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A B S T R A C T

This paper proposes a new hybrid strategy to optimally design membrane separation problems. We formulate
the problem as a Non-Linear Programming (NLP) model. A common approach to represent the physical
behavior of the membrane is to discretize the system of differential equations that govern the separation
process. Instead, we represent the input/output behavior of the single membrane by an artificial neural network
(ANN) predictor. The ANN is trained on a dataset obtained through the MEMSIC simulator. The equation form
of the trained predictor (shape and weights) is then inserted in the NLP model at the place of the discretized
system of differential equations.

To improve the ANN accuracy without an excessive computational burden, we propose data augmentation
strategies to target the regions where densify the dataset. We compare a data augmentation strategy from
the literature with a novel one that densifies the dataset around the stationary points visited by a global
optimization algorithm.

Our approach was validated using a relevant industrial case study: hydrogen purification. Validation by
simulation is performed on the obtained solutions. The computational results show that a data augmentation
smartly coupled with optimization can produce a robust and reliable design tool.
1. Introduction

Recent research represents membranes using machine learning mod-
els such as artificial neural networks (ANN) (Wang and Lin, 2021;
Piron et al., 1997; Wessling et al., 1994; Richard Bowen et al., 2000;
Himmelblau, 2000; Hamachi et al., 1999; Dornier et al., 1995a; Niu
et al., 2022). One reason to represent membrane behavior with an
ANN surrogate is that we may wish to integrate the ANN into a larger
decision-making problem such as identifying manufacturing conditions.
But ANNs may have difficulty extrapolating to new regimes (Schwei-
dtmann et al., 2021). The challenge is that optimal decision-making
problems (Kim and Boukouvala, 2020), for instance choosing process
conditions holistically, may select regions where the trained ANN
is inaccurate. This paper investigates data augmentation strategies,
illustrated in Fig. 1 that, together with our optimization approach, give
confidence in the result of the optimal decision making problem.

∗ Corresponding author.
E-mail address: bernardetta.addis@loria.fr (B. Addis).

1.1. Membrane separation

Membrane gas separation by means of synthetic polymeric mem-
branes is a well-established technology for several industrial applica-
tions such as production of nitrogen from air, hydrogen recovery from
ammonia plants and refineries, natural and biogas treatment, and vapor
recovery from vent and process gas streams (Baker, 2012). Among
the numerous advantages brought by membrane processes, the most
reported are a small environmental footprint due to a solvent free
technology, a facilitated operability, an easy up and down scaling.
Membrane separation processes are based on two pillars, membrane
separation performance, derived from intrinsic material separation per-
formance (selectivity and permeability) and process design, namely
the choice of operating conditions and interconnections between the
selected equipments. Membranes for gas separation are constituted
by selective materials that have a selective permeation capacity with
respect to different gases. Membrane processes are, for most of them,
pressure driven separation processes. The fastest components (highest
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Fig. 1. This figure summarizes our approach: an ANN is used to model the membrane behavior trained on a small dataset. Then a smart data augmentation is used to improve
the model in the appropriate regions.
Fig. 2. Membrane schematic functioning.

permeabilities) are preferentially recovered on low pressure side (per-
meate) while the slowest ones are collected on the high pressure side
(retentate) (Sridhar et al., 2014) (see Fig. 2).

The CO2∕H2 separation chosen as a case study to illustrate the pro-
posed methodology is of very high industrial interest. Numerous studies
focus on membrane technology applied to H2 purification and/or CO2
capture from syngas produced from Integrated Gasification Combined
Cycle or Blast furnace Gas in the steel industry. Both CO2 and H2 selec-
tive materials commercially exist that exhibit quite interesting selectiv-
ities (around 10–20) for both H2 and CO2 selective membranes (Merkel
et al., 2012; Lin et al., 2014b; Arias et al., 2016; Lin et al., 2014a, 2015;
Ritter and Ebner, 2007).

1.2. Optimal process configuration for multi-stage membrane separation

Separation performances, mainly purity and recovery rate for the
targeted component, depend on different design choices including:
material properties, membrane area, applied high and low pressures for
each module. Considering the entire process architecture, several sepa-
ration stages (membranes) may be necessary to increase the requested
purity, recycling between stages (from permeate or retentate sides) can
be useful and necessary to increase recovery rate. Multiple process
configurations are possible for such a multi-stage membrane separation,
i.e. number of membrane stages, type of membrane material per stage,
membrane surface of each stage, upstream and downstream pressure of
each stage and stream’s connections between stages including partial
or total recycling. The entire set of combinations can obviously not be
assessed.

Optimal process design aims to explore the full set of meaningful
configurations (Qi and Henson, 2000; Ohs et al., 2016; Uppaluri et al.,
2004; Gabrielli et al., 2017; Arias et al., 2016; Scholz et al., 2015).

Ramírez-Santos et al. (2018) develop a nonlinear optimization for-
mulation, and use a multistart optimization algorithm based on a
combination of smart random generation and local search, an adap-
tation of Monotonic Basin Hopping (Wales and Doye, 1997; Locatelli
2

and Schoen, 2013), to address CO2/CH4 separation. The Ramírez-
Santos et al. (2018) optimization formulation is the starting point for
our CO2/H2 separation model, which we solve with a multistart ap-
proach. However, we replace the membrane functioning equations used
in Ramírez-Santos et al. (2018) with an ANN representing membrane
behavior and thereby overcome the numerical difficulties arising from
discretizing the differential equation.

1.3. Machine learning for representing membrane behavior

Machine learning has been widely used to predict different chemical
processes and membrane gas separation (McBride1 and Sundmacher,
2018; Kajero et al., 2017; Henao and Maravelias, 2011; Fahmi and
Cremaschi, 2012; Dornier et al., 1995b; Alam et al., 2022; Granacher
et al., 2021; Khayet and Cojocaru, 2012; Liu et al., 2009; Richard
Bowen et al., 2000; Schmitt et al., 2018; Yangali-Quintanilla et al.,
2009; Di Pretoro et al., 2022). Prior work has represented physical phe-
nomena with ANNs: these ANNs replace complex differential equations
that may lead to numerical problems (Bhosekar and Ierapetritou, 2018;
Cozad et al., 2014; McBride1 and Sundmacher, 2018; Rall et al., 2020b;
Henao and Maravelias, 2011; Eason and Cremaschi, 2014; Mencarelli
et al., 2020).

These papers typically choose bounds for the ANN input variables
and generate sample points within these bounds (Ibrahim et al., 2018;
Fahmi and Cremaschi, 2012; Henao and Maravelias, 2011; Rall et al.,
2019, 2020a; Hu et al., 2021; Asghari et al., 2020), e.g. using a
Latin Hypercube (Nuchitprasittichai and Cremaschi, 2012; Cozad et al.,
2014; Eason and Cremaschi, 2014; Rall et al., 2020b; Bhosekar and
Ierapetritou, 2018). Our paper uses the MEMSIC module (Bounaceur
et al., 2017) to simulate a gas permeation membrane embedded into
process simulation software. The sampled inputs and the simulator
outputs create the dataset to train the ANN.

Obviously, the size of the training dataset is important (Satya-
narayana and Davidson, 2005). Increasing the number of sampling
points may increase the ANN accuracy, but it has many drawbacks: gen-
erating the data points via the simulator is computationally expensive,
the network training becomes more time consuming, and the model
itself becomes more complex.

1.4. Adversarial data augmentation

Data augmentation has received significant attention in the recent
machine learning literature due to the increasing need of producing
accurate datasets in reasonable time (Brendel et al., 2017; Papernot
et al., 2017; Goodfellow et al., 2014; Antoniou et al., 2017; Volpi et al.,
2018; Gao et al., 2019; Sinha et al., 2017; Gao et al., 2020; Magar
et al., 2022; Zhou et al., 2020; Devabhaktuni and Zhang, 2000). In
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chemical and process systems engineering, prior research (i) starts from
a small dataset, (ii) integrates new points into areas of interest, and
(iii) decides a set of stopping criteria (Eason and Cremaschi, 2014;
Asghari et al., 2020; Garud et al., 2017; Tran et al., 2017). Several
authors propose sampling-based approaches to automatically augment
the data-driven ANN with additional input/output pairs in a region of
interest (Eason and Cremaschi, 2014; Cozad et al., 2014; Nuchitpra-
sittichai and Cremaschi, 2012; Garud et al., 2017; Tsymbalov et al.,
2018). Adding points to the dataset is important because the membrane
behavior is represented by the dataset used for training rather than by
mathematical equations (Niu et al., 2022).

1.5. Paper contribution

In this paper, we use a machine learning model to represent the
input/output membrane separation behavior. The resulting surrogate
model is inserted into the mathematical programming model allowing
us to explore the space of optimal process designs for our case study.
The critical point is that the quality of the machine learning model
influences the quality of the solutions. Indeed, any solution produced
by the mathematical model needs to be simulated by MEMSIC to get
the ‘‘real’’ performance of that design. The solution of the mathematical
model has a predicted purity that always meets the requirements (or the
problem would be infeasible), but if the purity estimate is wrong, then
the simulation may produce a useless design. If the model was over-
estimating the purity, the purity requirements will not be satisfied in
practice, and the solution must be discarded; if it was underestimating
the purity, there may be a large error in the flows or in the areas which
may result in too expensive designs.

