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Abstract

The incidence of wildfires and megafires and their disastrous consequences is increas-
ing all over the planet. According to the latest European Forest Fire Information
System annual fire report [115], in 2021 alone wildfires burned a surface area more
than twice the size of Luxembourg, including more than a thousand square kilometres
of Natura 2000 protected areas. In addition, 2022 has registered the highest number
of wildfires since 2006, and will also be recorded as one of the driest years on record.
Assuming that the most efficient and cost-effective way limit the damage caused by
wildfires consists in their prevention, building tools to allow the decision makers to
allocate resources using state of the art technology and fresh data is of the utmost
importance. To this end, the combined usage of data from weather and satellite
platforms capable to provide data on a regional or national scale and at a high
temporal frequency provides the optimal solution for assessing and monitoring the
state of the vegetation. However, users of fire danger product users often complain
about the resolution of the provided products. While moderate- or coarse-resolution
products may be adequate to cover the regional or national scale, high-resolution
products are required to properly describe the fire danger in relatively small-sized
areas of high interest in fire danger modelling, such as wildland-urban interfaces,
national parks or protected areas. Using a different fire danger product based on
the spatial scale of the target may be impractical and increase the workload and
training requirements for the personnel. For this reason, we propose a scalable fire
danger index based on Sentinel imagery that is able to cover different spatial scales
by exploiting the surface reflectances provided by different Sentinel products (i.e.
Sentinel-2 and Sentinel-3).

This novel index, named Daily Fire Danger Index, exploits both weather and
satellite data to estimate all the main variables of fire danger, such as the amount of
dead fuel, moisture of the dead and live fuels, wind speed, evapotranspiration etc, and
is calibrated using the historical records of wildfire occurrence in the target region.
In particular, the live fuel moisture content is estimated using a state of the art
procedure based on the inversion of radiative transfer models of the PROSAIL family.
The index was tested in Sardinia, a region well-known for its proneness to wildfires
and which is also regularly affected by megafires, and the performance comparison
with the Canadian Fire Weather Index shows very significant improvements on the
capability to discriminate fire danger even at a moderate resolution. Finally, the
2021 Planargia-Montiferru megafire was selected as a case study to showcase the
added value of the high-resolution version of the index.



A photograph of a fire danger sign in the Gutturu Mannu forest in southern Sardinia, taken
during a fuel sampling campaign in March 2022 by the PhD candidate.
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Introduction

his doctoral thesis proposes a novel, dynamic and scalable fire danger index based
T on weather data and different resolution satellite surface reflectance products.
The problem of fire danger assessment is an interdisciplinary one, and many different
approaches are extensively documented in the scientific literature. For these reasons,
this thesis is divided into six chapters:

In Chapter 1 we give a brief summary of the history of fire danger modelling and
an overview of the state of the art using weather and satellite data. This summary
focuses mostly on the American fire danger literature, since our fire danger index
descends from this specific methodological tradition, and aims to provide the reader
with an understanding of the history of fire danger modelling with a particular focus
on the satellite-based family of products. In addition, we mention a number of
popular indices belonging to other methodological traditions that do not involve
satellite data, some of which are still very widely used even outside of their countries
of origin. Subsequently, we give an overview of the objectives of this thesis, namely
on how we mean to improve the capability of assessing fire danger through an index
based on both weather and satellite information, and in particular to exploit the
latter to cover different spatial scales. Finally, we provide some basic information on
the bioclimatic characteristics of the island of Sardinia, motivating its selection as
study area for this work.

In Chapter 2 we dedicate a section to the enumeration and description of the
variables involved in fire danger modelling which will be used in our algorithm,
providing a justification for their inclusion in the process of fire danger modelling.
Subsequently, we provide the source of the data when the variables are obtained from
a third-party, and the description of the estimation process when the variables are
produced by ourselves in order to ensure the full documentation of the calculation
process and the reproducibility of the results.

In Chapter 3 we provide a detailed description of the Radiative Transfer Model
(RTM)-based Live Fuel Moisture Content (LEFMC) inversion process used to estimate
this variable from satellite surface reflectances, which includes Global Sensitivity
Analysis (GSA) of the PROSAIL family of models and a partial validation of the
LFMC product using field data. Given the complexity of the issue and the importance
of the variable in fire danger modelling, it was deemed necessary to dedicate an
entire chapter to this matter.

In Chapter 4 we propose an additive fire danger model and define the formula
of the novel fire danger index. Subsequently, we show how each component of the
index is calculated, namely how each biophysical variable is transformed into a
danger variable, normalized, weighted and integrated into a dimensionless index
with values ranging from 0 to 100. Then we define the criteria for the calibration
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and performance evaluation of the index. The performance evaluation was carried
out using fire occurrence data in the form of the aggregated MODIS Collection 6 [54]
and VIIRS 375 m [118] active fire products and burned area perimeters provided by
the Sardinian fire department. From now on, for the sake of brevity, we will refer to
the aggregated MODIS and VIIRS active fire products as the Fire Information for
Resource Management System (FIRMS) active fire products.

In Chapter 5 we show a comparison of performance between our index and the
Canadian Forest Fire Weather Index (CFFWI), the main fire danger indicator of
the European Forest Fire Information System (EFFIS) and in general one of the
most widely used fire danger indices. We discuss differences between the fire danger
assessment provided by the two indices using the fire seasons of 2019, 2020 and 2021
as our test framework.

In Chapter 6 we analyse the added value of the high-resolution index in the
context of the Planargia-Montiferru megafire, a devastating wildfire that burned
about 13000 hectares of Sardinian vegetation in the summer of 2021. First of
all, we provide a description of the circumstances that caused the evolution of a
relatively small fire into a megafire. Subsequently, we draw a comparison between the
information provided by the moderate-resolution Daily Fire Danger Index (DFDI)
maps and a small AOI of their high-resolution counterparts corresponding to the
ignition zone of the original fire.



Chapter 1

State of the Art and Objectives
of the Research

1.1 Terminology

Before even beginning any type of discussion on the topic of fire danger, it is
absolutely mandatory to clarify the meaning of the term "danger", both per se and
relatively to the context of integrated risk assessment, in order to avoid confusion
with related terms such as "risk" and "hazard". This is necessary not only for
readers not accustomed to the jargon of this specific branch of remote sensing and
environmental management, but also for technicians and experts, since it is not rare
to see the same terms used with different meanings in the scientific literature.

The international guidelines on integrated risk evaluation established that such
assessments should include three aspects: hazard, exposure and vulnerability. To
clarify what each of these terms means, the Science for Disaster Risk Management
2020 report by the Disaster Risk Management Knowledge Center of the European
Union (DRMKC)[18] provides the following operational definition of the concept of
risk:

"Risk is the potential for adverse consequences or impacts due to the inter-
action between one or more natural or human-induced hazards, exposure
of humans, infrastructure and ecosystems, and systems’ vulnerabilities"

Therefore, modeling risk implies also modeling these three different variables
and their interactions:

o "Hazard [...] [is] the process, phenomenon or human activity that carries the
potential to cause loss of life, injury or other health impacts, property damage,
soctal and economic disruption or environmental degradation. Hazards can be
natural (e.g. earthquakes, droughts, floods) or anthropogenic (e.g. oil spills,
terrorist attacks) in origin and can be characterised by their location, likelihood
of occurrence, intensity or magnitude, duration, and extent."

o "Ezposure [...] [is] the presence of people, infrastructure, housing, production
capacities, species or ecosystems, and other tangible human assets in places
and settings that could be adversely affected by one or multiple hazards."

o "Vulnerability [...] [is] the propensity or predisposition of an individual, a
community, infrastructure, assets or systems (incl. ecosystems) to be adversely
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affected. Vulnerability encompasses a variety of concepts and elements including
sensitivity or susceptibility to harm and lack of capacity to cope and adapt."

The translation of these concepts into the realm of fire management is not
immediate. In particular, the term "hazard" in this context has often been used
interchangeably with "danger" and with a different meaning than the one defined
above: in fire management, fire hazard or danger is defined as the propensity of fire
to ignite and propagate. The higher the fire danger, the higher the probability that
vegetation ignites, and once ignited, the higher the chance that it propagates. In
order to avoid confusion, we will adopt the "danger" terminology, and treat danger
as one of the components of fire risk along with exposure and vulnerability.

After defining the different components of fire risk modelling, we should remark
that the object of this thesis is fire danger alone, and therefore, we will deal exclusively
with variables that concern the vegetation and its proneness to burn. While it is
clear that, especially in Mediterranean climates and societies, the overwhelming
majority of fires is caused either accidentally or voluntarily by humans, and more
in general that the human factor is a fundamental variable of fire risk modelling,
we will not deal with it. The human factor is usually incorporated in the exposure
component of fire modelling, while we specifically deal with the assessment of the
state of the vegetation in relation to its capability to ignite and support the spread
of large fires.

1.2 A Brief History of Fire Danger

According to H. T. Gisborne’s 1936 handbook titled '"The Principles of Measuring
Forest Fire Danger" [55], the history of fire danger as a subject of scientific research
may be dated as back as 1922, when the U.S. Forest Service, with headquarters in
Missoula, Montana, started to investigate which variables were involved in determin-
ing fire insurgence and spread and how should they be measured and used in the
field. Gisborne’s effort to translate these measurements into a numerical fire danger
rating ranged across 17 million acres of Montana and Northern Idaho forests, and
years of tests and successive experiments allowed to determine the most significant
variables that concur to determining fire danger: 1) date or season, 2) fuel moisture
or inflammability of specific materials, 3) wind speed, 4) visibility range and 5)
activity of fire-starting agencies.

While the Northern Rocky Mountain method targeted on a specific area and
was tailored for easy and standardized calculation by the fire control agents, most of
these variables, such as fuel moisture and wind speed, are still at the base of today’s
most widely used and advanced fire danger indices. Furthermore, the description of
the role of each of these variables play in determining fire danger helps us trace how
their measurement or estimation evolved from direct or indirect field measurements
to today’s methodologies based on weather and satellite data. To this end, it is
worthwhile citing at least part of Gisborne’s descriptions:

e Date, or Season: 'even though temperature, humidity, wind and fuel moisture
may be the same in mid-June as in mid-July or even mid-August, the green
vegetation such as grass, weeds, and brush is maturing, curing and becoming less
of a fire retardant and more of a fire accelerator as the season progresses. |...]
FEven more consistent with calendar date is the number of hours of dangerous
burning weather, according to hours of sunshine each day."
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e Fuel Moisture: "this variable, which determines forest inflammability, is
the second most important one considered in the Northern Rocky Mountain
method. [...] The drier these fuels, the greater the danger, and in determining
current danger it does not matter whether this dryness is controlled by precipi-
tation alone, humidity alone, or any combination of precipitation, temperature,
humidity, wind and sunshine."

e Wind: "Many experienced men believe that wind is one of the most important
variables of fire danger. Cases can be cited of crown fires occurring with snow
on the ground, and of blow-ups during high humidity. [...] Wind velocity,
therefore, cannot be omitted from any complete scheme of rating fire danger.

The 1940 fire control conferences called by the United States Department of
Agriculture (USDA) Forest Service marked the beginning of the effort towards a
standardized, national fire-danger rating system, and by 1954 there were already
eight different rating systems used across the United States [37]. These efforts
culminated in 1972, with the first version of the National Fire-Danger Rating System
(NFDRS) was published by Deeming et al. and would go on to see two major
revisions in the following years [38, 13]. The NFDRS capitalized on the studies on
the physics of fuel moisture that culminated in the Rothermel fire spread model
[110]. This resulted in a method based on three indices derived from the three fire
behaviour components: Spread Component (SC), Energy Release Component (ERC)
and Ignition Component (IC) with values from 0 to 100. The NFDRS distinguished
a total of five fuel classes, three dead and two live, and incorporated weather data
such as temperature, relative humidity, precipitation and wind speed. In addition
to the method itself, the philosophical framework developed in this context would
turn out to be very influential in defining the applicability scope of fire danger
indices: a fire danger rating system should deal with the containment capabilities
attributable to fire behaviour, and not with extinguishment, which should be dealt
with using other means; provide relative, not absolute measurements; evaluate the
worst conditions in a given area (i.e., be evaluated at the time of day at which fire
danger is higher or on extreme exposures [37]).

At the time, the assessment of the condition of the vegetation was conducted
directly in situ and required a large amount of manpower to cover large areas
with sufficient frequency. Furthermore, this often resulted in fire danger indices
being representative of the areas where samples where gathered, while they would
be more and more inaccurate the farther one would get from the sampling point.
The rise of satellite communications offered the ideal means of gathering up-to-
date measurements in a synoptic way on a continental scale with unprecedented
frequency. In particular, the deployment of the polar orbiting satellite Advanced Very
High Resolution Radiometer (AVHRR) of the National Oceanic and Atmospheric
Administration (NOAA), allowed the scientific community to develop and test the
Normalized Difference Vegetation Index (NDVI) [127]. Today very widely used,
the index is defined in order to be sensitive to the photosynthetic activity in the
biomass present in a given pixel. In his seminal 1993 work [14], Burgan made use
of historical NDVI measurements to define the Relative Greenness (RG) with the
aim to monitor vegetation greenness in a given pixel based on recorded maxima and
minima. Five years later [15], Burgan himself would integrate the RG into a new
fire danger index named Fire Potential Index (FPI), which was among the very first
indices to integrate both weather information and satellite data in the fire danger
modelling process. In 2002, the FPI was introduced to the European continent
[86] with a significant update on the estimation of the dead fuel load: rather than
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Figure 1.1. Structure of the National Fire Danger Rating System as shown in [37]. The
scheme shows the three components of the Fire Behaviour model (ignition, spread and
energy release) and all the weather variables involved in their calculation. The scheme
also shows how the different components are integrated into a single seasonal severity
indicator.

relying on the interpolation of the data gathered by a network of weather stations
as in the US version, the European index used a complex algorithm to pick the best
measurements from a 50 by 50 kilometre grid of weather stations.

Development of an FPI-derived index continued in the framework of the Space-
based information support for the Prevention and Recovery of Forest Fires Emergency
in the Mediterranean Area) (PREFER) project, which aimed to support the pre-
vention, reaction and recovery phase of forest fire management through the use of
space-based technology [82]. The FPI model was adapted to MODIS imagery, and
corrections to the FPI variables were introduced using estimates of the vegetation
water content through the equivalent water thickness and of the solar illumination
conditions and wind speed through the evapotranspiration [81, 84]. Furthermore,
weather forecast data was exploited in order to produce a fire danger forecast for
the following days. This new index was called Daily Fire Hazard Index (DFHI) for
its capability to provide updated fire danger forecasts on a daily basis.

The work described in this doctoral thesis has its roots in the experience of the
development of the DFHI.
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1.2.1 Weather-based Indices

In the 1940s, while the USDA was working on creating a national fire danger
system, in the Soviet Union V.G. Nesterov was developing a simple algorithm to
estimate fire danger using only weather data about air temperature, humidity and
daily precipitation [95]. In the 1960s, A.G. McArthur developed the Australian Mk4
fire danger meter [91, 92], which consisted in a manually operated dial where the
user would set the current values of the weather variables to obtain a fire danger
rating. It would see an update to Mk5 in the following decade [61]. In the 1970s,
the Canadian Forestry Service completed development of the Canadian Forest Fire
Weather Index (CFFWI) [131], which simplified the calculation of the index by
referring to a single fuel class, a standard pine species, and by requiring only weather
data to be calculated. The ease of obtaining such data and the good performance of
the index at large spatial scales would be at the base of the success of the CFFWI
for the following decades. Many more indices were developed in the 1990s and in the
early 2000s, such as the Indice de Risco Meteorologico (INMG) in Portugal [56], the
Index of Risk [133] and the RISchio Incendi e COordinamento (RISICO) method
[48] in Italy, the Instituto para la Conservacién de la Naturaleza (ICONA) method
[132] in Spain.

1.2.2 Probabilistic Approach

The increase in the availability of historical fire weather and fire occurrence data
opened up the possibility to explore a more data-driven approach to the problem of
fire danger. For this reason, a relatively recent line of research explores a probabilistic
approach to the problem of fire danger assessment, and has already been applied to
different spatial scales.

In some cases, the approach consists in building a logistic regression based on
historical records of fire occurrence, weather variables, fire weather variables and fire
danger indices [102, 2]. This approach has the advantage of providing a forecast of the
number of wildfires and large wildfires, and also provides a lot of useful information
on the predictive power of different variables on wildfire and large wildfire occurrence.
For this reason, these analyses can also be used to assess the performance of different
fire danger indices with respect to fire occurrence. Interestingly, [102] found that
different variables were relevant to the probabilities of fire ignition and large wildfire
occurrence, and in another instance, it was noted that different land cover types
were more susceptible to fires in different stages of the fire season [2].

Another approach derives the fire occurrence probabilities from a high number
of fire spread simulations [90, 47]: different fire behaviour models are used to run
multiple simulations on the target area, allowing to identify fire activity hotspots.
Compared to the earlier empirical approach, this simulation-based approach has
the advantage of providing the possibility to investigate fire patterns and their
causes under a wide range of different conditions. For instance, [90] analyses two
different sets of weather conditions - "normal" and "extreme" - to find that the
spatial distribution of higher danger areas at a fine scale is significantly different.
In addition, [47] was able to incorporate the effects of fire suppression efforts into
the model by introducing a probability of suppression. While the outputs of this
approach are undoubtedly of great interest, their adoption in many areas of the
world could be hindered by incomplete or scarce historical fire weather and fire
occurrence records.
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1.2.3 The Role of Satellite Remote Sensing in Fire Danger Assess-
ment

An accurate estimation of fire danger is strongly dependent on the capacity to
estimate the proneness to burn of live and dead vegetation. The relatively simple
dynamics of dead fuel moisture content, which depend mostly on the vapour pressure
deficit between the dead fuel and the environment, allow this estimation to be
performed rather accurately using weather data exclusively.

Live fuels, on the other hand, pose a much greater modelling challenge due to
their access to water resources that are not limited to the air humidity or surface
soil moisture. Moreover, given that these fuels are in fact live plants, their mass
changes along with the progression of their growth or curing state during the onset
of different seasons. Furthermore, in order to properly assess fire danger, information
on the amount of available fuel is also necessary, since if there is little fuel to for the
fire to burn the danger will consequently be reduced.

Satellite data proved to offer a reliable means to assess both these issues since
the early Nineties. The introduction of the NDVI and relative greenness in the FPI
algorithm [14] allowed Burgan to provide an estimate of the amount of vegetation
present in a given area and of the curing state of this vegetation relative to its history
as recorded by the available data. Nevertheless, it is interesting to note that at the
very beginning of the article he also stated "we are not ready to provide live vegetation
moisture content assessments', implying that it should be included in the assessment
of fire danger if it should become feasible at some point in the future. To this end, in
the same years the development of Radiative Transfer Model (RTM)s specialized on
leaf biochemistry such as PROSPECT [72] and canopy reflectance models such as
Scattering by Arbitrarily Inclined Leaves (SAIL) [134] was starting to gain traction,
even though despite the continuous improvement of the performance of computer
systems, large scale application of such models to satellite images would remain
inaccessible for years to come. For the next decade or so, satellite-based fire danger
indices relied on the working assumption that an NDVI-based measured of greenness
was an accurate enough representation of moist live vegetation [15]. However, the
moisture content of live vegetation can undergo very significant variations even
within the fire season, making any indirect estimate very unreliable.

The first attempts to estimate the moisture content of the live vegetation using
satellite sensors usually relied on semi-empirical relationships between the observa-
tions, which in most cases were surface reflectances in visible channels and brightness
temperatures or a combination of those into vegetation indices, and field data. How-
ever, the scarce amount of field data coupled with their availability on a restricted
set of vegetation species, regions and climatic zones would impair the generalization
of these methods on a continental or global scale. Other methods relied on the
assumption that the curing state or the photosynthetic activity of the vegetation
would be a reliable proxy for water content. However, this assumption holds true
only for some species, since variations in chlorophyll content may also be related
to other phenomena such as the phenological state of the plant, scarce availability
of nutrients or poor air quality [21]. To this end, studies on leaf properties in the
optical portion of the spectrum had already showed that the Shortwave Infrared
(SWIR) region was the most sensitive to leaf water content [128, 53]. One of the
first successful attempts to exploit satellite observations in the SWIR to directly
estimate the moisture content of live fuels was Ceccato [22, 20], who developed the
Global Vegetation Moisture Index (GVMI) for the SPOT satellite exploiting the
sensitivity to vegetation water content of the SWIR portion of the spectrum. Using
the PROSPECT model, Ceccato used the Near Infrared (NIR) and SWIR bands
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of SPOT-VEGETATION to construct a an index sensitive to the canopy water
content per unit area as measured by the satellite. This index was introduced in
Laneve’s Modified Fire Potential Index (MFPI), which also accounted for the local
solar illumination conditions using the vegetation evapotranspiration rate [83].

