
1. Introduction
Water distribution networks (WDNs) are essential infrastructure that should be planned to take into account the 
uncertain future in which they will operate. According to Creaco et al. (2021), nodal demands are critical inputs 
for modeling WDNs and their variability is one of the main sources of uncertainty that affects network sizing 
(Magini et al., 2019). For this reason, several researchers propose that WDN design should be developed taking 
several possible demand conditions into consideration. But when many demand scenarios are used, design defini-
tion becomes more complex. Powerful tools are needed to find optimal designs, particularly when more than one 
objective is pursued. Taking multiple demand scenarios into account can avoid the outcome being an under- or 
over-sized network, which can happen when only a single under- or over-estimate of demand is made.

The expansion of smart water meter technology at service connections in WDNs in recent years has made many 
high-frequency measurements of water consumption available. The literature is rich in heterogeneous consump-
tion data sets at various spatial scales, ranging from city district to a single household or individual water fixture, 
and several temporal sampling frequencies, from monthly up to sub-daily: hour, minute, or second (Di Mauro 
et al., 2021). The availability of so much data supports planners and water utility managers in choosing the best 
design solution and operational strategy but, also shows up the high degree of variability that marks water demand, 
mainly due to the unpredictable behavior of human beings. Statistical and data mining tools support descriptive 
and predictive analytics, which can capture demand variability at different scales in space and time, derive statis-
tical moments, define appropriate probability density functions, or model suitable stochastic processes.

There is a large body of literature dealing with the “statistical uncertainty” (Walker et al., 2003) of water demand. 
In some cases, the main purpose of the studies is to analyse demand, for example, for time pattern recognition, 
end-use disaggregation, simulation, and forecasting. In other cases, they consider water demand uncertainty when 
addressing WDN design and management issues, such as for optimal network sizing (Salcedo-Díaz et al., 2020), 
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WDN management (Creaco et al., 2017), leak detection (Jahanpour & Tolson, 2018), district metering areas' 
boundaries (Di Nardo et al., 2018), and water quality management (Giudicianni et al., 2022).

Regarding water demand as an uncertain quantity, a particular point concerns peak demand. Peak demand is 
the forcing parameter in the sizing of WDNs, where it is traditionally estimated by defining the peaking factor, 
that is, the ratio of the maximum flow during some specified time interval to the average annual flow. It is 
usually assessed by deterministic expressions based on hourly datasets and engineering judgment that has no 
theoretical basis. However, considering the hourly time frame could lead to an underestimation of demand and 
compromise the reliability of the network. The availability of data sets measured with small sampling intervals, 
from 1 min to 1 hr, and over long periods of 1–2 years or more, make it possible to statistically describe the 
uncertainty of peak demand at the different time scales, thus developing estimates of this factor based on the 
extreme value theory. Furthermore, the availability of peak demand probability distributions, with parame-
ters depending on the number of users and on the sampling interval, enables the generation of instantaneous 
states of the demand in the different nodes, hereinafter denoted as snapshots, that is, simultaneous values of 
the demand for water in all nodes. For this purpose, the cross-correlation between pairs of nodal demands is 
crucial.

The increasing number of descriptive and predictive analytics on demand datasets that we can find in the liter-
ature offers opportunities to improve the traditional deterministic design approaches of WDNs by combining 
statistical and optimization methods.

Including uncertainty demand issues in decision-making models gave rise to various applications. Classi-
cally, uncertainty was embraced through surrogate approaches (such as resilience or robustness measures), or 
stochastic approaches using chance-constrained formulations, worst-case analysis, or an aggregated objective 
for optimizing expected values, as in stochastic linear programming that builds on Dantzig's recourse concept 
(Dantzig, 1955).

Greenberg and Morrison  (2007) mentioned the limitations of some classical models, commending the robust 
optimization (RO) approach to provide designs that are fundamentally robust against errors that may be the 
cause of harmful failures in important infrastructure systems. In fact, there is a clear need for methods that can 
find solutions for optimizing an objective function while robustly taking into account risks related to modelling 
uncertainties (Hart et al., 2007).

The important contribution of this paper in this field is the application of multi-objective robust optimiza-
tion models for handling the design of WDNs taking statistical uncertainty in nodal demands into account. 
Compared to previous work available in the literature, the proposed approach requires an additional step after 
the sampling procedure to develop water demand snapshots for creating scenarios and assigning their prob-
abilities. However, this allows to provide clear and organized insights that facilitate an open discussion with 
decision makers. This paper proposes a novel conceptual framework to embrace these issues. Scenarios, that 
is, demand snapshots having a fixed weight/probability, are defined using statistical analysis of historical data 
scaled according to the number of users. The methodology described by Magini et al. (2019) is the basis for 
the generation of a great number of demand snapshots. Furthermore, in this paper two heuristic techniques 
are employed to reduce the snapshots and assign them a weight/probability, retaining only a small number 
which are still statistically representative of the entire set. The reduced snapshots constitute the scenarios to be 
employed in solving the RO design problem. They embody the demand spectrum of variation while still main-
taining a level of tractability to prevent computational burden. As far as the authors are aware, this is the first 
study about WDN optimization that directly incorporates statistical uncertainty in RO models based on the type 
of scenario generation developed. The framework is very versatile to being explored by the users and to being 
adapted to the real-wold problem at stake, to the availability of data and to the stakeholders involved. Determin-
istic solutions, solutions obtained through two-objective and three-objective robust models are analysed and 
compared to give insights to decision makers on the best way of dealing with statistical uncertainty on demand 
for the design of WDNs.

The remainder of the paper, after this introduction, is organized as follows. The next section consists of a litera-
ture review. In Section 3 the problem is stated and corresponding multi-objective optimization models are set out, 
the case study is presented, and the scenario generation is developed. Section 4 includes the results and the main 
discussions. The paper closes with the conclusions.
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2. Literature Review
2.1. Peak Demand and Scenarios Generation

With regard to peak demand uncertainty, Zhang and Buchberger (2005), considering residential water use and 
fitting results from a Poisson rectangular pulse stochastic model with the Gumbel distribution, developed a theo-
retical reliability-based estimate of the peaking factor. More recently, Balacco et al. (2017) applied local param-
eters to the equation of Zhang and Buchberger (2005) and suggested a relationship between the peak factor and 
the number of users. Probabilistic estimation of the peak coefficients for residential users was also proposed by 
Pallavicini and Magini  (2007), using statistical inference and relating the main statistics of consumption data 
to the number of users. These authors showed that the Gumbel and log-normal were the most suitable distri-
butions to fit the available measures. Practical expressions of the peak coefficients were derived as a function 
of the return time, the temporal resolution of consumption data, and the number of aggregated users. Tricarico 
et al. (2007), Gato-Trinidad and Gan (2012), and Gargano et al. (2017), analyzed peaking factors in real networks. 
They pointed out that the traditional time interval of 1 hr could result in an underestimation of peak demand, 
conversely, a time scale that is too fine, less than 5 min, could be excessive. Moreover, Gargano et al. (2017) 
used large data sets of water demand relative to different numbers of residential users and obtained with various 
sampling intervals, and they confirmed the effectiveness of the log-normal, Gumbel, and log-logistic distribu-
tions in describing peak water demand.

As regards the generation of water demand snapshots, the cross-correlation between the nodal demands plays a 
fundamental role. Cross-correlation is usually expressed by the Pearson coefficient and depends on the number 
of users and the sampling interval (Vertommen et al., 2015). The role of nodal demand correlation in WDN was 
first highlighted by Filion et al. (2007), who studied its influence on the hydraulic performance of these systems. 
He used the multivariate flow model proposed by Fiering (1964) to generate snapshots of stationary demand 
with nodal values differently correlated to each other. Considering two WDNs from the literature, he found that 
the standard deviation of pressure head and capital costs were sensitive to the level of cross-correlation between 
nodal demands.

More recently, Magini et al. (2019) presented a bottom-up approach in which snapshots of demand were generated 
using Latin hypercube sampling (LHS) and considering gamma marginal probability distributions. All statistics, 
including the cross-correlation coefficient, were treated as depending on the number of users, in agreement with 
the scaling laws approach (Magini et al., 2008; Vertommen et al., 2015). To respect cross-correlation, a proce-
dure that combines the NORTA (Cario & Nelson, 1997) and the Iman-Conover method (Iman & Conover, 1982) 
was performed. A heuristic technique was also proposed to reduce the number of snapshots (further details are 
presented in Section 3).

