magnetic
anisotropicity in metals, alloys and organic molecules that is dependant on the relative orientation to the magnetic field.
Other examples are the response of materials to high electromagnetic fields; all kind of field propagation in crystals
lattices (vibrations, heat, shear and frictional force, young modulus, light refraction, birefringence); multi-body or liquid
motion; magnons and solitons in different media, fracture propagation, traffic modelling; developmental biology and
embryology, and design of novel materials and constrained structures. Finally applications based on neural operators
for ODE/PDE may benefit as well.

References

[1] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
arXiv:2006.05205 [cs, stat], 2020.

[2] J. P. Antoine and R. Murenzi. Two-dimensional directional wavelets and the scale-angle representation. Signal
Processing, 52(3):259-281, 1996.

[3] Martin T. Barlow. Random Walks and Heat Kernels on Graphs. London Mathematical Society Lecture Note
Series. Cambridge University Press, 2017.

[4] Xavier Bresson and Thomas Laurent. Residual gated graph convnets. arXiv preprint arXiv:1711.07553, 2017.

[5] Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric deep
learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18-42, 2017.

[6] Isaac Chavel. Eigenvalues in Riemannian geometry. Academic press, 1984.

[7] Fan Chung and S. T. Yau. Discrete green’s functions. Journal of Combinatorial Theory, Series A, 91(1):191-214,
2000.

[8] FR.K. Chung, F.C. Graham, CBMS Conference on Recent Advances in Spectral Graph Theory, National
Science Foundation (U.S.), American Mathematical Society, and Conference Board of the Mathematical Sciences.
Spectral Graph Theory. CBMS Regional Conference Series. Conference Board of the mathematical sciences,
1997.

[9] Ronald R. Coifman and Stéphane Lafon. Diffusion maps. Applied and Computational Harmonic Analysis,
21(1):5-30, 2006. Special Issue: Diffusion Maps and Wavelets.

[10] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Li0, and Petar Velickovi¢. Principal neighbourhood
aggregation for graph nets. arXiv preprint arXiv:2004.05718, 2020.

[11] Vishwaraj Doshi and Do Young Eun. Fiedler vector approximation via interacting random walks.
arXiv:2002.00283 [math], 2000.

[12] Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson. Benchmarking
graph neural networks. arXiv preprint arXiv:2003.00982, 2020.

11

Directional Graph Networks A PREPRINT

[13] Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 23:298-305, 01 1973.

[14] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message passing
for quantum chemistry. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pages 1263-1272. JMLR. org, 2017.

[15] Leo J. Grady and Jonathan Polimeni. Discrete calculus : applied analysis on graphs for computational science.
Springer, 2010.

[16] D. S. Grebenkov and B.-T. Nguyen. Geometrical structure of laplacian eigenfunctions. SIAM Review,
55(4):601-667, Jan 2013.

[17] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In Advances in
neural information processing systems, pages 1024-1034, 2017.

[18] William L. Hamilton. Graph Representation Learning. Morgan and Claypool, 2020.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770778, 2016.

[20] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and Jure
Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv preprint arXiv:2005.00687,
2020.

[21] Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal
covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[22] Md Amirul Islam, Sen Jia, and Neil D. B. Bruce. How much position information do convolutional neural
networks encode? arXiv:2001.08248 [cs], 2020.

[23] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for molecular graph
generation. arXiv:1802.04364 [cs, stat], 2018.

[24] Eunhee Kang, Junhong Min, and Jong Chul Ye. A deep convolutional neural network using directional wavelets
for low-dose x-ray CT reconstruction. Medical Physics, 44(10):e360—375, 2017.

[25] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

[26] Johannes Klicpera, Janek Grof3, and Stephan Giinnemann. Directional message passing for molecular graphs.
ICLR2020, 2019.

[27] Boris Knyazev, Graham W Taylor, and Mohamed Amer. Understanding attention and generalization in graph
neural networks. In Advances in Neural Information Processing Systems, pages 4204-4214, 2019.

[28] Risi Kondor, Hy Truong Son, Horace Pan, Brandon Anderson, and Shubhendu Trivedi. Covariant compositional
networks for learning graphs. arXiv preprint arXiv:1801.02144, 2018.

[29] Alex Krizhevsky, 2009.

[30] Cornelius Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and
integral operators. United States Governm. Press Office Los Angeles, CA, 1950.

[31] Ron Levie, Federico Monti, Xavier Bresson, and Michael M. Bronstein. CayleyNets: Graph convolutional neural
networks with complex rational spectral filters. arXiv:1705.07664 [cs], 2018.

[32] B.Levy. Laplace-beltrami eigenfunctions towards an algorithm that "understands" geometry. In IEEE International
Conference on Shape Modeling and Applications 2006 (SMI’06), pages 13—13, 2006.

[33] Sitao Luan, Mingde Zhao, Xiao-Wen Chang, and Doina Precup. Break the ceiling: Stronger multi-scale deep
graph convolutional networks. In Advances in Neural Information Processing Systems, pages 10943-10953, 2019.

