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ABSTRACT Automatic Speaker Verification systems are prone to various voice spoofing attacks such as
replays, voice conversion (VC) and speech synthesis. Malicious users can perform specific tasks such as
controlling the bank account of someone, taking control of a smart home, and similar activities, by using
advanced audio manipulation techniques. This study presents a Multi-Pattern Features Based Spoofing
detection mechanism using the modified ResNet architecture and OC-Softmax layer to detect various LA
and PA spoofing attacks. We proposed a novel Pattern features-based audio spoof detection scheme. The
scheme contains three branches to evaluate different patterns on a Mel spectrogram of the audio file. This
is the first work for the audio spoofing detection task using three different pattern representations of Mel
spectrogram with modified ResNet architecture and OC-Softmax layer. Through the proposed network,
we can extract pattern images from the Mel spectrogram and gives each of them into modified ResNet
architecture. At the last step of each network, we use OC-Softmax to obtain a score for the current pattern
image and then the method fuses three scores to label the input audio. Experimental results on the ASVspoof
2019 and ASVspoof 2021 corpuses show that the proposed method achieves better results in the challenges
of ASVspoof 2019 than state-of-the-art methods. For example, in the logical access scenario, our model
improves the tandem decision cost function and equal error rate scores by 0.06% and 2.14%, respectively,
compared with state-of-the-art methods. Additionally, experiments illustrate that the proposed fused decision
improved the performance of the system.

INDEX TERMS Deep fake audio, audio forgery, forgery detection.

I. INTRODUCTION
Automatic Speaker verification systems (ASV) have become
popular in recent years, especially after the Covid 19 pan-
demic. Many techniques, such as password-based authenti-
cation and fingerprint scanning, which are used to verify the
corresponding person, necessitate contact-based interaction.
Therefore, utilizing specific methods that do not require any
interaction is important when considering health issues that
affect people all around the world. Many people use ASV
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in their daily lives such as by talking with their cellphones,
realizing banking operations, and giving some commands to
their smart watches. An ASV system gets the voice through
the microphone and processes it to decide about it. It accepts
or rejects the voice according to the result. Themain objective
of an ASV system is to decide whether the input audio is
genuine or not. Even if ASV-based systems make our lives
simpler, they also come with a lot of problems. If a malicious
user imitates a legal user’s voice to authenticate himself to the
system, such a situation can be a problem for ASV systems.

Three different attacks can be applied by attackers to
ASV systems: voice conversion, synthetic speech, and replay
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FIGURE 1. Various attack scenarios against ASV system (a) Voice conversion attack (b) Replay Attack (c) Synthetic speech attack.

attack. In the first scenario, shown in Fig. 1(a), an attacker
for a voice conversion attack synthetically generates a sound
that is very similar to the registered speaker. The voice
conversion technique transforms a malicious person’s voice
into that of an enrolled speaker. An attacker uses feature
extraction and acoustic modeling techniques with waveform
generation to produce a speech by using the target speaker’s
voice. Fig. 1(b) shows the general idea of a replay attack.
In this scenario, the attacker uses a recorder device to obtain
genuine speech, and then he uses this speech to authenticate
himself to the system at another time. In the last scenario,
the attacker gets the original voice samples from the victim
and then uses a speech synthesis system to generate fake
speech that imitates the victim’s voice as can be seen in
Fig. 1(c).

Some problems are encountered by ASV systems that were
first visible in a special session in 2013 [1]. Subsequently,
the ASVSpoof challenge was organized to provide a public
platform for considering anti-spoof methods and to evaluate
the performance of the methods according to specific met-
rics [2]. The most recent challenge, denoted by AsvSpoof
2019, contains three major attack types, as described [3].
ASVSpoof 2019 consists of two scenarios: Logical Access
(LA) and Physical Access (PA). While Text to Speech (TTS)
and VC attacks were used to create LA dataset, PA consists
of replay spoofed voices. PA and LA datasets are divided
into three subsets: Training, development, and evaluation sub-
sets. While eight males and twelve females’ voices are used

to generate the training set, the evaluation set is generated
by 21 males and 27 females. The recording environment is
equal during the generation of subsets. The same algorithms
are used to generate known attacks for both training and
development subsets. However, the evaluation subset con-
tains samples that are generated using different synthesizing
algorithms. ASVSpoof 2019 dataset came with two different
metrics denoted by Equal Error Rate (EER) and Tendum
Detection Cost Function (t-DCF) to make a fair comparison
between the methods. Therefore, many researchers aim to
propose new methods to obtain better EER and t-DCF values
on the new challenge.

The methods in the literature have some specific prob-
lems: Single spoofing type detectors, limited generalization
capability, and high computational cost. The most impor-
tant problem for audio spoof detection is the generalization
capability of detectors. Various low-level spectro-temporal
features were analyzed by the researchers to overcome this
problem. Even if the works in the literature give lower EER
values on the ASVspoof 2019 dataset, they are not able to
deal with the generalization problem on ASVspoof 2019 in a
well manner especially when we consider the recent improve-
ments on the TTS (Text-to-speech) and VC technologies.
Generalization is important for this field because you can deal
with unseen attacks if your model is generalized properly.
In this work, we aim to capture different characteristics of
various PA and LA attacks using pattern information on the
spectrogram images.
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The proposed approach consists of three stages: Audio
visual representation and texture extraction, Training of the
Deep Neural Networks and Fusion of the scores. At the
first step, the method transforms input audio file into fre-
quency domain using Mel Spectrogram technique and then
three different pattern extraction techniques (Local Binary
Pattern, Gray Level Cooccurrence Matrix and Local Phase
Quantization) are utilized by the method to obtain different
characteristics of the Mel Spectrogram image. In the sec-
ond phase of the proposed method, we modified Resnet18
architecture and used pattern images from three different
methods to train three modified Resnet18-based deep neural
networks (DNN). Decision obtained from those DNNs are
fused together to obtain a final decision of the system.

The major contributions of this work can be listed as
follows:

• We design a novel Pattern Features-based audio spoof
detection scheme. The scheme contains three branches
to evaluate different patterns on aMel spectrogram of the
audio file. As far as we know, this is the first work for the
audio spoofing detection task using three different pat-
tern representations of Mel spectrogram with modified
ResNet architecture and OC-Softmax layer.

• We combine the decisions for three pattern images
for audio spoofing detection. Through the network we
designed, we can extract pattern images from the Mel
spectrogram and give each of them intomodifiedResNet
architecture. At the last step of each network, we use
OC-Softmax to obtain a score for the current pattern
image and then the method fuses three scores to label
the input audio. Our experiments show that this fusion
decision can improve the performance of our model.