Creaco et al. (2021) faced a similar issue for reconstructing snapshots of peak demand with a two-step methodol-
ogy which imposes the respect of the rank cross-correlations. A beta probability distribution model with tuneable 
bounds was used for the demand generation at different scales of aggregation to reproduce the statistics not only 
in terms of mean and standard deviation but also skewness, and to provide a better representation of extreme 
values. However, the beta distribution with tuneable limits, besides two shape parameters, contains two more, 
which respectively define the upper and lower limit of the distribution. This increases the model parameterization 
burden and introduces the need for a subjective choice.

2.2. Optimization Models

The literature for dealing with demand uncertainty management contains many different attempts at optimizing 
WDN design.

A chance constrained formulation can be found in Lansey et al. (1989) for a least-cost design problem, converting 
the constraints into deterministic equivalents based on the parameters of the demand and roughness coefficients 
distribution.

A non-probabilistic robust least-cost design of WDNs was studied by Perelman et  al.  (2013a) in which no 
assumption was made about the probability distribution of water demand, but demand uncertainty was quantified 
by a deterministic user-defined ellipsoidal uncertainty set; Perelman et al. (2013b) explicitly take into account 
different correlations between water demand at nodes added to the optimization model of the previous paper. In 
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both cases the problems were reformulated as deterministic equivalents of the stochastic problem using the robust 
counterpart concept (Bertsimas et al., 2019).

Eck et al. (2015), facing the WDN design as a robust optimization problem, modeled the uncertain nodal demands 
as a multivariate Gaussian distribution with mean vector and covariance matrix defined from measured data sets. 
Demand snapshots corresponding to a chosen cumulative probability were generated using the Cholesky decom-
position of the covariance matrix. Because at a chosen cumulative probability there is an infinite number of 
snapshots, cluster analysis methods were applied, or extreme total demands picked up for selection. The selected 
snapshots, relating to a cumulative probability of 90%, were then used in an optimization model.

The previous optimization models are directly based on values picked from samples obtained through Monte 
Carlo or Latin hypercube methods or reformulated as deterministic equivalents of the stochastic problem.

The seminal paper by Mulvey et al. (1995) was a historical turning point in the optimization of complex infra-
structure systems in that it introduced some new concepts for developing RO models. Robust optimization is 
very helpful when modeling uncertainty in optimization problems, exploring solutions that perform well under 
any possible realization of uncertain input variables: the scenarios. Scenarios are particular representations of 
how reality might behave, and how “well” robust solutions perform is a challenge when it comes to the formu-
lation of robust optimization models. Stochastic linear programming can be considered as a special case of RO. 
Specifically, stochastic programming requires the replacement of the multivariate probability distribution of the 
uncertain variables with a discrete probability measure just through scenarios, that is, a finite number of realiza-
tions to be used for optimizing expected value, not considering the decision maker's preferences regarding risk 
(Mulvey et al., 1995).

Additional features of RO formulation allow the introduction of higher moments of the statistical distributions 
(Mulvey et al., 1995). Robust optimization is a flexible framework capable of managing noisy and/or uncertain 
data (Mulvey et al., 1995), using formulations particularly appropriate to handling asymmetric distributions and 
more prone to risk averse decision maker's needs. This is an attractive approach, even for the design of large 
complex infrastructure systems such as water networks that include discrete decisions and uncertainty issues in 
water demand. In fact, the corresponding optimization RO scenario-based models can be solved effectively and 
efficiently if a tractable uncertainty set is selected (Ben-Tal et al., 2000). Two main concepts were introduced by 
Mulvey et al. (1995) for the RO formulations. The formulation contains a term expressing the idea of solution 
robustness, to model the uncertainty of the objective function, driving the solution to be “close” to the optimum 
for each scenario. Another term represents model robustness used to penalize violation of constraints, to model 
the uncertainty of the feasibility of the solution, driving to solutions “almost” feasible for each of the scenarios.

Therefore, to develop a robust optimization model, a critical step is to derive a suitable “set of uncertainty,” that 
is, a set of scenarios and their probabilities.

However, in robust optimization, statistical methods based on historical data analytics are not the only way 
to generate scenarios (an advantage over stochastic optimization where probability distributions are required 
(Gabrel et al., 2013)). Other approaches are possible such as consulting a panel of experts or forecasting methods 
or exploring future alternatives more generally. But not all methods make it possible to assign each scenario its 
weight/probability of occurrence objectively. We have to note that there are examples of such strategies in the 
literature on robust optimization problems for WDN sizing. For single objective models, Cunha and Sousa (2010) 
faced the problem of a gravity flow WDN design considering seven different abnormal working conditions related 
to firefighting flows and pipe breaks but without uncertainty in nodal demand. The weights/probabilities of each 
scenario can be obtained from a “panel of experts” using methods like the so-called Delphi methods (Green 
et al., 2007). The same case study and scenarios of the previous work were employed by Marques et al. (2012), 
who extended the RO model with the insertion of a pumping station to cope with the abnormal conditions and 
avoid oversizing the pipes.

There are also some examples in the literature where multi-objective approaches to the design of WDNs are 
proposed to embrace the idea of robustness. The advantages of using multi-objective formulations date back to 
the paper by Todini (2000) where a surrogate index approach can be found: an optimization model embracing two 
objectives, one for cost minimization and another based on the concept of resilience. In fact, resilience was  then 
proposed to overcome reliability issues. Resilience would represent the capacity of the WDN to overcome failures 
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without the need for uncertainty description. As such, a designer could understand the trade-off between the costs 
and preserving a certain level of resilience to cope with possible failures.

A new attempt to develop a robust multi-objective design of WDNs was proposed later by Kapelan et al. (2005). 
It contemplated uncertainties related to future water demand and pipe roughness coefficients. The two objectives 
were to minimize the total WDNs design cost and maximize WDNs robustness, with robustness defined as the 
probability of satisfying minimum pressure head constraints at all nodes. A sampling-based technique was used 
to propagate the WDNs model input uncertainties to the outputs. Uncertain variables were modeled with a Gauss-
ian distribution whose first and second-order moments were predefined. The procedure suggested by Iman and 
Conover (1982) enabled correlated random samples to be generated. Furthermore, different cases were tested: 
one with all nodal demands independent of each other and another in which the correlation coefficient between 
any two nodal demands was assumed to be equal to 0.50, as described by Tolson et al. (2004). The different corre-
lation was considered to depend on weather conditions which can affect extra consumption for garden irrigation.

Jung et  al.  (2012) also dealt with demand and roughness uncertainty for the multi-objective optimization of 
WDNs considering cost minimization and maximization of robustness as the two objectives. The robustness is 
defined by a disturbance index that measures the pressure variation at the critical network node or the pressure 
variation at all network nodes.

In these two earlier examples, again, the inclusion of uncertainty into the optimization model is dealt with by 
taking values directly from the samples already built. To keep the representativeness, a large number of sampled 
values have to be used and the problem can very easily become intractable. None of the examples mentions 
probabilities assigned to the scenarios, as defined for the implementation of robust optimization models (Mulvey 
et al., 1995).

The design of WDNs was also studied by Creaco et al. (2015) with a two-step methodology. In the first step, 
the WDN is designed with the multi-objective of maximizing the resilience index and minimizing costs. Then 
in a second phase, the solutions found for a benchmark demand scenario are loaded with more demand scenar-
ios to find out if all the required demand is met for these new conditions. The results show that by increasing 
the index of resilience the delivered demand also increases. This can be seen as a sensitivity analysis used as a 
post-optimization tool.

Taking advantage of the features of robust optimization formulations, this paper will contribute with a framework 
to improve solutions when compared to the classical optimization formulations. In fact, the whole spectrum of 
the distributions can be embraced in an organized way, while still keeping the problem computationally tractable. 
Scenarios and their probabilities are used instead of point estimates (Mulvey et al., 1995). Magini's work is funda-
mental for this and represents a novelty for the integration of uncertainty in optimization models. Optimization 
robust models can be shaped to respond to the needs of decision makers. In fact, the properties of the solution can 
be characterized and how well it performs in different scenarios can be managed through “solution robust” and 
“model robust” concepts. This will create the flexibility to manage the level of infeasibility acceptance and their 
trade-off with the costs involved.