[34] Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph networks.
arXiv preprint arXiv:1812.09902, 2018.

[35] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M Bronstein.
Geometric deep learning on graphs and manifolds using mixture model cnns. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 5115-5124, 2017.

[36] Sarah O’Gara and Kevin McGuinness. Comparing data augmentation strategies for deep image classification.
Session 2: Deep Learning for Computer Vision, 2019.

[37] Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter. An overview of
early vision in InceptionV1. Distill, 5(4):e00024.002, 2020.

12

Directional Graph Networks A PREPRINT

[38] Hao Peng, Jianxin Li, Qiran Gong, Senzhang Wang, Yuanxing Ning, and Philip S. Yu. Graph convolutional neural
networks via motif-based attention. arXiv:1811.08270 [cs], 2019.

[39] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. DropEdge: Towards deep graph convolutional
networks on node classification. ICLR2020, page 17, 2020.

[40] Marco Saerens, Francois Fouss, Luh Yen, and Pierre Dupont. The principal components analysis of a graph, and
its relationships to spectral clustering. In European conference on machine learning, pages 371-383. Springer,
2004.

[41] Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Approximation ratios of graph neural networks for
combinatorial problems. arXiv preprint arXiv:1905.10261, 2019.

[42] Connor Shorten and Taghi M. Khoshgoftaar. A survey on image data augmentation for deep learning. Journal of
Big Data, 6(1):60, 2019.

[43] Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph
attention networks. arXiv preprint arXiv:1710.10903, 2017.

[44] Bingbing Xu, Huawei Shen, Qi Cao, Yunqi Qiu, and Xueqi Cheng. Graph wavelet neural network.
arXiv:1904.07785 [cs, stat], 2019.

[45] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? arXiv
preprint arXiv:1810.00826, 2018.

[46] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
Representation learning on graphs with jumping knowledge networks. In International Conference on Machine
Learning, pages 5453-5462, 2018.

[47] Yue Lu and Minh N. Do. The finer directional wavelet transform. In Proceedings. (ICASSP ’05). IEEE
International Conference on Acoustics, Speech, and Signal Processing, 2005., volume 4, pages 573-576. IEEE,
2005.

13

Directional Graph Networks A PREPRINT

A Appendix - Choices of directional aggregators

This appendix helps understand the choice of B,, and By, in section[2.4|and presents different directional aggregators
that can be used as an alternative to the ones proposed.

A simple alternative to the directional smoothing and directional derivative operator is to simply take the for-
ward/backward values according to the underlying positive/negative parts of the field F', since it can effectively
replicate them. However, there are many advantage of using B, 4... First, one can decide to use either of them and still
have an interpretable aggregation with half the parameters. Then, we also notice that B, 4, regularize the parameter
by forcing the network to take both forward and backward neighbours into account at each time, and avoids one of the
neighbours becoming too important. Lastly, they are robust to a change of sign of the eigenvectors since By, is sign
invariant and By, will only change the sign of the results, which is not the case for forward/backward aggregations.

A.1 Retrieving the mean and Laplacian aggregations

It is interesting to note that we can recover simple aggregators from the aggregation matrices By, (F') and By, (F).
Let F' be a vector field such that all edges are equally weighted F;; = C for all edges (4, j). Then, the aggregator
B,, is equivalent to a mean aggregation:

B.,,(F)x =D 'Ax

Under the condition F;; = C, the differential aggregator is equivalent to a Laplacian operator L normalized using the
degree D
By, (CA)x=D'(A-D)x=-D 'Lx

A.2 Global field normalization

The proposed aggregators are defined with a row-wise normalized field

A F;.
E,: = =
E e
meaning that all the vectors are of unit-norm and the aggregation/message passing is done only according to the
direction of the vectors, not their amplitude. However, it is also possible to do a global normalization of the field F' by
taking a matrix-norm instead of a vector-norm. Doing so will modulate the aggregation by the amplitude of the field at

each node. One needs to be careful since a global normalization might be very sensitive to the number of nodes in the
graph.

A.3 Center-balanced aggregators

A problem arises in the aggregators By, and B, proposed in equations [5|and[6| when there is an imbalance between
the positive and negative terms of F'*. In that case, one of the directions overtakes the other in terms of associated
weights.

An alternative is also to normalize the forward and backward directions separately, to avoid having either the backward
or forward direction dominating the message.

Fil +Fy;
||qujr + Fi,,;HLl

+
1+ |‘F1’L,|

Bavfcent€T<F)i7¢ gL - m
0yt

(12)

)

The same idea can be applied to the derivative aggregator equation [I3] where the positive and negative parts of the
field F* are normalized separately to allow to project both the forward and backward messages into a vector field of
unit-norm. F'* is the out-going field at each node and is used for the forward direction, while F'~ is the in-going field
used for the backward direction. By averaging the forward and backward derivatives, the proposed matrix B i, center
represents the centered derivative matrix.

1 F* F-

K2 ?