• The proposed method achieves better results in the
challenges of ASVspoof 2019 and also ASVspoof
2021 datasets than state-of-the-art methods. For exam-
ple, in the logical access scenario, our model improves
the tandem decision cost function and equal error rate
scores by 0.06% and 2.14% respectively, compared with
state-of-the-art methods.

This paper is organized as follows: While section II gives
a brief description of some approaches that are used in the
method, the details of the proposed method will be given in
section III. Section IV presents the experimental results of the
proposed approach and gives a comparison with state-of-the-
art methods. The conclusion is also drawn in the last section.

II. RELATED WORKS
The methods in the literature consist of two stages to detect
forged audio: Feature extraction and classification. In the
feature extraction phase, existing approaches have employed
either handcrafted features or deep learning-generated fea-
tures. In the classification phase, while some methods are
utilized from deep neural networks, the others use Gaussian
Mixture Model (GMM), Support Vector Machine (SVM),
Random Forest Classifier (RFC) at the backend. We can
deeply analyze the methods in the literature into two

sub-groups: Handcrafted feature-based methods and Deep
learning-generated features-based methods.

A. HANDCRAFTED FEATURE-BASED METHODS
Todisco et al. proposed a new feature that is based on
the Constant Q Transform and it is combined with cep-
stral analysis (CQCC) [4]. Their technique is utilized by
GMM to label the audio file as spoof or original. Their
results show that the method outperformed all previously
reported results on AsvSpoof 2015. In 2017, Alluri et al.
employed single-frequency filtering (SFCC) to obtain a spec-
tral and high temporal resolution to detect replay attacks [5].
GMM was used for the classification of handcrafted fea-
tures denoted by SFCC as the last step. Das et al. combined
long-range features with the other known features to improve
the detection of spoofing attacks [6]. Their method gener-
ated tandem detection cost function to be 0.12 and 0.13 for
logical access and physical access datasets respectively.
Lavrentyeva et. al. explored various acoustic features as
input into their proposed Light CNN architecture [7]. Their
experiments showed that the power spectrum contains mean-
ingful information for the detection of spoofed signals. Their
technique used log power magnitude spectrum as features
and the spectrum was obtained by CQT, FFT, and DCT
techniques. Yang et al. developed Log-CQT features com-
bined with multi-layer convolutional neural networks to
realize robust performance [8]. Their technique used CNNs
with gradient linear units (GLU) for classification purposes.
Balamurali et al. examined the effect of different audio fea-
tures on the effectiveness of the GMM-UBM based detection
system [9]. Their work analyzed both audio features (CQCC,
LPCC, IMFCC) and learned by autoencoder. Experimental
results of the work also designated EER values of the models
built with different feature sets. The other study indicated
that CQCC based on the magnitude of CQT ignores phase
information which can be also changed during the replay
process [10]. Their work proposed a CQT-based modified
group delay feature (CQTMGD) to capture the phase infor-
mation of CQT. Multi-branch residual convolutional network
was also utilized in their work to classify the input signals.
Their results showed that CQTMGDgives better results when
compared to the traditional MGD feature. Das et al. found
that eCQCC and CQSPIC features are more reliable if you
use them as a countermeasure to label the input as authentic
or forged [5]. Adiban et al. used CQCC features as input to
the autoencoder to obtain more discriminative features [11].
Their method also used various configurations of Siamese
networks for classification purposes for the first time. Exper-
imental results indicate that the proposed system improves
the baseline works. The other study proposed a new method
called subband transform, which represents the signals using
subbands. Constant Q equal subband transform, octave sub-
band transform, and mel subband transform are evaluated
by their work on the ASVspoof 2015 and ASVspoof2019
logical access datasets [12]. Experimental results indicate that
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the proposed subband-based features outperform transforms
that are based on full-band transforms. In 2021, Yang et al.
proposed a new feature called Modified magnitude-phase
spectrum (MMPS) feature to obtain magnitude and phase
information from the input signal [13]. Constant-Q-transform
is then applied with MMPS to obtain a new handcrafted
feature CQT-MMPS. Their results indicated that CQMCC
outperformed most commonly used spoofing detection fea-
tures. Ren et al. used a method to obtain features from
the temporal waveform using frequency band calibration via
sinc convolution and squeeze-excitation module [14]. Their
results showed that the method achieved better generalization
capability in the detection of unseen attacks. Aljasem et. al.
proposed a method that used sign-modified acoustic local
ternary pattern (sm-ALTP) features to determine audio spoof-
ing forgery [15]. Their classifier ensemble approach utilizes
a series of weak classifiers and produces a stable classifier.
They evaluated their approach to ASVspoof 2019 and VSDC
datasets. Dawood et al. suggested a new feature descriptor
Center Lop-Sided Local binary patterns (CS-LBP) to rep-
resent audio files in the best manner [16]. These features
were also fed into the long short-term memory network for
the detection of audio forgery. In 2022, Li et al. found that
temporal long-term relations and high-frequency information
are useful for obtaining artifacts of the spoofed signal [17].
The long-term variable Q transform (L-VQT) is proposed by
the authors to catch the clues at the spoofed signal. Modified
Densely Connected Convolutional Network (DenseNet) is
also used to obtain detection results.

B. DEEP LEARNING GENERATED FEATURES-BASED
METHODS
Suggested methods in this field utilize deep learning to
detect spoofed audio signals. Kumar et al. used a time-delay
shallow neural network (TD-SNN) to detect spoofed audio
signals [18]. Themethod can also handle with variable-length
speeches during the testing stage. Their work analyzed GMM
on ASVspoof 2019 dataset. Chettri et al. combined the
traditional machine learning with deep neural networks to
create ensemble models through logistic regression [19].
The authors used large margin cosine loss function (LMCL)
and online frequency masking augmentation to increase the
learning ability of neural networks [20]. The method is
also evaluated on the ASVspoof 2019 logical access (LA)
dataset. Zhang et. al. proposed a detection system that used
one-class learning to increase its robustness of the method
against unseen attacks [21]. They used a specially designed
loss function called One Class Softmax (OC-Softmax) to
classify the input signals. Modified Resnet-18 architecture
is also used by the authors to decide the input, which is
the LFCC feature of the audio signal. Li et al. modified
Res2Net to enable channel-wise gating mechanism in the
connection between feature groups to create a new architec-
ture called Channel-Wise gated Res2Net (CG-Res2Net) [22].
The mechanism used in the method determined channel-wise
features according to input. Thus, it could suppress the least

related channels. They obtained results on the ASVspoof
2019 dataset.