As a first step, we build a large training dataset to get an accurate
representation of the membrane behavior on the entire span of the
membrane functioning. The resulting model can be used successfully in
the optimization process, but the computational cost to obtain it is too
high. Therefore, the entire process is too expensive to be extensively
used in other case studies. To address this issue, we develop a data
augmentation algorithm, ADORO (Augmented Dataset driven by Opti-

ization by Random Oscillation), that guides the dataset generation
n the regions around the stationary points found by our multistart
ptimization algorithm for different performances requests (purity and
ecovery). The core idea is that the model accuracy must be high not
verywhere, but only around some regions of interest, namely, the
egions around the local optimum points. Unfortunately, these regions
re unknown beforehand, not even approximately. Indeed, in multi-
tage systems, even the composition of the single stage cannot be
etermined apriori.

Prior work perturbs points close to a global solution, so our focus on
ultistart is effectively an acknowledgment that, in process operation,

here may be limited variation around a few data points (Qin and
hiang, 2019; Thebelt et al., 2022). In our case, only perturbing around
he global solution leads to generating too few additional data points
nd only focusing on solutions that, after scrutiny, turn out to be non-
obust. Considering different operating conditions improves both the
uality and the robustness of the machine learning model.

We compare the new algorithm ADORO with more traditional
dversarial augmented data (AAD) approaches from the machine learn-
ng literature (Papernot et al., 2017; Volpi et al., 2018). These ad-
ersarial data augmentation techniques are mainly used in image
ecognition, natural language processing, and computer vision. The
ugLiChem (Magar et al., 2022) library has been developed for chemi-
al structures: AugLiChem perturbs crystals through random perturba-
ion, axis change, random rotation, etc.

The rest of the paper is organized as follows: in Section 2 we detail
he machine learning model built starting from the large reference
ataset. In Section 3, we describe two data augmentation techniques,
ne from the literature and our proposal (ADORO), and in Section 4 we
3

iscuss the obtained results. Finally, we draw conclusions in Section 5. p
2. Machine learning model

2.1. Neural network

Our machine learning model mimics the stand-alone Fortran version
of the MEMSIC simulator described in Fig. 3(a) and Appendix A.

We capture the nonlinear input–output relation using a shallow,
multi-layer perceptron network, with one layer of neurons and sigmoid
activation. This simple network has useful theoretical approximation
properties (Pinkus, 1996). Additionally, because the trained network is
then inserted into an optimization problem as equality constraints, the
single layer keeps these constraints simple and limits the nonlinearities.
Thanks to the simple architecture (see Fig. 3(b)), the only hyperparam-
eters are the number of neurons in the hidden layer, and the batch
size.

2.2. Reference dataset generation

We first build a reference model using a large number of points,
neglecting the computational cost, aiming only at a high accuracy on
the entire input space. This step has two aims: showing that the chosen
architecture allows to accurately represent the membrane behavior,
and setting a target accuracy to reach with a smaller dataset.

Our model has three inputs: (i) 𝜙 pressure ratio
(

𝑃 𝑑𝑜𝑤𝑛

𝑃 𝑢𝑝

)

(ii) 𝑥1𝑖𝑛 feed
molar fraction of gas 1 (iii) 𝜃 stage cut ratio between the permeate
and the feed flowrates, see Eq. (A.2). We recall that the overall design
may include several membranes, therefore we cannot know in advance
the operating conditions of each membrane. Thus we need that a high
model accuracy in the entire input space. Drawing inspiration from
the literature (Eason and Cremaschi, 2014; Bhosekar and Ierapetritou,
2018), we considered three different dataset generations: grid genera-
tion, Latin hypercube and uniform random generation. The following
input variable bounds allow us to cover the region of interest for the
case-study:

0.1 ≤ 𝑥𝑖𝑛1 ≤ 0.98
0.002 ≤ 𝜙 ≤ 0.65
0.1 ≤ 𝜃 ≤ 0.9.

To choose the dataset size, we started with grid generation and sampled
each interval’s variable with 70 points, resulting in a dataset of 703 =
343,000 points. Then, we generated the same number of points with the
Latin hypercube technique and the uniform random distribution. All the
input and output variables range between 0 and 1 except the output 𝑠𝑡
which ranges, for our dataset, between 0.1 and 26.4. We normalize 𝑠𝑡
by dividing its values by 10.

2.2.1. Data cleaning by an SVM classifier
No matter the technique used to generate the dataset, there are

input points where the simulator cannot converge, particularly at the
boundary values of the input and output variables. For example, there
exist input concentration (𝑥𝑖𝑛1 ) and pressure ratios (𝜙) where it is not
possible to obtain a given stage-cut (𝑠𝑡). Fig. 4 illustrates in dark red
the points in the 2-dimensional grid of 𝜙 and 𝜃 where the simulator
fails for input gas concentration 𝑥𝑖𝑛1 = 0.049 and 𝑥𝑖𝑛1 = 0.6.

These points must be removed from the dataset.
To identify the problematic area, we built a binary classification

roblem, where we assign label equal to 1 to all the grid points where
he simulation fails, and zero to the others. Then we build a separation
yperplane by training a linear support vector machine (SVM) (Piccialli
nd Sciandrone, 2022) for separating the two classes, getting an F1
core equal to 92.4% on the grid dataset. Not only do we want to
void the points where the simulator will not converge, but also the
eighborhood of these points where the simulation may not be reliable
ue to accuracy issues.

To avoid these physically meaningless domains, we require the

oints in all the generated dataset to be below the hyperplane with
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Fig. 3. The ANN has the same inputs of the standardized dimensionless simulator. Inputs: (i) 𝜙 pressure ratio
(

𝑃 𝑑𝑜𝑤𝑛

𝑃 𝑢𝑝

)

(ii) 𝑥1𝑖𝑛 feed molar fraction of gas 1 (iii) 𝜃 stage cut ratio
between the permeate and the feed flowrates, see Eq. (A.2). The outputs of the ANN are (i) 𝑥1 concentration of gas 1 in the retentate (ii) 𝑠𝑡 dimensionless area, whereas 𝑦1 is
derived by the mass conservation equation (A.10).
Fig. 4. The points highlighted in dark red are where the simulator cannot converge. Note that 𝜙 is the pressure ratio and 𝜃 the stage-cut.
a certain tolerance, to be sure that we stay in a region where the
simulation is reliable. We also use the SVM hyperplane as a constraint
in our optimization model to be sure that our feasible region does not
include meaningless points.

2.2.2. Datasets comparison
We train the neural network for all three datasets obtained after the

SVM procedure and evaluate the resulting model. We use ADAM as an
optimizer with the default setting, set a maximum number of epochs
equal to 20 000, without early stopping, and use a random weights
initialization.

For each dataset, we perform a 5-fold validation grid search on the
following values of the hyperparameters batch size (BS) and the number
of neurons (NN): 𝐵𝑆 ∈ [256, 512] and 𝑁𝑁 ∈ [32, 64, 128, 256, 512].
We use as loss of the mean square error (MSE), and the results on
the average MSE were comparable on all three datasets. For all the
datasets, the best configuration was with 𝐵𝑆 = 256 and 𝑁𝑁 = 64 with
similar values of MSE. To get a better measure of the model quality,
we look into the absolute error distribution of the output variables
on the training set, since we aim to perform well on the whole input
space. Fig. 5 shows that the Latin hypercube dataset performed best,
having the lowest absolute error quartiles on the output variables. This
is the most important error measure for the case study because we
need high accuracy on the concentration 𝑥1 and the area 𝑠𝑡 for every
feasible input. Note that the model built for a single membrane is
then embedded in a multistage design. This implies that the operating
conditions of each stage that allow reaching the required performance
4

in the multi-stage system depend on the entire design and hence cannot
be known in advance. Therefore, to test the behavior of the model in
the interesting areas, we need to evaluate the accuracy when embedded
in the optimization model with more than one stage.

The variables and constraints in the model represent not only
the operating conditions of each stage, but also the interconnections
between the stages, according to a superstructure representing all
the allowed possible configurations (Ramírez-Santos et al., 2018). Ap-
pendix B describes the complete optimization model, i.e. the flow
conservation constraints, both at the system level and the stage level,
membrane functioning constraints, performance requirements, and the
objective function. Clearly, we are interested in an accurate model not
only in terms of performance but also in terms of amount of flows.
The flows can be either at the system level (input flow, retentated, and
permeated flow in output) or internal: internal flows are the ones going
from one membrane to another, or in self-loop to the membrane itself.

To have a deeper understanding of the performances of the models
generated by means of the three datasets, we run a multistart algorithm
on the resulting optimization models with 150 iterations, i.e. we run
150 local searches starting from randomly generated initial points. We
use Knitro (Byrd et al., 2006) as local solver, and generate randomly
in the original variables the starting points following Ramírez-Santos
et al. (2018).

It is known that the differential Eqs. (A.1) are numerically difficult
for high 𝑥1 purity (Neveux et al., 2022), so, we want to verify that
the neural network has good accuracy for this case. Our goal is to
produce an output satisfying some purity and recovery constraints with
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Fig. 5. Box plots of the absolute errors on the two output variables with 𝐵𝑆 = 256 and 𝑁𝑁 = 64 on the 343k datasets obtained with regular grid, Latin hypercube and uniform
random generation.
a multi-stage system of CO2 selective membranes. We consider three
levels (90%, 95%, 99%) of purity with recovery as high as possible for a
two stage system. The requested recovery is 99% for all purity cases,
with the exception of the 99% purity. Indeed, when a 99% purity is
requested, a two-stage system allows recovery of at most 95%.

For each combination of performance requirements, we perform a
multistart optimization procedure, and simulate using MEMSIC the best
solution found, i.e. take the design obtained corresponding to the best
solution (membranes area, applied pressures, split flows percentages)
and use a MEMSIC simulation to re-calculate flows and gas concentra-
tions. The following analyzes the difference between the best solution
found and its simulated counterpart. Table 1 reports:

simulated purity the purity of the solution simulated by MEMSIC
fixing the best design obtained from optimization. This allows
us to verify whether the purity guessed by the machine learning
model is actually achieved in simulation. We stress that since
the optimal solution is feasible for the optimization model, the
purity requirement is always satisfied according to the surrogate
model. However, when the solution is simulated it can happen
that the purity was overestimated or underestimated. If the
purity is overestimated then in practice the actual solution does
not satisfy the purity requirement and must be discarded.