Buyconer(F)i: = F, —diag | Y F/; | , F/ = (13)
J)

_ N + - I
2 [Ff e [|F]l e

T,
forward field backward field

14

Directional Graph Networks A PREPRINT

A.4 Hardening the aggregators

The aggregation matrices that we proposed, mainly B, and B,, depend on a smooth vector field F'. At any given
node, the aggregation will take a weighted sum of the neighbours in relation to the direction of F'. Hence, if the field
F, at anode v is diagonal in the sense that it gives a non-zero weight to many neighbours, then the aggregator will
compute a weighted average of the neighbours.

Although there are clearly good reasons to have this weighted-average behaviour, it is not necessarily desired in every
problem. For example, if we want to move a single node across the graph, this behaviour will smooth the node at every
step. Instead, we propose below to soften and harden the aggregations by forcing the field into making a decision on the
direction it takes.

Soft hardening the aggregation is possible by using a softmax with a temperature 7" on each row to obtain the field

Eofthard-
(Fyofthara)i,: = sign(F; ;)softmax (7| F; .|) (14)

Hardening the aggregation is possible by using an infinite temperature, which changes the softmax functions into
argmax. In this specific case, the node with the highest component of the field will be copied, while all other nodes will
be ignored.

(Fhawa)i,: = sign(F;.)argmax (| F; .|) (15)

An alternative to the aggregators above is to take the softmin/argmin of the negative part and the softmax/argmax of the
positive part.

A.5 Forward and backward copy

The aggregation matrices B, and B, have the nice property that if the field is flipped (change of sign), the aggregation
gives the same result, except for the sign of B,;,,. However, there are cases where we want to propagate information in
the forward direction of the field, without smoothing it with the backward direction. In this case, we can define the
strictly forward and strictly backward fields below, and use them directly with the aggregation matrices.

Fforward = F+ y Fbackward =F" (16)

Further, we can use the hardened fields in order to define a forward copy and backward copy, which will simply copy
the node in the direction of the highest field component.

— pt —
F forward copy — F, hard F backward copy — F hard (17)

A.6 Phantom zero-padding

Some recent work in computer vision has shown the importance of zero-padding to improve CNNs by allowing the
network to understand it’s position relative to the border [22]. In contrast, using boundary conditions or reflection
padding makes the network completely blind to positional information. In this section, we show that we can mimic the
zero-padding in the direction of the field F' for both aggregation matrices By, and B, .

Starting with the B,,,, matrix, in the case of a missing neighbour in the forward/backward direction, the matrix will
compensate by adding more weights to the other direction, due to the denominator which performs a normalization.
Instead, we would need the matrix to consider both directions separately so that a missing direction would result in
zero padding. Hence, we define By, opqq below, where either the F'™ or F~ will be 0 on a boundary with strictly
in-going/out-going field.

(Bav,Opad)i,: =

v E L IE "
2 \[IFlI ¢ Il +e

Following the same argument, we define By, opqq below, where either the forward or backward term is ignored. The
diagonal term is also removed at the boundary so that the result is a center derivative equal to the subtraction of the
forward term with the O-term on the back (or vice-versa), instead of a forward derivative.

15

Directional Graph Networks A PREPRINT

Ft if 3, Fg =0
Bs—opad(F)i,: = F, if 3. Fij =0
1 (Ex+ + F/ — diag (Z; F’;f + F’;)Z > , otherwise (19)
Ft= __F F~ = LI T
Y IE e te Y IF L e

A.7 Extending the radius of the aggregation kernel

We aim at providing a general radius- R kernel By that assigns different weights to different subsets of nodes n,, at a
distance R from the center node n,,.

First, we decompose the matrix B(F') into positive and negative parts B*(F') representing the forward and backward
steps aggregation in the field F'.
B(F)=B"(F)—- B (F) (20)

i = m, we can find different aggregation matrices by using different combinations of
walks of radius R. First demonstrated for a grid in theorem[2.4} we generalize it in equation [21]for any graph G.

Thus, defining Bfib(F)-

Definition 7 (General radius R n-directional kernel). Let S, be the group of permutations over n elements with a set of
directional fields Fy.

N
s n(vy
Bp = Z Z ay H 9 o) (F, e)))\vam\ (1)
V={vy,v2,...,u, }EN" ocES, j=1
IVl ,1<R, —R<v;<R —~—~
optional Aggregator following the steps V', permuted by S,

Any choice of walk V' with at most R steps P ermutations

using all combinations of v1,va, ..., Up,

In this equation, n is the number of directional fields and R is the desired radius. V represents all the choices of walk
{v1, va, ..., v, } in the direction of the fields { F, F5, ..., F,, }. For example, V = {3,1,0, —2} has a radius R = 6, with
3 steps forward of F1, 1 step forward of Fy, and 2 steps backward of F. The sign of each B]jfb is dependant to the sign
of v,(;y, and the power |v,(;)| is the number of aggregation steps in the directional field F, ;. The full equation is thus
the combination of all possible choices of paths across the set of fields Fj, with all possible permutations. Note that we
are restricting the sum to v; having only a possible sign; although matrices don’t commute, we avoid choosing different
signs since it will likely self-intersect a lower radius walk. The permutations o are required since, for example, the path
up — left is different (in a general graph) than the path left — up.