3. Materials and Methods for WDNs
3.1. Problem Statement

This work aims to analyze how different demand scenarios affect the design of WDN. The pipe sizes obtained 
are analyzed and compared to understand how they work in a set of possible operational situations. Scenarios are 
generated with a statistical procedure that involves three stages, the first of which is determination of the peak 
demand marginal distributions in each node of the network using scaling laws derived from historical data sets 
that allow the estimation of first and second order statistical moments, including nodal cross-correlation as a 
function of the type and number of users. Also the marginal probability law is derived from the historical data, 
so the second stage is the generation of a very large number of snapshots by stratified random sampling from the 
correlated marginals of nodal peak demand; the third stage is the generation of the peak demand scenarios by 
reducing the snapshots to a number still able to describe the statistical uncertainty of peak demand.

The influence of the number of reduced scenarios on the outcome of the RO design problem is analyzed. 
Furthermore, a new snapshot reduction technique is presented which is compared with that described in Magini 
et al. (2019).
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3.2. Multi-Objective Models for the Design of Water Distribution Networks

Two optimization models are solved. In the first, a model for the optimization of two objectives is proposed: 
cost minimization (Equation 1) and Mean-Variance Generalized Resilience and Failure (Mean-Var GRF) index 
maximization (Equation 2).

MinCT =

NPI
∑

𝑖𝑖=1

(𝐶𝐶pipe𝑖𝑖(Dc𝑖𝑖) × 𝐿𝐿𝑖𝑖) (1)

MaxMean − Var GRF = MeanGRF − 𝜆𝜆

NS
∑

𝑠𝑠=1

(GRF𝑠𝑠 −MeanGRF)
2 × prob𝑠𝑠 (2)

where

MeanGRF =

NS
∑

𝑠𝑠=1

(GRF𝑠𝑠) × prob𝑠𝑠 (3)

GRF𝑠𝑠 = Ir𝑠𝑠 + If𝑠𝑠 (4)

Ir𝑠𝑠 =

NN
∑

𝑖𝑖=1

max(Cn𝑖𝑖𝑖𝑠𝑠𝐻𝐻𝑖𝑖𝑖𝑠𝑠 − Dd𝑖𝑖𝑖𝑠𝑠𝐻𝐻des𝑖𝑖𝑖 0)

NR
∑

𝑟𝑟=1

𝑄𝑄𝑟𝑟𝑖𝑠𝑠𝐻𝐻𝑟𝑟𝑖𝑠𝑠 +
NP
∑

𝑝𝑝=1

𝑄𝑄𝑝𝑝𝑖𝑠𝑠𝐻𝐻𝑝𝑝𝑖𝑠𝑠 −
NN
∑

𝑖𝑖=1

Dd𝑖𝑖𝑖𝑠𝑠𝐻𝐻de𝑠𝑠𝑖𝑖

𝑠𝑠 ∈ NS (5)

If𝑠𝑠 =

NN
∑

𝑖𝑖=1

min(Cn𝑖𝑖𝑖𝑠𝑠𝐻𝐻𝑖𝑖𝑖𝑠𝑠 − Dd𝑖𝑖𝑖𝑠𝑠𝐻𝐻de𝑠𝑠𝑖𝑖𝑖 0)

NN
∑

𝑖𝑖=1

Dd𝑖𝑖𝑖𝑠𝑠𝐻𝐻des𝑖𝑖

𝑠𝑠 ∈ NS (6)

where CT—total cost; NPI—number of pipes; Cpipei (Dci)—unit cost of pipe i as a function of the commercial 
diameter Dci; Dci—commercial diameter of pipe i chosen in the set of commercial sizes; Li—length of pipe 
i; GRF—generalized resilience/failure index; λ—weight assigned to the variability of GRF; NS—number of 
scenarios; Irs—resilience index for scenario s; Ifs—failure index for scenario s; probs—probability of scenario s; 
NN—number of nodes; Cni,s—outflow delivered to the users of node i in scenario s; Hi,s—nodal heads for node 
i in scenario s; Ddi,s—nodal demands for node i in scenario s; Hdesi—desired heads for node i; NR—number 
of source nodes; Qr,s—water discharges leaving the source node r in scenario s; Hr,s—heads of source node i in 
scenario s; NP—number of pumps; Qp,s—water discharge of pump p in scenario s, and Hp,s—head of pump p in 
scenario s.

In this model, the first objective (Equation 1) is to minimize the network construction costs given by the sum for 
all pipes of the unit costs of the commercial diameters to be used multiplied by the length of the pipe. The second 
objective is to maximize the mean-variance of GRF index (Equation 2). This is an index proposed by Creaco 
et al. (2016) which is suitable for pressure-driven modeling and is based on the original resilience index proposed 
by Todini (2000). The GRF is the sum of the resilience index (Equation 5) with the failure index (Equation 6). 
The GRF value is a measure of the power surplus/deficit of WDNs and is equal to the resilience index when it is 
greater than 0 or is equal to failure index when this is less than 0. Details about this GRF index can be found in 
Creaco et al. (2016).

The Mean-Var GRF objective is obtained for all demand scenarios under analysis and their probability, and tends 
to address risk averse behavior by reducing the chance of solutions that are particularly weak in some scenar-
ios to be selected. Indeed, using expected outcome performance as an objective is not suitable for “moderate 
and high risk decisions under uncertainty” (Mulvey et al., 1995), because decision makers are very often risk 
averse. For handling this type of situation a surrogate of risk can be given by the variance of the performance. 
Therefore, the formulation used in Equation 2 represents the maximization of the objective for a given level of 
risk. This means that this value is highly dependent on the problem in question and the decision-making context. 
These mean-variance type models (Markowitz, 1991) started to be applied, some years ago, in several areas: 

 19447973, 2023, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
034867 by U

niversity D
i R

om
a L

a Sapienza, W
iley O

nline L
ibrary on [17/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

CUNHA ET AL.

10.1029/2023WR034867

7 of 24

Hodder and Dincer (1986) for location of capacitated facilities, Watkins and 
McKinney (1997) for finding robust solution to water resources problems, 
Zeferino et  al.  (2012) for wastewater treatment management at regional 
level, and Vieira and Cunha  (2016) for capacity expansion of multisource 
water-supply sysntems. This type of models is well documented in the litera-
ture (Snyder, 2006). Including λ, serves to define the importance given to the 
value of the variance term across scenarios. Defining the λ value should take 
these concerns into account and provide an adequate balance (which may 
be a decision maker's choice) between the importance of the mean and the 
variance terms of the objective function. Very low λ values are not suitable, 
as solutions become very similar compared to those obtained by only includ-
ing the MeanGRF (first term of Equation 2). The effect of the variability in 
the objective function can be practically non-existent if the magnitude of the 
variance term is very low compared to the MeanGRF term. High values for 
λ can also be unsuitable as the results lead to solutions mainly controlled by 
the second term of Equation 2.

The second model includes three objectives, the previous cost minimization 
(Equation 1) and Mean-Var GRF maximization (Equation 2), and an addi-
tional objective: the minimization of UDmax, that is, the maximum undeliv-
ered demand across all the scenarios (Equation 7):

MinUDmax =

NS
∑

𝑠𝑠=1

NN

max
𝑖𝑖

(Dd𝑖𝑖𝑖𝑠𝑠 − Cn𝑖𝑖𝑖𝑠𝑠) × prob
𝑠𝑠
∀𝑠𝑠 ∈ NS𝑖 ∀ ∈ NN (7)

This is used to minimize the maximum undelivered demand while taking into 
account the maximum value for all nodes and all demand scenarios. This is 
a regret-based decision made under uncertainty, measuring the impact of not 
fulfilling the ideal decision without uncertainty.

The pressure driven simulator is the EPANETpdd (Morley & Tricarico,  2008), because the robust formula-
tion used leads to pressure requirements not being totally satisfied in some circumstances. This is an upgrade 
of the original EPANET (Rossman, 2002) simulator that uses a head-flow relationship suggested by Wagner 
et al.  (1988). It is applied to simulate the hydraulic behavior of the network and validate the usual hydraulic 
constraints of WDN design optimization models of nodal mass balance and the head loss in pipes.

3.3. Case Study

Both optimization models are applied to the Fossolo network (FOS) studied by Bragalli et  al.  (2008, 2012). 
Twenty-two commercial diameters are available to size the 58 pipes. The minimum pressure at the 36 demand 
nodes is set to 40 m and water demand is not fully satisfied below this value. For pressure values below 10 m, 
water request is not delivered in the node. The network is supplied by a single reservoir whose head is 121 m. 
Network data can be consulted at Bragalli et al. (2008).