1.3 The Opportunity of Direct LFMC Estimation

The water content is just one of two variables that concur to determining the
moisture content of the live vegetation. It is clear that the fuel moisture content of a
leaf is determined not only by the amount of water it manages to retain in accordance
with the local environmental conditions, but also by its maturing and curing stage,
which is associated to changes in mass during its life cycle. Therefore, even if
the water content does not change significantly over time, the simple progression
of plant phenology may induce rather significant variations in live fuel moisture
content, and consequently on fire danger. To this end, figure 1.2 contains some
examples of timeseries where the measured Live Fuel Moisture Content (LFMC)
is shown side by side with the corresponding Equivalent Water Thickness (EWT)
and Dry Matter Content (DMC). The EWT represents the thickness that the water
contained in the leaf would have if it were spread equally across the leaf area, and
is therefore measured as a length, usually in centimetres. The DMC is defined as
the leaf mass per unit area. This example is extremely clear in showing how a
constant or even increasing EWT may sometimes counter-intuitively correspond
to a decreasing LEMC or vice versa due to the fact that there is little correlation
between the variation of leaf mass and its water content.
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Figure 1.2. Variation of EWT (left graph, black squares), DMC (left graphs, white squares)
and LFMC (right graphs, black triangles) as sampled by [57] and elaborated by [21]
for the Rhododendron ponticum, Quercus robur, Molina caerulea and Pinus sylvestris
species. The juxtaposition of these timeseries shows how knowledge of the EWT alone is
insufficient for the purpose of inferring the LFMC progression for some species. This is
particularly evident for the Quercus robur, where the initial drop in EWT is compensated
by a sharper drop in DMC, resulting in an overall increase in LEMC. Subsequently, the
EWT maintains a constant value, and the decrease in LFMC is only determined by an
increase in DMC.
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A complete estimation of the LEFMC definitely requires the capability to estimate
these variations in leaf mass using remotely sensed data. Providing such an estimate,
which is also a very important variable of fire ignition and fire behaviour models,
and integrating it directly in the process of fire danger assessment, is one of the
main objectives of this thesis. Furthermore, classical FPI-derived fire danger indices
do not directly include the impact of important variables such as the wind speed,
the local slope and aspect and the number of sunlight hours into the fire danger
modelling process. We aim to include these variables without altering drastically
the FPI-like structure of the DFHI.

No hazard
Very low hazard
Low hazard
Medium hazard

High hazard

Very high hazard
Extreme hazard

Figure 1.3. Detail of a DFHI map computed using a Landsat 8 image from 3 September
2016 (above) and a MODIS image acquired the same day (below). The MODIS based
map was downscaled from 250 m to 30 m to match Landsat’s resolution. Black polygons
represent the area corresponding to Corine Land Cover class 1 (Artificial Surfaces).
Re-elaborated from [81].

Finally, it has been noted [81] that the resolution of the satellite imagery used
to estimate the state of the live vegetation may have a significant impact on the
assessment of fire danger on a small scale. An example of the effect of satellite
imagery on fire danger assessment is portrayed in figure 1.3. This may imply an
overestimation of fire danger in some areas and an underestimation in some others.
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To this end, we aim to exploit the Copernicus platform and Sentinel imagery to
build an algorithm that is both image-agnostic (i.e., is not dependant on one specific
satellite platform) and scalable in terms of resolution. We will make use of Sentinel-3
imagery and its 300-meter resolution to map fire danger at a regional, national or
continental scale, and Sentinel-2 imagery and its 10-20-meter resolution for the local
scale. Thus, we will have a way to provide danger indices at different scales while
using the appropriate amount of resources for different purposes. While it may
be attractive to use high-resolution imagery for the whole process, the amount of
processing power required would increase drastically compared to the one needed
to process moderate-resolution imagery, and at the same time the level of detail of
such maps would make them extremely cumbersome to interpret on a national or
even regional scale. On the other hand, only high-resolution imagery can provide a
sufficient level of detail to properly describe fire danger in local high hazard or high
value areas such as Wildland-Urban Interface (WUI)s or national parks and their
surroundings.

Having the possibility to scale fire danger maps based on the size of the target
could be a very powerful tool in the hand of the civil protection and fire management
experts, especially if they could be exploited to plan prescribed burns and other
prevention measures around high value protected areas, or to identify danger hotspots
in WUIs and intervene appropriately.

1.4 Aims and Objectives

Summing up, the objective of this thesis is to build upon the foundation provided
by the DFHI to define a novel fire danger index. This new fire danger index will be
called Daily Fire Danger Index (DFDI), and will improve upon its predecessor and
other danger indices by:

1. Exploiting satellite data and RTMs to estimate the fuel moisture content of live
vegetation directly, rather than relying on water-sensitive vegetation indices or
other proxies.

2. Incorporating the effect of wind speed on fire danger directly.

3. Incorporating the effect of evapotranspiration on fire danger directly. Since
it is possible to model the effects of the local slope, aspect and daily hours
of sunlight into evapotranspiration, we also aim to use evapotranspiration to
indirectly incorporate their effects on fire danger.

4. Exploiting Sentinel imagery to provide a scalable-resolution product to fulfil
the different needs of the decision makers.

In particular, the estimation of LEMC from satellite data requires multiple steps
which will take up a significant portion of this work. For this reason, we will proceed
as follows:

e Define the physical variables relevant to to fire danger assessment and identify
those that will be included in the fire danger index; where necessary, describe
in detail how each variable is calculated.

e Detail the entire procedure of LFMC estimation from satellite data: describe
the radiative transfer models used for the purpose and how they are coupled;
justify the use of different models for different land covers and describe the
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inversion scheme; perform a GSA of the models to identify the ideal satellite
bands for LEMC inversion; attempt a validation of the inversion procedure on
field data.

e Define the fire danger index formula and describe the normalization procedure
for each involved variable; evaluate the performance of the index on the test
area and compare it with the CFFWI.

1.5 Test Area

Sardinia is one of the 20 regions of Italy and is second largest island of the
Mediterranean basin after Sicily. Its orography is mostly characterized by hills and
low mountains, with the highest mountain peaking at 1834 meters above sea level,
but at the same time it contains one of the most extended agricultural lands in
the country [89]. While the climate is a typical Mediterranean temperate climate
characterized by relatively mild winters and by dry and hot summers, the Sardinian
case is particularly interesting for an intense water deficit that lasts from May to
September [25]. Furthermore, Sardinia’s wind profile tends to be skewed towards
moderate-strong winds both in the Winter and in the Summer season. Almost half
of the island is covered by pastures and cultivated lands, while shrubs add up to
almost a third of the entire surface. Forests, with a prevalence of oaks, cover about
16% of the terrain [111].
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Figure 1.4. Mean wildfire occurrences by month (grey line with "x" shaped markers) and
related burned surface area (black bars) for the 1995-2009 period in Sardinia according
to the Sardinian Forest Service, from [111].

Sardinia is one of the Italian regions most affected by wildfires [98], and as
shown in figure 1.4, most of the wildfires occur in the June-September window. In
particular, Salis [111] notes that the worst fire seasons in terms of total burned
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surface were characterized by a concurrence of severe droughts, high temperatures,
strong winds and large amounts of accumulated dead fuels. Additionally, Casu [19]
states that the most damaging wildfires in this region are associated to mistral,
libeccio and the sirocco winds, with the former being characterized by the highest
average speeds. Indeed, Salis [112] reports that in the period 1998-2015, mistral
winds were linked to 79% of the fires that burned areas larger than 100 hectares.
As in other Mediterranean regions, the vast majority (90%) of fires in Sardinia are
anthropogenic, roughly equally divided between accidental and intentional ignitions
[111].

Sardinia was chosen as a test area not only for its climatic characteristics and
for its diverse vegetation: the rich scientific literature in the framework of wildfire
management and the abundance of historical wildfire occurrence and burned area
data also contribute to make it an ideal candidate for the purpose.
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Chapter 2

Methods

2.1 The Variables of Fire Danger

This chapter acts as a summary of the variables involved in fire danger modelling,
some of which have been cursorily named during the literature review, in order
to clarify their role and significance and to justify their inclusion in or exclusion
from the danger modelling process. Subsequently, each variable will be discussed
separately in order to provide information on the methods used to measure and
estimate the values of these variables. In addition, we will provide information on
the temporal and spatial scale used to sample these variables.

As done in [84], we will divide the variables in two categories based on the
timescale of their variability: dynamic variables, whose values may change signifi-
cantly on a daily, weekly of monthly basis, and static variables, which change on a
timescale that is irrelevant to short-term fire danger prediction.

2.1.1 Dynamic Variables

This section is dedicated to dynamic variables relevant to fire danger estimation.
Their values change on a relatively short timescale, and therefore a reliable fire
danger assessment must be based on an accurate and recent estimation of these
variables.

Weather Variables

Temperature, relative humidity, precipitation and wind speed all play a role in
determining fire danger. It is clear that prolonged periods of high temperature, low
relative humidity and scarce precipitation will increase the fire danger in the affected
area, and it is also clear that, once ignited, the fire will spread faster and farther if the
wind speed is high. Nevertheless, the vegetation, and especially the live vegetation,
reacts to changes in the local environment on a timescale that varies from fuel type
to fuel type and from species to species, and the inertia of the vegetation to these
changes makes it so that the instantaneous values of these variables by themselves
are not a reliable indicator of fire danger. The wind direction is worth a separate
discussion: most fire danger experts will agree that wind direction also plays an
important role in fire danger, especially at a local scale where historically very large
or destructive fires may be associated to specific winds [112]. However, even at a
regional level, the characteristics of a certain wind may change drastically depending



2.1 The Variables of Fire Danger 16

on the origin of the wind itself', and therefore considerations about the effect of a
specific wind direction may only apply to a very specific area. Precipitation is also
sometimes included as a factor in fire danger modelling. Nevertheless, given the fact
that precipitation is usually accompanied by a decrease in temperature and by an
increase in relative humidity, its effect on the dead vegetation can be inferred from
the changes in these two variables or can be included in the process of dead fuel
moisture modelling itself, while its effect on the moisture of live vegetation can be
estimated using remotely sensed reflectances.

Vegetation Greenness

Vegetation greenness is at the same time a measure of the amount of available
vegetation and of its health. The role this variable plays in fire danger is dual, and
strictly tied to that of the moisture content and curing state of the vegetation. A
large amount of healthy, green vegetation will act as a fire retardant, even if dry
dead fuel is present and may be prone to ignite fires. On the other hand, a large
amount of stressed, dry vegetation may pose a great danger by acting as fuel and
allowing the propagation of very large wildfires.

Dead Fuel Moisture

Dead fuels derive from dead trees, tree branches or leaves, shrubs or grass, and
their moisture content can be estimated rather reliably knowing only the local
environmental conditions. The moisture content of dead leaves depends only on the
ever-changing equilibrium reached with the environmental conditions set by their
surroundings, and differently than live leaves, they do not have any residual capacity
to gather and store moisture. These fuels play a crucial role in determining the
proneness to ignition of a given area, because they are much easier to ignite than
live fuels, and their accumulation in large amounts is associated to faster ignition
and propagation of wildfires.

Live Fuel Moisture

Differently than their dead counterparts, live fuels have access to a variety of
mechanisms to procure and store water. Consequently, the estimation of their
moisture content is strongly species-dependent, and more complex models are
required to obtain such estimates through remotely sensed data. The entire Chapter 3
is dedicated to the description of this task.

Evapotranspiration

With the term evapotranspiration we refer to the combination of the processes of
evaporation and transpiration, in which water is lost by the soil surface and by the
vegetation respectively. Since these two processes happen simultaneously and have
the same effect, there is no practical way of distinguishing them. For this reason,
they are treated as a single phenomenon.

In particular, the reference evapotranspiration is related to a standard crop with
pre-defined characteristics [3]. Intuitively, evapotranspiration depends on the topsoil
water availability, but is mostly determined by the amount of solar radiation that

!For instance, in Sardinia the mistral wind is cool and moist in the Southern part of the region,
where it comes from the sea, while it is hot and dry in the Northern part, where it has already
crossed the mainland.
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Figure 2.1. Factors that affect evapotranspiration according to the FAO Irrigation and
Drainage Paper No. 56 [3]

reaches the vegetation. Therefore, a low vegetation cover will result in a higher
evapotranspiration, because more radiation will reach the soil and more water will
evaporate, while a lush vegetation will create more shade and induce less evaporation.
The denser the vegetation, the more relevant the transpiration in comparison with
the evaporation. Another factor that affects the amount of solar radiation that
reaches the soil is the elevation and morphology of the terrain, which will create
different illumination conditions. For this reason, the latest version of the DFHI [84]
made use of the reference evapotranspiration to include, if indirectly, the effects of
the local terrain morphology on fire danger.

Day of the Year, Date or Season

Since the beginning of the development of fire danger modelling, it was clear
that, if indirectly, the date was a primary factor [55]. While on one hand, the date is
strictly related to the progression of plant phenology, and therefore to its development
stage, on the other it is intuitive to link the increase of the amount of hours of
scorching weather in the beginning of summer to drops in fuel moisture content.
While it would be easy to include this value in any type of index, it is difficult to
generalize its meaning in different climatic areas and in different ecosystems. The
capability to directly estimate live fuel moisture, and therefore to track the evolution
of leaf dry matter in addition to leaf water content, should allow us to monitor
these effects using remotely sensed data rather than pre-determined tables such as
phenological calendars.
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2.1.2 Static Variables

These variables change on a timescale that is not relevant to the problem of short-
term fire danger assessment. Therefore, we will obtain such variables at the adequate
resolution for our purposes and re-use them for each daily or hourly calculation, and
update them whenever new versions are available.

Slope and aspect angle

The local slopes and aspect angle determine different microclimatic conditions
for the vegetation by allowing different amounts of solar radiation and different
winds to reach the surface, in turn controlling the amount of water available to
the vegetation, and effectively allowing different types of vegetation to grow and
prosper on either side of the slope. For instance, in the Northern hemisphere, it is
well-known that south-facing slopes will receive more sunlight, making them more
suitable to host sparse, sun-resistant vegetation, while north-facing slopes will be
more humid and capable of growing trees and denser vegetation in general. The
steeper the slope, the more intense these effects.
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Figure 2.2. Schematic of how different slopes and slope orientations affect the illumination
conditions and therefore concur to determining the vegetation type and density, from
[121].

Fuel type map

Different fuels will behave differently in terms of their capability to retain moisture
under different weather conditions, in terms of their seasonal growth, maturing and
aging trends, and in terms of their proneness to burn. Naturally, fire-resistant tree
species such as the cork oak will be associated to a lower fire danger than ones
that produce highly flammable oils such as the blue gum eucalyptus. Furthermore,
knowledge of the extinction moisture of different species can be useful to determine
whether or not the local weather conditions allow a fire to ignite and spread at all.
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2.2 Estimation of the Variables of Fire Danger

In this section we will describe in detail how each variable used in the fire danger
modelling process is obtained or estimated.

2.2.1 Weather Variables and Evapotranspiration

For the purpose of compiling the historical archive of the fire danger index, the
highest possible resolution historical weather data was necessary. Furthermore, the
capability of providing an instantaneous snapshot of fire danger at different times of
day requires hourly weather data. To this end, we decided to use ERA-5 Land hourly
data reanalysis [93], which provides global weather datasets with a 0.10 degrees
resolution from 1950 to today. This allowed us to obtain the following variables:

e 2m air temperature

e 2m dewpoint temperature
e 10m u-component of wind
e 10m v-component of wind

While the 2-meter air temperature can be used straight away for our purposes,
minimal processing is required to obtain some of the other variables we need. For
instance, ERA-5 Land does not contain the relative humidity directly, but allows us
to obtain by including the dewpoint temperature. Furthermore, the wind speed is
sampled at 10 meters height, while we will use wind speed at 2 meters height, i.e.
the same height as the air temperature, which is more representative of the wind
speed that affects the vegetation. We will now describe the two processes in detail.

Relative Humidity

The relative humidity is defined as the ratio between the amount of water
vapour present in the air to the amount of water vapour that the air could contain
if it saturated in the same conditions of pressure and temperature. The relative
humidity is strictly related to the values of the actual air temperature and of the
dewpoint temperature, which is the temperature at which water vapour starts to
condensate into dew. For this reason, the relative humidity can be calculated as a
ratio between the actual water vapour pressure e,, i.e., the one determined by the
dewpoint temperature, and the saturation water vapour pressure eg at the current
air temperature:

rhey, = <% x 100 (2.1)

€s
An accurate formula that allows us to obtain the vapour pressure of water in
function of its temperature is given by [124], who improved the formulations derived
by [139]:

Ine, = —6096.93857 1 + 21.2409642 — 2.711193 % 10727 + 1.67395210 7572 + 2.4335021In(T)  (2.2)

If T is the air temperature at 2 meters height and Ty, is the corresponding
dewpoint temperature, applying the exponential function to both sides of the equation
and substituting into equation 2.1:

exp —6096.9385T, !+ 21.2409642 — 2.711193 # 10~ 2Ty, + 1.673952107°T2  + 2.433502 In(Tqew)
exp —6096.9385T—1 + 21.2409642 — 2.711193  10—2T + 1.67395210—5T2 + 2.433502 In(T)

rhy, = x 100 (2.3)
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Downscaling of Wind Speed

The value of wind speed changes with height, and in normal conditions it tends
to decrease the closer to the surface it gets. For this reason, in meteorology wind
speed is measured using instruments set at the standard height of 10 meters, which is
also the height at which this parameter is provided by ERA-5 Land. Nevertheless, in
some disciplines such as agrometeorology, experts are interested in wind speed values
at a height of 2 or 3 meters, rather then meteorology’s canonical 10. Therefore, in
order to exploit the weather data for such purposes, a correction must be applied to
the 10-meter wind speed value. To this end, we refer to the formula proposed in
[3] to obtain the wind speed value used in the procedure for the calculation of the
reference evapotranspiration:

4.87
= YUY,
“In67.82 — 5.42

where uo is the wind speed at 2 meters height and u, is the input wind speed at
a generic z meters height.

Uz

(2.4)

Evapotranspiration

In order to calculate daily values of the reference evapotranspiration, we follow
the procedure described in the Food and Agriculture Organization (FAO) irrigation
and drainage paper 56 [3], to which we refer the reader for an extensive and detailed
explanation of each single variable and calculation step. We are only interested
in the calculation of the reference evapotranspiration, denoted as ETy, for hourly
timescales using weather data. However, the aforementioned paper contains a
number of different ways in which the variables involved in the process depending on
the available data type, that may be either weather forecast data or measurements
directly obtained from weather stations, and on the different types of variables that
may or may not be available. Furthermore, in order to model the effect of the
local topography on the illumination conditions, we used topographic information
to calculate the actual hours of sunlight. Writing down the entire procedure in
this chapter would be too long of a digression from the main topic of this thesis.
However, in order to properly document the entire procedure and to guarantee the
repeatability of the results, we will move the complete description to the Appendix,
and limit the current discussion the calculation of the actual sunlight hours.

The FAO procedure [3] relies on the usage of a Campbell-Stokes sunshine recorder
for direct measurement of the actual duration of sunshine. In our case, we neglect
the effect of the clouds, but we can exploit knowledge of the topography based on a
Digital Elevation Model (DEM) to determine whether a given pixel, at a given time
of a given day of the year is illuminated or in shade. To do so, we follow the process
shown in [42], which is based on equations developed by [52].

Let us consider a surface located at a latitude ¢, when the local declination is 4.
The angle between the normal to the surface and the horizontal plane (slope) is S,
and the displacement between the horizontal projection of the normal from the local
meridian (azimuth) is . If w is the solar hour angle at the target time, the cosine of
the angle between the incoming beam radiation and the normal to the surface 0 is:

cos f = sin §[sin ¢ cos 5 — cos ¢ sin B cos | (2.5)
+ cos §[cos ¢ cos [ cos w + sin ¢ sin [ cos y cos w (2.6)
+ sin 3 sin v sin w| (2.7)
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While the slope angle § can be directly obtained using GDAL’s gdaldem function,
some work must be done to obtain the v angle. gdaldem outputs the aspect angle,
which has the same significance as 7y, but is 0 when the surface is facing North and
is defined between 0 and 360 degrees. To obtain v from the aspect angle we need
only subtract 180 degrees:

v = aspect — 180° (2.8)

A scheme of the illumination geometry of a south-facing surface (i.e. v = 0) with
a [ sloped is represented in 2.3.
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Figure 2.3. Scheme of the geometry of the incoming radiation on an inclined surface for a
south-facing slope (i.e. v =0), adapted from [42]. 3 represents the slope, ¢ represents
the latitude and 6 is the angle between the normal to the local surface and the incoming
beam radiation.

The complementary angle to the beam incidence angle 6 represents the solar
elevation with respect to the surface. We are more interested in this angle than in
0 itself, because when it is positive and sufficiently large we can assume that the
surface is directly illuminated by the Sun rays. Let the solar elevation angle be e.
We can calculate it as:

e = 180° — # = 180° — arccos(sin d[sin ¢ cos 5 — cos ¢ sin 3 cos ] (2.9)
+ cos d[cos ¢ cos f cosw + sin ¢ sin B cos y cos w (2.10)
+ sin 5 sin y sin w]) (2.11)

For each hour of potential sunlight N, and therefore for each solar hour angle
w between the sunset hour angle w, and the sunrise sunset angle w, — %, we will
check if this value is higher than 5° for each individual pixel and its topography. If
it is, we will add 1 hour to n, otherwise we will not. The resulting value will give us
the approximate total amount of sunlight hours accounted for shade caused by the

local topography.