H2 absolute error the absolute error in the retentate and permeate
outputs for the hydrogen concentration

Flows (% error) relative errors on retentate and permeate output
flows.1

The neural network trained by using the dataset generated by the
Latin hypercube strategy is the only one that actually achieves the
required purity in the three scenarios. Furthermore, the percentage
error on the flows is reasonably low. The grid generated dataset never
reaches the required purity and produces a higher error on the flows.
No matter what machine model is used in the optimization process,
there is a huge improvement in terms of efficiency and numerical
reliability with respect to the discretized model of Ramírez-Santos et al.
(2018). The local optimization by Knitro is at least 10 times faster, and
the number of infeasible runs becomes negligible.

But Table 2 shows that, despite the final model being accurate and
reliable, the time needed to obtain the model (cross-validation and
training) is very high (>5 days). For this reason, we wish to reduce

1 For permeate flow 𝐺 with 𝐺sim obtained in the simulation and 𝐺opt
obtained by the optimization, define: |𝐺sim − 𝐺opt| as absolute error and
|𝐺sim−𝐺opt | ∗ 100 as relative error.
5

1+𝐺sim
Table 1
For each combination of purity and recovery, we report the optimization performances
obtained using the three different surrogate models (using grid, Latin, and random
generation). The quality is assessed by comparing the discrepancy between the best
solution’s system outputs obtained by the surrogate model and the ones obtained by
the MEMSIC simulator. We report the simulated purity and the percentage errors on the
(permeated and retentated) flows. We highlight in bold the best performances: smallest
discrepancy for outputs, achieved purity target. We note that the Latin surrogate is the
only one that allows to meet the purity requirements after the simulation in all cases.

343k dataset

Grid Latin Random

Optimization constraints: 90% purity, 99% recovery

Simulated purity 0.884 0.903 0.896

H2 ret 0.016 0.003 0.004
(abs error) perm 0.009 0.012 0.018

Flows ret 1.27 1.00 0.65
(% error) perm 2.56 1.89 1.23

Optimization constraints: 95% purity, 99% recovery

Simulated purity 0.942 0.958 0.951

H2 ret 0.008 0.008 0.001
(abs error) perm 0.006 0.012 0.017

Flows ret 0.48 1.64 1.29
(% error) perm 0.79 2.62 2.07

Optimization constraints: 99% purity, 95% recovery

Simulated purity 0.989 0.990 0.989

H2 ret 0.001 0.000 0.001
(abs error) perm 0.004 0.003 0.004

Flows ret 0.45 0.21 0.47
(% error) perm 0.62 0.28 0.65

Table 2
For the dataset of size 343k generated by three different techniques we report: (i)
Dataset size after SVM filtering and (ii) overall computational time (cross-validation
+ training). The data generation time is around 11 h, that have to be added to the
overall computational time.

Grid Latin Random

Dataset size 340 912 341 042 340 990
Time (h) 173.6 123.7 196.7

the dataset size without reducing the quality of the model. As the
Latin hypercube generation is the more performing strategy, in terms
of quality and computational time, we retain this dataset generation
strategy for all the following experiments.

The model built by using the 343k dataset generated by Latin
Hypercube will constitute our target in terms of accuracy, aiming at
reaching a similar performance with a much smaller training dataset.
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Fig. 6. To define a good solution our KPIs are : (i) the objective function (minimize) (ii) dimension of the dataset (minimize) (iii) achieve 99% purity on the product (in our case
99% per cent H2 in the retentate) (iv) time of the procedure (minimize) (v) error on each flow (e.g. the flow passing from one membrane to another etc.) (minimize).
3. Data augmentation

Surrogate models have the advantage of reducing computational
time in the optimization phase, as they lead to simplified models.
Nevertheless, to be effectively used in an optimization strategy, a
surrogate model needs two key elements: a high quality in terms of
accuracy and a reasonable overall ‘‘creation’’ time. High accuracy is
necessary for a large span of the variables to obtain a correct descrip-
tion of the optimization problem (feasible region and objective function
shape). It is not possible to predict which search space points will be
sampled by the optimization method (directly, or along the standard
local search procedures), and a wrong evaluation of the constraints
(and/or objective function) on such points can lead the optimization to
the ‘‘wrong’’ search space portion, preventing the global optimization
method to find the best local optimal solutions. The computational
time needed to produce the surrogate model must be comparable (or
smaller) than the time gained moving from an equation based model
to the surrogate one.

The results presented in the previous section empirically demon-
strate that an accurate surrogate model can be produced employing
an ANN and data obtained through simulation. The goal of the rest
of the paper is to investigate different data augmentation techniques
to maintain (or improve) the accuracy, reducing drastically the overall
time needed to calibrate the ANN. Indeed, data augmentation tech-
niques allow densifying the dataset only in some regions, thus obtaining
high quality models with a reduced dataset. To assess the quality of
the process and the produced models, we will focus on several quality
indicators, as shown in Fig. 6.

In the first step, we will focus on finding a model that is accurate
enough to obtain using a Multistart-like global optimization method
solutions that lead to feasible solutions in the simulation validation
procedure.

We know that with 343k points we are able to achieve the target
accuracy, but we want to keep the computational time low. For this
reason, we aim to build a dataset of at most 125k points allowing us
to reach a comparable model quality. To this aim, we have different
possibilities: try datasets of different sizes up to 125k, or start with a
smaller dataset, and use data augmentation techniques to improve the
obtained model. In the latter case, we need to decide the size of the
initial dataset and/or the number of iterations of data augmentation.
By using Latin hypercube, we generate datasets of different sizes that
we call dataini. Our idea is to exploit the quality of the current model,
to add points in the area where the model is not good enough.

We propose two different strategies, the first one based on the
literature on adversarial data augmentation, the second one is new, and
exploits our optimization procedure, see Fig. 1:

• AAD (Adversarially Augmentated Dataset)
We add to the training set a perturbation of each point of dataini
in the direction of the gradient descent of the loss function.
6

Table 3
Features of the baseline (343k) and initial datasets dataini. We report the size for (i)
the initial dataset; (ii) the final dataset, i.e. after the SVM-filtering procedure; the time
in hours for (i) the generation of the dataset; (ii) for the cross-validation (iii) training
of the best model found with the cross-validation.

10k 20k 50k 125k 343k

Initial size 10 000 20 000 50 000 125 000 343 000
Final size 9957 19 886 49 735 124 282 341 042

Computational times (h)

Generation 0.33 0.66 1.64 4.08 11.2
Cross-val. 3.5 7 16 45 123.7
Training 0.15 0.19 0.34 1 3

• ADORO (Augmentated Dataset driven-by Optimization by Ran-
dom Oscillation)
We add to the training set a random perturbation of the station-
ary points produced by the multistart optimization procedure in
different interesting scenarios.

We need to decide the size of the initial dataset, generated by means
of Latin hypercube. To this aim, we generate datasets of different size,
whose characteristics are reported in Table 3 and we label them accord-
ing to their initial size. The first two rows report information related
to the size of the datasets: the size the original random generation
and the number of residual samples after filtering the points using the
SVM-generated hyperplane (to remove the numerical instability points
of the simulator). The last three rows report the computational times
(in hours) of the different phases of the model generation: dataset
generation by means of simulation, cross-validation and final training.

We retain the same procedure used for the baseline dataset for the
cross-validation. The best choice turns out to be 64 neurons and BS =
256 for each dataset.

Not surprisingly, given a number of neurons and a batch size, the
largest dataset present a smaller training error, but still significantly
higher than the one achieved with 343k points. However, if we look
at the computational time, training the model with 125k is still too
expensive, see Table 3.

In Fig. 7, we visualize the absolute error of the two output variables
(𝑥𝑖 and 𝑠𝑡) in the form of box plots. The error slightly reduce for
both variables passing from 10k to 20k. Not surprisingly, a larger
improvement is observed for the case of 50k and 125k. It is worth to
notice that the reduction passing from 50k to 125k is less significant
than the one obtained from 20k to 50k, if compared with the increase
in size of the dataset.

Finally, we evaluate the solutions’ quality as in Section 2.2.2 : we
use the obtained surrogate models in the optimization procedure and
we compare the solutions in term of accuracy with respect to the
simulation in Table 4.

We can observe that the models obtained using 10k and 20k datasets
are not accurate enough to obtain an optimal solution that satisfies the
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Fig. 7. Box plots of the absolute errors on the two output variables with 𝐵𝑆 = 256 and 𝑁𝑁 = 64 on the sampling datasets with 10k, 20k, 50k and 125k.
Table 4
We compare the best solution found by the optimization with its simulated counterpart
in terms of system outputs. When we use the surrogate models built with less than 50k
points (10k and 20k), the simulated counterpart never reaches the required purity,
whereas when we use the 50k dataset, the simulated counterpart is always feasible,
but the purity is underestimated for performance requirements equal to 95% and 99%.
On the other hand, using the 125k data set allows us to obtain a simulated feasible
solution only for purity equal to 99%.