Statistical uncertainty is modeled by making use of the residential water consumption data set of the Latina case 
study set out by Magini et al. (2008). It is therefore assumed that the types of users are comparable. Demand 
data are aggregated at the 5 min sampling interval. The number of users and the mean demand at peak hour in 
each node, Table 1, are estimated using demand data by Bragalli et al. (2008) and the consumption statistics for 
individual users derived from the historical data. In detail, since di is the demand at peak hour in the ith node of 
the network, as described by Bragalli et al. (2008) and μ1, peak the expected value of single-user consumption at 
peak hour, assuming a linear dependence between consumption and number of users, the number of users was 
calculated as di/μ1,peak.

3.4. Demand Scenarios

The three phases for the determination of the peak demand scenarios relating to FOS case study are developed 
below.

Node ID Users
Peak demand 

(L/s) Node ID Users
Peak demand 

(L/s)

1 126 0.49 19 483 1.89

2 267 1.04 20 240 0.94

3 261 1.02 21 246 0.96

4 210 0.82 22 249 0.97

5 162 0.63 23 222 0.87

6 204 0.80 24 174 0.68

7 69 0.27 25 198 0.77

8 150 0.59 26 435 1.70

9 141 0.55 27 366 1.43

10 285 1.11 28 78 0.31

11 450 1.76 29 159 0.62

12 234 0.92 30 141 0.55

13 297 1.16 31 231 0.90

14 141 0.55 32 264 1.03

15 282 1.10 33 198 0.77

16 312 1.22 34 192 0.75

17 327 1.28 35 297 1.16

18 519 2.03 36 123 0.48

Table 1 
Number of Users and Average Peak Demand at the Nodes of the Network
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3.4.1. Statistical Characterization of Peak Demand Using the 
Scaling Laws

The stochastic modeling of water demand requires knowledge of the statis-
tical features of the demand data at different spatial and temporal aggrega-
tions. Analysis of real data has revealed the presence of a non-trivial scaling 
of the second order moments with the number of customers. In this context 
Magini et al. (2008) and Vertommen et al. (2015) estimated the scaling laws 
on two residential indoor water demand data sets, from measurements in 
the case-studies of Latina, Italy and Cincinnati (Magini et al., 2008), Ohio 
(Buchberger & Wells,  1996). The main findings of these studies were the 
linearity of the mean with the number of users, the non–linearity of second 

order statistics depending on the cross-correlation between the demand of the different couples of users. Two 
limit cases were detected: linearity in the case of no correlation, and a quadratic relation in the case of total corre-
lation between users. Partial correlations give intermediate exponents between 1 and 2. Therefore the expected 
value 𝐴𝐴 𝐴𝐴𝑛𝑛𝑖𝑖

 for the mean of the aggregated process at the ith node is given by:

𝜇𝜇𝑛𝑛𝑖𝑖
= 𝑛𝑛𝑖𝑖 ⋅ 𝜇𝜇1 (8)

and the expected value for the variance 𝐴𝐴 𝐴𝐴
2

𝑛𝑛𝑖𝑖
 at the same node, neglecting the bias due to short observation periods 

(Vertommen et al., 2015):

𝜎𝜎
2

𝑛𝑛𝑖𝑖
= 𝑛𝑛

𝛼𝛼

𝑖𝑖
𝜎𝜎
2

1
 (9)

with α scaling exponent for variance, 𝐴𝐴 𝐴𝐴1 and 𝜎𝜎
2

1
 , respectively, mean and variance of the single user. The 

cross-correlation between couples of nodal demands was also found to depend on the number of users and, 
following the same assumption, according to Vertommen et al. (2012) its expected value is:

𝜌𝜌𝑛𝑛𝑖𝑖𝑛𝑛𝑗𝑗 =
𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑖𝑖𝑛𝑛𝑗𝑗

𝜎𝜎𝑛𝑛𝑖𝑖
⋅ 𝜎𝜎𝑛𝑛𝑗𝑗

=
𝑛𝑛𝑖𝑖𝑛𝑛𝑗𝑗𝜌𝜌1−1

[𝑛𝑛𝑖𝑖(1 + 𝜌𝜌1−1(𝑛𝑛𝑖𝑖 − 1))]
1∕2
⋅

[

𝑛𝑛𝑗𝑗(1 + 𝜌𝜌1−1(𝑛𝑛𝑗𝑗 − 1))
]1∕2 (10)

with i,j = 1,2,3,…,NN and where, for example, 𝐴𝐴 𝐴𝐴𝑛𝑛𝑖𝑖𝑛𝑛𝑗𝑗 is the cross-correlation coefficient between the demand of ni 
aggregated users at node i, and the demand of nj aggregated users at node j, and ρ1−1is the Pearson's coefficient 
between couples of single users, which is assumed to be equal on all nodes.

The nodal demand statistics of the network and the correlation structure are entirely defined through Equations 8–10.

Table 2 shows the mean water demand μ1,mean, the mean peak demand μ1,peak and the standard deviation σ1,peak of 
the individual user's consumption obtained from historical data. In the same table the exponent α of the scaling 
law for variance and the Pearson's coefficient ρ1−1 are also reported.

3.4.2. Water Demand Snapshots Generation

The scaling laws make it possible to determine the statistics of the water demand in each node of the network as 
a function of the number and type of users. A further hypothesis concerns the probability distribution that best 
represents peak demand data. In this regard, the gamma distribution is chosen on the basis of the experimental 
data of the Latina case study and with the support of the literature (Kossieris et al., 2019). Based on this, a prob-
abilistic sampling technique that respects the cross-correlation of water demands can be developed for generating 
statistically representative snapshots.

Each demand snapshot 𝐴𝐴 𝐴𝐴𝑢𝑢 , defined as a set or combination of nodal demand values occurring simultaneously in 
the WDN, is represented by the NN dimensional vector:

𝐷𝐷𝑢𝑢 =
[

𝑑𝑑1,𝑢𝑢, 𝑑𝑑2,𝑢𝑢, . . .𝑑𝑑NN,𝑢𝑢

]

 (11)

where NN is the number of nodes, S the total number of snapshots, u = 1,2,…,S the index identifying the different 
snapshot and, di,u is the demand at node i for the uth snapshot.

For this purpose, an algorithm that combines the LHS (McKay et al., 1979) from the nodal marginal distributions 
and the Iman-Conover method (Iman & Conover, 1982) to induce correlation between samples was employed. 

Statistical parameter Value

μ1, mean (L/min) 0.440

μ1, peak (L/min) 0.704

σ1, peak (L/min) 1.01

scaling law exponent α 1.23

Pearson coefficient ρ1-1 0.05

Table 2 
Statistics and Parameters Derived From the Available Data Set
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LHS is a “stratified sampling” technique that produces a good description of the input data probability distribu-
tion with fewer iterations than simple random sampling. The full procedure is quite simple to implement as it 
requires only the Cholesky decomposition, some matrix algebra, and the final rearrangement of the uncorrelated 
original sample. It is described in detail in Magini et al. (2019).

Figure 1 shows the 10,000 snapshots of nodal peak demand generated in the FOS network.

3.4.3. Peak Demand Scenarios Generation by Snapshots Reduction

Each of the generated snapshots defines a picture of the simultaneous nodal water demand, therefore the greater 
the number of snapshots, the better the description of the variability that characterizes statistical uncertainty. 
However, too many scenarios cannot be handled when addressing robust optimization problems. Furthermore, 
the generated snapshots are not associated with a probability/weight value; it can only be assumed that each of 
them is equiprobable with probability/weight equal to 1/S, where S is the total number of snapshots. Instead,  the 
objective to be pursued is to consider a limited number of scenarios, each with a probability/weight that represents 
its possibility of fulfillment. Then, the probability mass function of the generated snapshots must be described by 
the probability mass function of a small number of suitable snapshots.

For instance, if 𝐴𝐴 ℙ is the probability mass of the NN-dimensional stochastic data process described by the S snap-

shots (Equation 11) each of which with probability 𝐴𝐴 𝐴𝐴𝑢𝑢 , with 𝐴𝐴

𝑆𝑆
∑

𝑢𝑢=1

𝑝𝑝𝑢𝑢 = 1 , it must be approximated by the probability 

mass 𝐴𝐴 ℚ , as close as possible to 𝐴𝐴 ℙ , having a smaller number of elements each of which with probability 𝐴𝐴 𝐴𝐴
′
𝑢𝑢 , with            

𝐴𝐴 .