2.2 Estimation of the Variables of Fire Danger 22

As specified in the description of each parameter, all meteorological variables
should be either measured or converted at 2 meters height to maintain uniformity,
and in general the obtained values refer to an extensive surface of green grass that
covers the soil which is not suffering from water scarcity conditions.

In our case, the reference evapotranspiration is calculated for all the pixels in
the area of interest, using the latest available meteorological data at 2 m height and
in particular the temperature and wind speed. Even though the vegetation cover of
the individual pixel may not correspond at all to the description of the reference
plot defined in [3], the evapotranspiration value is still considered representative of
the different evaporation and transpiration conditions associated to that area: a
pixel hit by an higher amount of radiation, higher temperatures and higher wind
speeds will necessarily be more stressed than a pixel characterized by lower mean
temperatures and by a topography that causes it to be more hours in shade. An
example of the evapotranspiration obtained using this process is shown in figure 2.4.
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Figure 2.4. Reference evapotranspiration in Sardinia at 12:00 of the 21st of June 2022.
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2.2.2 Fraction of Live Vegetation

Satellite imagery has been used to estimate the greenness of the vegetation for
the purposes of fire danger modelling at least since [14]. Exploitation of long-term
(i.e., years-long) records of indices sensitive to vegetation greenness allows to compare
the latest acquisitions with the accumulated historical knowledge, and therefore to
provide a relative measure of the health or stress level of a specific pixel or area.
To this end, the most widespread vegetation greenness index is undoubtedly the
Normalized Difference Vegetation Index (NDVI), which was first calculated on a
large spatial and temporal scale for the Advanced Very High Resolution Radiometer
(AVHRR) in [127]. As indicated by its name, the index is calculated by normalizing
the difference of the red and near infrared surface reflectances captured by an optical
sensor:

NIR — RED
NDVI_NIR—l—RED (2.12)

It is well-known that the interaction of leaves with the incoming optical radiation
is mostly regulated by the process of photosynthesis [129]. Healthy leaves that are
actively photosynthesizing carbohydrates by absorbing incoming light and using
it to combine the oxygen in the atmosphere and the water in the mesophyll will
consequently have a low reflectance in the so-called Photosynthetic Active Region
(PAR), and at the same time they will reflect more radiation in the near infrared to
avoid overheating. On the other hand, stressed or unhealthy vegetation with low or
non-existent photosynthetic activity will absorb less radiation in the PAR (hence,
reflect more) and reflect less radiation in the near infrared. For this reason, positive
and high NDVT values are associated to healthy and dense vegetation, while lower
positive values are associated to unhealthy vegetation or even bare soil.

In our case, we used Sentinel-2 L2A and Sentinel-3 SYNERGY imagery to obtain
the timeseries of the index on the area of interest. Table 2.1 contains the list of the
bands we used to calculate the NDVI from the two Sentinel products. The historical
Sentinel-3 NDVI maxima and minima in Sardinia are shown in figure 2.6 and 2.5
respectively.
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Product Red Band NIR Band
Sentinel 2 L2A Band 04 Band 08
Sentinel 3 SYNERGY SYN18/S2  SYN19/S3
Table 2.1. Satellite image bands used to compute the NDVI.

In particular, the NDVI values were stored and used to build archives for the
entire Area of Interest (AOI). Building such archives may require a different orders
of magnitude in terms of processing loads depending on the image resolution and
the size of the AOI, but platforms such as Google Earth Engine allow to drastically
reduce this workload even on high-resolution imagery such as Sentinel-2. The NDVI
archives are then processed to obtain the historical minima and maxima for each
pixel, and these values are stored in two dedicated rasters. For each new observation
(i.e., new satellite image), the current NDVI values are used to calculate the Relative
Grenness in the original formulation described by [14]:

NDVI —minNDVI
maxNDVI —minNDVI
where min N DV I and maxN DV I are the minimum and maximum NDVTI values
registered in a given pixel in the historical archive. For the purpose of the calculation
of a fire danger index, we prefer to use metrics scaled between 0 and 1, and thus we
define the relative greenness fraction RGy as follows:

RG =

100 (2.13)

NDVI —minNDVI
maxNDVI —minNDVI

Needless to say, with each new observation the historical maxima and minima
NDVI archives are updated, so that the resulting RG ¢ values are always between
0 and 1. Low RG values will correspond to an higher amount of stressed or aging
vegetation compared to the history of that specific pixel. Conversely, high RG values
will be associated to healthy and lush vegetation, again, relative to that pixel’s
historical record. It must be stressed that the RG is a relative measurement of
grenness, and therefore looking at this quantity by itself may bring the user to draw
wrong conclusions by comparing the values of different pixels. A high RG value in
a pixel may correspond to very little vegetation presence, but to a good health of
such vegetation. On the other hand, low RG values in another pixel may correspond
to a dense forest suffering from diseases or other heat or moisture induced stresses.
Therefore, in the framework of fire danger assessment, low RG values are associated
to a relatively higher fire danger, because the vegetation in the affected pixels may
be stressed or unhealthy and consequently more prone to catching and spreading
fire. Nevertheless, fire danger is also higher if the amount of stressed vegetation is
larger. For this reason, in order to scale this quantity with an absolute measure of
the vegetation presence, we use the historical max N DV I: the higher its value, the
stronger the vegetation presence. This value is used to rescale RGy as follows:

RGy = (2.14)

5 (2.15)

where Ly is the Live Vegetation Fraction [84], which has all the characteristics
we need from a vegetation greenness index: high Ly values are associated to healthy
and dense vegetation, while low values are associated either with a very low relative
greenness, i.e. with a high amount of stressed vegetation compared to the historical
records, with a low NDVI maximum value, i.e. with a low historical vegetation
presence, or with a combination of the two.

1 NDVI
Lf:RGf-< + mazx V)
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2.2.3 Dead Fuel Moisture

In order to obtain realistic values for the moisture content of dead fuels, we refer
to the procedure developed in the context of the National Fire-Danger Rating System
(NFDRS) by Deeming et al. [38]. These handbooks contain detailed procedures to
derive the fire danger indices of the NDFRS, but we are only interested in the parts
that concern the estimation of dead fuel moisture content based on the weather
variables of temperature and relative humidity. The description of the moisture
exchange mechanics between dead fuels and the surrounding environment is based on
the research work documented in [50]. According to this approach, the behaviour of
dead fuels can be quantified in terms of their Equilibrium Moisture Content (EMC).

Equilibrium Moisture Content

The EMC represents the amount of moisture content held by dead woody material
that has reached a steady state. EMC values can be determined using the so called
Dry Bulb Temperature (DBT)? and relative humidity using the equations developed
by Simard [120] on the basis of the tables that can be found in the Wood Handbook
[130]. All temperatures are hereby expressed in degrees Fahrenheit, relative humidity
is expressed as a percentage, and EMC is expressed as percent moisture content.

EMC = 0.03229 + 0.2981073 * rh — 0.000578 * Ty * rh, if rh < 10%
EMC = 2.22749 4 0.160107 * rh — 0.014784 * T, if 10 < rh < 50% (2.16)
EMC = 21.0606 + 0.005565 x rh? — 0.00035 * rh * Ty —0.483199 x rh, if rh > 50%

We can use these equations to evaluate the EMC for the observation time or
to compute the minimum and maximum daily EMC, that we will refer to with the
following variable names:

EMCOBS = f(TMPOBS,RHOBS)
EMCMIN = f(TMPMAX,RHMIN) (2.17)
EMCMAX = f(TMPMIN,RHMAX)

Where:

e OBS refers to the afternoon observation time values
e MIN refers to the 24-hour minimum observed value

e MAX refers to the 24-hour maximum observed value

Since the discovery that the moisture content behaviour of dead fuels follows
an exponential function, i.e. their moisture content adapts to the vapour pressure
gradient that exists with the surrounding environment following an exponential
function, dead fuels are usually categorized into timelag classes. The concept of
timelag is related to the time necessary to lose 1 — 1/e (i.e. about two thirds) of
their original moisture content [10]. Thus, the NFDRS defines 1-, 10-, 100-, and
1000-hour timelag classes based on the diameter or characteristic dimension of the
fuels as shown in table 2.2.

2The DBT is the temperature of the air measured by a thermometer freely exposed to the air,
but shielded from radiation and moisture. DBT is the temperature that is usually thought as air
temperature.
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Timelag Class Diameter Range

1-h up to 1/4 in
10-h 1/4to 1 in
100-h 1to 3 in
1000-h 3 to 8 in

Table 2.2. Timelag classes based on fuel size according to the NFDRS

An example of a 1000-hour timelag fuel moisture map generated by the US
Rocky Mountain Reasearch Station with the procedures detailed in [10] is portrayed
in figure 2.7. 1000-hour timelag fuels are the most complex to model, and since
their behaviour is more similar to that of live fuels, they are often used as a proxy
for LFMC in fire danger modelling processes. Since in our case we rely on a direct
estimation of LFMC, we will only focus on 10-hour timelag classes, which are the
most important in the processes of fire ignition and fire spread.

Obs. 1000-Hour FM:  18-Oct-22

s+ Reportting Weather Statiors
0 «=se 0O 2%
O e H 2%
O tase O water

{lav. Dist.” Intecp.) ﬁig

WFAS-MAPS Graphics FIRE BEHAVIOR RESEARCH MISSOULA, MT ey

Figure 2.7. Daily NFDRS 1000-hour timelag fuel moisture for the United States as
downloaded from the NFDRS website on October 18th 2022.

1-Hour Timelag Fuel Moisture

1-hour timelag fuels respond so rapidly to changes in the environmental conditions
that the only variable required to estimate their moisture content is the potential
moisture content. The field approach relies on fuel stick data or estimates of the
relative humidity and dry bulb temperature of the air in immediate contact with the
fuel elements. These values are then corrected at instrument height according to the
insolation conditions [16] using tabled values. In our case, we can simply use the air


https://www.wfas.net/index.php/dead-fuel-moisture-moisture--drought-38
https://www.wfas.net/images/firedanger/fm_1000.png

2.2 Estimation of the Variables of Fire Danger 27

temperature and relative humidity at two meters height to compute the EMC using
equation 2.16, and then apply the following correction to derive the 1-hour timelag
fuel moisture:

MC, = 1.03% EMCPRM (2.18)

If it is raining at the observation time we simply set the following fixed value for
the MC1:

MCy = 35.0 (2.19)

10-Hour Timelag Fuel Moisture

Field methods that rely on fuel sticks use an empirical method to account for the
weight loss that sticks undergo as they weather. In our case, we can simply calculate
the EMCPRM as in 2.16 and correct as follows to obtain the 10-Hour Timelag fuel
moisture:

MCyo = 1.28 x EMCPRM (2.20)

Fraction of 10-Hour Timelag Fuel Moisture

10-Hour Timelag Fuel Moisture can be normalized using a fuel map and the
corresponding moisture of extinction of a given fuel type. The moisture of extinction,
expressed as a mass percentage, represents the minimum amount of moisture that
the associated fuel must contain in order not to ignite. Therefore, fuels with a higher
extinction moisture will be more prone to burning than fuel with a lower extinction
moisture, because the latter will be able to prevent ignition even in drier conditions.
This normalized quantity is called Fraction of 10-Hour Timelag Fuel Moisture, and
is referred to as T'Ny:

MCm -2
TNy=—"——
T Mx =2

In order to avoid obtaining values higher than unity, when the 10-Hour Timelag
fuel moisture is higher than the corresponding extinction moisture value we reset

the fractional value to one, assuming that the contribution to fire danger is minimal
whenever this value is reached and does not change significantly for higher values.

(2.21)

2.2.4 Live Fuel Moisture

As previously mentioned, the estimation of the fuel moisture content of live fuels
is one of the major objectives of this thesis. Given the extensive modelling effort
required to obtain such estimates, the entire Chapter 3 is dedicated to this issue.

2.2.5 Static Variables

The high-resolution digital elevation model used in the algorithm was obtained
from the Sardinian administration web portal for geographic information. In order
to compute the slope and aspect values from the DEM, we used the Geospatial Data
Abstraction Library (GDAL) [137] function gdaldem. The entire GDAL library is
free software and open source, and in particular, the gdaldem function is documented
in the Geographic Resources Analysis Support System (GRASS) manual [23]. In
particular, to obtain both the slope and the aspect rasters, we used the Horn function,
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which according to the manual is most suited to rough terrain. The DEM used for
the AOI is shown in figure 2.8, while the derived slope and aspect are shown in
figures 2.9 and 2.10 respectively.

Digital Elevation Model
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Figure 2.8. High-resolution Digital Elevation Model of Sardinia, provided by the Sardinian
administration. Lighter pixels represent higher elevations.

The 100-meter resolution Corine Land Cover Map (CLC) 2018 [32] and the
10-meter resolution ESA Worldcover [146] were used for the moderate-resolution
product based on Sentinel-3 images and for the high-resolution product based on
Sentinel-2 images respectively. In both cases, the original land cover classes were
remapped into three basic classes: grassland, shrubland and forest. Similarly as
[105], different classes corresponds to different LFMC inversion methods, which will
be detailed in Chapter 3. The land cover reclassification schemes are shown in table
2.3.

Finally, in addition to a land cover map, a fuel type map was necessary to obtain
information about the characteristics of the vegetation with respect to fire behaviour.
In particular, the extinction moisture of each fuel is used to evaluate the fire danger
of the dead fuel classes by comparison with their fuel moisture content. To this end,
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Figure 2.9. Slope inclination map obtained
using gdaldem and the Horn algorithm.
The raster was upscaled to match the
Sentinel-3 resolution using a "mean" al-

gorithm.

CLC Map Code

a "mean" algorithm.

CLC Class Description

Figure 2.10. Slope orientation or aspect
map obtained using gdaldem and the
Horn algorithm. The raster was upscaled
to match the Sentinel-3 resolution using

Target Class

211 Non-irrigated arable land Grassland
212 Permanently irrigated land Grassland
213 Rice fields Grassland
221 Vineyards Forest

222 Fruit trees and berry plantations Forest
223 Olive Groves Forest

231 Pastures Grassland
241 Annual crops associated with permanent crops | Grassland
242 Complex cultivation patterns Grassland
243 Land principally occupied by agriculture... Forest

244 Agro-forestry areas Forest

311 Broad-leaved forest Forest

312 Coniferous forest Forest

313 Mixed forest Forest

321 Natural grassland Grassland
322 Moors and heathland Shrubland
323 Sclerophyllous vegetation Shrubland
324 Transitional woodland scrub Shrubland
ESA WC Map Code ESA WC Class Description Target Class
10 Tree Cover Forest

20 Shrubland Shrubland
30 Grassland Grassland
40 Cropland Grassland

Table 2.3. Remapping scheme of CLC and ESA Worldcover classes into our three target
classes of grassland, shrubland and forest. If a map code is not included in the table it
is considered non-vegetated and ignored.

we exploited the European fuel map provided by the Joint Research Center (JRC)

in the European Forest Fire Information System (EFFIS) project [43].
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2.2.6 Summary of the Data and its Providers

In this section we provide a summary of the variables used to generate the
variables and fire danger maps shown throughout the thesis. The first table 2.4
describes the weather variables and the static fuel map and digital elevation model,
while the second table 2.5 contains the references to the specific products of the
exploited satellite imagery.

Data Spatial

Variable Provider T . Timeliness
ype Resolution

Air Temperature @Q2m ECMWF Raster 0.10° Daily
Dewpoint Temperature @Q2m ECMWF Raster 0.10° Daily

Wind Speed u-component @10m ECMWF Raster 0.10° Daily

Wind Speed v-component @10m ECMWF Raster 0.10° Daily
Corine Land Cover 2018 Copernicus  Raster 100m -

ESA WorldCover 2021 v200 ESA Raster 10m -

Fuel Map JRC Shapefile - -
Copernicus EU DEM 1.1 Copernicus  Raster 25m -

Table 2.4. Summary table of the providers of each variable used in the fire danger modelling
process. The resolution and format of the data are also included. If a link to the dataset
is available, it is provided as a hyperlink on the provider name.

Product Provider ©rooossing Spatial Revisit Time
evel Resolution

Sentinel-3 SYNERGY ESA Level-2 300m < 2 days

Sentinel-2 L2A ESA Level-2A 10 — 20 — 60m 5 days

Table 2.5. Summary table of the satellite image products used in the fire danger modelling
process. The product guides are provided as an hyperlink on the provider name.


https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018
https://worldcover2021.esa.int/
https://effis.jrc.ec.europa.eu/about-effis/technical-background/fuels
https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-synergy
https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi/product-types/level-2a
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Chapter 3

Live Fuel Moisture Content
Estimation using Sentinel
Imagery

LFMC directly affects the flammability of the vegetation, and for this reason it
is one of the most important physical variables in fire behaviour and fire ignition
models [107, 12]. The interaction of LFMC with fire determines the time to ignition,
because the fire has to spend energy evaporating the water before igniting the fuel.
Thus, ignition of fuels with a higher moisture content will require stronger fires,
and in general moister live fuels will behave more like fire retardants than like fuels
with respect to fire spread. Laboratory studies of fire ignition and behaviour have
shown that the importance of LFMC in fire behaviour may change depending on
conditions such as the flame temperature [49] or the considered vegetation species
[149]. However, [105] notes that when shifting the analysis from the laboratory
to a large spatial and temporal scale, the LFMC undoubtedly becomes a primary
factor, citing a number of studies dedicated to historical fire analysis in the United
States [117, 40] and Mediterranean areas [27, 77]. Consequently, the capability of
estimating it reliably is fundamental for fire danger assessment [26].

In the scientific literature, LEFMC is generally defined using the terminology
associated to field sampling: if F'W is the leaf sample fresh weight and DW is the
weight of the leaf matter after oven-drying, the LFMC can be calculated as follows:

FW — DW o
Dw

Usually, in field sampling campaigns, freshly cut leaf samples are weighted before
being placed in special ovens at a temperature higher than 100 degrees for a number
of hours. After drying in the oven, the samples are then re-weighed, and the weight
difference between the two measurements corresponds to the mass of the water
contained in the sample. This value is finally divided by the dry mass, providing
the Live Fuel Moisture Content value. Unfortunately, only few institutions have the
resources and know-how that allows them to provide LFMC field measurements with
daily or weekly frequency, and in general the availability is of such measurements
is concentrated in the Mediterranean countries, United States, and Australia [145].
Even where these measurements are available, it remains difficult to extrapolate the
samplings away from the field site with the objective to provide fire danger maps, as
noted by [55]. Therefore, the capability to exploit satellite remote sensing for this
purpose is extremely attractive for any scale larger than the local. In particular,

LFMCy, = 100 (3.1)
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satellite platforms such as MODIS, VIIRS and Sentinel-3 provide the attractive
possibility to map fuel moisture content with a high temporal resolution (daily) and
at a moderate spatial resolution (250 — 500 m).

However, obtaining a reliable estimate of LEMC requires a much stronger scientific
and computational effort than its dead counterpart, which can be estimated using
weather-based variables and indices [105]. The approaches towards LEMC estimation
from remotely sensed data can be grouped in two main classes: empirical-statistical
models, which rely on fitting timeseries of LFMC field measurements with remotely
sensed data from a satellite or aerial platform, and RTM-inversion models [144, 97].
Empirical-statistical methods exploit the availability of field samples to link the
measured values to concurrent satellite acquisitions of surface reflectances and the
associated vegetation indices [125, 17, 39], sometimes also including weather data
[51, 26]. The resulting regression functions are then used to estimate LEMC values in
other areas and times. However, their applicability is usually limited to the targeted
satellite platform and their accuracy in areas other than the field sampling sites is
significantly decreased: using field measurements from a limited number of field sites
makes the dataset inherently incapable of reproducing the vast amount of different
viewing and illumination conditions, vegetation species and soil characteristics [144].

RTM-inversion methods, on the other hand, have the advantage of a physical
foundation that allows their application on a global scale [144] and the knowledge of
the satellite observation angles allows their inclusion in the inversion method. In
optical remote sensing of vegetation, RTMs are used to model the phenomena of light
interception by plant canopies and to interpret vegetation reflectance in terms of
biophysical characteristics [75]. RTMs attempt to describe the processes of scattering
and absorption, the two main physical processes involved in such a medium. For
this reason, they have been widely used to design and exploit vegetation indices
[22, 20, 28, 101, 24] and to develop inversion procedures to estimate vegetation
parameters from remotely sensed data [63, 147, 64, 143, 105, 97].