Evaluating via simulation the accuracy of the model
on the best solution found by optimization
Different size datasets (Latin hypercube sampling)

10k 20k 50k 125k

90% purity, 99% recovery

Simulated purity 0.897 0.891 0.900 0.890

H2 ret 0.003 0.009 0.000 0.010
(abs error) perm 0.022 0.015 0.019 0.003

Flows ret 0.96 0.08 1.12 6.32
(% error) perm 1.80 0.15 2.10 6.32

95% purity, 99% recovery

Simulated purity 0.949 0.944 0.953 0.948

H2 ret 0.001 0.006 0.003 0.001
(abs error) perm 0.026 0.016 0.019 0.003

Flows ret 1.63 0.38 1.64 0.33
(% error) perm 2.61 0.62 2.62 0.34

99% purity, 95% purity

Simulated purity 0.988 0.989 0.991 0.993

H2 ret 0.002 0.001 0.001 0.002
(abs error) perm 0.003 0.012 0.005 0.011

Flows ret 0.49 1.06 0.29 0.59
(% error) perm 0.68 1.48 0.40 0.81

requested purity constraint. It is worth noticing that, in terms of flows,
the smaller dataset can perform better than the larger ones.

These results seem in contradiction with the quality presented in
the box plots, but it is not the case. Indeed, the overall quality of the
model is not enough to guarantee good performance of the overall
optimization strategy, in particular in terms of the feasibility of the
obtained solution. Small errors in the prediction of two output variables
can impact strongly the shape of the feasible region, shifting the
‘‘real/original’’ local optima (full equation/simulation) or even remov-
ing them. The prediction error on variable 𝑠𝑡 (the standardized area)
results in an amplified error on the membrane area, which is computed
by Eq. (A.4). The area impacts directly the objective function, and in
our case study, the order of magnitude of the overall conversion factor
is 104, so that a small error in 𝑠𝑡 translates into a significant error
in the predicted area. Furthermore, the combination of 2 (or more)
membranes leads to an error propagation that is difficult to anticipate
7

(as the overall design is decided by the optimization procedure). These
considerations lead us to the study of methods that instead of working
with a larger starting dataset, increase it selectively after evaluating its
quality.

The computational time of 125k is already too high: around 45 h
for the cross-validation of the 125k dataset. Furthermore, this time is
not compensated by better results in the optimization phase. Thus, we
selected as starting dataset for data augmentation only the 10k, 20k,
and 50k. The two methods that we investigate are a ‘‘classical’’ AAD
and a new strategy (ADORO) that aims at combining the information
obtained by the optimization into the dataset augmentation procedure.
In what follows we describe the two techniques and report the results
we obtained with these two procedures starting from different dataini
and with a different size of the augmentation step.

3.1. Adversarial data augmentation

A quite common technique to improve the accuracy of the network
(i.e. the training error) is adversarial data augmentation. The main idea
is to enrich the dataset with a perturbed version of the input. The
perturbation is aimed at introducing samples where the initial model
produces a significant prediction error. The procedure for the AAD
algorithm is shown in Fig. 8. We perturb each point of dataini by using
the gradient of the loss multiplied by a scalar factor 𝛼. The new points
are calculated as follows:

𝑧𝑛𝑒𝑤𝑖 = 𝑧𝑖 + 𝛼∇( 𝑢𝑖, 𝑧𝑖
)

𝑖 ∈ dataini (1)

where 𝑧𝑖 is the 𝑖th vector of input values in dataini, 𝑢𝑖 is the correspond-
ing output, and  is the loss function.

The parameter 𝛼 influences the performance of AAD. We performed
a grid-search on parameter 𝛼 in the interval [0.01, 0.5] and we retained
the value that produced the best trade-off between training error and
training time: 𝛼 = 0.4.

The AAD procedure is an iterative one: the initial dataset is used
to obtain a starting model, then the dataset is augmented by the new
points (1), the new model is trained, and the augmentation procedure
is repeated until some stopping condition is met. The AAD procedure
doubles the number of points of the dataset at each iteration. We have
two stopping criteria: training_error ≤ 1.0𝑒−6 or len(data_ini) ≥ 100K.
The stopping criteria are verified at each training step performed after
the data augmentation. For all the datasets, the procedure was stopped
by the limit in the size of the final dataset. We refer to the final datasets
as 10k+, 20k+, and 50k+.

Fig. 9 shows the box plot for the prediction errors of the ANN on
the two output variables, 𝑥1 and 𝑠𝑡 for the 3 new datasets generated
by the AAD algorithm (starting from 10k, 20k, and 50k respectively).
It is worth noticing that the 50k even with a larger number of samples,
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Fig. 8. Schematic view of the AAD algorithm. The size of the dataset is doubled at each iteration by adding a perturbation along the loss gradient of every point in the dataset.
Fig. 9. Box plots of the absolute errors on the two output variables with 𝐵𝑆 = 256 and 𝑁𝑁 = 64 with 10k+,20k+ and 50k+.
cannot reach the performance of the 20k dataset. The dataset 20k
shows the best performances for both variables.

In Fig. 10 we report the details of the computational time for each
iteration, including the initial phase:

• gen: time needed to generate dataini (10k,20k and 50k)
• cv: cross-validation to define the best hyperparameters for the

ANN
• train: training of the best ANN on data .
8

ini
For each loop we distinguish:

• gen grad: time needed to generate the new points, compute the
loss and simulate the new points

• retrain: the training time for the augmented dataset datagrad,
starting from the ANN weights obtained in the previous train
phase.
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Fig. 10. All the steps involved in AAD procedure for each of the three datagrad. They represent respectively the new dataset 20k+,10k+ and 50k+. The one where we spend the
smallest amount of time is the 10k dataset, because although it is the one for which we have the larger number of loops, it is the one where the initial step is cheaper.
The number of iterations depends on the size of the initial dataset. The
overall computational time of the procedure is comparable for the 3
cases, the cross validation being the most expensive phase. The AAD
phase takes almost the same time as the building phase for 10k and
20k. The re-training phase is a cheap one thanks to the warm start from
the previous ANN weights.

We proceed to evaluate the accuracy of the method when embedded
in our optimization procedure. We report here the case for the higher
requests in Table 5.

In all the cases the optimization underestimates the purity, leading
to solutions that are feasible (but we will see in the final comparison
that are very expensive). In particular, the underestimation error of the
50k+ is 3 times larger than the one obtained by the 10k+ and the 20k+.
The 10k+ performs better in terms of flows than the 20k+.

3.2. ADORO

The AAD procedure aims to improve the model everywhere consid-
ering the relative error obtained on each sample.

The main idea of ADORO is to enlarge the dataset on the basis
not only of the information on accuracy but also by exploiting the
information provided by the optimization procedure. Indeed, we are
interested in having an accurate model in the ‘‘interesting’’ areas: the
regions explored by the optimization algorithm.

The main idea is to add samples only in the regions explored by
the optimization procedure but only where the surrogate model is not
accurate enough with respect to the results obtained by simulation (see
Fig. 11).

Given the initial model, ADORO performs the following steps:

S1 the multistart optimization procedure is run for different combi-
nations of purity and recovery to span areas of interest in relevant
scenarios,

S2 all the stationary points found by the procedure are then simu-
lated, and they are kept only if there exists a significant discrep-
ancy between the output obtained by the surrogate model and the
one obtained by the simulation, (meaning that an improvement
of the model is needed in that area)
9

Table 5
The simulated counterpart of the solution produced by AAD data augmentation meet
the purity requirements when the starting size of the dataset is 50k, apart from the
90% case. However, in general the purity is underestimated by the models, resulting
in simulated solutions with purity higher than requested. Overall, the AAD technique
does not provide a better model than just sampling 50k points with a Latin hypercube
strategy.

Evaluating via simulation the accuracy of the model
on the best solution found by optimization
AAD for different sizes of the starting dataset

10k+ 20k+ 50k+

90% purity, 99% recovery

Simulated purity 0.898 0.894 0.899

H2 ret 0.002 0.006 0.001
(abs error) perm 0.004 0.013 0.001

Flows ret 0.03 0.07 0.25
(% error) perm 0.05 0.13 0.49

95% purity, 99% recovery

Simulated purity 0.963 0.953 0.955

H2 ret 0.013 0.003 0.005
(abs error) perm 0.003 0.011 0.006

Flows ret 1.54 1.02 0.92
(% error) perm 2.47 1.66 1.49

99% purity, 95% recovery

Simulated purity 0.991 0.991 0.993

H2 ret 0.001 0.001 0.003
(abs error) perm 0.005 0.011 0.002

Flows ret 0.53 1.03 0.48
(% error) perm 0.71 1.36 0.64

S3 a given number of points is obtained by perturbing each retained
stationary point and added to the dataset

S4 the model is retrained on the augmented dataset.

We stress some interesting aspects:

• we consider multi-stage systems, thus each stage (membrane)
can operate in different conditions. Therefore for each stationary
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Table 6
This table shows for each PURITY-RECOVERY combination the number of locally
optimal solutions found via multistart. The more stringent the performance constraints
are, the more difficult it is to find optimal solutions.

10k 20k 50k

90%–90% 16 23 36
90%–95% 2 19 11
90%–99% 4 2 10
95%–90% 11 4 9
95%–95% 4 2 3
95%–99% 2 1 5
99%–90% 4 5 10
99%–95% 5 2 2

point, we simulate and check the accuracy of each membrane
composing the system, which translates into twice the number of
stationary points since we use two stages in the experiments;

• The pool of stationary points produced by the multistart al-
gorithm does not contain enough points to influence the ANN
training, see Table 6, where we report the number of distinct
local optima found for each purity/recovery combination and
for each starting dataset (10k, 20k, 50k). In order to produce a
robust augmentation procedure, we consider a large number of
scenarios in terms of purity and recovery constraints. This should
differentiate the points used as starting points for perturbation.