This matrix By has a total of Zf=0(2n)r = % parameters, with a high redundancy since some permutations
might be very similar, e.g. for a grid graph we have that up — left is identical to left — up. Hence, we can replace the
permutation S,, by a reverse ordering, meaning that H;V B; = By...B;B;. Doing so does not perfectly generalize
the radius- R kernel for all graphs, but it generalizes it on a grid and significantly reduces the number of parameters to

Sy ST 2 (1) ()

A.8 Arcsine of the eigenvectors

Since the eigenvectors ¢; are equivalent to the Fourier basis and represent the waves in the graphs, then it is expected
that they behave similarity to sine/cosine waves when the graph is similar to a grid. This is further highlighted by the
proof that the eigenvectors of a grid are all sines/cosines in appendix [C.4]

Hence, when we define the field F as F' = V¢;, we must realize that the gradient will be lower near the min-
ima/maxima of the eigenvector, as it is the case with sine/cosine waves. In the paper, we cope with this problem by
dividing by the norm of the field || F|| ;1 in equations [5|and|[6]

Another solution is to use the arcsine of the eigenvectors so that the function eigenvectors become similar to triangle
functions and the gradient is almost uniform. However, since the arcsine function works only in the range [—1, 1], then
we must first normalize the eigenvector by it’s maximum, as given by equation [22]

16

Directional Graph Networks A PREPRINT

F'. = Varcsin <¢> (22)

max(|¢;)

B Appendix - Implementation details

B.1 Benchmarks and datasets

We use a variety of benchmarks proposed by [12]] and [20] to test the empirical performance of our proposed methods.
In particular, to have a wide variety of graphs and tasks we chose:

1. ZINC, a graph regression dataset from molecular chemistry. The task is to predict a score that is a subtraction
of computed properties logP — S A, with log P being the computed octanol-water partition coefficient, and
S A being the synthetic accessibility score [23]].

2. CIFARI10, a graph classification dataset from computer vision [29]]. The task is to classify the images into
10 different classes, with a total of 5000 training image per class and 1000 test image per class. Each image
has 32 x 32 pixels, but the pixels have been clustered into a graph of ~ 100 super-pixels. Each super-pixel
becomes a node in an almost grid-shaped graph, with 8 edges per node. The clustering uses the code from
[27], and results in a different number of super-pixels per graph.

3. PATTERN, a node classification synthetic benchmark generated with Stochastic Block Models, which are
widely used to model communities in social networks. The task is to classify the nodes into 2 communities
and it tests the fundamental ability of recognizing specific predetermined subgraphs.

4. MolHIV, a graph classification benchmark from molecular chemistry. The task is to predict whether a molecule
inhibits HIV virus replication or not. The molecules in the training, validation and test sets are divided using a
scaffold splitting procedure that splits the molecules based on their two-dimensional structural frameworks.

5. MolPCBA, a graph classification benchmark from molecular chemistry. It consists of measured biological
activities of small molecules generated by high-throughput screening. The dataset consists of a total of 437,929
molecules divided using a scaffold slitting procedure and a set of 128 properties to predict for each.

For the results in figure [5] our goal is to provide a fair comparison to demonstrate the capacity of our proposed
aggregators. Therefore, we compare the various methods on both types of architectures using the same hyperparameters
tuned in previous works [10]] for similar networks. The models vary exclusively in the aggregation method and the
width of the architectures to keep a set parameter budget. Following the indication of the benchmarks’ authors, we
averaged the performances of the models on 4 runs with different initialization seeds for the benchmarks from [[12]
(ZINC, PATTERN and CIFAR10) and 10 runs for the ones from [20] (MolHIV and MolPCBAEb.

For the results in figure[6] we took the fine tuned results of other models from the corresponding public leaderboards
by [12] and [20]. For the DGN results we fine tuned the model taking the lowest validation loss across runs with the
following hyperparameters (you can also find the fine tuned commands in the documentation of the |code repository):

1. ZINC: weight decay € {1 - 107°,1076,3 - 1077}, aggregators € {(mean,avg;), (mean,dz;),
(mean, avy, dzy), (mean, min, max, avy), (mean, min, max, dz,)}

2. CIFARI1O: weight decay € {3 - 1075}, dropout € {0.1,0.3}, aggregators €
{(mean, avi,ave), (mean,dzy,dxs2), (mean,dry,dzrs,avy,avsy), (mean, mazx, min,dry,dzs),
(mean, max, min, avy, avy)}

3. PATTERN: weight decay € {0,10~%}, architecture € {simple, complex}, aggregators € {(mean,av,),
(mean,dz), (mean, avy, dry)}

4. MolHIV: aggregators € {(mean,dz1), (mean,avi), (mean,dzi,avi), (mean,max,dxy),
(mean, max, dz1,avy), (mean, maz, min, avy, dzy)}, dropout € {0.1,0.3,0.5}, L € {4,6}