∑𝑆𝑆

𝑢𝑢=1
𝑝𝑝
′
𝑢𝑢 = 1 .

To approximate 𝐴𝐴 ℙ with 𝐴𝐴 ℚ in probabilistic terms, the Wasserstein-Kantorovich distance between these distribu-
tions was used. For discrete probability distributions with a finite number of elements this is just the optimal value 
of a linear transportation problem in which a cost function, cu, defined in a given metric space, is introduced as 
a measure of the distance between pairs of elements (Dupacová et al., 2002). More simply, this is a measure of 
the minimal effort required to reconfigure the probability mass of one distribution in order to obtain the other 
distribution. The first question that arises is: what probability distribution 𝐴𝐴 ℙ do we want to approximate with the 
reduced number of snapshots? In this work we consider the probability distribution of the total flow entering 
the network, that is, the sum of the simultaneous demands delivered in the nodes in each snapshot (Figure 2). 
The problem is not easy, therefore in the literature heuristic reduction algorithms have been proposed that may 
employ fast-back or fast-forward strategies (Heitsch & Romisch, 2003). Here an iterative algorithm based on the 
fast-forward selection is developed in which the cost function cu is defined by the NN-dimensional Euclidean 
norm (Magini et al., 2019). Each snapshot is assumed to be equiprobable with probability/weight equal to 1/S. At 
each iteration, from the set of unselected snapshots, initially composed of all generated snapshots, the one that 
has the minimum Wasserstein-Kantorovich distance is taken and inserted into the set of reduced snapshots which 
is initially empty. The optimal selection of individual snapshots can be repeated recursively until the prescribed 
number, S, of elements is reached. At each step, the cost matrix composed of the cost functions of the unselected 
snapshot pairs is updated. Once the desired number of snapshots is reached, the algorithm finishes by transferring 

Figure 1. 10,000 snapshots of water demand.
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the probability from the unselected snapshots to the selected ones that are closest to them according to the initial 
cost function, cu. The probability of each reduced snapshot is set equal to the sum of its initial probability and all 
the probabilities of the unselected snapshots that are closest to it. The heuristic algorithms do not guarantee the 
optimal solution to the original transportation problem, but they work well in practice (Heitsch & Romisch, 2003).

Alternative distributions could be considered, for example, the water requirement in a specific node to respect 
more strict service conditions.

Two different approaches for reducing snapshots are proposed below.

The first applies the reduction technique to the overall set of snapshots. In this case, most of the reduced snapshots 
naturally pile up away from the tails, in a position closer to the central values of P (Figures 3a and 4a).

In the second approach, the probability mass P is divided into M sub-intervals, covering the entire field of the 
flow entering the WDN and containing a different number of snapshots. In this case, the reduction technique is 
applied separately to each sub-interval until a single snapshot is obtained for each of them, having probability 

𝐴𝐴

𝑀𝑀
∑

𝑢𝑢=1

𝑝𝑝𝑢𝑢 , where M is the number of snapshots in the sub-interval and pu = 1/S is the probability/weight initially 

assumed for each snapshot generated (Figures 3 and 4b). The fast-forward reduction algorithm is applied sepa-
rately for each sub-interval until a single snapshot is obtained to which the probability of the corresponding 
sub-interval can then be attributed. In the robust design of the WDN, the subdivision into sub-intervals makes it 
possible to consider even the extreme inlet flow rates, in particular those belonging to the right tail. The effec-
tiveness of the partitioned reduction technique is evaluated in the next section, by comparison the results of robust 
optimization. Specifically, a robust design procedure is followed by first considering the reduced scenarios from 
the entire P distribution and then the partitioned distribution.

Figure 3. Probability mass of the seven reduced scenarios (blue), probability mass of the 10,000 generated scenarios (light gray), type gamma pdf (red) (a) reduction 
without sub-intervals, (b) reduction with sub-intervals.

Figure 2. Probability mass function of the total flow entering the network. The red line shows type gamma pdf, which is the 
best distribution fitting empirical data.
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The number of sub-intervals and consequently of scenarios is a critical factor. In both cases, the choice of the 
reduced number of snapshots should derive from a trade-off between greater detail in the representation of the 
probability distribution and lower computational burden in robust optimization. The comparison is made by reck-
oning a different number of scenarios, 7 and 11 (Figure 5), to also check how much this number influences the 
robust design solution in each of the two reduction approaches.

3.5. Optimization Algorithm

Both robust multi-objective optimization models, including the demand uncertainty described in Section 3.2, 
are solved by the algorithm MOSA-GR (MultiObjective Simulated Annealing with new Generation and 

Figure 4. Probability mass of the 11 reduced scenarios (blue), probability mass of the 10,000 generated scenarios (light gray), type gamma pdf (red) (a) reduction 
without sub-intervals, (b) reduction with sub-intervals.

Figure 5. Nodal demand for the case of 7 scenarios with and without sub-intervals and 11 scenarios with and without sub-intervals.
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Reannealing procedures) developed by Cunha and Marques (2020). This is 
a trajectory-based heuristic that builds on the simulated annealing concept 
(Kirkpatrick et al., 1983). It is an upgrade of the original simulated annealing 
algorithm that includes features to promote diversity and uniformity during 
the convergence process to obtain the best possible set of non-dominated 
solutions. This was done by implementing different generation strategies to 
build new candidate solutions and using a reannealing process to intensify the 
search in the last stage of the algorithm. This means that dense Pareto fronts 
covering the whole spectrum of trade-offs between solution are obtained. 
In Cunha and Marques (2020) 12 benchmark problems (including the FOS 
case) are used to show the large number of additional solutions for reshaping 
and augmenting the Pareto front obtained compared to the existing solutions 
from several evolutionary algorithms.

4. Results and Discussion
4.1. Comparison of the Deterministic and Robust Solutions of the 
Two-Objective Model

The FOS network is sized using the two-objective model proposed in 
Section 3.2. for the set of seven demand scenarios (this is the robust design) 
without considering sub-intervals (defined in Section 3.4). The results are 

all obtained for the same value assigned to the parameter λ in Equation 2. This value is used to assign a level of 
importance to the variance of GRF and contributes to represent how risk-averse decision-makers are (Section 3.2). 
It is case-dependent (it may be a decision maker's choice) and defines how much the variance term will control 
the GRF objective. Of the tested values, λ = 0.1 was a good compromise between the term MeanGRF and the 
importance attributed to the variance of GRF between scenarios. It was used in all the comparisons that are drawn 
in this results section. Figure 6 includes the solutions obtained. These robust solutions will be compared with 
a network design sized for a single demand condition according to the original case study (results presented in 
Cunha & Marques, 2020), in which scenarios are not taken into account (this is the deterministic design). Further-
more, in this case, no pressure deficits were allowed and therefore minimum pressures must be met at all nodes 
in the network for the deterministic design.

The graph in Figure 6 shows the shape of the front with robust design solutions and how increasing the value of 
the Mean-Var GRF implies increasing costs. The zoom highlighting a part of the front shows a slight variation 
of Mean-Var GRF in solutions with higher costs. To compare the differences between solutions obtained for the 
robust design with solutions of the deterministic front, a particular robust solution is selected in the front (part 
highlighted in area 1 of Figure 6). A deterministic solution with CT value very similar to the robust one is selected 
from the set of non-dominated solutions found in Cunha and Marques (2020) for the deterministic approach. This 
pair of specific solutions is analyzed in detail next.

The robust solution selected from the front part highlighted in area 1 comes at a cost of €28,698. The determin-
istic solution with a cost of €28,679 comes closest. The deterministic solution includes 25 equal, 24 smaller 
and 9 larger pipe diameters compared to the robust case (diameters in the boxes for both cases in Figure 7). The 
network nodes are numbered in the deterministic solution with a prefix (N) and pipes are in the robust solution 
with prefix (P).

In area 1, the selected solution is in a part of the front characterized by low cost and Mean-Var GRF values, 
therefore some lack of fulfillment of nodal pressures could be expected. In this area, there is no guarantee that the 
desirable pressures will be satisfied at all nodes for the set of demand scenarios. The comparison of the designs 
between the deterministic and robust solution shown in Figure 7 is aided by colored rectangles to locate the 
diameters of the robust solutions that are larger (blue) or smaller (yellow) than the deterministic ones. The robust 
design reinforces 24 pipes that supply the most distant nodes. This strengthens the network by improving the 
pressure levels in these nodes. The deterministic design, however, tends to reinforce the pipe near the reservoir, 
but this is not enough to deliver pressures at the same levels as the robust ones.