More formally, our augmentation procedure works as follows. Let
be the set of stationary points obtained by the multistart procedure.

onsider a point 𝑞 ∈ 𝑄, and define 𝑢𝑜𝑝𝑡𝑞 and 𝑢𝑠𝑖𝑚𝑞 as the vectors of
he output variables obtained respectively by the optimization and the
imulation for the input values corresponding to 𝑞. For each point 𝑞, we
alculate the discrepancy between the optimization and the simulation:

𝑞 =
2
∑

𝑘=1
|𝑢𝑠𝑖𝑚𝑞,𝑘 − 𝑢𝑜𝑝𝑡𝑞,𝑘| = |(𝑥1𝑞)

𝑠𝑖𝑚 − (𝑥1𝑞)
𝑜𝑝𝑡

| + |𝑠𝑡𝑠𝑖𝑚𝑞 − 𝑠𝑡𝑜𝑝𝑡𝑞 | (2)

If 𝑑𝑞 > 𝜀 (in our experiments 𝜀 = 1.0𝑒−6), we add to the augmented
dataset point 𝑞 and a pool of randomly generated points around it.

The augmentation procedure may be repeated several times until
a termination condition is met. However, in our experiments, a single
iteration was enough to reach a good-quality model.

A parameter of the procedure is the number of points added at each
iteration. We performed tests with 5k, 10k, and 20k points for all three
initial datasets. The dimension of the augmented datasets is reported
in Fig. 12(a). We name the datasets by a combination of the size of
the initial dataset and the size of the added samples, for example, the
20 + 10k dataset uses the 20k dataini and adds 10k samples in the
augmentation phase. In all the figures and tables, we report the datasets
in order of magnitude, from the smallest to the largest.

It turns out from the experiments, that the dataini equal to 50k
leads to disappointing results since the model obtained by ADORO has
similar performance to the initial dataset and underestimates constantly
the actual purity of the solution leading to unnecessarily complicated
configurations. Furthermore, it was already less interesting given the
larger size of the dataset. For this reason, we omit the results on dataini
equal to 50k.

In Fig. 13, we report the box plot for the training error for the
six datasets produced by ADORO. For the output variable 𝑥1, only the
datasets starting from 10k show a clear improvement thanks to the
addition of points. The 20k case is oscillating (reduces for +10k and
increases for +20k). For the output variables 𝑠𝑡, both the 10k and 20k
seem to benefit from the data augmentation.

In Fig. 12(b) we report the training time. It is worth noticing that
the time is not monotonously increasing in the number of samples. This
phenomenon is probably amplified by the warm start procedure used
in ADORO. The 10k dataset requires always less training time than the
other cases, independently of the number of added samples.

In Fig. 14, we report the times of the different phases of ADORO:
10
Table 7
The columns are in ascending order with respect to the size of the final dataset.
It turns out that the simulated counterparts of the ADORO solutions starting from
10k and 20k have better performance than the ones starting from 50k points. The
simulated counterparts obtained by ADORO meet purity requirements. In the end,
ADORO produces high quality solutions with a dataset of size at most 50k.

Evaluating via simulation the accuracy of the model
on the best solution found by optimization
ADORO: different sizes of the starting dataset and the increment step

10+5k 10+10k 20+5k 20+10k 10+20k 20+20k

90% purity, 99% recovery.

Simulated purity 0.901 0.908 0.904 0.899 0.904 0.894

H2 ret 0.001 0.008 0.004 0.001 0.004 0.005
(abs error) perm 0.023 0.018 0.006 0.018 0.021 0.023

Flows ret 1.47 2.05 1.59 0.99 1.68 0.84
(% error) perm 2.73 3.75 2.95 1.86 3.10 1.59

95% purity, 99% recovery.

Simulated purity 0.951 0.957 0.955 0.949 0.953 0.946

H2 ret 0.001 0.007 0.005 0.001 0.003 0.003
(abs error) perm 0.025 0.019 0.020 0.020 0.022 0.020

Flows ret 1.74 2.12 1.85 1.18 1.78 1.22
(% error) perm 2.77 3.34 2.93 1.91 2.83 1.97

99% purity, 95% recovery.

Simulated purity 0.988 0.991 0.993 0.991 0.990 0.987

H2 ret 0.002 0.001 0.003 0.001 0.000 0.002
(abs error) perm 0.003 0.002 0.006 0.006 0.005 0.001

Flows ret 0.01 0.02 0.14 0.41 0.38 0.14
(% error) perm 0.01 0.03 0.19 0.55 0.51 0.19

1. gen: time for the generation of the dataini
2. opt+gen: optimization phase (1000 Multistart iterations)
3. per+gen: generation of the new points (perturbation of the

selected local optima)
4. retrain: retraining of the neural network by using the aug-

mented dataset, starting from the previous weights’ values.

We recall that the initial data generation, the cross-validation, and the
first train are common to all procedures (pure sampling, AAD, and
ADORO).

For the datasets from 20k, only the case with +20k needs a time
larger than around double the generation (1.98 h). We recall, thou,
that this time is still significantly smaller than the cross-validation time
(7 h) and thus of the overall initialization phase (around 8 h). For the
case of 10k, the case with +20k needs more than three times the initial
eneration (1.6 h) but is still much smaller than the initialization phase
around 4 h).

We can now evaluate the quality of the solutions of the optimization
rocedure in the different scenarios, see Table 7.

The ADORO strategy starting with the 10k dataset always produces
easible solutions apart from the model 10 + 5k that fails for the
urity 99% (error of 0.002). When starting with the 20k dataset the
erformances slightly deteriorate, mainly when adding 20k points.

In some cases, the purity is underestimated, resulting in solutions
ith higher purity than requested. The model showing the best perfor-
ance is 10 + 20k since it always produces a feasible solution without
nderestimating too much. The model 20 + 10k on the other hand is
ery close to feasibility, and very accurate where it reaches feasibility,
eing an interesting alternative.

. Discussion

We now summarize the experimental results using some global met-
ics to compare the two proposed augmentation strategies. We chose
hree indicators to evaluate the effectiveness of the method by means
f the quality of the solutions: the overall cost and the simulated purity
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Fig. 11. Schematic view of the ADORO algorithm. New data are added perturbing stationary points that have a prediction error greater than a given threshold 𝜀.
Fig. 12. ADORO size and training time of the different data-sets depending on the different dataini.
(see Fig. 15) and the design (Fig. 16). The design and the cost allow us
to evaluate the solution for the industrial application, the simulated
purity translates into the practical feasibility of the solutions. Further-
more, we consider the overall computational effort (optimization and
model fitting) to evaluate the efficiency of the approach (Section 4.2).

For enhancing readability, the design cost are normalized by the
cost obtained with the 343k model for 90% purity and 99% recov-
ery case-study (544 euros/ton). We include as a reference the pure
sampling datasets (10k, 20k, and 343k).

4.1. Design cost and purity

Looking at the objective function allows us to evaluate also the
cost of underestimating the purity, which could lead to unnecessarily
11
complicated configurations or too expensive designs, which is what
happens for the solution found by the model built by using AAD. In
Fig. 15, we have selected the best solution in terms of the trade-off
between feasibility and size of the dataset both for ADORO and for
AAD. Histograms represent the cost of the design (normalized with
respect to the cost of the reference solution found by the 343k dataset
for the case with 90% purity). The simulated purity is reported as a
dot and a line connects the purity achieved by a single approach for
different dataset sizes. As an example in Fig. 15(c) ADORO achieves a
purity of 99.1% with the dataset 10 + 10k and a purity of 99% with the
10 + 20k (second and third columns) and the two values are connected
by the dotted orange line. The horizontal line represents the target
purity.
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Fig. 13. Box plots of the absolute errors on the two output variables with 𝐵𝑆 = 256 and 𝑁𝑁 = 64 on the ADORO datasets The order in which we report the datasets is: 10 +
5k, 10 + 10k, 20 + 5k, 20 + 10k, 10 + 20k, 20 + 20k.
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Fig. 14. ADORO. Computational times for the different phases of the procedure. The
‘‘gen’’ refers to the dataini (baseline).

It turns out that ADORO produces the best results since the cost is
similar (and sometimes even better) to the one found with the 343k
dataset. Indeed, the histograms of ADORO are most of the time lower
than the others. AAD pays the price of underestimating the purity,
obtaining much higher objective function values (and hence higher
histograms).

Moreover, the solution produced by ADORO always satisfy the
purity requirements without overestimating significantly.

In Fig. 16 (and Table 8), we report the design corresponding to the
best solution found for the case-study with purity 99% and recovery
95%. We consider only the designs obtained with the 343k dataset and
ADORO 10k + 20k, since they have the best objective function values.
The process designs obtained with AAD are much more complex, using
partial and self-recycling streams, which strongly decrease the robust-
ness and operability of the process. The designs obtained with ADORO
and the 343k dataset have the same global structure with the same
number of stages and connections. Still, the operating conditions, the
membrane’s surfaces, and the down pressures are different. In this case
and more generally for binary systems targeting these levels of purity
and recovery, two (or three) stages processes are found similar to the
ones described in the scientific literature, and compliant to industrial
practices (air separation, biogas). It is worth noticing, that the cost of
the solution obtained using ADORO (10k + 20k) is smaller than the
one obtained with the pure sampling strategy (see Fig. 15(c)). We can
12

e

Table 8
Parameter of the designs obtained for case study 99% purity and 95% recovery. See
Fig. 16 for the full design.