Xue et. al. utilized physiological-physical feature fusion
to detect audio spoofing attacks [23]. A densely connected
convolutional network with squeeze and excitation block
(SE-DenseNet) and a multi-scale residual neural network
with squeeze and excitation block (SE-Res2Net) were used
in a combined manner to fuse the features. They also tested
their work on the ASVspoof 2019 dataset. Li et al. improved
Res2Net to detect audio spoofing attacks in a good man-
ner [24]. Res2Net enables multi-feature scales by modifying
ResNet. Res2Net divides the feature maps in each block into
multiple channel groups and creates a residual connection
between different channel groups. Their results showed that
Res2Net outperformed ResNet34 and ResNet50 on physical
access (PA) and LA sub-datasets of ASVspoof 2019. In 2022,
Ma et al. indicated that filter bank distributions of cepstral
features in the frequency domain can affect the system perfor-
mance [25]. They proposed an improved light convolutional
neural network (LCNN)with attentionmodules (Squeeze and
Excitation Block, Convolutional Block Attention Module-
CBAM, Dual Attention Network, DANet). They analyzed
various attention mechanisms’ effects on audio spoof detec-
tion. Dua et al. designed three different models and grouped
them to analyze the results [26]. MFCC, IMFCC, and CQCC
were used as the frontend for all these models.

After we have analyzed the works in the literature in depth,
we can now give the details of the proposedmethod in the next
section.

III. PROPOSED METHOD
In this work, we propose a new approach to detecting deep
fake audio samples using different characteristics of the audio
sample. The input audio signal is converted into the frequency
domain using Mel Spectrogram as the first step and then
various pattern information from the spectrogram is obtained
using specific pattern extraction techniques Local Binary
Pattern (LBP), Local Phase Quantization (LPQ), and Gray
Level Co-OccurrenceMatrix (GLCM). The proposedmethod
trains three deep neural networks (Modified ResNet18 Archi-
tecture, the details about which will also be given below) to
obtain three different judgments about the input audio signal.
Generated scores are then fused as the last step to determine
the system’s answer. The general architecture of the proposed
approach is also given in Fig. 2. As you can see from the
figure, the proposed method consists of three parts: Audio
visual representation and texture extraction, Training of the
DeepNeural Networks, and Fusion of the scores.Wewill give
their details in the following sections.

A. AUDIO VISUAL REPRESENTATION AND PATTERN
EXTRACTION
Input audio signal is converted into the frequency domain
using the Mel Spectrogram technique as the first step. The
method uses Short-Time Fast Fourier Transform (STFT) to
generate the corresponding spectrogram of input audio signal
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FIGURE 2. General flowchart of the proposed method.

which is divided into frames with 30 ms duration. FFT is
realized on all subparts as in (1) after each subframe is
multiplied by Hamming window.

S(f , t) =

∑N−1

n=0
wnxt (n)exp(−j2π(f /fs)n)

f = kfs/N (1)

While Hamming Window function is represented by wn, xn
corresponds to the original speech. f is the frequency range for
k = 1, 2, . . .N/2+1 and N represents the number of samples
in each frame. Amplitude, power, phase or log amplitude
information of a signal can be used to generate corresponding
spectrogram. Chosen frequencies for all different representa-
tions are equally apart. However, the human sensory system is
more sensitive to low-frequency than high-frequency content.
Mel spectrogram uses the properties of the human sensory
system to represent the audio in the time-frequency domain.
Coefficients of Mel spectrogram Smel (k, t) are calculated
using (2)

Smel (k, t) =

∑L−1

l=0
mk (l) |S(l, t)2| (2)

L,mk (l) corresponds to the frequency component number and
kth filter of the Mel filter bank respectively. Fig. 3 indicates
spectrograms of forged and original speeches.

In the second part of the proposed method, the Mel spec-
trogram image of the input audio signal will be represented as
pattern images. The method utilizes LBP, LPQ, and GLCM
techniques to obtain different pattern characteristics of the
spectrogram image. After Ojala et al. proposed LBP for
texture classification, many researchers have used it in their
work to extract pattern information from the image [27].

It is preferred by many researchers because of its simplicity,
computational efficiency, coding capability, discriminative
power, and robustness against illumination variations. LBP
labels each pixel using its neighborhood pixels by thresh-
olding mechanism. It compares the center pixel with the
3 × 3 neighborhood of it and gives binary values according
to the result of the comparison. Eight binary values are used
by LBP to code center pixel as a decimal value in [0 − 255]
range. LBP code generation for a pixel denoted by p is given
in (3).

LBPp =

∑X−1

x=0
T

(
gp − gx

)
(3)

where gp corresponds to the gray level value of the center
pixel p, gx represents the pixels at 3 × 3 neighborhood of
center pixel and T (a) defines the thresholding function. If the
value of a is greater than or equal to zero, it returns 1.
Otherwise, it returns 0.

Afterward, the proposed method also uses GLCM to
obtain different pattern information from the Mel spectro-
gram image. Relative frequencies of a pair of gray levels at a
specified distance d and at a specified angle θ for an image
are represented by GLCM matrix. Used distance parameter
can be varied from 1 to the size of image and angle parameter
can be selected from 0◦, 45◦, 90◦ and 135◦. GLCM generates
different pattern information for varying parameters. Input
image must be quantized to decrease the computational com-
plexity of GLCM generation process.

Various GLCMs can also be calculated for varying param-
eters. Usually, GLCMs are obtained for four different direc-
tions, and then the mean of all is calculated to get the final
GLCM.
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FIGURE 3. Mel spectrogram images of corresponding original and fake audio signals from
ASVSpoof 2019.

The last phase of the second part extracts LPQ from theMel
Spectrogram image. Heikkila et al. proposed LPQ to create
a blur-independent representation of texture images [28].
Assume that original image and point spread function of
blurring operation are denoted by i (x) and b (x) respectively.
Frequency domain representation of the convolution opera-
tion for blurred image can be expressed as G (U) = I (u) ·

B (u). I (U) and B (U) represent Discrete Fourier Transform
(DFT) of original image and point spread function of blurring
operation. The phase angle of B (u) is real-valued all time
because its point spread function is symmetric. So, phase
angle of B (u) becomes either 0 or π . The method com-
putes the Short-Term Fourier Transform (STFT) in the local
neighborhood of Nx for each pixel position. Local spectra are
computed using STFT as in (4).∑

y
i (y) v (y− x) e−j2πu

T y (4)

Where v (x) is a window function which defines the neighbor-
hood ofNx . If the size of the rectangular region isNR×NR, the
function returns one for |x| and |y| less then NR

/
2. Otherwise

v (x) returns zero. For each pixel position, LPQ computes four
frequency points for small scalar value a as s1 = [a, 0]T ,
s2 = [0, a]T , s3 = [a, a]T and s4 = [a, −a]T . The value
of a must satisfy B (U) to be greater than zero. The method
calculates a vector with four elements as in (5) for each pixel.