For comparison purposes, the two solutions are loaded with the seven demand scenarios so that nodal pressures 
can be compared in comparable circumstances. The nodal pressures are shown in Figure 8 for four (out of seven) 

Figure 6. Robust design solutions for the two-objective model.
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different demand scenarios for the deterministic and robust solution (the most probable scenarios in the right side 
of the distribution corresponding to the higher demands, see Figure 5). In brief, across all scenarios there are 
20 critical situations for the deterministic solution where minimum pressures of 40 m are not confirmed and in 
the robust case there are just four. According to Figure 5, scenario 1 is the most probable (0.25), and in this case 
all required pressures are confirmed in both designs. Scenario 4 is the second most probable (0.21), and in this 
situation five nodes in the deterministic solution include pressures below the required level. In the robust case, 

Figure 7. Comparisons of designs for the deterministic and robust solution. Pipe diameters (D) in (mm).

Figure 8. Comparisons of nodal pressures (m) for scenarios 1, 2, 4, and 5 for a pair of deterministic and robust solutions with similar costs.
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all pressures are validated. The probability of scenario 2 is 0.13, and in this demand condition the robust solution 
does not satisfy the pressure in critical node 7 (38.1 m). The deterministic solution performs worse as it does 
not validate the pressure in four nodes and the lowest pressure of 34.3 m is in node 24. Scenario 5 is the least 
probable (0.06) and presents the most critical demand condition. The pressure limits fail in seven nodes in the 
deterministic and in three nodes in the robust designs. The minimum pressure of 25.3 m for the deterministic case 
is much lower than the minimum of 31.8 m for the robust case. These minimum pressures occur in one of most 
distant nodes from the reservoir (node 7). As the robust design reinforces pipes that supply the most distant nodes 
(Figure 7), it is possible to improve the pressure levels in these nodes even under extreme demand situations like 
scenario 5. This is not the case for the deterministic design.

From these results, the benefits of embracing multiple demand scenarios in the robust optimization model are 
evident. For the same budget, better solutions can be identified using a robust model that provides superior 
hydraulic capacity than the deterministic case. This is due to a smarter arrangement of pipe sizes that increase 
the network capacity where it is effectively needed to simultaneously handle a set of different possible operating 
conditions.

Most probable scenarios in the left side of the gamma distribution do not show any limitations, because they 
correspond to lower demands.

4.2. Comparison of Solutions of the Two-Objective Model With the Three-Objective Model

The importance of including an additional objective (minimization UDmax as proposed in Equation 7) in the 
optimization model is evaluated in this section. Despite the relation of the undelivered demand with the pres-
sure deficits, the addition of this new objective will bring extra insights for decision makers. This will increase 
the complexity of solving the problem, but this objective may lead to positive effects in the performance of the 
network solutions.

Figure 9 contains four charts. The top graph depicts a view of the Pareto front (with regard to the first (CT) and 
second (Mean-VAR GRF) objectives) obtained for the two models, indicating zooms 1, 2, and 3 that are shown 
in the three other graphs of the figure. In these graphs, two pairs of particular solutions are highlighted by black 
circles.

The two- and three-objective model solutions are obtained for the same set of seven demand scenarios without 
considering sub-intervals (Section 3.4). The non-dominated solutions for the three-objective problem are above 
the solutions determined for the two-objective case (Figure 9). A practical conclusion from this situation is that 
selecting a solution obtained from the three-objective problem with a similar Mean-Var GRF value to a solution 
from the two-objective model requires additional investment. Or, for a similar cost level, the three-objective 
model solutions have lower Mean-Var GRF values. But, counting a third objective UD could present advantages 
that outweigh the disadvantages that these conclusions might suggest.

The particular pairs of solutions in the black circles of Figure 9 have similar costs. These pairs of solutions from 
the two- and three-objective model are loaded with the same set of seven demand scenarios. As in the previous 
comparison, nodal pressures are shown for the scenarios in the right side of the distribution corresponding to the 
higher demands.

For zoom 1, located in an area of high cost and Mean-Var GRF, despite the very similar costs (€37,003 for the 
three-objective and €37,010 for the two-objective model), the design schemes are very different. In fact, there 
are only 17 pipes with equal diameters while 41 are different. The three-objective solution tends to reinforce the 
peripheral network pipes, such as P1, P2, P4, P5, P6, P7, P8, P9, P10, and P11 (P2, e.g., increases from 16 to 
51.4 mm, which is five levels up), which connect the nodes furthest from the reservoir to reduce the undeliv-
ered demand at these nodes, as is the case of node 7 (the node with the lowest pressure value for scenario 5). 
The increase can also take place in inner pipes that take the flow to the most critical nodes (nodes 6, 7, and 24). 
Pipes P7, P8, and P31 (incident pipes of node 7) increased the diameter thus: P7 from 16 to 32.6 mm (three 
levels of increase), P8 from 20.4 to 40.8 mm (three levels of increase) and P31 from 20.4 to 32.6 mm (two levels 
of increase). This is important to minimize the maximum undeliverable demand objective, and in fact, in this 
case, the three-objective solution delivers all demand required (the third object UDmax is equal to zero), which 
does not happen with the solution for the two-objective model. This is because the nodal pressure at node 7 is 
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not enough to meet all demand required and thus there is a demand deficit equal to 0.03 L/s (the third objective 
UDmax = 0.002 L/s, this means the value of the regret function of Equation 7 across all the scenarios taking into 
account their probabilities). But, by reducing the UDmax objective in the three-objective problem, the Mean-
Var GRF of the two-objective solution (0.868) turns out to be better than the value of 0.813 obtained for three 
objectives. Of the 41 pipe diameters that were changed for the three-objective solution of zoom 1, 24 have higher 
diameters and 17 are sized with lower diameters to maintain the same cost level. As stated, the peripheral pipes 
are reinforced in the three-objective solution but the diameter sizes of pipes near the reservoir (such as P14, P15 
P22, P23, P24, and P58) are lower than in the two-objective solution. This reduction of pipe capacity near the 
reservoir means that pressures are lower for three-objective solutions in most of the nodes in the central area 
of the network (even when they comply with the pressure constraints). This explains why the solutions for the 
three-objective problem are above the solutions determined for the two-objective case (dominated in terms of 
Pareto front in Figure 9).

The nodal pressures and the undelivered demand for the pairs of solutions of zoom 2 and zoom 3 are shown in 
Figures 10 and 11, respectively.

For zoom 2, the network design of the three-objective model shows a Mean-Var GRF value of 0.515 less than the 
value of 0.57 obtained for the two-objective model for a similar investment cost (€23,495 for the three-objective 

Figure 9. Comparisons of solutions obtained by the two-objective model (green points for Front CT | Mean-Var GRF) with solution obtained by the three-objective 
model (red points for the Front CT | Mean-Var GRF | UD).
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model and €23,481 for the two-objective model) and an UDmax for the three-objective of 0.011 L/s lower than 
the 0.038 L/s of the two-objective model. The three-objective solution reinforce pipes in the bottom part of the 
network as pipes P7, P9, P10, P11, P12, P13, P31 that increase the hydraulic capacity to supply the nodes 5, 
6, 7, 24 and 28. This increases the pressure levels in these nodes and reduce the undelivered demand volumes 
(Figure 10).

The comparison of nodal pressures of zoom 2 in Figure 10a illustrates that the three-objective solution for the 
scenario 1 (blue squares) avoids low pressures at critical nodes 7 and 24 (nodes with the lowest pressures and 
this tends to decrease the UDmax objective). This is not the case of the two-objective solution that includes low 
pressures in these nodes (red circles). The same kind of conclusions can be taken for the other scenarios 2, 4, and 

Figure 10. Comparisons of nodal pressures (m) and the nodal undelivered demand (L/s) in the scenarios 1, 2, 4, and 5 for pairs of solutions selected in zoom 2.
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5 in Figures 10c, 10e, and 10g. The undelivered demand in the three-objective model solution is zero for all nodes 
in scenario 1 (Figure 10b) and in scenario 4 this is also true for all nodes except node 7 with a residual undelivered 
demand. In scenarios 2 and 5 (corresponding to the lowest probabilities), there is a number of nodes registering 
undelivered demand, but mostly inferior in the three-objective model solution compared with the two-objective 
case (only just slightly higher in some nodes close to the reservoir). For scenario 5 (Figure 10h) the maximum 
undelivered demand is equal to 0.10 L/s in the three-objective model solution. If the UDmax was not used as 
objective, as in the two-objective solution, the maximum undelivered demand would be 0.22 L/s (an increment 
to more than the double in this scenario). It is interesting to observe in Figure 10h that there are several nodes 
with an undelivered demand value very similar to the maximum (0.1 L/s) for the three-objective solution. This is 

Figure 11. Comparisons of nodal pressures (m) and the nodal undelivered demand (L/s) in scenarios 1, 2, 4, and 5 for pairs of solutions selected in zoom 3.