343k ADORO 10k+20k

I stage II stage I stage II stage

Area 4082.95 445.35 4681.06 472.87
𝑃 𝑢𝑝 50 50
𝑃 𝑑𝑜𝑤𝑛 3.3 1 1 4.47
𝜃 0.685 0.338 0.309 0.704
H2 ret 0.989 0.549 0.990 0.457
H2 perm 0.387 0.070 0.409 0.071

xplain this result considering that ADORO refines the prediction model
nly around the interesting points (local optima). For this reason, it
eeds fewer points than a pure sampling strategy in order to obtain a
odel of equal or better quality in the area of interest.

.2. Computational effort

In Table 9, we summarize the time needed for building and using
machine learning model instead of the original model based on the

iscretization of differential equations. Performing 1000 iterations of
ulti-start with the original model can take up to 10 h when the

urity required is high. Furthermore, the optimization suffers from high
umerical instability leading to many infeasible local searches. For all
NN models, the optimization time is significantly reduced: two up to
orders of magnitude. When we use an ML model built with ADORO,

lso the time needed to build the model is competitive. Indeed, if we
se the ADORO model to study different combinations of purity and
ecovery the overall time of building the model and the optimization
rocess is comparable to or even smaller than the one necessary for
he model based on the discretization of the differential equation.
urthermore, the numerical issues are highly reduced, allowing the
ptimization strategy to better explore the search space.

. Conclusion

It is already well-known that data-driven, machine learning models
re vulnerable to inaccuracies outside the domain of their training
ata (Schweidtmann et al., 2021). It is also well-known that adversarial
ata augmentation is a useful tool for increasing the trustworthiness
f machine learning models. This paper explores the possibility of
ugmenting the training data with points selected by multistart opti-
ization procedure. This data augmentation strategy implicitly uses

he way optimization pushes decision variables to extremes to gen-
rate points where the neural network approximation and MEMSIC
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Fig. 15. We compare the best results obtained by the optimization with the two
augmentation strategies (AAD 10k and 50k, and ADORO with 10 + 10k and 10 +
20k datasets) and the pure sampling (10k, 20k and 343k). Histograms represent the
cost of the design. The simulated purity is reported as a dot and a line connects the
purity achieved by a single approach for different dataset sizes. The horizontal line
represents the target purity.

simulator disagree. The idea is complementary to batch Bayesian op-
timization (González et al., 2016; Folch et al., 2022; Paulson and Lu,
2022) in the sense that the multistart strategy allows us to develop
adversarial examples around several data points. The idea is also com-
plementary to multi-fidelity Bayesian optimization (Song et al., 2019;
Folch et al., 2022) in the sense that the new data augmentation strategy
used on one purity level can then be used as a base model for another
purity level, i.e. the data generated by the adversarial strategy can be
reused in similar optimization strategies. One interesting item of note
here is that focusing only on the global minimum point over the entire
decision-making problem is therefore not enough to us: the new data
13
Table 9
Comparison between the computational time needed by the overall procedure with and
without an ML model. We consider ML models built with datasets of different sizes,
including both the time for building the model and the (negligible) time for performing
1000 multistart iterations. Then we add as a baseline the time needed to perform 1000
multistart iterations when modeling the membrane behavior by the discretization of the
differential equation.

Model # samples Building model Optimization
time time

Discretization-based – – 1–10 h
Pure sampling ∼150k/300k >50 h minutes
AAD ∼100k 15 h minutes
ADORO ∼50k 7 h minutes

augmentation strategy works best when we can use all the different
stationary points. This can be achieved for instance by using multistart
optimization.
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Fig. 16. Design for case study 99% purity and 95% recovery. Input feed: 1000 mol/s, 40% of CO2 and 60% of H2, 𝑃 𝑑𝑜𝑤𝑛 ∈ [1, 30] bar (no vacuum pump), 𝑃 𝑢𝑝 ∈ [50, 100] bar
uniform (i.e. it is the same for all stages).
Appendix A. Mathematical model and simulation of a single mem-
brane behavior

A chain of differential equations describes the physical behavior of
a membrane module. The equation links each component’s input flow
to that component’s permeated flow. The membrane’s permeability
with respect to each component, the membrane’s area, and the applied
pressures influence the output composition and flow rate. The material
balance for component 𝑗 over the differential area 𝑑𝐴 is described by
the following differential equation:

− 𝑑(𝑥𝑗𝐹 ) = 𝑑(𝑦𝑗𝐺) = 𝑑𝐴 𝜋𝑗
(

𝑃 𝑢𝑝𝑥𝑗 − 𝑃 𝑑𝑜𝑤𝑛𝑦𝑗
)

∀𝑗 ∈ 𝐶 (A.1)

where:

1. 𝐶 is the set of gas components, for our example 𝐶 = {H2,CO2}
2. 𝐹 and 𝐺 are the flow rates on the feed (high-pressure) stream

and on the permeated (low-pressure) stream respectively;
3. 𝑃 𝑢𝑝 and 𝑃 𝑑𝑜𝑤𝑛, are the pressures on the feed side and the

permeate side, respectively;
4. 𝜋𝑗 is the permeability of component 𝑗
5. 𝑥𝑗 and 𝑦𝑗 , are the mole fractions of component 𝑗 on the feed side

and the permeate side, respectively.

A.0.1. Standardized form
Eq. (B.19) can be reduced to a standardized dimensionless form,

that allows solving the problem for the largest span of input values.
The standardized equation can be obtained by dividing equation (A.1)
by the feed flow 𝐹 , the maximal permeance 𝜋𝑗 and pressure up 𝑃 𝑢𝑝.
New process variables are then introduced:

• the stage-cut 𝜃: the ratio between the permeated flow and the feed
flow

𝜃 = 𝐺
𝐹

(A.2)

• the pressure ratio 𝜙

𝜙 = 𝑃 𝑑𝑜𝑤𝑛
(A.3)
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𝑃 𝑢𝑝
• standardized area 𝑠𝑡𝑗

𝑠𝑡 = 𝐴
𝑃 𝑢𝑝𝜋𝑟𝑒𝑓

𝐹
(A.4)

𝑠𝑡 is often reported in the literature as a dimensionless area. Its
formulation comes from the normalization of the regular equa-
tions (B.19). This variable is defined relatively to a reference
component 𝑟𝑒𝑓 through its permeability 𝜋𝑟𝑒𝑓 .

Finally, we obtain:

𝑑(𝑦𝑗𝜃) = 𝑑𝑠𝑡𝑗
(

𝑥𝑗 − 𝜙𝑦𝑗
)

∀𝑗 ∈ 𝐶 (A.5)

A.1. Single membrane’s simulators

A single module behavior can be efficiently simulated by means
of different simulation tools based on Eq. (A.1) or (A.5). We use two
simulation tools (Bounaceur et al., 2017):

MEMSIC: a CAPE-OPEN module to simulate the behavior of a gas
permeation membrane (Bounaceur et al., 2017). In conjunction
with process simulation software (such as Aspen, Hysys, Pro/II,
PROSIM), it allows to simulate multi-stage separation. Each sim-
ulation requires the use of a graphical interface, where the input
parameters are inserted by hand, see Fig. A.17(a).

A stand-alone FORTRAN code implementing the core of MEMSIC,
that allows to simulate a single membrane’s behavior by using the
normalized equation (A.5), see Fig. A.17(b). This code has a textual
interface.

We used each tool for a different task. In order to generate our training
set, we use the FORTRAN code (allowing batch calculations). To test
the validity of the approach, we performed tests also on multi-stage
systems, thus, we used the CAPE-OPEN MEMSIC module.

In Fig. A.17 and Table A.10, we describe the inputs and outputs of
the two simulation tools. For sake of clarity, we consider the case of
a gas with two components, and without loss of generality we denote
with ‘‘1’’ the most permeable gas. In our example, the gas is composed
of H2 and CO2, and we consider a CO2 selective membrane, thus the
most permeable gas is the CO which is denoted by index 1. Since we
2



Computers and Chemical Engineering 177 (2023) 108342B. Addis et al.
Fig. A.17. Comparison between the MEMSIC module and stand-alone Fortran simulator.
are in the binary case, we can derive the concentration of the H2 by
exploiting that they have to sum up to 1. Similarly, we denote by 𝑠𝑡
the area standardized relative to the CO2 permeance, i.e. 𝑠𝑡 = 𝐴

𝑃 𝑢𝑝𝜋CO2
𝐹

(see Eq. (A.4))
We stress that we consider the membrane permeability as an input

parameter, and we build the machine learning model representing a
specific membrane with a given permeability for each gas component.

The Fortran simulator solves the Eqs. (A.6)–(A.8) where 𝛼𝑖 = 𝜋𝑖
𝜋1

is the ideal selectivity of component 𝑖 versus component 1 of the
membrane.

d𝑠𝑡
d𝜃 =

( 2
∑

𝑖=1
(
𝑥𝑖 − 𝜙𝑦𝑖

𝛼𝑖
)

)−1

(A.6)

d𝑥1
d𝜃 = 1

1 − 𝜃
(𝑥1

2
∑

𝑖=1
(
𝑥𝑖 − 𝜙𝑦𝑖

𝛼𝑖
) − (𝑥1 − 𝜙𝑦1))

( 2
∑

𝑖=1
(
𝑥𝑖 − 𝜙𝑦𝑖

𝛼𝑖
)

)−1

(A.7)

𝑦1 = (𝑥1 − 𝜙𝑦1)

( 2
∑

𝑖=1
(
𝑥𝑖 − 𝜙𝑦𝑖

𝛼𝑖
)

)−1

(A.8)

We can observe that Eq. (A.8) is an algebraic expression and not a
differential equation. Indeed, 𝑦1 can be derived from the flow balance
constraint of the single component:

𝑥𝑖𝑛1 𝐹 = 𝑥1(𝐹 − 𝐺) + 𝑦1𝐺 (A.9)

where 𝐹−𝐺 corresponds to the retentate flow (due to flow conservation
constraints). Therefore, 𝑦1 is calculated as follows:

𝑦1 =
𝑥𝑖𝑛1
𝜃

− 𝑥1
(1 − 𝜃)

𝜃
(A.10)

A.2. Relationship between the simulator and the ML model

In Table A.10, we distinguish input and output variables for both the
simulation tools and the machine learning model. The machine learning
model represents the Fortran tool, so it has the same input and output.
The only difference lies in how the variable 𝑦1 is treated.