5. for MolPCBA, given we did not start from any previously tuned architecture, we performed a line search with
the following hyperparameters: mix of aggregators € {mean, maz, min, sum, dx1, dzs, avy, ave }, dropout
€ {0.1,0.2,0.3,0.4}, L € {4,6,8}, weight decay € {1077,1075,3 - 1075,107°,3 - 10"}, batch size
€ {128.512.2048, 3072}, learning rate € {1072,1073,5-107%,2 - 10~*}, learning rate patience € {4, 6,8},
learning rate reduce factor € {0.5,0.8}, architecture type € {simple, complex,towers}, edge features
dimension € {0, 8,16, 32}

2For MolPCBA, due to the computational cost of running models in the large dataset and the relatively low variance, we only
used 1 run for the results in ﬁgure@ but 10 runs in those for ﬁgure@

17

https://github.com/Saro00/DGN

Directional Graph Networks A PREPRINT

In CIFARI10 it is impossible to numerically compute a deterministic vector field with eigenvectors due to the multiplicity
of A\; being greater than 1. This is caused by the symmetry of the square image, and is extremely rare in real-world
graphs. Therefore, we used as underlying vector field the gradient of the coordinates of the image. Note that these
directions are provided in the nodes’ features in the dataset and available to all models, that they are co-linear to the
eigenvectors of the grid as per lemma[C.T] and that they mimic the inductive bias in CNNs.

B.2 Implementation and computational complexity

Unlike several more expressive graph networks [28| 134], our method does not require a computational complexity
superlinear with the size of the graph. The calculation of the first k£ eigenvectors during pretraining, done using Lanczos
method [30] and the sparse module of Scipy, has a time complexity of O(Ek) where E is the number of edges. During
training the complexity is equivalent to a m-aggregator GNN O(Em) [10] for the aggregation and O(Nm) for the
MLP.

To all the architectures we added residual connections [19]], batch normalization [21]] and graph size normalization [12].

For some of the datasets with non-regular graphs, we combine the various aggregators with logarithmic degree-scalers
as in [10].

An important thing to note is that, for dynamic graphs, the eigenvectors need to be re-computed dynamically with the
changing edges. Fortunately, there are random walk based algorithms that can estimate ¢»; quickly, especially for small
changes to the graph [[L1]. In the current empirical results, we do not work with dynamic graphs.

To evaluate the difficulty of computing the eigenvectors on very large graphs, we decided to load the COLLAB dataset
comprising of a single graph with 235k nodes and 2.35M edges [12]. Computing it’s first 6 eigenvectors using the scipy
eigsh function with machine precision took 25.5 minutes on an Intel® Xeon® CPU @ 2.20GHz. This is acceptable,
knowing that a general training time can take hours, and that the result can be cached and reused during debugging and
hyper-parameter optimization.

B.3 Running time

The precomputation of the first four eigenvectors for all the graphs in the datasets takes 38s for ZINC, 96s for PATTERN
and 120s for MolHIV on CPU. Table [I|shows the average running time on GPU for all the various model from figure
[l On average, the epoch running time is 15% slower for the DGN compared to the mean aggregation, but a faster
convergence for DGN means that the total training time is on average 2% faster for DGN.

Table 1: Average running time for the non-fine tuned models from figure 5] Each entry represents average time per
epoch / average total training time. For the first four datasets, each of the models has a parameter budget ~ 100k
and was run on a Tesla T4 (15GB GPU). The avg increase row is the average of the relative running time of all rows
compared to the mean row, with a negative value meaning a faster running time.

ZINC PATTERN
Aggregators Simple Complex Complex-E Simple Complex

mean 3.29s/1505s 3.58s/1584s 3.56s/1654s | 153.1s/10154s 117.8s/9031s
mean dx; 3.86s/1122s 3.77s/1278s 4.22s/1371s | 144.9s/8109s 127.2s/8417s
mean dx; dxo | 4.23s/1360s 4.55s/1560s 4.63s/1680s | 153.3s/8057s 167.9s/9326s

mean av, 3.68s/1297s 3.84s/1398s 3.92s/1272s | 128.0s/8680s 88.1s/7456s
mean avy ave | 3.95s/1432s 4.03s/1596s 4.07s/1721s | 134.2s/8115s 170.4s/11114s
mean dx; avy | 3.89s/1079s 4.09s/1242s 4.58s/1510s 118.6s/6221s 144.2s/9112s

avg increase | +19%/-16% +13%/-11% +20%/-9% -11%/-23% +18%/+1%

CIFAR10 MolHIV MolPCBA

Aggregators Simple Complex Simple Complex Complex-E
mean 83.6s/10526s 78.7s/10900s | 11.4s/2189s | 279s/30128s 356s/38126s
mean dx; 12.6s/2348s | 304s/34129s 461s/43419s
mean dx; dxo 98.4s/8405s 100.9s/5191s | 14.1s/2345s | 314s/36581s 334s/38363s
mean avy 12.28/2177s | 297s/30316s 436s/54545s
mean avq avy | 117.1s/12834s 89.5s/14481s | 13.9s/2150s | 315s/42297s 333s/36641s
mean dx; av; 14.0s/2070s | 326s/37523s 461s/59109s
avg increase +29%/+1% +21%/-10% | +17%/+1% | +12%/+20% +14%/+22%