 19447973, 2023, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
034867 by U

niversity D
i R

om
a L

a Sapienza, W
iley O

nline L
ibrary on [17/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

CUNHA ET AL.

10.1029/2023WR034867

18 of 24

achieved by optimizing a network design configuration that tries to avoid large undelivered demands because a 
regret objective function is pursued (Equation 7). The reduction in the UD is achieved by the deterioration of the 
Mean-Var GRF index (for pairs of solutions with the same cost level). Figure 10 attest this situation as pressures 
in critical nodes are higher for the three-objective case, but in some other nodes of the network, the pressures tend 
to be smaller (easily observable at these figures where the red circles appear above the blue squares in many of 
these nodes) and this reduce the Mean-Var GRF. The same cost level between this pair of solutions is maintained 
by reducing diameters of a set of other pipes (P14, P51, P53, P54, P55, P56, P57) including a larger diameter 
in two-objective solutions than solutions of the three objectives and, as such, the nodal pressures in N29, N30, 
N33, N34, and N35 become higher. The same occurs with pipes that supply nodes N16, N17, N18, N19, N27, 
N32. This corresponds to a reorganization of the network, dropping energy excess in some nodes to reduce the 
undelivered demand in other nodes.

Finally, in zoom 3 (Figure 11), an additional pair of low-cost similar solutions of €16,293 for the two-objective 
and €16,286 of the three-objective model is selected. In this area of the front, the hydraulic capacity of the 
network is not enough to supply the demand required even in the most likely operating conditions.

For all the four scenarios represented in Figure 11, a large part of the nodes does not verify the minimum pres-
sures. The three-objective solution includes higher pressures at nodes 6 and 7 than the two-objective solution 
for all the four scenarios (Figures 11a, 11c and 11e and 11g) that allows lowering the UD at these nodes. From 
Figure 11b, for scenario 1, the UD in node 6 of the two-objective solution (0.42 L/s) is reduced to almost half 
the value for the three-objective case (0.23 L/s). Large reductions of UD in this node also occur in scenarios 2, 4, 
and 5. The three-objective solution uses a larger pipe diameter size than the two-objective one in almost all pipes 
inside a hypothetical triangle with vertices in nodes N5, N9, and N7. These pipes increase the hydraulic capacity 
to supply nodes 5, 6, 7, and 14.

The three-objective solution includes 23 pipes of equal size, 22 larger and 13 smaller than the two-objective 
solution. As in the previous case of zoom 2, the three-objective solution tends to reinforce the peripheral network 
pipes, which connect the most distant nodes of the reservoir (nodes 6 and 7). These pipe reinforcements are crucial 
in the three-objective solution so that the undelivered demand at these nodes is less than in the two-objective solu-
tion for scenarios 1, 2, 4, and 5 (Figures 11b, 11d, 11f, and 11h).

The Mean-Var GRF index is higher in the two-objective solution (0.082) than for the three-objective solution 
(0.049), as is also the case in the previous zoom 1 and 2. This decrease in Mean-Var GRF in the three-objective solu-
tion is needed to reduce the UDmax from 0.396 L/s in the two-objective to 0.238 L/s in the three-objective solution. 
The increase in the Mean-Var GRF index of the two-objective solution is achieved by increasing the pressures on a 
set of network nodes compared to the three-objective solution. In some nodes there is a small increase in pressure 
as in N20, N25, and N27 (less than 1m for all scenarios in Figure 11) and in some others the growth is greater as 
in Nodes N4, N22, N30, N33 with a value greater than 7 m for scenario 5 (Figure 11). Even though, these are not 
critical nodes in terms of the UDmax and therefore they do not negatively influence the value of this objective. 
Pressure increases at these nodes in the two-objective solution because there is an increase in pipe diameters to form 
reinforced paths  for their supply (such as pipes P54, P55, and P56, as an example of reinforced path for supply node 
N30).

In the seven scenarios under evaluation (Figure 3a), three (scenarios 3, 6, and 7) are on the left side of the distri-
bution (left of scenario 1) and include low demands; another three are on the right side (scenarios 2, 4 and 5). For 
zooms 1 and 2, all nodes check the minimum pressures in the left tail (scenarios 3, 6, and 7) but not in the case 
of zoom 3 solutions. These are lower cost solutions and have insufficient hydraulic capacity to satisfy pressures 
even for low demand scenarios.

Scenario 5 is the one with highest number of nodes that do not check for nodal pressures. Scenario 7 is the one with 
fewest number of nodes with problems, three nodes for two- and three-objective solutions. These are nodes 6, 7, 
and 24 that do not check the minimum pressures in all seven scenarios. Nodes 5, 8, 13, and 21 are also problematic 
because in five of the seven scenarios they do not check the minimum pressures for the two compared solutions either.

The low demand scenarios contribute 8% to the UDmax objective (Equation 7) compared to the 79% contribution 
of high demand scenarios (scenarios 2, 4 and 5) and scenario 1 with 13% remaining for the three-objective solution.

For all three pairs of solutions analyzed, it is possible to conclude that the designs are very different even for very 
similar costs between the pairs. There is only one pipe (P27) for which the same diameter is assigned for the pair of 
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solutions of two and three-objective models analyzed, however changing from zoom to zoom (61.4 in zoom 1, 40.8 in, 
zoom 2 and 32.6 mm in zoom 3). In the other 57 pipes, there is at least one different pipe diameter size in one of the 
zooms. It is also possible to conclude that pipes P7 and P31 have larger pipe diameters in the three-objective solutions 
than for the two-objective ones, in all the three zooms. This reduces the maximum undelivered demands of the critical 
nodes 6 and 7. P55, near the reservoir, is always smaller in the three-objective solutions than in the two-objective ones.

The analysis of the solutions from the three zoomed areas shows the rearrangement of the design of the network 
whenever the UDmax values have to be taken into account. The reinforcements differ for the three cases. The 
inclusion of the third objective (Equation 7), leads to designs of the network along the Pareto front so that a 
balance is established between the three objectives (this really corresponds to assigning different sets of weights 
to the objectives). It is clear that compared to the results obtained for the two-objective model, this reorganization 
gives rise to solutions where UDmax objective is always lower.

4.3. Comparison of Solutions Determined for 7 Scenarios and 11 Scenarios With and Without 
Considering Sub-Intervals

So far, only the case of the set of seven demand scenarios without considering sub-intervals has been evaluated. We 
will now indicate scenarios obtained without a sub-interval adding suffix “all’” to their number, that is, 7all, 11all 
and scenarios obtained with sub-intervals adding suffix “sub” to their number, that is, 7sub, 11sub. The effect of 
considering sub-intervals or not in obtaining network demand scenarios is analyzed in this section, as well as the 
increase in the number of scenarios to represent nodal demand uncertainty. For this, Table 3 includes the objective 
ranges for the 7 scenarios and for the 11 scenarios, considering and not considering sub-intervals. This objective 
range is determined for the set of non-dominated solutions where there is a trade-off between all the three objectives.

Using sub-intervals to determine the demand conditions of the network has the impact of increasing the ranges 
of objectives for both cases of 7 and 11 scenarios. Sub-intervals in determining demand scenarios has a larger 
impact than using a larger number of scenarios (from 7 to 11).

In fact, the employment of more scenarios (from 7 to 11) tends to use conditions with a slight increase of the 
nodal demand in the most extreme situations (Figure 5), but this is accompanied by a decrease in the probabilities 
associated with each scenario, as they must be diluted through a higher number of scenarios.

Table 3 shows that the cost range increases if sub-intervals are applied. If a comparison is made for the range of 
7all scenarios (€39,960) with the range of 7sub scenarios (€46,481) an increase of 16% is reached. Comparison 
of the range of 11all (€43,258) with the range of 11sub (€50,216) shows a similar increase of 16%.