In the past 50 years, a number of different RTMs based on different modelling
approaches have been developed. Nevertheless, the PROSPECT leaf optical proper-
ties and the Scattering by Arbitrarily Inclined Leaves (SAIL) canopy bidirectional
reflectance model are still the most popular and accurate [71]. In the nineties, these
models have been coupled into PROSAIL, which allows to model both the spectral
and the directional variation of canopy reflectance as a function of leaf biochemical
properties such us chlorophyll content, water content, pigment concentration on the
leaf side, and in terms of Leaf Area Index (LAI), leaf orientation on the canopy side.
Furthermore, in 2001 SAIL was coupled with the Jasinski geometric model [76] to
create GeoSail [69], allowing to properly describe radiation reflected by discontinuous
vegetation. In the following paragraphs, we will:

e describe these models and how they are coupled, and provide a complete
description of their input variables to motivate their use to model different
types of vegetation and their capability to provide estimates of the LEMC

o perform GSAs of the coupled models, both across the entire supported spectrum
and in the Sentinel-2 and Sentinel-3 channels, in order to identify the ideal
bands for LFMC inversion

e describe the vegetation modelling scheme

o describe the model inversion procedure based on Look-Up Table (LUT)s and
how the optimal inversion parameters were obtained

o perform a partial validation using field data
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3.1 Description of the Radiative Transfer Models and
their Variables

SAIL is one of the most widely used canopy reflectance models [72], and was de-
veloped as an extension of the one-dimensional non-lambertian directional reflectance
model developed by Suits in 1972 [126]. Suits himself had extended the functionality
of previously existing models by implementing the capability to reproduce the effect
of the viewing angle on the directional reflectance, and to trace back these effects to
a specific class of canopy components. Suit’s canopy model corresponded to a finite
number of infinitely extended horizontal layers, each layer containing homogeneously
mixed, but randomly distributed components. In 1984, Verhoef [134], proposed a
new solution of Suit’s equations in order to improve the model performance related
to changing viewing angles. According to Verhoef, the simplifications adopted by the
previous model resulted in unrealistic spectra for certain view angle distributions.
By introducing the LAI and the Leaf Inclination Distribution Function (LIDF) in
the calculation of the extinction coefficients, SAIL was able to model canopies with
leaves of arbitrary inclination, hence the name.

+ X DIRECTION
DIRECTION OF

‘ DIRECTION OF VIEW SPECULAR FLUX
® l
CANOPY TOP |

X=40 /
N
LAYER 1 ~ UPWARD
, 1 . DIFFUSE FLUX
1 7 | <
LAYER 2 4 |
X, )
I I DOWNWARD
LAYER 3 | DIFFUSE FLUX
X3 77777 T T T g 7

SOIL -BOUNDARY

Figure 3.1. A three layer example of Suit’s canopy model, adapted from [126]. Each canopy
layer (e.g. grain, stalk, leaves) is modeled as a horizontal, infinitely extended layer. Each
layer is composed of randomly distributed and homogeneously mixed components. The
incident solar flux is divided into two components: the specular flux, which reaches
canopy with an incidence 6 with respect to the normal to layer surface, and founds no
obstacle in its path, and the diffuse flux, which is intercepted by the canopy at least once.
When the solar flux interacts with the canopy layers, it leaves the specular component
and is either absorbed or contributes to the diffuse flux. The bottom-most canopy layer
is always bounded by the soil, which reflects all the downward diffuse flux in the upward
direction.
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PROSPECT is a radiative transfer model based on Allen’s generalized plate model,
which was capable of describing the reflectance and transmittance of monocotyledon
and dicotyledon leaves by introducing a void area index to model the different internal
structure of different leaf species [4]. In 1990, Jacquemoud and Beret introduced
PROSPECT to improve upon Allen’s foundation, but at the same time to keep the
number of model parameters to a minimum in order to facilitate model inversion
[72]. This first version of PROSPECT was based on three parameters representing
the leaf internal structure, pigment concentration parameter and water content.
The modern version employs two main categories of parameters: the leaf structure
parameter N, and the leaf biochemical content parameters.

The leaf structure parameter is related to the cellular structure of the leaf,
and therefore assumes different values based on the plant species and curing state.
The leaf biochemical content parameters describe the physiological state of the
leaf through its mass, water content, and pigment composition. In particular,
leaf pigments play a fundamental role in the ability of plants to adapt to their
environment, and their parametrization has evolved the most over time compared to
the other model variables. In the first model version, the authors used acetone 80%
to manually extract chlorophyll a and b and carotenoids, but were unable to isolate
other pigments such as tannins, brown pigments which appear in senescent leaves,
because no extraction methods were available at the time [72]. In general, leaves
contain three main families of pigments: chlorophylls, carotenoids and anthocyanins.
Chlorophylls are responsible for the photosynthetic process, and for vascular plants
they can be divided in chlorophyll-a and b. Carotenoids also contribute to light
absorption, but are also well-known for their photo-protective capabilities. Finally,
not very well-understood until the past few decades, anthocyanins play a wide variety
of roles that range from shielding the leaf from UV-B light, to increasing resistance
to drought and attacks by herbivores [60].

Subsequent updates allowed the inclusion of new types of pigments and increased
the complexity of the model: in 2008, Feret was able to achieve the separation of the
contributions of carotenoids and chlorophylls [45], creating PROSPECT-5. For this
project, we used the 2017 version PROSPECT-D, where the D stands for "Dynamic"
to refer to its capability to reproduce leaf phenology dynamics thanks to the addition
of anthocyanins [46].

The inversion of PROSPECT is relatively easy, but from a remote sensing point
of view, inverting the reflectance spectra of a singular leaf has limited applicability.
On the other hand, SAIL provides a description of a leaf canopy, but its inversion
from satellite data can be feasible only when several measurements from different
viewing angles are available, which is almost never the case. To solve this issue,
the two models were coupled into PROSAIL [73] since the early nineties, and their
parallel evolution allowed different versions to be coupled together to create different
joint models [75].

In particular, for this project we used the combination of 4SAIL and PROSPECT-
D to describe continuous vegetation such as grasslands and shrublands, and the
combination of PROSPECT-D and GeoSail [69], not to be confused with GeoSAIL
[136], to describe horizontally discontinuous vegetation such as forest canopies.
GeoSail was created in 2001 by Huemmrich using the Jasinski geometric model [76]
to weigh SAIL’s output based on a simple geometric description of forest structure:
trees are assumed to be all the same size and shape (cylindrical or conical), to
not cast shadow on each other and to be small compared to the pixel size. Since
at the time of this research no public code was available that allowed to combine
GeoSAIL with modern implementation of PROSPECT, we forked a freely available,
open-source Python implementation [62] that allowed to combine PROSPECT-D
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Figure 3.2.
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PROSPECT-D, adapted from [46]. The solid lines represent the SAC curves used
by the PROSPECT-D model, while the corresponding dashed lines refer to the curves
used by PROSPECT-5 for the chlorophylls and carotenoids, and to the measurements
carried out by [99] for the anthocyanins.
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Figure 3.3. PROSPECT + SAIL coupling scheme, from [78]: PROSPECT uses a description
of the leaf in terms of its structure (V) and biochemical composition (Cqp, Canthy Cuw,y - )
to output the leaf transmittance and reflectance. These values are used by SAIL to build
the canopy model in conjunction with the leaf inclination and density (LIDF, LAT) and
a soil spectrum (psoir, Psoir). The solar illumination parameters (SZA,SAA) and the
viewing angles (VZA,V AA) allow to determine the canopy reflectance that reaches the
viewer.
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and 4SAIL, and ported Huemmrich’s Fortran code [68] to Python and interfaced it
with 4SAIL.

The symbols, names and units of the model parameters of PROSPECT-D, 4SAIL
and Geo are listed in tables 3.1, 3.2 and 3.5 respectively. In the following paragraphs,
we will provide a detailed description of each variable of the three involved models,
and then proceed to document the model implementation in Python, the sensitivity
analysis and the inversion technique.

3.1.1 PROSPECT-D Model Variables

PROSPECT-D models leaf reflectance and transmittance between 400 and
2400 nm as a function of their dry mass, water content and pigment concentration.

Symbol Quantity Unit

N Leaf structure parameter -

Cuy Equivalent Water Thickness cm

Cam Dry matter content gcem™?
Cap Clorophyll a + b content pg cm =2
Cor Carotenoid content g em ™2
Chp Brown pigments content -

Table 3.1. Parameters of the PROSPECT-D model

Leaf Structure Parameter N

The leaf structure parameter IV allows to represent the internal structure of the
leaf, modelling discontinuities in matter and therefore in refractive index. As is
well-known, vascular plants can be divided into two groups based on their internal
structure: monocotyledons, which have only one type of linear, densely packed
mesophyll, and dicotyledons, which contain a mixture of more compact palisade
mesophyll and a less dense, net-like spongy mesophyll.
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Figure 3.4. Difference between the linear, densely packed mesophyll of a monocotyledon
leaf (left) and the mix between palisade and spongy mesophyll of a dicotyledon (right)
leaf. In particular, the dicotyledon diagram clearly shows the cavities that permeate the
spongy mesophyll of dicotyledons. Adapted from [100]

The first version of Allen’s model [5] was only able to represent compact mono-
cotyledon leaves, and was later generalized to the non-compact case [4], providing the
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base for PROSPECT [72]. N =1 corresponds to the albino maize leaf, and values
up to 1.5 correspond generally to monocotyledon species that are characterized by
very compact mesophyll in the form of long, parallel vein-like structures; values
higher than 1.5 and up to 2.5 can be used to represent dicotyledon leaves, where the
presence of the less densely packed spongy mesophyll allows the presence of more
air inside the leaf. Finally, values higher than 2.5 normally correspond to senescent
leaves, with a decaying or collapsing internal structure. Jacquemoud showed that a
variation of the leaf structure parameter affects the transmittance more than the
reflectance [72], remarking the importance of modelling both.

Water concentration C,, and Equivalent Water Thickness EWT

The water concentration C, represents the amount of water contained in the leaf
expressed in g/cm?. This quantity has the same value, but not the same dimensions,
of the Equivalent Water Thickness EWT which is defined as the hypothetical
thickness that the water contained in the leaf would have if it were spread over
the surface of the leaf itself [36]. For this reason, the name EWT is often used
interchangeably to refer to the concentration or to the actual thickness, creating
some confusion. The water concentration can be obtained by multiplication of the
Equivalent Water Thickness and the water density py,:

Cu lg/em®) = EWT [em] py [g/cm?] (3.2)

However, given the fact that p, ~ 1.0 g/ecm3, the two quantities generally have
the same exact value. The strong water absorption bands in the SWIR and NIR
make this quantity a good candidate for estimation through remote sensing.

Dry Matter Content Cy,,

The dry matter content represents the dry mass per unit area of the leaf. Its
value depends on the species and on the aging and metabolic state of the leaf.

Chlorophyll Content C,;

This parameter represents the concentration of the chlorophyll a and b pigments,
which play the main role in photosynthetic processes. Chlorophyll a absorbs the
most light in the blue and red wavebands, and reflects more light in the green.
Chlorophyll b absorbs most of the radiation in the blue wavelengths.

Carotenoid Content C,,

Carotenoids, are a family of pigments which can be divided into oxygen-free
carotenes and oxygen-containing xanthophylls. Among those that play a role in
photosynthesis, Lightenthaler [85] names S—carotene, luten, violaxanthins and
neoxanthins. Their absorption peak is in the blue wavelengths, around 450nm.

Brown pigment Cy,

Differently than the other pigments, the brown pigment is not represented as a
concentration, but as a dimensionless value that ranges from the value 0, associated
to young or healthy leaves with no presence of senescent material, to 1, which
corresponds to cured vegetation with the maximum content of brown pigment.
Brown pigments are usually associated to the family of tannins, but their role as
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a PROSPECT input is rather marginalized in the scientific literature, where its
value is often set to zero [33, 105] when the authors specifically aim to model green
vegetation or are able to remove brown leaves in a laboratory environment [72].
As noted by Danner [35], brown pigments can be synthesized by the leaf without
altering the leaf colour, which is usually triggered by a decrease of photosynthetic
activity associated to chlorophyll breakdown.

3.1.2 4SAIL Model Variables

The original version of SAIL, in addition to the leaf reflectance and transmittance
and to the viewing angles, only required the value of the Leaf Area Index (LAI) and
the specification of a Leaf Inclination Distribution Function (LIDF) to run [134],
as the model evolved new parameters began being included. In 1991, Kuusk [80]
modeled the hotspot effect in canopy reflectance, and this work was integrated into
SAIL creating SAILH [135] in the late nineties. In 2007, a further update allowed to
take into account for the different temperatures of illuminated and shaded leaves,
and further extended the applicability of the model to the Thermal Infrared (TIR)
domain. Being based on a four-stream radiative transfer model, this version was
named 4SAIL.

Symbol Quantity Unit
P Leaf reflectance -

T Leaf transmittance -

LAI Leaf area index m?/m?
LIDF Leaf inclination distribution function -

Hot Hotspot parameter m/m
Ps Soil reflectance assumed Lambertian or not -

sza or 0 Solar zenith angle deg
vza or 0,  Viewing zenith angle deg
raa or g, Relative azimuth angle deg

Table 3.2. Parameters of the 4SAIL model

Leaf Area Index

As defined by Verhoef in [135], the Leaf Area Index of a canopy layer is the ratio
between the total, one-sided leaf canopy area to the associated ground surface area.
Canopies with a higher LAI will be more dense, occupying more of the available
area around the tree, and shadowing more of the ground.
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Ground area
.----=-.__coveredbyplant _.---;-.

-

____________ -

Plant A Plant B
Leaf area = 40% Leaf area = 80%
of ground area of ground area
(leaf area index = 0.4) (leaf area index = 0.8)

Figure 3.5. Graphical comparison between two different LAI values: on the left, plant A
with fewer leaves only manages to cover 40% of the ground area (LAI = 0.4), while on
the right the much lusher plant B covers 80% of the ground area (LAI = 0.8). Sourced
from [1]

Leaf Inclination Distribution Function

The Leaf Inclination Distribution Function (LIDF) is used to represent in a
simple way a number of different leaf orientations. Verhoef [135] describes a method
to define a number of different LIDFs using two parameters: average leaf slope
LIDF,, and distribution bi-modality LIDFy. The implementation used for our
purposes supports the functions listed in table 3.3.

LIDF type LIDF, LIDF,

Planophile 1 0
Erectophile -1 0
Plagiophile 0 -1
Extremophile 0 1
Spherical -0.35 -0.15
Uniform 0 0

Table 3.3. Two Parameter LAD parametrization, where a and b represent the average leaf
slope and distribution bimodality respectively.

Hotspot Factor and Hotspot Effect

It is well-known that the backscatter direction corresponds to the maximum
value of the reflected diffuse radiation. The same effect with different names can be
found across different disciplines: heiligenschein in meteorology, opposition effect in
astronomy, and hotspot effect in optical remote sensing [80, 65]. The explanation of
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this effect is that in the backscatter direction, the shadow cast by the particles of the
medium the radiation is impacting will not be visible, while in any other direction a
portion of the shadow will necessarily be visible, lowering the value of the reflected
radiance. In order to model this effect, SAILH introduced the hotspot parameter
Hot, which represents the ratio of leaf width to canopy height. For this reason, the
values of this parameter may vary a lot depending on the species considered. Some
examples of these values for different crops as presented by [8] are summarized in
table 3.4.

Crop Type Hot [m/m)]

Maize 0.01 - 0.20
Wheat 0.01 - 0.50
Rice 0.01 - 0.10
Soybean 0.20

Sugar Beet 0.20 - 0.40
Table 3.4. Values of the hotspot parameter for different types of crops, from [8]

Soil Reflectance and Brightness Factor

In order to model the contribution of the upper soil layer to the reflectance,
and the changes in this reflectance that may be caused by varying levels of soil
moisture, two soil-related parameters are defined: a soil reflectance factor pgpi;, which
depends on the wavelength, and a dimensionless soil brightness factor ayy; that
can be used to scale the soil reflectance value [70, 108]. The Python bindings used
for this project offer two soil spectra, a dry soil spectrum named soil__spectrum__1
and a wet soil spectrum soil__spectrum__2, which are represented in figure 3.6, and
offer the possibility to merge them using the brightness factor and a dryness factor
Dsoil- The resulting pgoq; is easily computed as a weighted sum of the two reflectance
spectra:

Psoil = Qsoil * [Psoil + S0il_spectrum__1 + (1 — psoir) * soil__spectrum_2]  (3.3)

Setting the soil dryness factor pg,;; to zero implies using the wet soil only, while
setting it to 1 implies using the dry spectrum only. The spectra can also be specified
by the user using the soil__spectrum__1 and soil__spectrum_ 2 keywords.

Default Soil Spectra of pyprosail

0.5 1

0.4 1

e
w

—— Dry Soil (rsoill)
—— Wet Soil (rsoil2)
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Reflectance

o
[N}

500 1000 1500 2000 2500
Wavelength [nm]

Figure 3.6. Dry (brown line) and wet (blue line) soil spectra included in the pyprosail
Python library. The library also allows the users to provide their own soil spectra.
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Illumination and Sensor Viewing Geometry

Finally, in order to define the illumination geometry and the amount of radiation
that reaches the observer, the following angles must be set:

e Sun Zenith Angle sza or 0, the angle between the local zenith and the
incident Sun rays. It is zero when the Sun is at the zenith, and is 90 degrees
when the Sun is on the horizon.

e View Zenith Angle vza or 6, the angle between the local zenith and the
rays that impact the viewer.

e Relative Azimuth Angle raa or ¢, the angular displacement between the
azimuth of the Sun and the viewer.

A graphical scheme of the coordinate system that represents the scene geometry
can be found in figure 3.7.

zenith

N . 35.66°S

RAA

148.15°E

Figure 3.7. Sun-Sensor geometry scheme adapted from [87]

3.1.3 Geo4Sail

Since there was no open-source publicly available library that coupled the Jasinski
geometric model with a modern version of SAIL, we forked the pyprosail library
and ported Huemmrich’s Fortran code to it. Since GeoSail was a simple addition
to SAIL, we could exploit the 4SAIL functions of pyprosail, reducing the code
porting workload only to the Geo functions. Since at the time of writing only the
functions for cylinders and cones were implemented, this meant rewriting in Python
the GeoSail GEOCONE and GEOCYLI functions [68]. However, following Jasinski’s
instructions [76] it will be possible to implement other shapes in the future. Each
function requires the inputs summarized in table 3.5, the first three of which are
outputs of 4SAIL:
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Symbol Quantity Unit
tdo Canopy hemispherical-directional transmittance -
rdo Canopy hemispherical-directional reflectance -
780 Canopy bi-directional reflectance -
Ps Soil reflectance assumed Lambertian or not -
chw Crown height-to-width ratio m/m
ccov Crown coverage -
cshp Crown shape -

Table 3.5. Main variables of the Geo model

In the cylinder case, the scene reflectance is calculated as the sum of the com-
ponent reflectances of the illuminated and shadow portions of the background and
of the canopy. In the cylinder case, the contribution of the shadowed crown is
neglected, because it is assumed to be quantitatively negligible with respect to the
other components.

Geocyli
For square cylinders, the ratio of canopy area to shadowed area for the individual
crown 7 can easily be calculated as:
n = chw tan(sza) (3.4)

Using n we can compute the fraction of shadowed soil as follows:

sfrac=1— ccov — (1 — ccov)™ (3.5)
The fraction of illuminated soil can then be calculated by subtracting from one
the fraction of soil covered by the canopy crown ccov and the fraction of shadowed
soil sfrac:
ilsoil = 1 — ccov — sfrac (3.6)
The reflectance of the shadowed background rssh can be calculated using the
hemispherical-directional transmittance through the crown tdo outputted by 4SAIL
and the soil reflectance spectrum rsoil:
rssh = te psoil (3.7)
Finally, assuming that the contribution of the shadowed canopy is negligible, the
scene reflectance can be calculated as follows:
rsc = ccov rc+ sfrac rssh + ilsoil psoil (3.8)

where the first summand is the reflectance of the illuminated crown, the second
summand is the reflectance of the shadowed background and the third component is
the reflectance of the illuminated background.

Geocone

The cone aspect angle caspa depends only on the crown height to width ratio
chw:
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2 chw

Knowing the cone aspect angle, we can use it and the sun zenith angle to calculate
the angle describing the location of the edge of the shadowed area on the cone 3:

1
caspa = arctan () (3.9)

tan (caspa)

B = arccos (3.10)

tan (sza)

This allows us to compute the ratio of canopy area to shadowed area 7 for an
individual conical crown:

tan 8 — 3
n=-—_r

s

(3.11)

In the conical case, the fraction of shadowed crown is simply the ratio between
the 5 angle and =:

fesh = g (3.12)

The fraction of shadowed background can be computed with the same formula
as the cylindrical case thanks to the usage of the similarity factor n:

sfrac =1 — ccov — (1 — ccov)™! (3.13)
The same goes for the fraction of illuminated soil:
ilsoil =1 — ccov — sfrac (3.14)

The reflectance of the shadowed crown is by definition the product of the
hemispherical-directional transmittance tc and the hemispherical-directional re-
flectance rc outputted by 4SAIL:

rchs = tc re (3.15)
The reflectance of the shadowed background can be computed as before:
rssh = te psoil (3.16)

Finally, the scene reflectance is given by:

rsc = ccov(l — fchs) re+ (ccov fesh) resh + sfrac rssh + ilsoil psoil — (3.17)

where the first summand represents the contribution of the illuminated crown,
the second summand the contribution of the shadowed crown, the third summand the
contribution of the shadowed background and the fourth summand the contribution
of the illuminated background.
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Addition of Other Shape Functions

In principle, in order to add trees with different shapes, one need only define the
n factor as in [76] in relation to the target shape. The article already provides the
similarity parameters of circular cylinders and spheres, as summarized in table 3.6.