18

Directional Graph Networks A PREPRINT

B.4 Eigenvector multiplicity

The possibility to define equivariant directions using the low-frequency Laplacian eigenvectors is subject to the
uniqueness of those vectors. When the dimension of the eigenspaces associated with the lowest eigenvalues is 1, the
eigenvectors are defined up to a constant factor. In section[2.5] we propose the use of unit vector normalization and an
absolute value to eliminate the scale and sign ambiguity. When the dimension of those eigenspaces is greater than 1, it
is not possible to define equivariant directions using the eigenvectors.

Fortunately, it is very rare for the Laplacian matrix to have repeated eigenvalues in real-world datasets. We validate this
claim by looking at ZINC and PATTERN datasets where we found no graphs with repeated Fiedler vector and only one
graph out of 26k with multiplicity of the second eigenvector greater than 1.

When facing a graph that presents repeated Laplacian eigenvalues, we propose to randomly shuffle, during training
time, different eigenvectors randomly sampled in the eigenspace. This technique will act as a data augmentation of the
graph during training time allowing the network to train with multiple directions at the same time.

C Appendix - Mathematical proofs

C.1 Proof for theorem [2.1] (Directional smoothing)

The operation y = By, is the directional average of x, in the sense that y,, is the mean of x,,, weighted by the
direction and amplitude of F'.

Proof. This should be a simple proof, that if we want a weighted average of our neighbours, we simply need to multiply
the weights by each neighbour, and divide by the sum of the weights. Of course, the weights should be positive.

O

C.2 Proof for theorem [2.2] (Directional derivative)

Suppose F have rows of unit ! norm. The operation y = Bdm(FA‘)a: is the centered directional derivative of in the
direction of F', in the sense of equation@, 1.e.

y=Dpx = (F —diag(zﬁ‘:,j»w

J

Proof. Since F rows have unit L' norm, F = F. The i-th coordinate of the vector (F — diag (Z j F. J>) x is

Fx — diag ZF x| = ZF”:C(]) - ZF” (1)
= D (@()-=z()F,
J:(i.g)€E

C.3 Proof of theorem [2.3| (Gradient steps reduce diffusion distance)

Let x, y be nodes such that ¢»1 (x) < ¢1(y). Let 2’ be the node obtained from x by taking one step in the direction of
V ¢4, then there is a constant C' such that for C' < ¢ we have

dt($/7 y) < dt(‘ra y)

With the reduction in distance being proportional to e~*1.

Recall that py (z,y) = (D~ A)% is the discrete heat kernel at step k, q:(x,y) = Y5 e_k#pk (z,y) is the continuous

t

heat kernel at time ¢. In [3]], it is shown that the continuous heat kernel is computed by ¢;(x, y) = e~*Lwm_ Following

19

Directional Graph Networks A PREPRINT

[9] we can diagonalise g; to get the identity

dy(w.y) = (Z e (gua) - ¢i<y>)2> 23)

=1

N

The inequality d;(z’,y) < d¢(z,y) is equivalent to
q y

n—1

> e ((@-(xf) ~6u(w) — (il) - ¢i<y>)2> < eh <(¢1<x> ~6:1w) — (¢1(a') - ¢1<y>)2)
The term on the left is bounded above by ey
S (6e) ~ o)~ (&1(0) — 8u(w)”
i=2

and this last term is in turn bounded above by

n—1

e—2t)\2 E

=2

2

(4%‘(33/) - ¢>i(y))2 - (¢>i($) - ¢i(y))

Inequality 24] will then hold if

n—1

Y |06 -0) - (00— 00) | < ((0160) -~ 6:0) (1) - 1))
and this is equivalent to
1 ((10) = 100) "~ (@10) ~ 0100)
002 | o (6:)—6:)) (50— 9]) t

if we take ¢ to be larger than the term on the left the inequality we get di (2, y) < d¢(z,y).

The constant C' in the statement is the constant on the left side of the inequality. It is also interesting to note that C'is
expected to be positive since the term A; — Ag is negative and the argument of the log will most likely be < 1.

C.4 Proof for Lemma[C.1] (Cosine eigenvectors)

Consider the lattice graph I' of size N1 x Nz x ... X N, that has vertices [[,_; ,{1,...,N;} and the vertices
(x)i=1,...n and (y;)i=1,... n, are connected by an edge iff |x; — y;| = 1 for one index 4 and O for all other indices. Note

that there are no diagonal edges in the lattice. The eigenvector of the Laplacian of the grid L(I") are given by ¢;.
Lemma C.1 (Cosine eigenvectors). The Laplacian of I' has an eigenvalue 2 — 2 cos (NL) with the associated
eigenvector ¢; that depends only the variable in the i-th dimension and is constant in all others, with ¢; = 1y, ®