Having the possibility to compute 𝑦1 by Eq. (A.8), allows us to
choose the number of outputs of the ANN, which can be either 2 (𝑥1,
and 𝑠𝑡) or 3 (𝑥1, 𝑠𝑡, and 𝑦1). Indeed, we did several tests trying to
train our ANN with 2 or 3 outputs. The difference in the prediction
error turned out to be not too significant. So we preferred to have
only 2 outputs. Furthermore, we chose to have the retentate as the
output because in this case-study it represents the purity of H2 that
we are trying to achieve as accurately as possible. So we define 𝑥1
as the concentration of gas 1 in the retentated considering the single
membrane, and we define the purity as the percentage of product that
15
Table A.10
Input(IN) and output(OUT) for the two simulation tools and the Neural Network Model.
M = MEMSIC, F = Fortran stand-alone, ANN = Neural Network Surrogate.

Name Description M F ANN

𝜋𝑗 Membrane gas permeability IN IN FIX
for each comp. 𝑗 = 1, 2

𝑥𝑖𝑛1 Input concentration of gas 1 IN IN IN
𝑃 𝑢𝑝 The pressures on the feed side IN – –
𝑃 𝑑𝑜𝑤𝑛 The pressure on the permeate side IN – –
𝜙 Pressure ratio 𝑃 𝑑𝑜𝑤𝑛∕𝑃 𝑢𝑝 – IN IN
F Flow in input to the membrane (feed) IN – –
𝑅 Retentated flow OUT – –
𝐺 Permeated flow OUT – –
𝜃 Stage-cut Ratio between 𝐺 and 𝐹 – IN IN
A Membrane area IN – –
st Standardized area 𝑠𝑡 = 𝐴 𝑃 𝑢𝑝𝜋1

𝐹
– OUT OUT

𝑥1 Concentration of gas 1 in the retentated OUT OUT OUT
𝑦1 Concentration of gas 1 in the permeated OUT OUT –

goes out of the system, that is, in our case-study, the percentage of H2
in the retentate coming out of the system.

It is worth to notice that, even if the normalized equations are
sufficient to determine the retentated and permeated compositions, the
optimal design of a system asks for the determination of membrane
surfaces and applied pressures. Indeed, the overall cost of a system
depends on flows, applied pressures (for compressors cost estimation)
and membrane surfaces (for the membrane modules cost estimation).
These parameters can be derived using the following equations:

𝐺 = 𝜃𝐹 (A.11)

𝐴 = 𝑠𝑡 𝐹
𝑃 𝑢𝑝 ⋅ 𝜋1

(A.12)

Appendix B. Optimization model

The mathematical optimization model is based on some quite com-
mon assumptions used in the literature (the interested reader can refer
to Ramírez-Santos et al. (2018) for details). We consider a generic
number of stages, i.e. number of membranes in the overall system, and
we represent them with the set .

The general model considers an arbitrary number of gas compo-
nents. We restrict to the case of two gases to simplify the notation. We
observe that gas composition are represented by molar fractions, thus
they must sum up to 1. Without loss of generality, we can consider
only the concentration of one gas (namely gas 1) and calculate the
concentration of the other by complementing it.

We assume that all the membranes have the same pressure on the
feed (and retentate) side (uniform 𝑃 ), and we assume that the pressure
𝑢𝑝
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Table B.11
Optimization model variables (bi-gas case).

System variables

F Feed flowrate
G Permeate flowrate
R Retentate flowrate
y1 Fraction of component 1 in the permeate
x1 Fraction of component 1 in the retentate

Single stage variables ∀𝑠 ∈ 𝑆

As Membrane’s area
Pup Up stream pressure
Pdowns Down stream pressure
fs Overall feed flowrate
f splits Fresh feed flow rate entering the membrane
gs Total permeate flowrate
rs Total retentate flowrate
xins,1 Fraction of component 1 in the feed
ys,1 Fraction of component 1 of the permeate
xs,1 Fraction of component 1 of the retentate

Inter-stages connection variables ∀𝑠 ∈ 𝑆

routs Retentate flowrate going out the system
gouts Permeate flowrate going out the system
gsplits,s1 Permeate flowrate entering into membrane 𝑠1
rsplits,s1 Retentate flowrate entering into membrane 𝑠1

on the permeate side (𝑃𝑑𝑜𝑤𝑛) is greater or equal than 1 and lower than
the pressure on the feed/retentate (𝑃𝑑𝑜𝑤𝑛 ≤ 𝑃𝑢𝑝). Therefore, whenever
a permeated flow goes in input to a stage with higher pressure 𝑃𝑢𝑝, the
flow needs to go through a compressor.

The optimization variables are described one by one in Table B.11.
The overall system has one given input, the feed, and two outputs: the
retentate and the permeate. Similarly, the single stage constituted by
a membrane 𝑠 ∈  has one input and two output flows, retentate and
permeate.

For each membrane both retentate and permeate can be split to be
distributed as an input to other membrane, or to the membrane itself
(self-loop) and/or sent out of the system. To represent this possibility,
additional variables are needed:

• split: it represents the flowrate that goes from one stage to an-
other, e.g. gsplits,s1 represents the quantity of permeated flow of
membrane 𝑠 that is redirected to membrane 𝑠1.

• out: it expresses the flowrate that goes from one stage to the
system output, e.g. gouts expresses the quantity of permeated flow
of membrane 𝑠 that is directed to the system output.

The model constraints can be divided in different families: flow
conservation constraints that must be valid at system level and for each
stage, on both the flows and the composition; connecting constraints
allowing to connect (coherently) flows between different membranes;
coherence in the total composition of each flow; and finally the con-
straints describing the separation by means of the machine learning
(see Eq. (B.19)). We introduce them one by one.

Flow conservation constraints for the overall system and for each
membrane 𝑠 (both for total and component 1):

𝐹 = 𝑅 + 𝐺 (B.1)

𝐹𝑥𝑖𝑛1 = 𝑅𝑥1 + 𝐺𝑦1 (B.2)

𝑓𝑠 = 𝑟𝑠 + 𝑔𝑠 ∀𝑠 ∈  (B.3)

𝑓𝑠𝑥
𝑖𝑛
𝑠,1 = 𝑟𝑠𝑥𝑠,1 + 𝑔𝑠𝑦𝑠,1 ∀𝑠 ∈  (B.4)

Flow conservation constraints related to connections inter-stages
(split coherence) and system to single stage:

𝐹 =
∑

𝑠∈
𝑓 𝑠𝑝𝑙𝑖𝑡
𝑠 (B.5)

𝑅 =
∑

𝑟𝑜𝑢𝑡𝑠 (B.6)
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𝑠∈
𝐺 =
∑

𝑠∈
𝑔𝑜𝑢𝑡𝑠 (B.7)

𝑟𝑠 =
∑

𝑠1∈
𝑟𝑠𝑝𝑙𝑖𝑡𝑠,𝑠1 + 𝑟𝑜𝑢𝑡𝑠 ∀𝑠 ∈  (B.8)

𝑔𝑠 =
∑

𝑠1∈
𝑓 𝑠𝑝𝑙𝑖𝑡,𝑝𝑒𝑟𝑚
𝑠,𝑠1 + 𝑔𝑜𝑢𝑡𝑠 ∀𝑠 ∈  (B.9)

𝑓𝑠 =
∑

𝑠1∈
𝑟𝑠𝑝𝑙𝑖𝑡𝑠1,𝑠 + 𝑔𝑠𝑝𝑙𝑖𝑡𝑠1,𝑠 + 𝑓 𝑠𝑝𝑙𝑖𝑡

𝑠 ∀𝑠 ∈  (B.10)

𝑓𝑠𝑥
𝑖𝑛
𝑠 =

∑

𝑠1∈
(𝑟𝑠𝑝𝑙𝑖𝑡𝑠1,𝑠 𝑧𝑠1,1 + 𝑔𝑠𝑝𝑙𝑖𝑡𝑠1,𝑠 𝑦𝑠1,1 + 𝑓 𝑠𝑝𝑙𝑖𝑡

𝑠 𝑥𝑖𝑛1 ) ∀𝑠 ∈  (B.11)

The membrane behavior is described by the machine learning re-
gression model:

𝑥𝑠,1 =
∑

𝑘∈𝑁
𝑤2

𝑘,𝑥1
⋅ 𝜎(𝜆𝑘,𝑠) + 𝑏2𝑥1 ∀𝑠 ∈  (B.12)

𝑠𝑡𝑠 =
∑

𝑘∈𝑁
𝑤2

𝑘,𝑠𝑡 ⋅ 𝜎(𝜆𝑘,𝑠) + 𝑏2𝑠𝑡 ∀𝑠 ∈  (B.13)

𝜆𝑘,𝑠 = 𝑤1
𝑘,𝜙 ⋅ 𝜙𝑠 +𝑤1

𝑘,𝑥𝑖𝑛1
⋅ 𝑥𝑖𝑛𝑠,1 +𝑤1

𝑘,𝜃 ⋅ 𝜃𝑠 + 𝑏1𝑘 ∀𝑘 ∈ 𝑁, 𝑠 ∈  (B.14)

where 𝑁 is the set of neurons in the hidden layer and

𝜎(𝑡) = 1
1 + exp (−𝑡)