F (x) = [F (s1, x) ,F (s2, x) ,F (s3, x) ,F (s4, x)] (5)

Signs of the real and imaginary parts of each component
in F (x) are used to determine the phase information. Each
element of F (x) which also have real and imaginary parts,

represented by two binary values. For example, if current
imaginary part is bigger than or equal to zero, it will be
represented by 1. At last, F (x) vector with four elements is
represented by eight binary values and it also corresponds to
a value in range [0 − 255].

We used original and fake audios from the Asvspoof 2019
LA dataset to show each pattern information, as shown in
Figure 4. The created textural images contain additional infor-
mation, whichwill contribute positively to themodel training.
It can be seen from the figure that the texture images extracted
from the fake and original audio are different from the texture
images extracted from the original audio. The LBP and LPQ
textural images obtained from the original audio have more
detail than fake ones. The GLCM image of the original audio
is longer and narrower than the fake ones. These differences
would contribute positively to detecting fake audio from the
original audio.

In this part of the proposed method, the input audio is con-
verted into the frequency domain using the Mel spectrogram
and then three different pattern extraction techniques are used
to extract different patterns of the frequency representation.
Those representations will be used to train three DNNs in the
next section.

B. TRAINING OF THE DEEP NEURAL NETWORKS
In the second part of the proposed approach, three modified
Resnet-18 architectures are learned distinctly using three
different pattern-based features, which are calculated in the
former step. We modified the network architecture proposed
in [30]. The modified architecture uses the deep residual
network ResNet-18 but adds a self-attentive temporal pooling
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FIGURE 4. Three types of textural images for original and fake audios.

layer instead of a global average pooling layer. Resnet has
recently become a high-performance deep network model
used especially in computer vision, speech, and emotion
recognition [24], [31], [32].

The more hidden layers in a deep neural network, the
lower the performance will be. Resnet neural network model
aims to solve this problem. Although deep networks generally
learn directly from underlying mapping, the Resnet model
performs learning by residual function [32]. Thus, residual
mapping instead of underlying mapping is more convenient
for optimization, as pushing a residual to zero is easier than
fitting it into an underlying mapping [32]. ResNet consists of
several residual units. These residual units contain two con-
volutional layers with 3 × 3 filter sizes. Batch normalization
(BN) is performed after each convolution [33]. After the first
convolution, the shortcut connection addition operation, and
ReLU activation functions are performed.

We extend it by adding two pairs of convolutional layers
with a kernel size of 3 × 3, having every 512 kernels. With
these additional convolutional layers and the fully connected
layer that is featured afterward, the total amount of layers is
brought up to 22. The proposed architecture takes as input the

texture images generated from the Mel spectrogram image
and produces a classification score for each texture image
as output. The description of layers with filters, max-pooling
function, dropout, and activation function is discussed in the
following.

TABLE 1. The details of used architecture.

The network model contains 20 convolution layers, 2 down
sampling layers, two fully connected layers(fc), and a self-
attention layer. Self- attention layer was used to process
inputs of variable length and give higher coefficients to parts
of the input [30]. In this way, all local vectors from the input
were combined into a single global vector. The input texture
image size of our model is 113 × 390, in addition to the
first convolution layer, the convolution kernel size is 9 ×

3, and the other layers are 3 × 3. After the attention of
the last convolution layer, an eigenvector is created by full
connection, then the classification probability is created by
OC-Softmax [21]. We used OC-Softmax proposed in [21].
as a loss function. The aim of this loss function is composed of
two different margins to compress bonafide speech and sep-
arate the spoofing attacks. One-class Softmax (OCSoftmax)
is indicated in (6).

LOCS =
1
N

∑N

i=1
log(1 + eα(myi−w0xi)(−1)yi ) (6)

where α is a scale factor, w0 is weight vector, N is the number
of samples in a mini batch, xi and yi embedding vectors. Two
margins (m0,m1 e [−1; 1],m0 >m1) shows bonafide speech
and spoofing attacks, respectively.

Two convolution layers of identical color, as shown in
Fig 8, constitute a residual block. Shortcut connections are
those skipping two layers (curved arrows in Fig. 8). The short-
cut connections build an identity mapping, and the inputs are
inserted into the output of the multiple layers. Our model
creates an eigenvector containing two probabilities, which are
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utilized to show that the input texture image will be included
in the class with the highest probability.

C. FUSION OF THE SCORES
Three different score in [0 − 1] range are obtained from
three DNNs at the former step of the algorithm. Weights
will be determined using individual scores denoted by
sLBP, sGLCM , sLPQ. To determine corresponding weights in a
correct manner, we used score results from the development
set of the LA dataset. The proposed technique started each
weight from 0 and increased it by 0.01 for each iteration.
At each step, we obtain the weighted sum of scores with
new weights and decide according to the weighted sum. The
method obtains decisions for all audios in the development
dataset using the current weight configuration and records
the EER value for the current iteration. At the next step of
the algorithm, weights will be updated, and then all samples
from the development dataset will be processed again to
obtain the current EER. At the end of the algorithm, the
proposed approach chooses a specific weight configuration
that gives min EER during tests. The corresponding weight
determination algorithm is given below.

Algorithm 1 Determining best weight values
Input: sLBP, sGLCM , sLPQ
Output: w1,w2,w3

minEER = 999
for wLBP = 0: 0.01: 1

for wGLCM = 0: 0.01: 1
wLPQ = 1 − (wLBP + wGLCM );
s = wLBP · sLBP + wGLCM · sGLCM + wLPQ · sLPQ;
EER = DevTest (DevDataset, s);
if EER < minEER
minEER = EER;
w1 = wLBP;w2 = wGLCM ;w3 = wLPQ;

end if
end for

end for
return w1,w2,w3

Where DevTest is a function which returns the EER value
for the current score values on the development dataset.
sLBP, sGLCM , sLPQ represents the score values of LBP based,
GLCM based and LPQ based DNNs for development dataset
and each of them contains same number of elements as
development dataset. Vector s accommodates weighted score
values for all samples in the development dataset. Function
DevTest calculates EER using the current score values. The
fusion algorithm given above will return the best weight
values for three architectures. Thus, the proposed system will
decide the originality of the input audio using the predeter-
mined weight values with current score values, as in (7).

s = w1 · sLBP + w2 · sGLCM + w3 · sLPQ (7)

After the last phase of the proposed method, the system will
decide the originality of the input audio. In the next section,
we will also provide a detailed experimental analysis of the
work.