Shape n=As/A

4 tan(sza) chw

Circular Cylinder

™
tan(sza) chw

Square Cylinder

Cone oty g+
™
Sphere tan (sza) sin (sza)
Table 3.6. Similarity parameter of canopy geometries, adapted from [76]. The parameter v
1
is defined as arcsin o=feos. 1) = Ag/A; refers to the ratio between shadowed and total
area.

3.2 Vegetation modelling and RTM Inversion Strategy

Our vegetation modelling strategy is heavily based on [105], which can be
considered the state of the art regarding LFMC inversion from satellite images
based on the inversion of PROSAIL-adjacent RTMs. As anticipated in the previous
chapter, we distinguish three basic vegetation types: grassland, shrubland and forest.
The combination of PROSPECT-D and 4SAIL is used to model grasslands and
shrublands, which are assumed to be homogeneous vegetated pixels. The combination
of PROSPECT-D, 4SAIL and GEO allows us to model potentially discontinuous
vegetation, and therefore we use it to model forested pixels. Differently than [105],
we do not use a grassland canopy reflectance to model the forest understory, but we
combine the pyprosail dry and wet soil spectra in different proportions using the
psoil parameter.

The RTM inversion strategy applied to these two model combinations is based on
the use of LUTs, again similarly as [105], but with small improvements on the LUT
creation side. Before describing in detail the methodology adopted to create and
invert the LUTs, we will perform a sensitivity analysis of the two model combinations
in order to verify that the model is sensitive to the variables that allow us to calculate
the LEMC, and in particular to identify the ideal Sentinel-2 and Sentinel-3 channels
to use to successfully perform the inversion. While many PROSAIL sensitivity
analyses can be found in the scientific literature, almost none of them are specifically
tailored to the problem of live fuel moisture content estimation, and since many
versions of PROSPECT and SAIL exist, it was deemed useful to perform a GSA on
the specific model versions and combinations we are going to use.

3.3 Sensitivity Analyses of the Combined Models

Before attempting to retrieve the biophysical parameters from satellite observa-
tions using a model inversion technique, it is mandatory to verify the feasibility of
the retrieval on a variable by variable basis. Indeed, there may be large differences in
the quantitative contribution to the model output of the individual variables, i.e. the
variation of one particular variable or of a group of variables may determine most of
the model output, while the contribution of the remaining ones may not determine
any significant quantitative change. If a variable does not have any significant effect



3.3 Sensitivity Analyses of the Combined Models 45

on the variation of the model output, it will be very difficult to invert it, because
the model will barely react even to large variations of the variable.

Furthermore, given the fact that we are interested in inverting the model from
satellite data, only a limited number of wavebands will be at our disposal. Therefore,
in addition to verifying that the variation of our target variables has a significant
impact on the model output, we will also need to verify that this applies to the
portions of the spectrum sample by the satellite platform providing the observations.

To this end, Global Sensitivity Analysis (GSA) are a family of mathematical
procedures that allow to quantify the relative contribution of each variable of the
model to the model output [122, 123], and are often used to quantify the effect
of the uncertainty on a variable on the uncertainty of the model output [114].
In remote sensing, they are often used to assess the feasibility of the retrieval of
the parameters of a certain model from remotely sensed data [21, 9, 103, 97]. In
particular, the Sobol method allows to obtain both first-order sensitivity indices,
which quantify the contribution of each variable per se, i.e. while all the other
variables are kept constant, and higher-order sensitivity indices that account for the
interactions between variables. The possibility to take into account the interactions
between variables is fundamental, because some variables that may appear to be
not significant at the first-order, may become significant through interactions [103].

Let y = f(xo,21,...,2m) be our m-parameter model, and let V(x;) be the
variance of the i-th model parameter z;. Sobol’s method allows to decompose the
total unconditioned variance v(y) into the conditional variances of each individual
parameter v(f;(x;)) and into the conditional variances associated to the interactions
between parameters v(f;;(z;, x;)). Since each parameter can interact with all the
others, the order of the interactions will be up to m. The total unconditioned
variance can therefore be decomposed as the sum of the first-order variances and
the sum of the higher-order variances:

m m m

v(y) = Z”i + Z Z Vij + Vijk + oo+ Vijkm (3.18)
i=1 i j=i+l

The first-order variance associated to the i-th variable x; can be calculated as

the variance of the expected value of f when z; is fixed and all the other parameters

I;,gi:

vi = olfi(2i)] = va, [Be, (y|2i)] (3.19)

Finally, the sensitivity indices for each individual variable can be obtained using
their variance and dividing it by the total unconditioned variance. The first-order
sensitivity indices S; of the i-th variable is therefore defined as the portion of total
unconditioned variance associated to the variation of the parameter x; without
taking into account the interactions with the other parameters x;:

S, = Vi _ Vx; [Ea?i;éj (y’xz)] (3.20)
v(y) v(y)

The k-th order sensitivity index associated to the interaction of the i-th model
parameter z; with other n — 1 variables can intuitively be obtained by subtracting
their n first-order variances to the expected value of the model when those n
parameters are fixed and all the other m — n parameters are allowed to vary:

Vij.. Vziz;... n[E i#i] n(y‘x'ax’auwx )]
Sy = 22 = Letverel B U 2 o (321)
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Finally, the total-order sensitivity index of the i-th variable is the sum of the
first-order sensitivity index of that variable and of all the higher-order sensitivity
indices associated to its interactions with the other variables:

v(y)

These calculations were carried out using the SALib Python library [66], which
makes it straightforward to construct the necessary sequences for each model parame-
ter through the Saltelli module, requiring only the definition of the variation interval
of each variable as an input. The module returns quasi-random, low-discrepancy
sequences calculated in order to sample the parameter space as uniformly as possible
by exploiting Saltelli’s sampling scheme, which is an improvement of Sobol’s [113, 66].
The sequences are then used as inputs for our fork of the pyprosail Python library,
and the resulting outputs are ran through the sobol.analyze function which per-
forms the Sobol Global Sensitivity Analysis returning both first-order indices and
total-order indices.

In the following paragraphs, we will present the results of the sensitivity analysis
for the PROSPECT-D + 4SAIL model, which will be applied to grasslands and
shrublands, and for the PROSPECT-D + 4SAIL + GEO model, which will be
applied to forests. Each paragraph will contain a table detailing the boundaries of
the model variables fed as inputs to SALib Saltelli module, graphs of the results
of the GSA for the entire portion of the spectrum covered by PROSPECT, and
finally the integration of the results in the Sentinel channels. For the sake of brevity,
the results of the GSA are shown only for the Sentinel-3A and for the Sentinel-2A
channels. Due to the similarity of the spectral response functions of the "A" sensors
and their "B" counterparts, the results are graphically indistinguishable, and will
therefore be omitted for the sake of brevity.

Sri=Si+ > S+ Sijm = (3.22)

3.3.1 PROSPECT-D + 4SAIL

The boundaries of the parameters used to run the GSA of the combined
PROSPECT-D and 4SAIL are listed in table 3.7. The values of the variables
are sourced from the most recent literature [103, 105], and refer to the range these
parameters usually occupy in grasslands and shrublands. Furthermore, to simplify
the management of the different leaf inclination distribution functions, we exploited
the pyprosail feature that allows to set the LIDF using an ellipsoidal function
defined only by an average leaf slope angle, and letting it vary between 0 and 90
degrees.

The results of this GSA over the entire spectrum supported by PROSPECT-D
are shown in figure 3.8, while the results in the Sentinel-3 SYNERGY S3A channels
are shown in figure 3.9 and 3.10 for Ocean and Land Colour Instrument (OLCT)
and Sea and Land Surface Temperature Radiometer (SLSTR) respectively. Finally,
figure 3.11 shows the results in the Sentinel-2A MultiSpectral Instrument (MST)
channels. All these graphs show the values of the total-order sensitivity indices of all
the variables of PROSPECT-D and 4SAIL, except for the angular variables, which
have not been included in the GSA due to the fact that they are always known
when using satellite data. The results for the Sentinel-3 case were anticipated in the
conference paper [97].

First of all, if we assume a significance threshold of 5% as done in [103], we can
state that the hotspot parameter Hot and the carotenoid concentration C,, are not
significant across the entire spectrum supported by PROSPECT-D, because their
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Symbol Quantity Unit Min-Max Type
PROSPECT-D

N Leaf structure parameter - [1-3.0] float
Cuw Water concentration g-cm ™2 [0.0001 — 0.0360] float
Cim Dry matter content g-cm™? [0.0017 — 0.096]  float
Cab Clorophyll a + b concentration pug-cm™2  [1 — 100] float
Clor Carotenoid concentration pg - cm 2 [1-10] float
Cant Anthocyanin concentration ug - em ™2 0 — 40] float
Chp Brown pigment - 0—1] float
4SAIL

LAI Leaf area index - 0.5—17] float
lidfa Average leaf angle deg 0 —90] float
Psoil Dry-wet soil factor - 0—1] float
Tsoil Soil brightness factor - 0-—1] float
Hot Hotspot parameter (m/m) 0.01 — 0.40] float

Table 3.7. Parameter bounds used for the GSA of the combination of PROSPECT-D and
4SAIL.
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PROSPECT-D + 4SAIL Total Order Sensitivity Indices
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Figure 3.8. GSA of the PROSPECT-D + 4SAIL radiative transfer models. The stacked
plot shows the progression of the total order sensitivity indices of each parameter of the
combined model in the portion of the spectrum supported by PROSPECT. Viewing
angles have not been included in the GSA, since their value is always known.

total order sensitivity index never reaches the significance threshold. In general, the
most significant biophysical parameters for PROSPECT-D + 4SAIL in the visible
spectrum are the LAI, Average Leaf Angle (ALA), anthocyanin concentration Cgy
and chlorophyll a and b concentration Cyp.

In the violet-blue wavelengths, the soil brightness and dryness parameters reach
their highest significance values, with the LAI and ALA still making up most of
the reflectance. In the visible spectrum, the anthocyanin concentration Cg,; and
the chlorophyll a and b concentration Cy;, take the lead, with the former being
the highest significance parameter in the blue wavelengths and the latter becoming
prominent in the green and red wavelengths. The LAT and ALA make up most of the
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output reflectance in the NIR, until we reach the SWIR and the water thickness C,,
takes on the majority of the significance. Finally, in the longer SWIR wavelengths,
the dry matter content Cy, reaches its highest significance values, even though most
of the reflectance is still traceable to C, and AL A variations. The brown pigment Cj,
is most significant in the shorter NIR wavelenghts, while the leaf structure parameter
N contributes relatively consistently across the whole spectrum.
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Figure 3.9. Total order sensitivity indices of the PROSPECT-D + 4SAIL parameters in
the Sentinel-3A OLCI channels.

The graph in figure 3.9 shows 15 out of the 16 OLCI bands included in the
SYNERGY product. The OLCI Oa0l channel was disregarded since it does not
completely fall into the portion of the electromagnetic spectrum covered by PROSAIL.
The LAT and the ALA are the most significant variables in the blue channels, while the
anthocyanin content plays a prominent role as we transition into the green channels
0a05 and Oa06, remarking the importance of its addition in the PROSPECT-D
model. The chlorophyll content takes over from channel Oa07 onwards. The OLCI
NIR channels (Oall and following) are mostly dominated by the ALA, but the
brown pigment and the LAI also contribute to a significant portion of the reflectance.
The other model parameters such as dry matter content, leaf structure parameter,
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and soil parameters are generally of low significance.
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Figure 3.10. Total order sensitivity indices of the PROSPECT-D + 4SAIL parameters in
the Sentinel-3A SLSTR channels.

The SYNERGY product contains all the SLSTR solar-reflective channels except
for S4. Channels S1 and S2 fall in the green and red respectively, and show
very similar results to the overlapping OLCI bands Oa06 and Oa08. The same
can be said for channel S3, which falls in the NIR and encompasses OLCI Oal7.
Unsurprisingly, SWIR channels S5 and S6 show very significant water thickness
contribution. Furthermore, S6 is also the SYNERGY channel where the dry matter
content contribution is most significant. Consequently, successful inversion of the
LFMC cannot disregard these two channels.
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Figure 3.11. Total order sensitivity indices of the PROSPECT-D + 4SAIL parameters in
the Sentinel-2A S2MSI2A channels.

Of the twelve Sentinel-2 S2MSI2A channels, only eleven are distributed as actual
surface reflectance products, since channel B10 is used for atmospheric correction
purposes and does not contain surface information. In this case, channels B11 and
B12 are the most important with respect to successful LEMC inversion, similarly as
SLSTR’s S5 and S6 with which they share very similar central wavelengths.

3.3.2 PROSPECT-D + 4SAIL + GEO

The boundaries of the parameters used to run the total order sensitivity indices of
the combined PROSPECT-D, 4SAIL and GEO are listed in table 3.8. The values of
the variables are sourced from the most recent literature [105], and refer to the range
these parameters usually occupy in forest environments. The same considerations
made in the previous paragraph about the LIDF apply here.

The results of the GSA in terms of total order sensitivity indices across the entire
PROSPECT-D spectrum are shown in figure 3.12. While the SZA was not included
in the sensitivity analysis for the same reasons stated in the PROSAIL case, the
VZA and RAA have been set to zero, since GEO only supports a nadir viewing
geometry. Furthermore, the GSA was conducted for a cylinder shaped crown. For
this reason, the only additional variables compared to the PROSAIL case will be the
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Symbol Quantity Unit Min-Max Type
PROSPECT-D

N Leaf structure parameter - [1.05 — 2.74] float
Cuw Water concentration g-cm™2 [0.0001 — 0.0290] float
Cim Dry matter content g-cm™? [0.0018 — 0.0189] float
Cab Clorophyll a + b concentration pg-cm™2  [1 —107] float
Clor Carotenoid concentration pg - cm 2 [1—10] float
Cant Anthocyanin concentration ug - em ™2 0 — 40] float
Chp Brown pigment - 0—1] float
4SAIL

LAI Leaf area index - 0.5 — 5] float
lidfa Average leaf angle deg 0 —90] float
Psoil Dry-wet soil factor - 0—1] float
Tsoil Soil brightness factor - 0.3 float
Hot Hotspot parameter (m/m) 0.01 — 0.40] float
sza or 0 Solar zenith angle deg 27 — 80] float
GEO

chw Crown height to width ratio m/m 1-3] float
ccov Crown coverage m?/m? 0.2 —-1] float
cshp Crown shape Cone, cylinder -

Table 3.8. Parameter bounds used for the GSA of the combination of PROSPECT-D,
4SAIL and GEO. Note the absence of the viewer azimuth angle and the relative azimuth
angle, due to the fact that GEO only supports nadir viewing geometry.

crown height-to-width ratio chw and the crown coverage ccov. In addition, given
the important role of the soil reflectance in this model, we set the soil brightness
parameter rsoil to a constant value of 0.3. This allowed us to obtain more useful
results from the GSA, since otherwise the soil reflectance would dominate the output,
especially in the visible portion of the spectrum.

1OOPROSPECT—D + 4SAIL + GEO Total Order Sensitivity Indices

Cab
Car
Cant
Cbr
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Figure 3.12. GSA of the PROSPECT-D + 4SAIL 4+ GEO radiative transfer models. The
stacked plot shows the progression of the total order sensitivity indices of each parameter
of the combined model in the portion of the spectrum supported by PROSPECT. Viewing
angles have not been included in the GSA, since their value is always known.
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As expected, the crown coverage ccov has a prominent role in determining the
output reflectance, because it directly controls the proportion of radiation that will
be associated to the canopy and to the soil. The other additional variable, i.e. the
crown height-to-width ratio, is not significant across most of the NIR and SWIR
spectrum, and reaches its highest significance values in the visible spectrum in
general and in the blue wavelengths in particular. Qualitatively, the considerations
made in the previous section regarding the importance of the leaf biochemical
parameters still apply here with no significant change, but quantitatively their role is
significantly reduced by that of the crown coverage. Another major difference with
the previous model combination is the role of the ALA, previously very important in
the NIR-SWIR, now insignificant across the entire spectrum due to the prominence
of the the crown coverage.
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Figure 3.13. Total order sensitivity indices of the PROSPECT-D + 4SAIL + GEO
parameters in the S3A OLCI channels.

With respect to the PROSAIL case, the LAI has much less influence in the
output of the OLCI visible channels, with most of the reflectance being associated
to variations in the soil dryness parameter and in the crown coverage. The crown
height-to-width ratio is also significant from Oa02 to Oa04. The anthocyanins
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and chlorophyll concentration take up their usual roles in the blue and green-red
wavelengths respectively, while the brown pigment and LAI rise up in importance in
the NIR channels.

S3A-SLSTR S1S3A-SLSTR S2 S3A-SLSTR S3S3A-SLSTR S5S3A-SLSTR S6

40

o®

N gt W o N @ o W o N e oM W o N cu M W ol

Figure 3.14. Total order sensitivity indices of the PROSPECT-D + 4SAIL + GEO
parameters in the S3A SLSTR channels.

The SLSTR channels show the usual water thickness prominence in the SWIR
channels S5 and S6, but the crown coverage has a strong effect in both channels.
In S5 it reaches a higher total sensitivity index than the water thickness itself.
Compared to the PROSAIL case, the dry matter content maintains generally higher
sensitivity index values.
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Total order sensitivity indices of the PROSPECT-D + SAIL + GEO
parameters in the S2A S2MSI2A channels.

Similar results can be observed in the Sentinel-2A S2MSI2A channels, where
the dry matter content shows up among the significant parameters even in the NIR

band B9.



3.4 LUT-based Inversion 55

3.4 LUT-based Inversion

Since our objective is to reconstruct the combination of the model biophysical
parameters from the measured reflectances, we face a typical example of remote
sensing inverse problem. In this particular domain, the PROSAIL family of radiative
transfer models has been the subject of an intense scientific effort thanks to its
relatively small number of input variables and the high interest they raise for
vegetation monitoring purposes [75].

Let us consider a generic physical model m of an arbitrary number of variables
xi,t = 1,2, ..., k. The dependent variable, which in our case is a reflectance, can be
represented as follows:

R=M(z)+e (3.23)

Where ¢ represents the residual error between the simulated and the observed
variables. Equation 3.23 is the compact form of the set of n equations:

{Ri =m;(x1, 29, ..., x) +& 1=1,2,..,n (3.24)

According to [75], there are two categories of inversion methods applied to the
inverse problem of a nonlinear model such as PROSAIL. Both are fundamentally
based on the minimization of a cost function 4% that can be written as the sum of
the summands:

TR —mi(wy, @, z) ] o |2 2
52 — Z [ i — mi(z1 4372 xk)} + Z J J (3.25)
i=1 OR; j= Ogj

The first summand represents the difference between the observed and simulated
output, while the second represents the difference between the input variables to
estimate and the a priori knowledge available at the time of the inversion. It is
clear that in order to obtain the optimal inversion result one should attempt to
minimize both summands. The divisors og; and o,; in equation 3.25 represent the
uncertainties on the observations and on the model, and the uncertainty on the a
priori information respectively. Since their values are usually unknown, minimization
of the cost function must rely on some assumptions, with the drawback of possibly
returning solutions associated to local minima.

The two approaches to the inversion problem distinguish themselves on the
prioritization of the first or second summand of equation 3.25:

e Approaches that focus on the minimization of the first summand, i.e. on the
observation space, define the solution searching for the minimum difference
between the observed and the simulated values. Look-up tables, iterative
optimization and Monte Carlo methods are typical examples of this approach.

e The approaches that focus on the second term are based on the definition of a
parametric function or model which was previously trained to reproduce a set
of outputs from a set of inputs. An example of these methods are artificial
neural networks and vegetation index-based methods.

Even confining the research to the PROSAIL family of RTMs, there exist many
examples of implementations based on both approaches. Machine learning methods
saw a surge of interest in the past decade for their ease of implementation and
their computational speed after the training phase, but their applicability is limited
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on one hand from the relative scarcity of LFMC measurements and their uneven
distribution around the globe [145], and on the other, for the specific case of Sentinel-3
SYNERGY, by the lack of publicly available datasets from 2019 to today.

For this reason, we focus on the approaches based on the observation space, and
in particular to those based on LUTs. Mathematically, LUTs are among the simplest
inversion methods [7], and consist in sampling the input parameters of the model
according to their sensitivity and then using them to create a table of simulated
observations. The actual observations are then compared to this pre-computed
set. The assumption is that the inputs that generated the simulated observations
which are more similar to the observed ones are the best guess of the actual input
parameters, and therefore the optimal solution of the inverse problem. The advantage
of using LUTs, in addition to their relative simplicity compared to other inversion
methods, is their capability to explore the global solution space if the parameter
space is sufficiently sampled, avoiding being trapped in local minima [7]. Examples of
successful utilization of LUTs for the inversion of biophysical variables from satellite
data are plenty [29, 136, 79, 138, 58], and despite a recent surge in the interest
towards machine learning methods [148, 140, 34], their popularity remains strong
even for the specific case of LEMC and PROSAIL models [143, 141, 142, 104, 105].