Finally, the following equations connect the stage variables with the
ML regression model variables:

𝐺𝑠 = 𝜃𝑠𝐹𝑠 (B.15)

𝐴𝑠 = 𝑠𝑡𝑠
𝐹𝑠

𝑃 𝑢𝑝 ⋅ 𝜋1
(B.16)

𝜙𝑠 =
𝑃 𝑑𝑜𝑤𝑛
𝑠
𝑃 𝑢𝑝 (B.17)

nd the SVM-derived separation constraints:

𝜙 ⋅ 𝜙𝑠 + 𝛼𝑥𝑖𝑛1
⋅ 𝑥𝑖𝑛𝑠,1 + 𝛼𝑘,𝜃 ⋅ 𝜃𝑠 ≤ 𝛽 𝑠 ∈  (B.18)

here 𝛼 and 𝛽 are the coefficients of the separating hyperplane.
The model is completed by performance constraints on purity (per-

entage presence of some components in the product) and recovery
quantity of final product with respect to its availability on the input
eed). For example a 0.99 of purity and 0.95 of recovery results in the
ollowing constraints:

1 − 𝑥1) ≥ 0.99

(1 − 𝑥1) ≥ 0.95𝐹 (1 − 𝑥𝑖𝑛1 )

All variables are bounded to be in a box where the lower bound
s nonnegative, and the upper bound can be derived by the physical
eaning of the variable. Finally, a maximum recycling ratio is imposed

o the splits of any stage towards itself (self-loops) to avoid solutions
hat would not lead to physically stable configurations (full self-loops).

The main difference with respect to the previous optimization ap-
roaches is in the modeling of the membrane’s behavior that for us
s represented by constraints (B.12)–(A.3). In the previous model, the
embrane was represented by the discretization of Eqs. (A.1):

𝑖𝑦1,𝑖 = 𝛿𝐴𝜋1(𝑃 𝑢𝑝𝑥1,𝑖 − 𝑃 𝑑𝑜𝑤𝑛𝑦1,𝑖) 𝑖 ∈ 1,… , 𝑛 (B.19)

where 𝛿𝐴 is the discretized area, i.e. the area f each discretized slice
of the membrane, and 𝑛 is the number of slices used in the discretiza-
tion. The finer the discretization, the higher the number of equations
necessary to describe the membrane’s behavior.

B.1. Objective function

The objective function represents the total annual separation costs,
considering both capital and operational expenditure. CAPital EXpen-
diture (CAPEX) includes membrane area and frame, compressors, and
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Table B.12
Cost model.

Capital expenditures

𝑇𝐹𝐼 = 1.344 ⋅ 𝐼𝑡𝑜𝑡 Total facility investment

Operational expenditures

𝐶𝑀𝐶 + 𝐿𝑇𝐼 = 0.2 ⋅ 𝑇𝐹𝐼 Contract and material maintenance
+ Local taxes and insurance

𝐷𝐿 + 𝐿𝑂𝐶 = 23.65 ⋅ 𝑡𝑜𝑝 Direct labor
+ Labor overhead cost

𝐸𝐶 = 𝑡𝑜𝑝 ⋅𝑊𝑡𝑜𝑡 ⋅𝐾𝑒𝑙 Energy Cost
𝑀𝑅𝐶 =

∑

𝑠∈ 𝐴𝑚𝑠
⋅ 𝜈 ⋅𝐾𝑚𝑟 Membrane replacement cost

𝑂𝑃𝐸𝑋 = 𝐶𝑀𝐶 + 𝐿𝑇𝐼 +𝐷𝐿
+𝐿𝑂𝐶 + 𝐸𝐶 +𝑀𝑅𝐶

Total operational expenditures

𝑆𝑇𝐶 = 𝑠𝑡𝑐𝑐𝑜𝑒𝑓 ⋅ 𝑂𝑃𝐸𝑋 Start-up cost
𝐶𝐴𝑃𝐸𝑋 = 𝑇𝐹𝐼 + 𝑆𝑇𝐶 Total capital cost

Annual and specific separation costs

𝐴𝑃𝐿 = 3600 ⋅0.0224 ⋅ 𝑡𝑜𝑝 ⋅𝐹𝐿𝑜𝑠𝑠 ⋅ 𝑋𝐿𝑜𝑠𝑠

𝑋𝑃𝑟𝑜𝑑 Annual product losses
𝑇𝐴𝐶 =
𝐶𝐴𝑃𝐸𝑋 ⋅ 𝑖⋅(1+𝑖)𝑧−1

(1+𝑖)𝑧−1
+ 𝑂𝑃𝐸𝑋 + 𝐴𝑃𝐿

Total annual costs

Objective function

𝑆𝐶 = 𝑇𝐴𝐶∕(𝐹 𝑃𝑟𝑜𝑑 ⋅3600⋅0.0224⋅𝑡𝑜𝑝) Specific product separation cost

Table B.13
Cost equations used to determine product gas separation cost.

Equipment costs

Each term is intended for a single piece of equipment (stage, compressor)

𝐼𝑠
𝑚 = 𝐾𝑚 ⋅ 𝐴𝑠

𝑚 Membrane cost
𝐼𝑠
𝑚𝑓 = (𝐴𝑠

𝑚∕2000)
0.7 ⋅𝐾𝑚𝑓 ⋅ (𝑝𝑢𝑝∕55)0.875 Membrane frame cost

𝐼𝑐𝑝 = 𝐶𝑐 ⋅ (𝑊𝑐𝑝∕74.6)0.77 ⋅ (𝑀𝑃𝐹𝑐 +𝑀𝐹𝑐 − 1) ⋅ 𝑈𝐹1968 ⋅𝐾𝑒𝑟 Compressor cost

vacuum pumps. The OPerational EXpenditure (OPEX) include electric-
ity related to compression and vacuum equipment, membrane replace-
ment, operation, and maintenance cost. It is worth noticing, that the
mass flows traversing the devices (compressors, membranes) influence
both the CAPEX and OPEX of such devices.

The objective function is mainly based on NETL guidelines (Zhai
and Rubin, 2013) and adaptations of previous works (Macali, 2023).
Table B.12 reports the expression of all the elements necessary to
calculate the specific product separation cost, that is the overall annual
cost normalized by the product’s flow 𝐹 𝑃𝑟𝑜𝑑 and the operational time
𝑜𝑝.

The two terms 𝐼𝑡𝑜𝑡 and 𝑊𝑡𝑜𝑡 represent the equipment costs (mem-
rane and compressors) and the total required energy. They contribute
oth to CAPEX and OPEX calculations.

The total equipment cost 𝐼𝑡𝑜𝑡 is the sum of the cost of the single
quipment devices.

𝑡𝑜𝑡 =
∑

𝑐𝑝
𝐼𝑐𝑝 +

∑

𝑠
(𝐼𝑠𝑚 + 𝐼𝑠𝑚𝑓 ) (B.20)

here the equipment’s costs 𝐼𝑐𝑝, 𝐼𝑠𝑚 and 𝐼𝑠𝑚𝑓 are defined in Table B.13.
𝑊𝑡𝑜𝑡 is expressed as following:

𝑡𝑜𝑡 =
∑

𝑐𝑝 𝑊𝑐𝑝

𝛷
, (B.21)

ith:

𝑐𝑝 =
𝐹𝑖𝑛 × 10−3

𝜂𝑐
⋅
𝛾 ⋅ 𝑅 ⋅ 𝑇
𝛾 − 1

⋅ [(
𝑃𝑜𝑢𝑡
𝑃𝑖𝑛

)
(𝛾−1)
𝛾 − 1] (B.22)

where the necessary parameters and variables are reported in
Table B.14 and Table B.16.

Table B.15 reports the coefficients and parameters necessary to
calculate the specific product separation cost.
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Table B.14
Variables and parameters necessary to calculate the device (compressor) energy
consumption.

Compressor’s energy

𝐹𝑖𝑛 Flow entering the device
𝑃𝑖𝑛 Pressure of the flow entering the device
𝑃𝑜𝑢𝑡 Pressure of the flow entering the device
𝐹𝑙𝑜𝑠𝑠 Mass flow of lost product
𝑋𝑙𝑜𝑠𝑠 Percentage of lost product
𝑋𝑝𝑟𝑜𝑑 Percentage of product of interest

Table B.15
Cost parameters used in Table B.12.

Capital cost parameters

Cc 1 × 23 000 USD1968
Km(polymer) 50 EUR∕m2

Kmf 2.86 × 105 EUR
Ker 0.9 EUR∕USD
MPFc 2.9 –
MFc 5.11 –
UF1968 4.99 –

Operational and annual cost parameters

𝜈 0.25 –
Kmr (polymer) 25 EUR∕m2

top 8322 h/year
Kel 0.08 EUR∕kWh
Kgp 0.8 EUR∕N m3

i 0.08 –
z 15 years
𝜂c 0.85 –
𝛷 0.95 –
𝛾 1.36 –
R 8.314 𝐽∕(K mol)
T 308.15 K

Table B.16
Parameters and variables’ bounds for the optimization.

Name Description Value/bounds Units

𝜋1 Membrane gas permeability for CO2 1000 GPU
𝜋2 Membrane gas permeability for H2 85 GPU
F (system) Feed 1000 mol/s
𝑥𝑖𝑛1 Input concentration of gas CO2 0.4 –

𝑃 𝑢𝑝 The pressure on the feed side [50, 100] bar
𝑃 𝑑𝑜𝑤𝑛 The pressure on the permeate side [1, 30] bar
A Single stage (membrane) area [1, 10 000] m2
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