IV. EXPERIMENTAL RESULTS
In this section, we give the details of the experiments to show
the performance of the proposed method and to make a fair
comparison between the method and similar works in the
literature.

A. IMPLEMENTATION DETAILS
The proposed method utilized three different pattern extrac-
tion techniques, as indicated in the previous section. LBP-
based, GLCM-based, and LPQ-based subparts of the method
will be evaluated individually, and then fusion results will
be given to show the general performance of the proposed
method. We have realized the proposed approach using the
following parameters. Our network model was performed
with PyTorch2. The model utilizes Adam optimizer with the
β1 and β2 parameters to update the weights in ResNet. β1,
β2 was set to 0.9 and 0.999 respectively. We selected α =

20, m0 = 0:9 and m1 = 0:2 for the OC-Softmax as a hyper-
parameter in the loss functions. We determined parameters
in the loss function using the Stochastic Gradient Descent
(SGD). The batch size is set to 16. We initially determined
the learning rate as 0.0003 and then reduced it 50% for every
10 epochs [21], [41]. The model is trained on the network for
100 epochs on a Tesla P100-PCIE-16GB. Then, we choose
the model with the lowest validation EER for evaluation.

B. DATASETS
ASVSpoof 2019 dataset was used to train and test of the pro-
posed system [34]. And it is also tested using ASVSpoof2021
dataset [46].

ASVSpoof2019 consists of two sub-datasets: Logical
Access (LA) and Physical Access datasets. The details
of these subsets can be given as follows and the num-
ber of audios is given in Table 2. The Logical Access
dataset consists of two attack types, voice conversion and
speech synthesis attacks, and three different subsets: the
Training, Development, and Evaluation datasets. While the
training dataset accommodates 25380 audio samples (2580
are bonafide samples and 22800 are spoofed samples),
2540 bonafide samples and 22296 spoofed samples were
used to create the development dataset. The evaluation dataset
also consists of 7355 bonafide samples and 63882 spoofed
samples as indicated in Table 1. Attacks in the training and
development section were created using a set of 6 different
algorithms (A01-A06), while attacks in the evaluation parti-
tion using a set of 13 algorithms (A07-A19). While A01-A04
was created with TTS, A05 and A06 created with two VC
approaches in the training and development partitions. For
these spoofing attacks the waveform conversion and gener-
ation techniques are respectively as follows:
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• A01; AR RNN- WaveNet
• A02; AR RNN -WORLD
• A03; FF-WORLD
• A04; CAR-Waveform concat
• A05; VAE- WORLD
• A06; GMM+UBM Spectral filtering -OLA

Seven TTS algorithms (A07-A12 and A16), three VC
algorithms (A17-A19), and three TTS+VC algorithms
(A13-A15) were used to generate the evaluation partition.

• A07; RNN-WORLD
• A08; AR RNN- Neural source-filter
• A09; RNN- Vocaine
• A10; AR RNN+CNN- WaveRNN
• A11; AR RNN+ CNN- Griffin-Lim
• A12; RNN-WaveNet
• A13; Momentum match- Waveform filtering
• A14; RNN-STRAIGHT
• A15; RNN- WaveNet
• A16; CART-Waveform concat
• A17; VAE-Waveform filtering
• A18; Linear- MFCC vocoder
• A19; GMM-UBM Spectral filtering- OLA

The physical Access (PA) dataset, which contains replay
attacks and spoofing scenarios, was created using a fixed
microphone in an environment. Sounds propagate, and var-
ious obstacles, such as walls and floors, reflect the sound
in this scenario. Varying source/receiver positions are con-
sidered to simulate room acoustics in a good manner,
as indicated in [34].
Physical Access (PA) dataset, which contains replay

attacks and spoofing scenario, was created using a fixed
microphone which is in an environment. Sounds propagate
and various obstacles such as walls and floors reflect the
sound in this scenario. Varying source/receiver positions are
considered to simulate room acoustics in a well manner as
indicated in [34]. Room size S, reverberation time T60 and
the talker to ASV distance Ds define the noise-free acoustic
environment which also accommodates the ASV system.
Each parameter gets different values and using these values
27 different configurations are denoted by environment iden-
tifiers (EIDs) (aaa, aab, . . . , ccc). While the training dataset
in the PA consists of 54000 samples, the development dataset
accommodates 29700 samples. The evaluation dataset also
contains 134730 samples in the PA scenario.

TABLE 2. General structure of ASV spoof 2019 LA and PA sets.

The ASVSpoof 2021 dataset was published with three
different scenarios. It is stated to use ASVSpoof 2019 as a
training and development set. In this study, the method was

tested on the ASVSpoof 2021 LA set. The dataset contains
audios that database was transmitted across a telephony net-
work such as a PSTN or VoIP, using various codecs, sampling
rates and bitrates which are represented by C1-C7 given in
Table 3.

TABLE 3. Summary of ASVSpoof 2021 LA evaluation conditions.

C. METRİCS
Twometrics were utilized in spoof speech detection. The first
of these metrics is EER. In ASV systems, EER is described
as the point where the False Acceptance Rate (FAR) equals
the False Rejection Rate (FRR). FAR shows the probability of
the system admitting a forged record as original, while FRR
shows the probability of refusing an original record as forged.
The other of thesemetrics is theminimumnormalized tandem
detection cost function (min t-DCF). It shows the overall
protection rate for ASV systems and ASV performance. Its
formula is given in equation (8).

mint−DCF = minTcm

{
C0 + C1Pcmmiss (Tcm) + C2Pcmfa (Tcm)

t − DCFdefault

}
(8)

where Pcmmiss (Tcm) and Pcmfa (Tcm) are the miss and false alarm
rate of the output of the anti-spoofing system is called a
countermeasure (CM) for threshold Tcm. C0, C1 and C2 are
the coefficients. t − DCFdefault = C0 + min(C1,C2).
These metrics show the similarity of the suspicious record

with bonafide speech. A low EER and min t-DCF values in
ASV systems indicate high system accuracy.

D. ASVSPOOF 2019 LA DATASET RESULTS
In this section, we give the sub-results for development and
evaluation dataset results of LA in two subsections. The last
part of this section also shows fused results and comparisons
with similar works.