Figure 12 presents the set of graphs with the non-dominated solutions obtained for 7sub and 11sub scenarios, 
from different perspectives. The extension of the fronts is not only due to the consideration of subintervals to 
define the demands and their probabilities, but also due to the increase in the number of scenarios.

The top two graphs show, in the same perspective, the determined borders where there is a compromise between the 
three objectives to be optimized. The front obtained for 11sub increases the range of solutions from cost values of 
€49,689 in the case of 7sub to values of €53,216 for 11sub. For each of the problems, three graphs are also presented 
that correspond to the border formats, analyzing the perspective of the CT VS UD, CT VS M-V GRF and M-V GRF 
VS UD. There is a broader spectrum of solutions, not only at the level of the costs as already mentioned, but also at the 
level of the M-V GRF and the UD objectives. Despite this change in limits, the two fronts are very similar in shape.

When solutions from the three-objective model, determined for 7all scenarios (zooms 1, 2, and 3 analyzed in 
Section 4.3) are loaded with 7sub scenarios demands, it is noticed that solutions presenting similar costs do not 

Range Ct 
(€)

Ct 
max(€)

Ct 
min(€)

Range M-V 
GRF

M-V GRF 
max

M-V GRF 
min

Range 
UD(L/s)

UD 
max(L/s)

UD 
min(L/s)

7all 39,960 43,154 3,194 1.85 0.89 −0.96 1.92 1.92 0

7sub 46,481 49,689 3,208 1.88 0.93 −0.95 1.91 1.91 0

11all 43,258 46,452 3,194 1.87 0.91 −0.96 1.94 1.94 0

11sub 50,216 53,412 3,196 1.90 0.95 −0.95 1.95 1.95 0

Table 3 
Objective Range Where There Is Trade-Off Between All the Three Objectives
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show significative changes for Mean-VarGRF and UDmax. In spite of the higher demands available for 7sub 
scenarios (Figure 5), the decrease of probabilities for critical scenarios (high demand scenarios) give rise to this 
conclusion. It should be noted that the solutions analyzed are among the solutions in the range of variation that is 
common to both fronts, otherwise they could not be compared.

When solutions presenting similar costs obtained for 7all and 11all scenarios are loaded with the demands of 
11all and 7all scenarios respectively (as before, solutions analyzed are among the solutions in the range of 

Figure 12. Comparisons of non-dominated solutions from different perspectives for 7sub (blue) and 11sub (yellow) scenarios.
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variation i.e., common to both fronts), there is a slight increase of UDmax for the solution obtained for the 11all 
conditions. This can be explained by the lower probabilities assigned to the critical scenarios (those presenting 
the highest demands) for the solution designed for 11all compared to the solutions from 7all scenarios.

5. Conclusions
User demand is the major source of uncertainty in the design of urban WDNs. Uncertain parameters, if not 
correctly considered, can compromise the robustness of the infrastructure, that is, its ability to guarantee service 
functionality for different demand scenarios. In this work, therefore, a multi-objective RO model solved by the 
algorithm MOSA-GR (MultiObjective Simulated Annealing with new Generation and Reannealing procedures), 
developed by Cunha and Marques (2020), was used to take water demand uncertainty into account, ensuring the 
best trade-off between the least cost and the highest network robustness. In one case this was measured through 
a Mean-Var GRF (GRF is the Generalized Resilience and Failure index) and in another by considering both the 
Mean-Var GRF index and the maximum undelivered nodal demand across all the scenarios, UDmax.

Demand uncertainty was modeled using a data-driven method, generating demand scenarios with different probabil-
ities of occurrence. Preliminarily, this method includes the statistical characterization of the available consumption 
data and the determination of scaling laws linking the consumption statistics to the number and type of the users. 
In this way, a very large number of snapshots were generated by stratified random sampling from the correlated 
marginals. Two different heuristic techniques were applied to reduce the snapshots to a number that at the same time 
decreased the computational burden and secures an appropriate description of the water demand variability. The 
reduction technique also made it possible to associate a probability/weight to each of the remaining snapshots. The 
scenarios and the corresponding probabilities are thus defined. The procedure was applied to the Fossolo network 
studied by Bragalli et al. (2008) and the results were compared with those from the same network, sized for a single 
demand condition by Cunha and Marques (2020) using the MOSA-GR algorithm according to the original case 
study. The comparisons of the solutions obtained by the two-objective model with the three-objective one, including 
the additional objective of reducing UDmax, also show an improvement in the performance of the network.

An additional aim of the paper is to show how the different parts work together and what results can be expected. 
This is why a real case study is considered to analyze the role of the main ingredients needed to implement the 
framework and respective results. When we are dealing with uncertainty we cannot establish definitive rules 
applicable to all types of problems, regardless of the data and the circumstances of the decision-making procedure.

The main takeaways from this work can be summarized as follows.

•  The development of a framework that includes uncertainty issues regarding demand to improve the design 
of WDNs compared with the classical optimization formulations is of a great interest. Indeed, the features of 
multi-objective RO models allow account to be taken of statistical uncertainty in nodal demands by consider-
ing scenarios, that is, demand snapshots having a fixed weight/probability.

•  For this, a novel methodology (based on Magini's work) boosts the integration of uncertainty in optimization 
models. This means the whole spectrum of demand distribution is embraced in an organized way, while still 
keeping the problem computationally tractable. Scenarios and their probabilities are used instead of point 
estimates (Mulvey et al., 1995). This means that data collection is a crucial aspect. The expansion of smart 
water meter technology in recent years will contribute to this endeavor.

•  The generation of scenarios depicting uncertainty of water demand definitely represents the most original 
element of the work. Scenarios are defined using a statistical analysis of historical data scaled according to 
the number of users. The results highlight the advantage of applying the reduction methodology based on 
reducing the Wasserstein-Kantorovich distance to sub-intervals of the probability distribution of the flow 
rates entering the network. This methodology, like stratified sampling techniques, divides the statistical popu-
lation into sub-populations and broadens the range of all the objectives of the optimization model. Using 
sub-intervals in determining demand scenarios proves to have a greater impact than using a larger number of 
scenarios without partitioning.

•  The results also highlight the reorganization of the hydraulic design not only when we move from a deter-
ministic approach to a robust approach, but also when we move from a two-objective model to the use of a 
three-objective model:
•  The comparision of results of the two-objective model using a deterministic approach and the robust model 

here proposed in which the same scenarios are loaded show a better performance of the RO model. The 
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robust design strengthens the network pipes that supply the most distant nodes and this improves the pres-
sure levels in these nodes. The number of nodes that do not satisfy minimum pressures of 40 m is much 
higher in the deterministic solution.

•  The use of the three-objective model, including UDmax as a third objective for the optimization procedure, 
instead of the two-objective model, affects the design configuration by trying to prevent large undelivered 
demands. This is achieved by reinforcing peripheral network pipes that connect nodes furthest from the 
reservoir in order to reduce the undelivered demand at these nodes. But this UD reduction is achieved 
through the decline of the Mean-Var GRF for pairs of solutions with the same cost level as pressures in 
critical nodes are greater for the three-objective case, but in other nodes of the network the pressures tend 
to be smaller due to the reorganization of the network design. When UDmax comes into play in guarantee-
ing robustness for the network, undelivered demand is reduced in all the critical nodes.

•  It is clear that with the implementation of the proposed framework, systematized insights can be provided 
which facilitate an open discussion with decision makers and robust models can be shaped to respond to their 
needs.

•  RO models are established and ready to be explored. Other aspects for their implementation, such as the 
number of scenarios to be used and the level of risk aversion of decision makers, are problem-dependent. They 
have to be well thought out by the users, given the specific conditions of the application.

To sum up, we can state that a statistically based scenario generation proves useful in favoring the design of more 
robust distribution networks and can find increasing applications given today's large availability of consumption 
data and the recent advances in big data analytics. More, and more complex, networks should analyzed. To the 
best of our knowledge, this is the first study that explicitly incorporates statistical uncertainty in RO models based 
on the scenario generation approach proposed.

Furthermore, this paper contributes to a better informed decision-making process. The analysis of trade-off 
between different objectives, embracing investments needed to gain infrastructure robustness and including social 
aspects related to the undelivered demands, will allow decision makers to consider people's willingness to support 
more sustainable infrastructure systems among the choices that could be implemented.

Data Availability Statement
The hydraulic model of the FOS network can be accessed in Bragalli et al. (2012). Relevant information for the 
analysis of case studies is openly available in Cunha et al. (2023).
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