3.4.1 LUT Parametrization Criteria and Calculation Procedure

It is well-known that the inversion problem is under-determined, due to the
fact that there are more unknowns than measured variables, and ill-posed, due to
the fact that very similar spectra may result from different combination of input
variables jeopardizing the uniqueness of the solution [7]. For these reasons, the
LUT parametrization process, i.e. the process of selecting the combinations of input
variables for the target RTM, is of paramount importance for the success of the
inversion. To this end, [105] notes that biophysical variables are not independent of
each other, and that unlikely combinations may aggravate the ill-posedness of the
inversion problem by producing spectra similar to others that result from realistic
combinations. To solve this issue, the authors define a set of "ecological rules" that
allow to discard these unlikely combinations before calculating the LUT.

The ecological rules are based on measured relationships between two biophysical
parameters. The authors exploited the globeLFMC database [145] for LFMC samples,
the LOPEX1993 [67] and ANGERS2003 [74] database for EWT, DMC and Cy,
samples, and the MODIS product MCD15A3H [94] for LAT estimates to verify the
correlation of different combinations of these variables on different land cover types.
The strongest correlations, quantified in terms of correlation coefficient r, were found
for:

LAT and LFMC, r = 0.71 on grasslands

Cup and Cyp,, 7 = 0.58 on grasslands

Cy and Cy,,, 7 = 0.66 on forests

Cuw and Cy,, r = 0.52 on forests

Weaker correlations were found for LAI and FMC on forests and Cg, and C,, on
shrublands.

Consequently, we used only the strongest relationships in the compilation process
of our LUTs, which we will now describe step-by-step. It should be noted that, while
[105] contains a description of the definition and application of the ecological rules, it
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does not contain the LUT calculation algorithm, and in general, finding a complete
description of such an algorithm is quite rare in the adjacent literature. For this
reason, we will now describe our LUT calculation algorithm citing the sources and
noting our additions to the literature where necessary.

A LUT is generated at each passage of the target sensor, in order to use the
SZA interval recorded by the sensor as a priori information for the LUT to reduce
the number of stored variables, allowing us to better sample the observation space.
This is the main improvement of our LUT calculation algorithm compared to the
literature, since usually a single LUT is generated for each land cover allowing the
SZA to vary in a the entire interval observed by the target sensor. After getting
the SZA values from the satellite image, the LUT calculation process takes place as
follows:

1. Definition of the LUT target size: we tested LUT sizes ranging from
10000 to 200000 samples, and found that the benefit of increasing the LUT
size resulted in drastically diminishing returns above the 100000 samples mark.
For this reason, we ultimately used a target sample size of 100000 samples.

2. Definition of the LFMC minimum and maximum values: we used the
same minimum value of 20% and maximum value of 200% for all three land
covers.

3. Creation of first-guess distributions for each variable: after setting a
seed for the random number generator, we independently create distributions
of values for each model parameters. The number of samples generated in
this phase is 15 times the number of target LUT samples, in order to keep a
wide margin of surviving samples after enforcing the ecological rules. Some
model parameters are generated using Gaussian distributions and the mean
and standard deviation values shown in [105]. The other parameter values are
either set using simple uniform distributions between the minima and maxima
shown in [105], or set to fixed values due to their low significance as measured
by the GSA. The distribution type, minima and maxima for each parameter
of the model and for each of the three target land cover types are shown in
tables 3.9, 3.10, 3.11.

4. Elimination of unlikely combinations: for each couple of strongly cor-
related model parameters, we applied the selection procedure as shown in
[105]. After removing all the unlikely combinations, if the remaining number
of samples is lower than the target sample size, we return to step 1).

5. Sample selection: once we have an adequate number of samples, in order to
match the LUT size to the target sample size, we choose among the available
profiles those that generate an equal number of LFMC samples in a number
of 10%-wide LFMC bins between the minimum and maximum target LFMC
values. This ensures that we have the same amount of profiles in each of this
bins, and therefore that we sample equally profiles that generate different
ranges of LEFMC. If the number of remaining profiles is insufficient to satisfy
this requirement, we go back to step 1). Once the requirement is satisfied, we
proceed to calculate the LUT using the appropriate model based on the land
cover.

6. LUT calculation: the reflectance spectra outputted by the model are con-
volved using the Spectral Response Function (SRF) of the target sensor. The
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Sentinel-3 S3A SRFs for the sensors OLCI and SLSTR. are shown in figures
3.16 and 3.17 respectively, while the Sentinel-2 S2A SRFs for the sensor MSI
are shown in figure 3.18.
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https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-3-olci/olci-instrument/spectral-characterisation-data
https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-3-slstr/instrument/measured-spectral-response-function-data
https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi/document-library/-/asset_publisher/Wk0TKajiISaR/content/sentinel-2a-spectral-responses
https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi/document-library/-/asset_publisher/Wk0TKajiISaR/content/sentinel-2a-spectral-responses
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Parameter Unit Distribution Min-Max w,o
PROSPECT-D

N - Gaussian [1-3] 1.7,0.32

Cuw g-cm™2 Gaussian [0.0001 — 0.0360] 0.0131,0.0071
Cam g-cm ™2 Gaussian [0.0017 — 0.0096] 0.0042,0.0018
Cap g -ecm~2  Gaussian [1—110] 43.5,19.29
Car g - em™2  Constant 8 -

Cant 0y - em™2  Constant 20 -

Chp - Constant 0 -

4SAIL

LAI m?/m? Gaussian [0.5 — 7] 1.12,1.21
lidfa - - Erect., spher., plan. -

Dsoil - Uniform [0—1] -

Tsoil - Uniform [0—1] -

Hot m/m Constant [0.20] -

vza deg Constant 5 -

raa deg Constant -30 -

Table 3.9. Description of the functions used to sample to input parameters of PROSPECT-
D and 4SAIL to generate LUTs for the grassland land cover type.

Parameter Unit Distribution Min-Max W, o
PROSPECT-D

N - Gaussian [1.27 — 3] 1.79,0.36

Cuw cm Gaussian [0.0001 — 0.0520] 0.0110,0.0061
Cam g-cm™2 Gaussian [0.0017 — 0.0330]  0.0053,0.0033
Cap pug-em™2  Gaussian [0.78 — 77.53] 35.37,22.02
Car ng - cm™?  Constant 10 -

Cant ng - em™2  Constant 20 -

Cip - Constant 0 -

4SAIL

LAI m?/m? Gaussian [0.5—17] 1.76,1.56
lidfa - Uniform [50 — 90] -

Psoil - Uniform [0—1] -

Tsoil - Uniform [0—1] -

Hot m/m Constant [0.20] -

vza deg Constant 5 -

raa deg Constant —30

Table 3.10. Description of the functions used to sample to input parameters of PROSPECT-
D and 4SAIL to generate LUTs for the shrubland land cover type.
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Parameter Unit Distribution Min-Max Wy, o
PROSPECT-D

N - Gaussian [1.05 — 2.74] 1.54,0.27
Cuw g-em™? Gaussian [0.0001 — 0.0290] 0.0098, 0.0037
Cam g-em ™2 Gaussian [0.0018 — 0.0189] 0.0052,0.0027
Cap g -cm~2  Gaussian [1—107] 41.13,20.63
Cor g - em™2  Constant 10 -

Cant g - em™2  Constant 20 -

Chp - Constant 0 -

4SAIL

LAI m?/m? Gaussian [0.5 — 5] 1.67,1.23
lidfa - - Plag., erect., spher. -

Dsoil - Uniform [0—1] -

Tsoil - Uniform [0—1] -

Hot m/m Constant 0.20 -

vza deg Constant 5 -

raa deg Uniform -30 -

GEO

chw - Uniform 1-3] -

ccov - Uniform 0.2 —-1] -

cshp - Uniform Cone, cylinder -

Table 3.11. Description of the functions used to sample to input parameters of PROSPECT-
D, 4SAIL and GEO to generate LUTs for the forest land cover type.

3.4.2 LUT Calculations and Small Improvements on the Established
Literature

The same input LUTs are generated for a specific land cover type, but the
reflectance values outputted by the model are then convolved using the spectral
response functions of the target satellite sensors. This means that we will have the
same input LUTs for grasslands, but different output LUTs for Sentinel-3A and
Sentinel-3B, even though given the similarity of the SRFs the difference between the
output spectra will be quantitatively small. The same can be said for the Sentinel-2A
and Sentinel-2B bands.

Compared to the established literature, we exploited the fast LUT calculation
times to generate different LUTs for different SZA intervals, rather than generating
a single LUT for each land cover type and allowing the SZA to vary in the interval
experienced by the sensor. In particular, during a Sentinel-3 acquisition the SZA
varies by about +8 degrees around a mean value, while for Sentinel-2 imagery the
SZA only varies by small amounts, usually a little over 1 degree. Nevertheless, in
both cases we calculate or read' the mean passage SZA, round it to the nearest
integer and create a LUT associated to that SZA value, and then proceed slightly
differently for the two satellite platforms:

e For each Sentinel-3 observation, we allow the SZA value to vary in an interval
of £8 degrees around the rounded mean passage value.

e For each Sentinel-2 observation, we simply set the SZA to the mean passage
value.

This allowed us to significantly improve the inversion results, both on simulated
data and on the field measurements, compared to using a single LUT as suggested

n the Sentinel-2 S2MSI2A case, the mean passage SZA can be read directly using the provided
MTD_TL.xm1 file in the Mean_Sun_Angle section. In the Sentinel-3 SYNERGY case, the value must
be calculated from the one-dimensional netedf field in the OLCI tiepoints file.
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in the related literature. Nevertheless, rather than having three LUTs (i.e., one for
each land cover type) for each satellite, we need to calculate new LUTs for each new
mean passage SZA, significantly increasing the amount of storage space required for
the LUTs.

3.4.3 Extraction of the Optimal Inversion Parameters

[105] contains an extensive analysis of the impact on the LFMC inversion perfor-
mance based on a number of different parameters:

o Amount of spectral information used (satellite channels, vegetation indices)
e Amount of closest matching spectra among which to search the solution
e Cost Functions used to rank the potential solutions

e Measures of Central Tendency used to harmonize the potential solutions

Building on this foundation, we used field data provided by the Department of
Mechanical Engineering, Association for the Development of Industrial Aerodynamics
(ADAI) of the Coimbra University and the Institute for BioEconomy (IBE) of the
Italian National Research Council (CNR) to test the impact of different inversion
parameters on the performance of our inversion procedure. The optimal Sentinel-
2 and Sentinel-3 bands to use for the inversion, were identified using simulated
observations and the results of the GSA, differently than [105]. Subsequently, for
each of the remaining inversion parameters, we varied only the target parameter and
kept the others fixed and used the field data to test the effect on the accuracy of
the retrieval. The results we obtained apply to the Sentinel-2 observations for the
ADALI dataset and to both the Sentinel-2 and the Sentinel-3 observations for the
CNR dataset. In the following paragraphs, we will give a brief description of the
field sites, and then proceed to describe the results of the tests for each inversion
parameter.

3.4.4 ADAI Dataset: Lousa Site

The ADAI dataset contains daily LFMC values for two tree species (Pinus
pinaster and Eucalyptus globulus), and two shrub species (Calluna vulgaris and
Chamaespartium tridentatum). The measurement campaign started in 1996 and
continued uninterrupted until today. The measurements are gathered with different
frequency depending on the time of the year: less frequently in the winter, and more
frequently - even daily - during the fire season. In our case, we used the portion of
this dataset that starts in October 2018 and ends in April 2022.

The sampling area shwon in figure 3.19 corresponds to a singular Sentinel-3 pixel,
which is cut roughly in the middle by a road, which is surrounded by a mix of trees
and shrubs. This implies that the Sentinel-3 pixel is not perfectly homogeneous, and
indeed, we were unable to obtain acceptable LFMC inversions using this satellite
platform. At the moment our model is not capable of mixing the spectra of trees and
shrubs. Nevertheless, since both the Corine Land Cover and the ESA WorldCover
classified this area as forested, we decided to focus on the two tree species, and
tested the inversion results on the Sentinel-2 images.

After comparing a few estimated LFMC timeseries with the measured timeseries
of the various species, it became apparent that our estimated progression matched
more closely that of the Pinus pinaster than that of the Fucalyptus globulus. Even
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Figure 3.19. Bing Satellite map of the Lousa sampling site, roughly delimited by the
blue rectangle. The red dots mark the Sentinel-2 pixels used for the validation, and
the associated value represents the coefficient of determination (R?) of the estimated
timeseries with respect to the average dataset.

averaging the two measured timeseries, the correlation proved to be significantly
worse than that with the sole Pinus pinaster. Therefore, we will only show the
results pertaining to this species. The right side of figure 3.19 shows the Sentinel-2
pixels used for this validation and the associated coefficient of determination R2,
calculated by comparing the “predicted” LFMC values estimated with our procedure
and the “true” values measured with by ADAI. For the sake of brevity, only the
final results will be reported hereafter.

3.4.5 CNR Dataset: Capo Caccia Site

Capo Caccia is located in the northwestern part of Sardinia, and the sampling
site shown in Figures 3.20 and 3.21 has been used by CNR since the early 2010s,
with weekly or bi-weekly measurement campaigns. The local vegetation is dominated
by shrubs, namely Juniperus phoenicea, with a smaller but significant presence of
Pistacia lentiscus and Phillyrea angustifolia. Other species worth mentioning are
Clistus monspeliensis and Rosmarinus officinalis, which are more sensitive to seasonal
changes, especially during the summer.

The dataset provided by CNR contains the raw measurements of the dominant
species, i.e. the Juniperus phoenicea, and a timeseries of the average of all the
aforementioned species, Juniperus phoenicea included.

Amount of Spectral Information

The results of the simulations showed that the highest number of variables
could be retrieved with an adequate coefficient of determination R? if all the bands
were used for the retrieval, but, as expected, this approach was not optimal for
the retrieval of LFMC. This result was shown in [97] using an early version of the
LUTs. Rather than progressively reducing the number of bands, we started from
the two most sensitive bands to Cy,, (SLSTR S5 and SLSTR Sg for Sentinel-3, Bi;
and Bjy for Sentinel-2) and from the most sensitive band to Cg,, (SLSTR Sg for
Sentinel-3, Bjg for Sentinel-2) and progressively added other bands to verify the
effect on the LFMC retrieval using the coefficient of determination and the RMSE
as figures of merit. The LFMC retrieval accuracy increases if bands containing
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Figure 3.20. Bing Satellite map of the Capo Caccia sampling site, roughly delimited by
the blue rectangle. The red dots mark the Sentinel-2 pixels used for the validation, and
the associated value represents the coefficient of determination (R?) of the estimated
timeseries with respect to the average dataset.

Figure 3.21. Bing Satellite map of the Lousa sampling site, roughly delimited by the
blue rectangle. The red dots mark the Sentinel-3 pixels used for the validation, and
the associated value represents the coefficient of determination (R?) of the estimated
timeseries with respect to the average dataset.

information about the chlorophyll content, anthocyanin content and LAI are added,
such as OLCT Oagg or SLST R S3 for Sentinel-3, and By and Bg for Sentinel-2. The
addition of further bands, either brought no significant improvement or significantly
worsened the performance.

Nevertheless, the LEMC retrieval for Sentinel-3 was only slightly improved using
OLCT Oapg, and given the small performance difference an argument could be
made for using only SLSTR to invert the LFMC, which may pave the way for
near-real-time LFMC products based on the Sentinel-3 Level 1 product family.
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Table 3.12 contains the list of channels used for the inversion of the LEMC for
each satellite platform.

Platform Product Channels
Sentinel-2  S2MSI2A 2,8, 11, 12
Sentinel-3 SY_2 SYN  0a06/SYN06, S3N/SYN19, S5N/SYN20, S6N/SYN21
Table 3.12. List of the best performing channels of the Sentinel-2 S2MSI2A and Sentinel-3
SY 2 SYN for the inversion of the LEMC.

3.4.6 Cost Function

Among the many cost functions tested in [105], we only compared the performance
of the Root Mean Square Error function (RMSEy), the exponential function, and
the Bhattacharya Divergence. Table 3.13, where we denote the measured reflectances
as v;, the reflectances stored in the LUT as w; and the number of involved channels
as n contains the results of our tests.

Cost Function Formula ADAI R? CNR R?
RMSE o, ey 0.47 0.76
Bhattacharya Divergence —1Inl+ ) . (, [v;w; — %) 0.19 0.74
Exponential Sy w (exp—”i%“i) \ 0.53 0.74

Table 3.13. LFMC retrieval performance with different cost functions on the ADAT and
CNR dataset.

The RMSE and the Bhattacharya divergence show very similar performance, while
the exponential function performs slightly worse in Capo Caccia and slightly better
in Lousa. Even on a point-by-point basis, the exponential function and RMSE tend
to give rather similar results, making it difficult to identify a best performer. This is
not surprising, since even in [105] the two functions show comparable performance.
In addition, we should remark that our analysis is limited to two sites, and while the
variation of the inversion performance tends to agree in almost all instances, more
data is needed to draw definitive conclusions.

3.4.7 Number of Selected Solutions

Let us denote the number of selected solutions with N: for each N, we will
calculate the cost function value for each LUT entry, and sort these values from
smallest to largest. The spectra associated to the smallest N values will be the only
ones considered during the extraction of the solution. In [105], the LEMC retrieval
performance worsens gradually after the 1% mark, implying that the bottom 1%
cost function values were used for the inversion. The absolute number of LUT
samples is not specified. In our case, the performance of the inversion worsens
after the 30-40 mark (0.03 — 0.04%), while the optimum seems to always be located
between 15 and 25 (0.015 — 0.025%) closest spectra. While both cases show that
using a relatively small amount of solutions is optimal, it is difficult to explain the
large difference between the percentages since we are unable to compare the LUT
compilation algorithms directly.
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N ADAI R? CNR R?

20 0.55 0.76
50 0.55 0.76
100 0.48 0.75

Table 3.14. LFMC retrieval performance with an increasing number of selected solutions.
The N selected solutions are those that minimize the chosen cost function.

3.4.8 Measures of Central Tendency

Once a certain number of solutions are selected from the LUT, we need to
harmonize the results in order to associate a unique solution to the measured
spectrum. Usually, this is done by applying a certain measure of central tendency
such as the arithmetic or geometric mean, the median or the mode, to the selected
solutions. Compared to [105], we only tested the arithmetic mean and median. In
the referenced article, the performance differences between the six tested functions
are marginal for grasslands, and more significant for shrublands and forests. The
median seems to work best overall, and in particular for forests and shrublands. Our
tests, summarized in table 3.15 confirm this result.

Function ADAI R? CNR R?
mean 0.27 0.55
median 0.48 0.76

Table 3.15. LFMC retrieval performance using different measures of central tendency to
harmonize the selected solutions.

3.4.9 Final Inversion Parameters

Following the tests in paragraphs 3.4.6, 3.4.7 and 3.4.8, we selected the inversion
parameters summarized in table 3.16 to generate the LFMC datasets which will be
used to calculate the fire danger index.

Inversion Parameter Value
Number of Selected Solutions 20
Cost Function RMSE

Measure of Central Tendency median
Table 3.16. Inversion parameters used to generate the LFMC estimates.

3.5 Early Validation of the Inversion Procedure

In this paragraph we will show the results of the validation using the optimal
inversion parameters listed in paragraph 3.4.9. Before comparing them with the
field data, the estimated timeseries extracted using Sentinel-2 or Sentinel-3 data are
smoothed using a i algorithm with a 7-sample window.

3.5.1 Sentinel-2 Product
ADATI Dataset

As mentioned in 3.4.4, the estimated timeseries follow rather closely the Pinus
pinaster measurements, while a significant bias persists if we compare the estimated
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timeseries to the Fucalyptus globulus measurements and to a lesser extent to the
average of Pinus pinaster and Fucalyptus globulus measurements. Therefore, we used
the Pinus pinaster both for identifying the optimal inversion parameters and the
validation. The 7 Sentinel-2 points used for the validation are shown in Figure 3.19,
and were selected to avoid road pixels and mixed pixels and privileging more densely
tree-covered areas in order to minimize spurious contributions to the reflectance.

Dataset: Live Pinus Pinaster, Mean of 7 points
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Figure 3.22. Average of the 7-day rolling mean timeseries of the Sentinel-2 LEMC product
shown in figure 3.19 (orange) and ADAI Pinus pinaster measurements (blue).

If we compare the individual pixel timeseries with the Pinus pinaster measure-
ments the best performing pixel reaches a coefficient of determination R? of 0.55,
while the worse performing shows an R? of 0.01. If we average the timeseries of the
seven pixels, i.e. if we generate another timeseries by aggregating the daily mean of
the LFMC estimates, we obtain the result shown in figure 3.19, with a satisfying R?
of 0.47: this value, while not higher than the 0.55 of the individual best performer,
is significantly higher than all the other six measurement points.