1) DEVELOPMENT DATASET RESULTS
In this section, we used the LA development set to show
the effectiveness of each branch of the method. All samples
from this dataset are converted into the frequency domain
usingMel Spectrogram, and then their LBP, GLCM, and LPQ
textures are obtained separately. After that, the trained system
tested these textured images. Table 4 gives the EER (%)
results of each attack for each branch. As we can see from the
table, while the LBP branch gives the best EER value for the
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A03 attack, the worst EER value is obtained for the samples
of the A06 attack. When we look at the results, the best three
EER values for this experiment are obtained for theA03, A02,
and A05 attack types. WORLD waveform generator is used
for speech synthesis to generate A02, A03, and A05 samples.
The worst EER for this experiment is obtained for the A06
attack, and samples from this attack type are generated using
spectral filtering plus an OLA waveform generator. Thus,
we can conclude that the LBP branch gives good results for
the samples that are generated using a vocoder; it generates
the worst result for the A06 attack type, which uses spectral
filtering plus OLA to generate spoofed samples.

When it comes to GLCM branch results, the best case is
obtained for the A03 attack; the worst EER value is obtained
for the samples of the A06 attack. The best three EER values
for this experiment are obtained for the A03, A01, and A02
attack types. WORLD waveform generator and WaveNet are
used for speech synthesis purposes to generate A01, A02, and
A03 samples. The worst EER for this experiment is obtained
for the A06 attack, and samples from this attack type are
generated using spectral filtering plus an OLA waveform
generator. Thus, the GLCM branch gives good results for the
samples that are generated using TTS algorithms; it generates
the worst result for the A06 attack type, which uses spectral
filtering plus OLA to generate spoofed samples.

LPQ branch gives the best EER value for A03 attack with
achieved EER of 0.47% and gives the worst EER value for
A06 attack as indicated in Table 4. Results for A01, A02 and
A03 attack scenarios are the best three EER values for this
experiment. The worst EER for this experiment is obtained
for A06 attack and samples from this attack type are gener-
ated using spectral filtering plus OLA waveform generator.
Thus, we can conclude that LPQ branch gives good results
for the samples which are generated using TTS and some
specific VC algorithms, it generates the worst result for A06
attack type which uses spectral filtering plus OLA to generate
spoofed samples. LPQ branch also gives good results for VC
attacks which uses WORLD waveform generator.

TABLE 4. EER (%) results the LBP branch of the method on the
development dataset of LA.

For the second experiment, we tested the performance of
the branches for TTS-based and VC-based spoof samples,
as given in Table 5. For each branch, Modified Resnet18
architecture was trained using TTS-based spoof samples and
bonafide samples from the training dataset of LA and it was
tested on the TTS-based spoof samples (A01 to A04) of the

development dataset. While the lowest EER was obtained
with LPQ for TTS attacks, the lowest EER was obtained with
LBP for VC attacks.

TABLE 5. EER (%) results of the branches for Speech synthesis and voice
conversion attacks in development set.

We also give the score distribution of each branch for the
best and worst scenarios. As you can see from Table 4, the
LBP branch achieved the best EER for A03 and the worst
EER for A06. Therefore, we plot the score distribution of the
samples from these two attack types to support the obtained
LBP results in Table 5.While Fig. 5(a) shows the score values
of the samples from A03, score values from A06 are also
given in Fig. 5(b). Fig. 5 shows that while scores from A03
can be separated into two regions using a threshold value,
score values from A06 cannot be divided into two parts in
a simple manner. While some samples from bona fide classes
are labeled as fake by the system, some samples from spoofed
samples are labeled as original, as shown in Fig. 5(b).

FIGURE 5. Score distribution of samples from A03 and A06 attack types
using LBP branch.

In another experiment, we show the score distribution of
the GLCM branch for the best and worst scenarios. GLCM
branch achieved the best and worst EERs for A03 and A06,
respectively. Score distributions of the samples from these
two attack types are given in Fig. 6. While Fig. 6(a) shows
the score values of the samples from A03, score values from
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A06 are also given in Fig 6(b). As you can see from Fig. 6(a),
scores from A03 can be separated into two regions using a
threshold value, and score values from A06 cannot be simply
divided into two parts. While some samples from bona fide
classes are labeled as fake by the system, some samples from
spoofed samples are labeled as original, as shown in Fig. 6(b).

FIGURE 6. Score distribution of samples from A03 and A06 attack types
using GLCM branch.

We also show the score distribution of the LPQ branch
for two scenarios: The best and worst scenario. While the
LPQ branch generates the best EER value for A01 and A03,
it gives the worst EER for A06. Score distributions for these
scenarios are given in Fig. 7. While Fig. 7(a) shows the score
values of the samples from A03, score values from A06 are
also given in Fig. 7(b). As you can see from Fig. 7(a), scores
from A03 can be separated into two regions using a threshold
value; score values fromA06 cannot be divided into two parts
in a simple manner. While some samples from the bonafide
class are labeled as fake from the system, some samples from
spoofed samples are labeled as original, as can be seen in
Fig. 7(b).

2) EVALUATION DATASET RESULTS
The evaluation dataset results of each branch are discussed
in this section. There are 13 attack types for the evaluation
dataset of LA. While seven of them denoted by (A07 to
A12 and A16) represent TTS-based attack, three of them
denoted by (A17 to A19) accommodate VC-based samples.
The remaining three systems (A13 to A15) contain spoof
samples that were created using the VC-TTS-based tech-
nique. We used bonafide and spoof samples of the training
dataset of LA to train the modified Resnet18 architecture at
each branch and then we tested the training system on the

FIGURE 7. Score distribution of samples from A03 and A06 attack types
using LPQ branch.

evaluation dataset. Obtained results are also given in Table 6.
As you can see from the table LBP branch achieved the best
three EER for A09, A13, and A15 attack types. It means
that the LBP branch worked well on TTS-VC-based and
TTS-based spoof samples when compared to VC-based spoof
samples.

GLCM branch achieved the best three EER for A11, A09,
and A13 attack types. It means that the GLCMbranch worked
well on TTS-VC-based and TTS-based spoof samples when
compared to VC-based spoof samples.

LPQ branch gives the best EER value for A03 attack with
achieved EER of 0.47% and gives the worst EER value for
A06 attack.