1y, ®...Q X1 N, ® ... ® 1y, and 1 n,(j) = cos (% — an)

Proof. First, recall the well known result that the path graph on NV vertices Py has eigenvalues

k
A, =2 — 2cos <W>
n

with associated eigenvector xj with i-th coordinate
. wki wk
(i) = cos | — +

n ' 2n

The Cartesian product of two graphs G = (Vig, E¢) and H = (Viy, Egr) is defined as G x H = (Vaxu, Faxm) with
Vaxa = Vg x Vg and ((u1,uz), ((v1,v2)) € Egxp iff either uy = vy and (ug,v2) € Egy or (uj,v1) € Vg and

20

Directional Graph Networks A PREPRINT

ug = vo. It is shown in [13]] that if (@;)i=1,....m and ()\j)jzlw,n are the eigenvalues of G and H respectively, then
the eigenvalues of the Cartesian product graph G x H are p; + \; for all possible eigenvalues p; and A;. Also, the
eigenvectors associated to the eigenvalue p; 4+ A; are u; ® v; with u; an eigenvector of the Laplacian of G associated
to the eigenvalue p; and v; an eigenvector of the Laplacian of H associated to the eigenvalue \;.

Finally, noticing that a lattice of shape N1 x Ny X ... X N,, is really the Cartesian product of path graphs of length /Ny
up to N,,, we conclude that there are eigenvalues 2 — 2 cos (ﬁ) Denoting by 1, the vector in R with only ones

as coordinates, then the eigenvector associated to the eigenvalue 2 — 2 cos (Nl) is

Iy 1N, @ ... QT N, ®...Q 1y,

where x1 v, is the eigenvector of the Laplacian of Py, associated to its first non-zero eigenvalue. 2 — 2 cos (ﬁ) O

C.5 Radius 1 convolution kernels in a grid

In this section we show any radius 1 convolution kernel can be obtained as a linear combination of the B, (V¢;)
and B,,(V¢;) matrices for the right choice of Laplacian eigenvectors ¢;. First we show this can be done for 1-d
convolution kernels.

Theorem C.2. On a path graph, any 1D convolution kernel of size 3 k is a linear combination of the aggregators
By, By, and the identity 1.

Proof. Recall from the previous proof that the first non zero eigenvalue of the path graph Py has associated eigenvector
¢1(i) = cos(%§; — 55)- Since this is a monotone decreasing function in 4, the i-th row of V¢, will be

(0,...,0,8;-1,0,—8;11,0,...,0)
with s;_; and 5,41 > 0. We are trying to solve
(aBgy + bBgy + cId); . = (0,...,0,2,y, 2,0, ...,0)
with x, y, z, in positions ¢ — 1,7 and ¢ + 1. This simplifies to solving

1 1
|s| +b
lIsllz2

a 5+C(0717O) = (I,y,Z)
sl

with s = (s;-1,0, —s;+1), which always has a solution because s;_1, $;+1 > 0. O

Theorem C.3 (Generalization radius-1 convolutional kernel in a grid). Let I' be the n-dimensional lattice as above and
let @; be the eigenvectors of the Laplacian of the lattice as in theorem Then any radius 1 kernel k on T is a linear
combination of the aggregators B, (®;), Ba.(¢;) and 1.

Proof. This is a direct consequence of obtained by adding n 1-dimensional kernels, with each kernel being in a
different axis of the grid as per Lemma |C.I| See figure[d]for a visual example in 2D.

O

C.6 Proof for theorem [2.4] (Generalization radius- R convolutional kernel in a lattice)

For an n-dimensional lattice, any convolutional kernel of radius R can be realized by a linear combination of directional
aggregation matrices and their compositions.

Proof. For clarity, we first do the 2 dimensional case for a radius 2, then extended to the general case. Let k be the
radius 2 kernel on a grid represented by the matrix

0 0 a—2.0 0 0
0 a_1,-1 a-19 a-11 0
asxs = | @o,—2 @o,—1 o Go1 Qo2
0 ai,—1 Gio a1 0
0 0 az.0 0 0

21

Directional Graph Networks A PREPRINT

since we supposed the Ny x N, grid was such that N1 > No, by theorem [C.I] we have that ¢ is depending only in
the first variable 1 and is monotone in z1. Recall from[C.1] that

. T s
¢1 (i) = cos <N1 + 2]\[1)
The vector %V arccos(¢1) will be denoted by Fj in the rest. Notice all entries of Fj are 0 or +1. Denote by Fj

the gradieqt vector %V arccos(qbk). where ¢y, is the eigenvector given by theoremthat is depending only in the
second variable x5 and is monotone in z; and recall

di (i) = cos (]7(/.12 + 27TN2>

For a matrix B, let B the positive/negative parts of B, ie matrices with positive entries such that B = B — B~
Let B, be a matrix representing the radius 1 kernel with weights

0 a_—1,0 0
asx3 = | @o,—1 0,0 aop,1
0 ai,o 0

The matrix B, can be obtained by theorem Then the radius 2 kernel & is defined by all the possible combinations
of 2 positive/negative steps, plus the initial radius-1 kernel.