CNR Dataset

In this case, the LFMC estimated timeseries follows more closely the measured
dataset of the average of all the sampled species. The higher homogeneity and larger
size of the sample site compared to the Lousa one allowed us to obtain an extremely
high coefficient of determination with respect to the values usually found in the
literature related to satellite-based inversions [105].
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Dataset: Media specie, Mean of 10 points
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Figure 3.23. Average of the 7-day rolling mean timeseries of the Sentinel-2 LFMC product
shown in figure 3.20 (orange) and CNR average species measurements (blue).

Figure 3.23 shows the progression of the average of the estimated timeseries of
the ten Sentinel-2 points shown in figure 3.20. The coefficient of determination is
much higher than that of the individual point timeseries, reaching a value of 0.76.

3.5.2 Sentinel-3 Product

Successful inversion of the LFMC product based on Sentinel-3 imagery was only
achieved on the CNR Capo Caccia dataset. The homogeneity and large size of this
site even with respect to the Sentinel-3 300-meter pixel size allowed us to obtain good
correlation: if we compare the average timeseries extracted from the four Sentinel-3
pixels that overlap the sampling area, shown in figure 3.21 we obtain an R? of 0.42.

Dataset: Media specie, Mean of 4 points
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Figure 3.24. Average of the 7-day rolling mean timeseries of the Sentinel-2 LFMC product
shown in figure 3.20 (orange) and CNR average species measurements (blue).
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Individually, the four sampled pixels return coefficients of determination that
range from 0.27 to 0.43. In general, the R? and RMSE values shown in figure 3.24
are comparable with the ones found in [105] for the shrubland land cover.
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Chapter 4

The Fire Danger Index

In the previous chapters we have identified the biophysical and meteorological
variables relevant to fire danger, and we have described the estimation procedure
of each of them. In order to provide an easy to interpret fire danger index, these
variables must be properly normalized and combined together, and finally translated
into categorical danger ratings.

4.1 State of the Art of Satellite-based Fire Danger In-
dices

The scientific literature that constitutes the base of this index goes from the FPI
to the DFHI. The FPI model was rather simple: it was defined as the product of the
normalized versions of two main variables: the relative greenness, which provided
an estimate of the amount of live vegetation, and at the same time was used as a
proxy for live fuel moisture content, and the timelag fuel moisture, which provided
an estimate on the dryness level of the dead vegetation layer [15].

FPI, =100 — (RGy Ly + TNy Dy) % 100 (4.1)

Equation 4.1 shows the "uncorrected" FPI equation, where RG is the relative
greenness fraction we mentioned in equation 2.14, T'N; is the fractional ten-hour
timelag fuel moisture calculated in equation 2.21 and Dy represents the dead fuel
load. The FPI used a fuel model both to calculate the fractional ten-hour timelag
fuel moisture and to derive the live and dead fuel loads. As mentioned in the previous
chapters, we remark that Burgan himself, in the introduction to his 1993 article
where he introduced the relative greenness, stated that at the time the technology to
assess live fuel moisture content from satellite observations was not ready. For this
reason, the FPI relies on the relative greenness as a proxy for vegetation moisture.

The DFHI built upon the foundations of the FPI by correcting the basic model
variables to include the effects of the topography, wind speed and equivalent water
thickness in the fire danger assessment [84]. In particular, the DFHI exploited Cec-
cato’s Global Vegetation Moisture Index to estimate the equivalent water thickness
from two MODIS surface reflectance bands. While this was not yet a proper live fuel
moisture content assessment for all the reasons stated in paragraph 1.3, it proved to
be a very simple way to monitor the vegetation water content without significantly
altering the computational load required to calculate the index.

These additions to the FPI allowed to improve the performance of the fire danger
index, but did not deviate significantly from the original two-variable model.
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Figure 4.1. Conceptual map of the DFHI algorithm, sourced from [84]. The scheme shows
how the basic satellite surface reflectances, meteorological variables and static data are
used to calculate the two final FPI variables. In particular, the EWT and the ETy are
used to correct the live vegetation fraction Ly and the temperature T¢, used to calculate
the ten-hour timelag fuel moisture F'Mgp, respectively.

4.2 Objectives of the New Index

In this thesis, we propose a novel fire danger index based on satellite imagery.
We aim to build upon the foundations provided by the FPI and DFHI by:

e Proposing an additive fire danger model, in order to overcome the limitations
of the two-variable model established by the FPI. This will allow us to take
into account more directly the role of variables such as the wind speed and
live fuel moisture content.

o For the first time, exploit the surface reflectances provided by the target
satellite platforms to estimate both the vegetation greenness and the live fuel
moisture content.

In the following paragraphs we will describe the procedure that allows us to
obtain the DFDI values from the biophysical variables that determine fire danger,
and how the values are transformed in a fire danger scale. Finally, we will validate
the index using historical wildfire occurrence data in the study area.

4.3 The DFDI Algorithm

Since the DFDI is a fire danger index, each member of the DFDI equation must
represent a danger variable. This implies that, while some variables require not only
normalization, but also their rearrangement into an equivalent danger variable. For
instance, high LEMC values are associated to a lower fire danger. For this reason,
we will now use the VAR notation to refer to the normalized version of the original
biophysical variables. Those variables that require only normalization will therefore
appear as VAR in the DFDI equation, while those which require both normalization
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and "inversion" will appear as the one’s complement of their normalized version
(1-VAR).
DFDI values on a scale from 0 to 100 can be obtained using the following formula:

DFDI=f; (1 —=LFMC)+ fo (1= L)+ f3s (1 =TNy) + faw+ f5 Bty (4.2)
where:

e LFMC is the historical minmax-normalized LEMC
o Ly is the fraction of live vegetation as calculated in 2.15

e TNy is the fractional moisture content of the dead vegetation as calculated in
2.21

e w is the historical minmax-normalized wind speed
e FEty is the historical minmax-normalized reference evapotraspiration

e f; are the weights of each parameter

In the following paragraphs we will now proceed to describe the normalization
process of each variable and how the weights were obtained.

4.3.1 Variable Normalization

Unsurprisingly, given the fact that they were the two factors used to obtain the
DFHI, the fraction of live vegetation Ly and the fraction of 10-hour timelag fuel
moisture T'Ny are already normalized. However, compared with [84], the definition
of the Ly is slightly different in order to obtain values between 0 and 1. Furthermore,
the DFHI used to correct these two variables using the equivalent water thickness
and the evapotranspiration, respectively. This allowed to indirectly include the
effects of changes in vegetation moisture and evapotranspiration through simple
means, and without altering the FPI model.

In our case, estimating the live fuel moisture content from the satellite data
allowed us to include its effect directly in the index. Furthermore, since it is
well-known that wildfires can ignite and propagate even when only some of the
danger variables overcome danger thresholds, we decided to model their contribution
separately and then aggregate them using a simple sum. This allows us to avoid
the issue of previous indices that were calculated as a product of different variables,
where only one factor returning very low values would necessarily translate into very
low final danger ratings. In our case, even if one or two variables are associated to
low danger, the final danger rating will not necessarily be very low thanks to the
contribution of the other variables. As usual, proper normalization of the danger
variables, so that their values range from 0 when their values pose the relative
minimum danger, and 1 when danger is the highest, is necessary. In addition, we
take into account that not all variables contribute to danger the same way, also
depending on the geographical location of the area of interest, and therefore proper
weighting of the individual danger factors is needed.
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Live Fuel Moisture Content Normalization

Higher fuel moisture content values are associated to lower fire danger. However,
different vegetation types may vary their LFMC in significantly narrower or larger
ranges [145]. Therefore, live fuel moisture content values are normalized using the
historical recorded minima and maxima of each pixel of the AOI:

LFMC — LFMCpin
LFEMCae — LEM Chyin,

This returns values between 0 and 1, where 0 corresponds to the historical
minimum (driest recorded day) and 1 to the historical maximum (moistest recorded
day). The live fuel moisture content related danger rating should be higher when the
vegetation is relatively dry, and therefore we use its one’s complement (1 — LFMC(C')
in the index equation.

LFMC =

(4.3)

Fraction of Live Vegetation

The live vegetation fraction is already a normalized version of the relative
greenness. Since the associated danger rating should be higher when a lower amount
of live vegetation than usual is present, we use its one’s complement (1 — Ly) in the
index equation. This parameter is sometimes called fraction of dead vegetation.

Fraction of 10-hour timelag Fuel Moisture

Higher values of fraction of 10-hour timelag fuel moisture are associated to
a lower fire danger, given the fact that the vegetation contains more water and
is consequently harder to ignite. For this reason, we use its one’s complement
(1 =TNy).

Wind Speed

Horizontal and vertical wind speed values u and v are used to calculate the
absolute wind speed value w. This value is then normalized using the historical
records for the given area of interest:

W= 2 Wmin (4.4)
Wmazr — Wmin

Since higher wind speeds are associated to higher fire danger, this value is directly

used in the DFDI equation.

Evapotranspiration

Hourly evapotranspiration values are normalized using the historical recorded
values for the area of interest:

EtO - EtOmin
EtOmax - EtOmin

Since higher evapotranspiration values are associated to a greater loss of water,
and therefore with a higher fire danger, this value can directly be used in the DFDI
equation.

Tio = (4.5)
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4.3.2 Weighting the DFDI Parameters

Even though from a qualitative point of view all the considered variables con-
tribute to determining fire danger, their quantitative contribution will not necessarily
be the same. But how to quantify the relative contribution to fire danger of each
variable without having another measure of fire danger? In order to solve this
issue without relying on another existing fire danger index, we decided to use the
Fire Radiative Power (FRP) estimates provided by FIRMS in the entire Sentinel-3
availability timeframe. The rationale behind this choice relies on the assumption
that a well performing fire danger index should be able to indicate where fires with a
higher FRP are more likely to occur. Therefore, we may use historical FRP estimates
and the associated danger conditions to assess which variables contribute the most
on average.

After collecting the fire danger variables associated to each FIRMS record’s date
and geographical position, we used Scikit-learn’s [11] Random Forest regressor
to fit them to the FRP values. Random forest methods are routinely used in
classification and regression tasks. They are based on a random aggregation of a
high number of decision trees, and the algorithm output is obtained through majority
voting for random forest classifiers, and as the average output of the decision trees for
the random forest regressors. The randomization allows to overcome the proneness
to overfitting associated to simple decision trees, and Scikit-learn’s tool offers
a number of options to further reduce this possibility. Furthermore, this tool also
allows us to quickly obtain the feature importance of each feature fed into it as part
of the training set choosing from a number of importance measures. Among these,
the Gini importance, also known as Mean Decrease in Impurity (MDI) quantifies
variable importance based on the number of node splits that include a certain feature
and the number of split samples, averaging over all the forest trees. Compared
to other importance metrics, it is known for favouring categorical variables over
numeric ones, due to the fact that the latter can be split over more trees, and for its
lower capability to distinguish relevant variables when they are strongly correlated.
While no categorical variables are involved in the definition of our index, avoiding
the inclusion of strongly correlated variables is an utmost priority.

This method of weighting the fire danger variables also allows us to calibrate the
index on a specific region: in some areas, fire occurrence may be more frequently
linked to strong winds than others where fires are more driven by the accumulation
of dead fuel or by intense moisture deficit in the live vegetation. The results for the
AOI and for the Portugal Coimbra region are detailed in table 4.1.

Features LEMC (fl) Lf (f2) TNf (f3) w(f4) ETy (f5) R?

Region
Sardinia 18 33 15 20 14 0.66
Coimbra 17 20 16 27 20 0.87

Table 4.1. Gini importance [%)] of the fire danger variables and coefficient of determination
R? of the random forest regressor in the Sardinia region in Italy and in the Coimbra
region in Portugal.

Running the same algorithm in Sardinia and Portugal returns significant dif-
ferences: while in Sardinia the most discriminating feature is the fraction of live
vegetation by a wide margin, in Portugal the wind speed is the most important,
with the fraction of live vegetation and evapotranspiration tied as the second most
important. Concerning the Sardinian case, the results match the description of the
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wildfire history in the region given by Salis [111]: the largest fires in the region are
usually associated to strong winds and with an accumulation of dead fuels, explaining
the supremacy of the two aforementioned factors.

4.4 Calibration and Performance of the DFDI

The definition of the fire danger index given in 4.2 is based on a weighted sum
of fire weather variables, normalized using the historical records of a given area.
For this reason, it will be very unlikely to find very low index values, which would
be associated to the variables concurrently assuming values close to the historical
low, and very high values, which would be associated to the variables concurrently
assuming values close to the historical high. Therefore, the index should be calibrated
accordingly, i.e. in order to provide fire danger ratings consistent with the seasonal
distribution of its values. To this end, the histogram of the DFDI values calculated in
the entire Sentinel-3 timeframe shown in figure 4.2 confirms our previous assumption:
an insignificant amount of pixels are associated to danger values between 0 and
10 and above 80. As a consequence, the thresholds defined to transform the index
values to easily interpretable fire danger categories will be differently sized, and the
associated thresholds will necessarily be concentrated in the 20 — 70 interval.

DFDI Global Distribution in SAR, 2019/1/1 - 2021/12/31
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Figure 4.2. Frequency histogram of the DFDI values in Sardinia by land cover in the
timeframe 2019/1/1 - 2021/12/31. Values indicate the percentage of pixels falling in the
interval that ranges from the previous tick value to the tick value centered on the bar.

Ideally, a useful fire danger index should have the following characteristics:
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A) The index should be able to recognize high fire danger areas in a given region
without indiscriminately returning high danger values in an excessively large
portion of the territory: if on a given day the fire danger is high in too large a
portion of the managed territory, the index will provide no useful information
for allocating firefighting resources. If this happens regularly during the fire
season, the index will be of no use to the firefighting community.

B) The index should be capable to recognize the areas where fires are likely not
only to ignite, but to spread and burn large patches of territory: therefore, large
fires and burnt areas should be regularly associated to high fire danger values.
Even if the index satisfies the previous requirement, i.e. if it is calibrated in
such a way that it routinely recognizes a manageable amount of high danger
areas, its ability to predict fire danger will be reduced if burnt patches and
large fires tend to occur often in areas classified as low danger.

Therefore, a fire danger index should be calibrated in order to satisfy requirement
A), while its performance will be evaluated using requirement B). Difficulties in sat-
isfying both requirements, or insufficient performance are indicative of fundamental
issues in the definition of the index. For instance, a fire danger distribution that
could be deemed acceptable according to criterion A), may perform badly according
to criterion B). Therefore, the calibration of the index can be performed iteratively
as follows:

1. Define index thresholds for five danger classes: very low, low, medium, high,
extreme

2. Test the distribution of the index on the fire season and off the fire season

3. If the distribution is not satisfactory according to criterion A), (i.e., too many
pixels classified as high or extreme danger at once) return to step 1)

4. Test the performance of the index using FIRMS FRP and burnt area data

5. If the performance is not satisfactory according to criterion B), (i.e., too many
pixels classified as low or very low danger on hotspots and burnt areas) return
to step 1)

The index was tested in the period 2019-2021, which marks the availability
timeframe of Sentinel-3 imagery and at the same time allows us to use validated
FRP and burnt area datasets for our own validation. The occurrences of FIRMS
hotspots with FRP higher than 10 MW by day of the year were counted in order to
assess the beginning and ending of the fire season in the test area of Sardinia. This
value was chosen in order to exclude from the analysis smaller fires, which may still
be detected by the FIRMS sensors, but may be associated to controlled burns or
self-extinguishing small fires. The definition of fire danger entails both the ignition
and the propagation of the fire, and dangerous propagation requires an environment
that favours the spread of fire. Ignition, on the other hand, is often of anthropogenic
nature, especially in Mediterranean countries. For all these reasons, we deemed
necessary to focus on the higher-power, more dangerous wildfires to calibrate the
index.

The results, shown in figure 4.3, confirm the trends discussed by [111] and
portrayed in figure 1.4, with an up-tick in the fires occurring in October, which
are even higher than those in September. This trend is explained by the rainfall



4.4 Calibration and Performance of the DFDI 76

Occurences of fires by DOY, 2019/1/1 - 2021/12/31
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Figure 4.3. Occurrence of hotspots with FRP higher than 10 MW using FIRMS records
in the timeframe 2019/1/1 - 2021/12/31.

patterns of the last few years, which saw relatively rainy Septembers followed by
relatively dry and hot Octobers.

For this reason, we set the beginning of the fire season on the June 1st, and the
ending on October 15th. The remaining days will be considered off fire season. The
index thresholds identified using the iterative calibration process are listed in table
4.2, and the distribution of the index in the study area on and off the fire season is
shown in figures 4.4 and 4.7, 4.4 and 4.8 and 4.6 and 4.9 respectively for years 2019,
2020 and 2021.

Danger Class

Very Low
Low
Medium
High
Extreme

Index Interval
0-—30
30 —40
40 — 55
55 — 65
65 — 100

Table 4.2. Classes of the DFDI and associated thresholds.

Looking at the three analysed years, we can observe the same general fire danger
behaviour for each land cover type, with a progressive year-by-bear increase of the
danger values during the fire seasons, and with shrublands returning higher danger
ratings outside of the fire season and grasslands returning higher danger ratings
during the fire season. Unsurprisingly, the analysis returns 2021 as the worst of
the three processed years, since this year’s fire season was considered the worst fire
season in Sardinia in 24 years in terms of burned area [109], mostly because of the
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DFDI Distribution in SAR, 2019 Fire Season
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Figure 4.4. DFDI distribution by land
cover in Sardinia, Fire season of 2019

DFDI Distribution in SAR, 2020 Fire Season
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Figure 4.5. DFDI distribution in Sardinia,

Fire season of 2020

DFDI Distribution in SAR, 2021 Fire Season
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Figure 4.6. DFDI distribution in Sardinia,

Fire season of 2021

DFDI Distribution in SAR, 2019 Off Fire Season
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Figure 4.7. DFDI distribution by land
cover in Sardinia, Off Fire season of 2019

DFDI Distribution in SAR, 2020 Off Fire Season
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Figure 4.8. DFDI distribution in Sardinia,
Off Fire season of 2020

DFDI Distribution in SAR, 2021 Off Fire Season
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Figure 4.9. DFDI distribution in Sardinia,
Off Fire season of 2021

devastating Planargia-Montiferru megafire, which destroyed over 13000 hectares of
shrubs, cultivated areas and forests over a period of eight days.

Outside the fire season, the DFDI returns mostly very low or low danger values.
On average, shrublands tend to show the highest fire danger values, but virtually no
pixels are assigned an high or extreme danger rating outside of the fire season: only
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the forests in 2019 and the shrublands in 2021 round to 1% high danger rated pixels.
Lower fire danger ratings are assigned to forests and grasslands, with 75-95% of the
pixels being rated as very low or low danger.

During the fire season, grasslands tend to show the highest fire danger values,
being regularly rated as the highest fire danger class, peaking in 2021 with 28% of
the pixels rated as high or extreme danger, while forests tend to show the lowest fire
danger values, again peaking in 2021 with 16% of pixels rated as high or extreme
danger. Nevertheless, the amount of pixels rated as high or extreme danger remains
well within the limit of manageability by fire danger experts: in forests, high or
extreme danger rated pixels range from the 10% of 2019 to the 16% of 2021; in
2019, 13% of shrubland pixels are rated high or extreme danger, reaching a 22%
peak in 2021. In the worst case scenario, which is associated to grasslands in the
2020 and 2021 fire seasons, we reach a total of 28% pixels rated high or extreme
fire danger. Even in these two cases, only 4% of the pixels are assigned an extreme
danger rating, allowing the experts to discriminate the most endangered areas even
within a generalized context of high fire danger. Furthermore, it should be noted
that fire management experts are generally more interested in managing shrublands
and forests, for which the worst case scenarios consist in 22% and 16% of pixels
respectively being rated high or extreme.

The performance of the index against FIRMS hotspot FRP and burnt area
perimeters provided by the Sardinian fire department are shown in figure 4.10 and
4.11 respectively. In order to exclude small fires, only hotspots with an FRP higher
than 10 MW and burnt areas larger than 10 Ha have been included in the analysis.
While each hotspot corresponds to a single pixel, burnt areas were large enough to
span multiple pixels. For this reason, each burnt area was rasterized to the Sentinel-3
grid, and all corresponding DFDI values were included in the analysis.

DFDI vs FIRMS Hotspots (FRP > 10 MW), 2018/10/10 - 2022/7/31

53
50 A
40 A
30 A
25
20
10 +
4
1
O __— T T T
\9$ \9¢\ &\)@ @é\ @@o
) & Y
W N\ <<,+

Figure 4.10. Distribution of the DFDI in Sardinia over FIRMS hotspots in the timeframe
2019/1/1 - 2022/12/31 represented as a percentage of total pixels assigned to each class.

The performance of the index against FIRMS hotspot FRP is very satisfactory:
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only 5% of the sampled pixels were rated as very low or low danger, while 70% were
rated as being high or extreme danger. In particular, the amount of pixels rated
as extreme amounts to 17%, which is significantly larger then the average amount
of pixels rated as such during the fire season for any land cover type: even in the
worst of the three analysed fire seasons, this amount peaks at 4%, while it maintains
values between 0 and 2% in all the other cases.