In the next experiment, we tested the performance of the
branches for TTS-VC, TTS and VC based spoof samples for
each branch. The EER results are given in Table 6. The lowest
results have been given with bold. The table indicates that
the LBP branch generates the worst three EER for VC-based
spoof samples. When we consider the performance of the
LBP branch per attack type group, the LBP branch achieved
the best EER of 0.31% for TTS-VC-based spoof samples. The
same experiment also shows that the LBP branch does not
work well on the VC-based spoof samples. Overall, the LBP
branch achieved an EER of 2.27% and amin t-DCF of 0.06 on
the evaluation dataset. The evaluation dataset contains unseen
attacks during the training stage. However, the LBP branch
of the proposed method gives an EER of 2.27% even if it is
encountered with unseen attacks.

Table 7 also indicates that the GLCM branch generates the
worst EER for VC-based spoof samples by achieving an EER
of 26.6%. When we consider the performance of the GLCM
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TABLE 6. General performance of the LBP branch of the method on the
evaluation dataset of LA.

branch for each attack type, the GLCM branch achieved the
best EER of 4.67% for TTS-based spoof samples. GLCM
branch does not work well on the VC-based spoof samples
with an achieved EER of 26.5%.

The LPQ branch achieved the best EER of 0.75% for
TTS-based spoof samples. When we look at the obtained
results for VC-based attack types, we can conclude that the
LPQ branch does not work well on the VC-based spoof
samples. Overall, the LPQ branch achieved an EER of 4.44%.

TABLE 7. EER (%) results of the branches for speech synthesis, voice
conversion TTS-VC based attacks.

We also want to show the score distribution of the LBP
branch for the best and worst scenarios in the evaluation
dataset. Table 8 indicates that the LBP branch achieved the
best EER for A09 and it also achieved the worst EER for
A17. Therefore, we plot the score distribution of the samples
from these two attack types to support the obtained results in
Table 8.While Fig. 8(a) shows the score values of the samples
from A09, score values from A17 are also given in Fig 8(b).
Fig 8 shows that while scores from A09 can be separated into
two regions using a threshold value, score values from A17
cannot be simply divided into two parts. While some samples
from bona fide classes are labeled as fake from the system,
some samples from spoofed samples are labeled as original
as can be seen in Fig. 8(b).
When it comes to score distribution of GLCM branch, the

score values of the samples from A11, score values from A18
are given in Fig. 9(a) and (b). It is seen that while scores
from A11 can be separated into two regions using a threshold
value, score values from A18 cannot be simply divided into
two parts. While some samples from the bona fide class are
labeled as fake from the system, some samples from spoofed
samples are labeled as original as can be seen in Fig. 9(b).

FIGURE 8. Score distribution of samples from A09 and A17 attack types
using LBP branch.

Score distribution for the LPQbranch for the best andworst
scenario in the evaluation dataset is also given in Fig. 10. The
LPQ branch achieved the best and worst EER for A09 and
A18 respectively. Obtained results were also supported using
score distributions of the samples from these two attack types.
While Fig. 10(a) shows the score values of the samples from
A09, score values fromA18 are also given in Fig 10(b). Fig 10
shows that while scores from A11 can be separated into two
regions using a threshold value, score values fromA18 cannot
be simply divided into two parts. While some samples from
bona fide classes are labeled as fake from the system, some
samples from spoofed samples are labeled as original as can
be seen in Fig. 10(b).

3) ABLATION STUDIES
In this section, performance evaluations of the use of different
Resnet models and the fusion of branches are given. Firstly,
it analyzes the performance of the ResNet18, ResNet34, and
ResNet50 models to decide which is more suitable for the
proposed detection system. It is known that the number of
layers and parameters increase, respectively, in these three
models [32]. Although more parameters provide greater flex-
ibility and accuracy of the model, they increase the risk of
overfitting and causing complexity. For the proposed system
to be suitable for adaptation to real-time systems, a method
that can provide rapid test results with fewer parameters is
more appropriate than large models. The number of learnable
parameters of the three modified Resnet models that provide
information about model capacity and complexity are as in
Table 8. As can be seen in the table below, ResNet18 has
lower parameters.

117534 VOLUME 12, 2024



B. Ustubioglu et al.: Multi Pattern Features-Based Spoofing Detection Mechanism Using One Class Learning

FIGURE 9. Score distribution of samples from A11 and A18 attack types
using GLCM branch.

FIGURE 10. Score distribution of samples from A11 and A18 attack types
using LPQ branch.

We tested LBP branch results on each attack type in the
LA Eval set. The EER (%) and mintdcf results are given in
Table 9. For scenarios A08-09, A11-12, and A15-16, mostly
unseen and produced by TTS attacks, the results of ResNet18
are better than those given in bold. For the other scenarios,
which are generally VC attacks, the results of Resnet18 are
the second best. For these reasons, we proposed to use the
modified Resnet18 model in the detection system.

TABLE 8. EER (%) results the LBP branch of the method on the
development dataset of LA.

TABLE 9. EER (%) and mintdcf results for each attack types of LA evalset
of each models.

FIGURE 11. General performance of the fused system on the
development dataset of LA.

Secondly, the fused system was tested using the samples
from the development set of LA for each attack type. Scores
from three different branches are fused to decide about the
input audio. The EER results of each branch and fused system
are given in Figure 11. For each attack type, the EER results of
the fused system are better than all branch results. The fused
system provides the best EER value for the A02 attack, with
an achieved EER of 0.05%, and gives the worst EER value
for the A06 attack, with 3.1%. Thus, the fused branch offers
good results for the samples that are generated using TTS; it
generates the worst result for the A06 attack type, which uses
spectral filtering plus OLA to generate spoofed samples.

The fused system was also trained using TTS and
VC-based spoof samples of LA separately and it was tested
on the TTS and VC-based spoof samples of the development
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FIGURE 12. General performance of the fused system for Speech
synthesis and Voice conversion attacks.

FIGURE 13. General performance of the fused system on the evaluation
dataset of LA.

dataset. Original samples from the training class were also
used to train the system. Fig. 12 indicates that the fused
system achieved an EER of 0.4% for TTS-based samples.
As you can see from the figure, it achieved an EER of 2.08%
for VC-based samples. The fused system gives better results
during the detection of TTS-based samples as you can see
from the table. Overall, the system achieved an EER of 1.17%
and a min t-DCF of 0.03 on the development dataset.

The evaluation dataset was also used to test the fused
system. Scores from three different branches are fused to
obtain the decision about the input audio. From Fig 13, it is
seen that the best two EERs were achieved at the A09 and
A13 attack types.