_ sgn(i)\|i| ¢ gpsgn (i) |
B,; = E (ai,j(Fl)A(ETHIT) 4 B
—2<4,j<2 — all possible single-steps
|i]+]7]=2 Any combination of 2 steps

with sgn the sign function sgn(i) = 4 if ¢ > 0 and — if ¢ < 0. The matrix B, then realises the kernel a5 5.

We can further extend the above construction to N dimension grids and radius R kernels k

N
sgn(vi)|vj|
E ay H (Fj)"
V={v1,v2,...,un }EN" Jj=1
Vil <R -
—R<v;<R Aggregator following the steps defined in V'

Any choice of walk V' with at most R-steps

with F; = V arccos ¢; ,@; the eigenvector with lowest eigenvalue only dependent on the j-th variable and given in
theorem and [] is the matrix multiplication. V' represents all the choices of walk {vy, va, ..., v, } in the direction
of the fields { Fy, Fb, ..., F}, }. For example, V = {3,1,0, —2} has a radius R = 6, with 3 steps forward of F}, 1 step
forward of Fy, and 2 steps backward of Fy.

O

C.7 Proof for theorem 2.5/ (Comparison with I-WL test)

DGNs using the mean aggregator, any directional aggregator of the first Laplacian eigenvector and injective degree-
scalers are strictly more powerful than the 1-WL test.

Proof. We will show that (1) DGNs are at least as powerful as the 1-WL test and (2) there is a pair of graphs which are
not distinguishable by the 1-WL test which DGNs can discriminate.

Since the DGNSs include the mean aggregator combined with at least an injective degree-scaler, [10]] show that the
resulting architecture is at least as powerful as the 1-WL test.

Then, to show that the DGNs are strictly more powerful than the 1-WL test it suffices to provide an example of a pair of
graphs that DGNs can differentiate and 1-WL cannot. Such a pair of graphs is illustrated in figure|[§]

The 1-WL test (as any MPNN with, for example, sum aggregator) will always have the same features for all the nodes
labelled with a and for all the nodes labelled with b and, therefore, will classify the graphs as isomorphic. DGNSs, via
the directional smoothing or directional derivative aggregators based on the first eigenvector of the Laplacian matrix,
will update the features of the a nodes differently in the two graphs (figure [§] presents also the aggregation functions)
and will, therefore, be capable of distinguishing them.

O

22

Directional Graph Networks A PREPRINT

Aggregation matrix Graph 1 Graph 2
4 la+1b-b la+1b-b
la+2b—-a la+2b—-a
Bl |1la —1b| = b |1la —1b| = b
dx 0-a [0.44b — 0.44a| — a
Bl la—-b la-b
av 1b > a 0.44b + 0.56a — a

Figure 8: Illustration of an example pair of graphs which the 1-WL test cannot distinguish but DGNs can. The table
shows the node feature updates done at every layer. MPNN with mean/sum aggregators and the 1-WL test only use the
updates in the first row and therefore cannot distinguish between the nodes in the two graphs. DGNs also use directional

aggregators that, with the vector field given by the first eigenvector of the Laplacian matrix, provides different updates
to the nodes in the two graphs.

23

	1 Introduction
	2 Theoretical development
	2.1 Intuitive overview
	2.2 Overview of the theoretical contributions
	2.3 Vector fields in a graph
	2.4 Directional smoothing and derivatives
	2.5 Gradient of the Laplacian eigenvectors as interpretable vector fields
	2.6 Choosing a basis of the Laplacian eigenspace
	2.7 Generalization of the convolution on a grid
	2.8 Extending the radius of the aggregation kernel
	2.9 Comparison with Weisfeiler-Lehman (WL) test
	2.10 Data augmentation

	3 Implementation
	4 Results and discussion
	4.1 Directional aggregation
	4.2 Comparison to the literature
	4.3 Preliminary results of data augmentation

	5 Conclusion
	A Appendix - Choices of directional aggregators
	A.1 Retrieving the mean and Laplacian aggregations
	A.2 Global field normalization
	A.3 Center-balanced aggregators
	A.4 Hardening the aggregators
	A.5 Forward and backward copy
	A.6 Phantom zero-padding
	A.7 Extending the radius of the aggregation kernel
	A.8 Arcsine of the eigenvectors

	B Appendix - Implementation details
	B.1 Benchmarks and datasets
	B.2 Implementation and computational complexity
	B.3 Running time
	B.4 Eigenvector multiplicity

	C Appendix - Mathematical proofs
	C.1 Proof for theorem 2.1 (Directional smoothing)
	C.2 Proof for theorem 2.2 (Directional derivative)
	C.3 Proof of theorem 2.3 (Gradient steps reduce diffusion distance)
	C.4 Proof for Lemma C.1 (Cosine eigenvectors)
	C.5 Radius 1 convolution kernels in a grid
	C.6 Proof for theorem 2.4 (Generalization radius-R convolutional kernel in a lattice)
	C.7 Proof for theorem 2.5 (Comparison with 1-WL test)