The fused system worked well on TTS-VC-based and
TTS-based spoof samples when compared to VC-based spoof
samples as shown in Figure 14. It is shown that fused system
gives the worst EER for VC-based spoof samples by achiev-
ing an EER of 4.2 %. It achieved the best EER of 0.25% for

FIGURE 14. General performance of the fused system for Speech
synthesis, Voice conversion TTS-VC based attacks.

TABLE 10. EER and mint_dcf values for all branches and fused system on
the evaluation and development datasets.

TABLE 11. The name of attacks such that our system achieved best and
worst EERs.

TTS-VC-based spoof samples. And all fused results are better
than each individual branch. When we look at the obtained
results for VC-based attack types, we can conclude that sys-
tem does not work well on the VC-based spoof samples. The
evaluation dataset of AsvSpoof 2019 contains unseen attacks
which are not encountered during the training stage. In this
experiment, we test the system using unseen attacks and we
can conclude that it works well even if it is encountered with
unseen attacks.

We also give obtained EER and mint_dcf values for all
branches for the development and evaluation dataset as the
last experiment for this section. Table 10 shows all EER
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TABLE 12. Evaluation results of the studies in the literature on the LA
while P indicates primary systems, S denotes the single systems.

TABLE 13. Evaluation results of the studies in the literature on the LA
while P indicates primary systems, S denotes the single systems.

values with corresponding mint_dcf values for each branch
and fused system on the development and evaluation datasets.
As you can see from the table, the fused system achieved

TABLE 14. EER and mint_dcf values for all branches and fused system on
the evaluation and development datasets.

FIGURE 15. Evaluation results of the studies in the literature on the
PA-Eval set.

the best EER when compared to other branches. Table also
shows all EER values with corresponding mint_dcf values for
each branch and fused system on the evaluation dataset. The
fused system achieved the best EER when compared to other
branches as you can see from the table. Overall, the fused
system achieved 1.17% and 2.14% EERs for development
and evaluation datasets respectively.We also give the name of
attacks such that our system achieved the best andworst EERs
as in Table 11. As you can see from the table, all branches
and fused systems achieved the worst EER for the A06 attack
type on the development dataset. All branches and fused
system also give the worst EER for the VC-TTS-based spoof
samples on the evaluation dataset (A17, A18, A19). While
only the GLCM branch achieved the best EER for A11 attack
types on the evaluation dataset, other branches and fused
systems give the best EER for the A09 attack type. While
the three branches achieved the best EER for A03, the fused
system gives the best performance for A02 as you can see in
Table 11.
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TABLE 15. Comparison of EER (%) performance pooled over attacks on ASVSpoof 2021 LA.

TABLE 16. Comparison of mint_dcf performance pooled over attacks on ASVSpoof 2021 LA.

For the final comparative overview, the performance of
each branch and each fusion of two branches (GLCM+LPQ,
GLCM+LBP, LPQ+LBP) and fusion of three branches
(LPQ+LBP+GLCM) are analyzed. The average EER and
mintdcf results of the approaches are given in Table 12.
Using the proposed approach LBP-based approach also
gives the better EER value than LPQ and GLCM branch
results. When we look at the fusion results of two sys-
tems (GLCM+LPQ, GLCM+LBP, LPQ+LBP), the EER
result of LPQ+LBP is the best result of them. Although
GLCM branch results were the worst, it was observed that
even in the LBP+LPQ fusion case, some spurious sounds
could not be detected, while these sounds were detected
with GLCM. Therefore, GLCM+LPB+LPQ triple fusion
result is better with 2.14 EER. We can say that fusion
of the scores improves the EER value of the proposed
approach.

4) COMPARISON WITH SIMILAR WORKS IN THE LITERATURE
In this section, we give the evaluation dataset results of LA
and for the proposed approach and similar works in the litera-
ture to further evaluate the effectiveness of the method.While
primary systems (P) use score fusion approaches, single sys-
tems (S) utilize one score value to evaluate the originality of
input audio. The results of the works in literature and our final
fused system are given in Table 13. We also selected the top
five teams amongst the fifty best teams of the LA scenario
denoted by T05, T24, T45, T50, and T60. Min t-DCF scores
and EER values are used for comparison. While the lowest
performing studies were [6] and [10], with the proposed
fused approach, superior and satisfactory results have been
obtained in many studies.

E. ASVSPOOF 2019 PA DATASET RESULTS
We also performed the same experiment for PA sce-
nario the EER and mint_dcf results are given in Table 14.
Figure 17 shows the comparison with T41, T21, T15, T30,
T20 primary methods results given in [3]. Min t-DCF scores
are used for comparison. The proposed approach gives the
smallest EER with a 0.5345 value as shown in Fig. 15
between the primary systems. When the proposed method is
compared to both primary and single systems, it is observed
that it gives superior performance in both LA and PA eval
sets.

F. ASVSPOOF 2021 LA DATASET RESULTS
In this section, the comparative test results onASVSpoof 2021
LA dataset for each codec condition (C1-C7).

The comparison with the state-of-the-arts with the four
baseline systems CQCC-GMM [4], LFCC-GMM [42],
LFCC-LCNN [43], RawNet2 [44] and UR-AIR [45]. The
fusion system has better performance than these baseline
systems and UR-AIR [45] with lowest EER on all conditions
as seen in Table 15. We also present mint_dcf performance
given in Table 16. Only for C2, C5 and C6 scenarios, although
the metric result of our method is slightly higher than the best
results, it can be said that the best results for other cases are
obtained with the proposed method.

V. CONCLUSION
We proposed a novel multi–Pattern Features based audio
spoof detection scheme using the modified ResNet archi-
tecture and OC-Softmax layer to detect various LA and
PA spoofing attacks. Through the proposed network,
we extracted LBP, GLCM, and LPQ images from the Mel
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spectrogram and gave each of them into modified ResNet
architecture. At the last step of each network, we used OC-
Softmax to obtain a score for the current pattern image and
then the method fuses three scores to label the input audio.
Experimental results on the ASVspoof 2019 and ASVspoof
2021 corpus show that the proposed method achieves better
results in the challenges of ASVspoof 2019 than state-of-
the-art methods. The proposed model improves the tandem
decision cost function and equal error rate scores by 0.06%
and 2.14%, respectively, in the logical access scenario and
the tandem decision cost function scores by 0.5345% in the
physical access scenario. These results were obtained from
the evaluation set of ASVspoof corpus containing the data
of unseen speakers. Despite the data of unseen speakers,
we also obtained superior results from the evaluation set of
the ASVspoof 2019 and ASVspoof 2021. We will improve
the performance of our method on different voice spoofing
datasets in our future work.
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