DFDI vs CFVA Burnt Areas (B.A. > 10 Ha), 2019/1/1 - 2021/12/31
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Figure 4.11. Distribution of the DFDI in Sardinia over burnt areas in the timeframe
2019/1/1 - 2021/12/31 represented as a percentage of total pixels assigned to each class.

The results over burnt areas fully confirm these impressions: an even smaller
percentage of affected pixels were classified as low danger, and less than 1% were
rated very low danger. Since we sampled the entire burnt areas and not only their
geometric center or presumed ignition point, we would have expected that even
lower danger pixels would be caught as collateral damage in large fires ignited in
higher danger areas, and this consideration indeed applies to the medium danger
pixels. Nevertheless, in this case almost 60% of the burnt area pixels were classified
as high or extreme danger, with an even higher amount of extreme danger pixels
than the previous case. Furthermore, compared to the results obtained in [84]
on the DFHI (i.e. the DFDI’s predecessor) using the same validation technique,
these results show a generalized improvement, and in particular with respect to the
almost complete absence of low danger pixels associated to burnt areas. This specific
improvement is probably one of the advantages of the new additive model compared
to the two-variable FPI model, which could return low danger values if only one of
the two danger variables returned very low values for any kind of reason due to the
fact that the two variables were multiplied to obtain the danger rating. With the
additive model, even if one or more danger variables return low values, the final
danger rating can still be high if the other danger variables return high values.

In general, these results confirm the capability of the index to discriminate fire
danger in a way that is useful to the firefighting community, and at the same time
that high fire danger areas are indeed more likely to suffer wildfires, and finally,
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that wildfires ignited in high fire danger areas are more likely to spread and cause
massive damage.
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Chapter 5

Comparison with the Canadian
Fire Weather Index

In 2007, the EFFIS network adopted the Canadian Forest Fire Weather Index
as the main method to assess fire danger at the European level after testing the
performance of a number of different fire danger indices [84]. The CFFWI algorithm
is made of six individual components that contribute to determining the fire danger.
The inputs needed to calculate these components are temperature, relative humidity,
wind speed and precipitation, i.e. only weather variables. The possibility of obtaining
a fire danger rating using only relatively easy to obtain and process weather data is
at the base of the CFFWI widespread adoption and success.

Fire Temperature, yind Temperature, Tempersture,
weather relative humidity, relative humidity, rain
observations wind, rain
rain i
Fuel Fine Fuel Dt Moizture Drroughit
moisture Moizture Code Code Code
codes [FFMC) (DT (D)
¥ +
Initial Spresad Buildup
Inclex Index
(1= (=)}
Fire | |
behavior
indices *
Fire Weather
Inclex
(R

Figure 5.1. CFFWI calculation scheme, from the NRC website.
The six components of the CFFWI are:

1. Fine Fuel Moisture Code: related to the moisture content of litter and fine
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dead fuels.

2. Duff Moisture Code: related to the moisture content of loosely compacted
organic layers of moderate depth.

3. Drought Code: related to the moisture content of deep, compact organic
layers.

4. Initial Spread Index: related to the expected fire spread rate.
5. Buildup Index: related to the amount of fuel available for the fire.

6. Fire Weather Index: a measure of fire intensity, normally used as a rating
of fire danger.

For more information about the CFFWI, the reader may refer to [131] and to the
Natural Resources Canada (NRC) website. The CFFWI data for the study area in
the analysed time period were obtained using the Copernicus Climate API [106], and
correspond to the consolidated dataset. The original data at 0.25° resolution was
downscaled to the 300-meter Sentinel-3 resolution using a simple bilinear algorithm.
The index thresholds used to turn the index values into fire danger ratings are shown
in table 5.1, where, compared to the classification used by EFFIS, the "very high'
and "extreme" danger classes were grouped in a single "extreme" class to simplify
the comparison with the DFDI. The distribution of the CFFWI in the study area
on and off the fire season is shown in figures 5.2 and 5.5, 5.2 and 5.6 and 5.4 and 5.7
respectively for years 2019, 2020 and 2021.

Danger Class Index Interval
Very Low 0—5.2
Low 5.2—11.2
Moderate 11.2 - 21.3
High 21.3 — 38.0
Extreme > 38.0

Table 5.1. Classes of the CFFWI and associated thresholds used in this study.

Outside of the fire season, the behaviour of the CFFWI is rather similar to that
of the DFDI, but the differences between the three land cover types are much less
pronounced. This was to be expected given the fact that the CFFWTI is only based on
weather data, and makes no distinction based on the underlying land cover. However,
during the fire season the CFFWI tends to return a much higher percentage of high
and extreme fire danger ratings compared to the DFDI. Even in the least severe fire
season of 2019, the CFFWI classifies more than 60% of the pixels as high or extreme
danger. In the worst case scenario, this value reaches 71%. Needless to say, a fire
danger index with such a distribution can hardly provide useful information for the
allocation of firefighting resources at the relatively large regional scale. Limiting the
scope to pixels classified as extreme danger would drastically reduce the area under
examination, but the affected surface area value still ranges from a fifth to a quarter
of the total regional area. The CFFWI agrees with the DFDI in rating the 2021
fire season as the worst among the three analysed in this instance. However, the
CFFWI rates the 2020 fire season as the least dangerous overall in terms of high
and extreme rated pixels, even though this is partially compensated by the higher
amount of extreme rated pixels in the 2021 season.
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Canadian FWI Distribution in SAR, 2019 Fire Season
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Figure 5.2. CFFWI distribution by land
cover in Sardinia, Fire season of 2019
Canadian FWI Distribution in SAR, 2020 Fire Season
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Figure 5.3. CFFWI distribution in Sar-
dinia, Fire season of 2020

Canadian FWI Distribution in SAR, 2021 Fire Season
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Figure 5.4. CFFWI distribution in Sar-
dinia, Fire season of 2021

Canadian FWI Distribution in SAR, 2019 Off Fire Season
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Figure 5.5. CFFWI distribution by land
cover in Sardinia, Off Fire season of 2019

Canadian FWI Distribution in SAR, 2020 Off Fire Season
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Figure 5.6. CFFWI distribution in Sar-
dinia, Off Fire season of 2020

Canadian FWI Distribution in SAR, 2021 Off Fire Season
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Figure 5.7. CFFWI distribution in Sar-
dinia, Off Fire season of 2021
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Chapter 6

The Planargia-Montiferru
Megafire: A High-Resolution
Case Study

The objective of this chapter is to compare the information provided by the
moderate- and high-resolution maps in a context of high interest to the decision
makers and to the scientific firefighting community in general, i.e. that of a megafire,
and to evaluate how they complement each other and how they compare on the local
scale. To this end, we selected the Planargia-Montiferru megafire, which occurred in
Western Sardinia, more specifically in the Oristano province, in the middle of the
summer of 2021. This wildfire burned almost 13000 hectares of vegetation, including
4000 hectares of forest [44]. These estimates made it the most destructive wildfire
that occurred in Sardinia in 24 years. In particular, we will focus our analysis on a
small area between the towns of Santu Lussurgiu and Bonarcado, where the original
fire started. First of all, we will describe how the fire started and developed on the
23rd of July, and how on the next day the smouldering ashes re-ignited starting the
megafire. We will then discuss the fire danger scenario on a regional scale using the
moderate-resolution product, and use the high-resolution product to target the local
scale around the original ignition point. Finally, we will compare the information
provided by the moderate- and high-resolution products on the local scale, in order
to assess if the moderate-resolution product would have provided enough information
by itself, or if the added value of the high-resolution product justifies the increased
complexity and computational cost necessary to generate it.

6.1 Development of the Fire

According to the local authorities, on July 23 of 2021 a fire erupted in the area
between Santu Lussurgiu and Bonarcado. The wildfire was likely ignited by a vehicle
that caught fire on the Provincial Road 15, and not without difficulties, was put out
by the local fire department after burning around 20 hectares of land [116]. At the
time of writing, the 2022 Google Street View capture still shows the residue of the
car fire along the Provincial Road, which allowed us to pinpoint the exact ignition
point of the wildfire. The Fire Brigade picture and the corresponding Google Street
View capture are shown in figures 6.1 and 6.2 respectively.

Unfortunately, on the next day the weather conditions were characterized by very
high temperatures and by a strong, hot sirocco wind. This allowed the smouldering
ashes to re-ignite and to start secondary fires in multiple spots North-West from the
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Figure 6.1. Sardinian Fire Brigade inter-

vening on the scene of the accident of
the 23rd of July 2021. The picture cred-
its belong to the Fire Brigade, and the
picture was downloaded from an online
article of the local newspaper La Nuova
Sardegna [116] published on the same

Figure 6.2. Google Street View 2022 cap-

ture [59] showing a patch of residue from
the car fire still present on the Provin-
cial Road 15. Using the picture on the
left, it was possible to find the precise
coordinates of the car, and therefore the
likely ignition point. Note the electrical

1 the left.
day of the fire. pole on the le

original location. The images in figure 6.3 show the first hotspot detections of the
Satellite FIre DEtection (SFIDE) system [41], based on the Geostationary satellite
Meteosat 2nd Generation, and of the FIRMS system, based on the MODIS satellite,
which was the first of the FIRMS satellite to overpass the area during the fire on
that day:.

This made interventions very difficult, and the wildfire would burn through the
forests of Santu Lussurgiu and Cuglieri, the hills of Scano di Montiferro and the
valleys of Tresnuraghes and Sennariolo before running out of fuel in close proximity
of the sea in Porto Alabe [44]. The authorities ruled out the possibility of the fire
being intentional, and therefore no arrests were made in conjunction with these
events.

6.2 Fire Danger Maps

As specified in the previous chapters, the moderate-resolution DFDI maps are
based on 300-meter resolution Sentinel-3 images, while the high-resolution maps are
based on 10-20-meter resolution Sentinel-2 images. The variables based on weather
data were calculated using the same 0.10 degrees resolution ERA-5 Land product,
and then downscaled to the resolution of the target imagery using a simple bilinear
algorithm. In addition, while the Sentinel-3 satellites can provide new images almost
every day, the closest Sentinel-2 image that captured the AOI was acquired on July
22, one day before the fire. However, it is reasonable assume that the state of the
vegetation in terms of greenness and moisture does not change significantly in a
single day. For this reason, in general we can calculate the components of the DFDI
based on satellite observations by simply using the latest available satellite image,
as long as the latest observation is not older than seven days.

6.2.1 Moderate-Resolution DFDI Maps: A Regional Fire Danger
Perspective

Figure 6.4 contains the regional DFDI maps based on Sentinel-3 imagery covering
the timeframe that starts on the 17th of July 2021 and ends eight days later on the
25th. The blue 'x’ marks the position of the original ignition point, assuming that it
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Figure 6.3. First detection of the re-ignitions of the 24th of July from the Meteosat
2nd Generation geostationary satellite using the SFIDE algorithm (4km resolution,
red diamonds), and MODIS detections (1km resolution, blue diamonds). The labels
represent the acquisition time in HHMM format. The red outlined polygon on the
bottom right encompasses the area between Santu Lussurgiu and Bonarcado where the
fire first erupted on the 23rd of July. Basemap provided by OpenStreetMap [96].

coincides with the car fire residue patch shown in figure 6.2. The analysed timeframe
opens with a relatively mild danger scenario: on the 17th, most of the region is
rated as low or medium danger, with the northeastern area corresponding to the
Sassari province and the Oristano Gulf being rated low or even very low danger.
The largest patches of high danger pixels can be found in the northern continental
area around Ozieri, and along the southern coastline. The situation progressively
worsens in the following days: on the 18th, the eastern half of the region is rated high
danger, with the appearance of an extreme danger patch in the south-east around
Lanusei. The fire danger map of the 19th shows a very similar scenario, while on
the 20th a major portion of continental Sardinia is rated as high danger. On the
21st, the situation slightly improves, but a patch of extreme danger pixels appears in
the central area between Macomer and Nuoro. On the 22nd, the situation worsens
further, and another large patch of extreme danger pixels appears in the southern
part of the region extending south-west to north-east from the Sulcis-Iglesiente to the
Campidano areas. By the 23rd, the day of the original fire between Santu Lussurgiu
and Bonarcado, barely any low danger pixels can be spotted in the entire region,
but the fire danger scenario becomes truly dramatic on the 24th, the day of the
Planargia-Montiferru megafire: due to the extremely hot weather and strong, hot
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sirocco wind, most of the southwestern part of the region is rated as extreme danger.
The situation improves significantly on the 25th, when our timeframe ends.

Observing this fire danger map timeseries, and the grave scenario of the 24h in
particular, it is not surprising that a megafire would occur on this very day: the
amount of pixels rated as extreme danger, which in the entire 2021 fire season add
up to 4% of the total grassland pixels, 2% of the total shrubland pixels and 1% of
the total forest pixels, is higher than all the other days combined. Exploiting such
fire danger maps, especially if sustained by accurate weather forecasts, could greatly
help the decision makers to take countermeasures in such extreme situations, and
possibly to help prevent megafires not only by deploying resources on the territory
and putting the fire fighters on high alert, but also by properly informing the local
population.
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Figure 6.4. Sentinel-3 based (300-meter resolution) Daily Fire Danger Index maps in
the timeframe 2021/07/17-2021/07/25 for the entire region of Sardinia. All indices are
calculated using the weather data at 12:00 UTC. The location of the original wildfire
that occurred between Santu Lussurgiu and Bonarcado on the 23rd is marked by a blue
'x’. The fire was suppressed by the Sardinian Fire Brigade, but the next day it re-ignited
and sustained by a hot and strong sirocco would go on to devastate the Planargia and
Montiferru areas.

Figure 6.5 shows the values of the variables that concur to the calculation of the
DFDI on the 24th, the day of the megafire, and the DFDI map itself. Looking at
the individual variables, the high evapotranspiration and low equivalent moisture
content clearly show how the torrid weather affected the vegetation. In addition, the
wind map shows that strong sirocco winds transported the smouldering ashes from
the Santu Lussurgiu-Bonarcado towards North-West, igniting the entire Planargia-
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Montiferru.

DFDI & DFDI Components, 2021/07/24 - 12:00 (Sentinel-3)
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Figure 6.5. Variables that concur to the calculation of the DFDI and DFDI map of the
24th of July, date of the Planargia-Montiferru megafire. All weather data refer to 12:00
UTC. The location of the original wildfire that occurred between Santu Lussurgiu and
Bonarcado on the 23rd is marked by a blue 'x’.

6.2.2 High-Resolution DFDI Maps: Fire Danger in the Sardinian
WUI

Figure 6.6 shows high-resolution DFDI maps generated using Sentinel-2 imagery
in the area between Santu Lussurgiu and Bonarcado in the same timeframe as the
previous paragraph. The blue 'x’ marks the position of the car fire residue patch
shown in figure 6.2, which corresponds to a point on the Provincial Road 15 which
we assume to be the ignition point of the fire that occurred on the 23rd.

In the first three days of the analysed timeframe, the fire danger scenario is
relatively mild, with most of the area being rated as very low, low or medium danger.
A few patches of high danger pixels show up, mainly in the northern part of the area,
but most of the Provincial Road 15, which travels in the middle of the eastern half,
is surrounded by medium or low danger pixels. The situation worsens significantly
from the 20th onwards, when barely any low danger pixels remain and most of the
AOI is covered by high danger pixels. A few patches of extreme danger pixels show
up in the northern part. After a small improvement on the 22nd, we reach the
23rd, which is the day of the car fire that ignited the wildfire that burnt most of the
vegetation in this area. On this day, the southern half of the AOI is almost entirely
rated as high danger, and in particular, the area around the ’x’ that marks the
position of the car along the Provincial Road 15 is almost entirely encompassed by
high danger pixels. By consulting this fire danger map, it is therefore not surprising
that a fire could start and propagate easily in this WUI, explaining also the difficulty
that the firefighters experienced in suppressing it. On the 24th, the situation is as
dramatic as the regional level, and on this day the smouldering ashes would re-ignite
to start the Planargia-Montiferru megafire.
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Daily Fire Danger Index (DFDI) (Sentinel-2)
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Figure 6.6. Sentinel-2 based (10-20-meter resolution) Daily Fire Danger Index maps in the
timeframe 2021/07/17-2021/07/25 for the Santu Lussurgiu-Bonarcado area. All indices
are calculated using the weather data at 12:00 UTC. The blue 'x’ marks the position of
the car that caught fire on the Provincial Road 15 on the 23rd.

6.2.3 Comparison of the Moderate- and High-Resolution Fire Dan-
ger Maps

Figure 6.7 shows a direct comparison between the moderate- and high-resolution
fire danger maps in the area between Santu Lussurgiu and Bonarcado on the 23rd
of July, when a car caught fire along the Provincial Road 15 in the position marked
by a blue triangle in the south-east of the area of interest.

A Ignition Point
7] Very Low
] Low
" | Medium
] High
- [ Extreme
Basemaps
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Figure 6.7. Sentinel-3 based (left) and Sentinel-2 based (right) Daily Fire Danger Index
maps on the 23rd of July 2021. The blue triangle marks the position of the car that
caught fire along the Provincial Road 15. Basemap provided by OpenStreetMap [96]
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The moderate-resolution product is dominated by medium danger pixels, with
only three high danger pixels. However, these high danger pixels are localized
around the ignition point, implying that even at a 300-meter resolution this area was
recognized as being the most dangerous. Nevertheless, it is evident how the level of
detail provided by the 10-20-meter resolution Sentinel-2 images is much higher: the
area around the ignition point, and in general along the Provincial Road 15 in the
southern part of the AOI is dominated by high danger pixels. The situation improves
slightly moving northwards along the Provincial Road, especially in close proximity
to the small Sos Molinos stream, before returning to high danger levels entering
the town of Santu Lussurgiu. Focusing on the WUI along the Provincial Road, it
is clear how the DFDI maps were able to identify two major areas characterized
by high fire danger on both sides of the road: one on the southern side, where the
car caught fire starting the wildfire on the 23rd, and one on the northeastern side
towards the entrance of Santu Lussurgiu. However, while on the northeastern side
the fire danger distribution around the WUI was less worrisome, on the southern
side it was clear that not only a fire could easily start, but that it could easily spread
to the surrounding area dominated by high fire danger pixels.

In general, this comparison shows how useful a high-resolution fire danger product
could be to provide accurate information on the local scale to the local administrators
and decision makers: having access to a high-resolution fire danger forecast could
have allowed the municipalities to plan and optimize fuel reduction campaigns on a
very short term, greatly improving the chance to prevent large fires altogether. At
the same time, the fire danger maps could be used to inform the citizens, especially
those who live in the WUI and would be put at great risk by such fires, and possibly
even encourage them to enact prevention measures independently in order to improve
the security of their family and of their property.
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Conclusions and Future
Directions

After describing and selecting the fire weather variables most relevant to fire
danger, this research work produced a procedure for Live Fuel Moisture Content
retrieval from satellite images based on the latest literature, and applied it to Sentinel-
2 and Sentinel-3 images with promising results according to an early validation
performed on field data. In addition, the LFMC Sentinel-3 product is - to our
knowledge - the very first LEMC product based on this satellite platform, and the
Sentinel-2 product is among the very first of its kind [119, 88, 31].

Subsequently, a novel dynamic Fire Danger Index based entirely on European
weather and satellite products was proposed, introducing an additive model to
combine the fire danger variables. The index was calibrated using historical fire
occurrence records, and its performance was tested against the CFFWI, which is
EFFIS’ fire danger index of choice. The performance of the new index on the test
area proved to be superior to the CFFWI in all the analysed years according to
the selected test metric. Even at the moderate resolution provided by Sentinel-3,
firefighting operators using the DFDI would be in a position to discriminate the
fire danger in a given region to a much finer degree than they would if they were
using the CFFWI for the same purpose, where they would often find themselves
in a situation where fire danger is high or extreme in all the region, crippling their
ability to properly allocate the resources devoted to fire fighting and prevention.

Finally, the moderate- and high-resolution maps were compared using the
Planargia-Montiferru megafire as a case study. The analysis of the regional scale
maps confirmed how they were able to detect an anomalous, extreme fire danger
scenario on the day of the megafire. On the local level, the added value of the
high-resolution maps allowed to identify fire danger hotspots at the WUI level, and in
particular in the area where the fire started along the Provincial Road 15. The high-
resolution product could provide valuable information to enact prevention measures
at a local level, optimizing the logistic and economic effort of small municipalities
and private citizens.

This work also pointed out a number of possible future research lines that may
further increase its value for the firefighting community:

o First of all, the LFMC vegetation model could be improved by 1) adding the
capability to mix different vegetation spectral profiles pixels (e.g. shrub and
forest) in order to model mixed pixels, 2) adding more tree shapes to the GEO
module, and 3) by generalizing the geometric model to non-nadir views.

e Sentinel-3 SYNERGY data is provided with non-time-critical timeliness, im-
plying that usually the latest products are delivered one or two days after
acquisition. Even though, most of the time, the state of the vegetation does
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not change so quickly as to make a two-day delay a deal breaker for the
usage of the data for operational purposes, it would be interesting to explore
the impact of using near-real-time data on the accuracy of the fire danger
assessment. At the same time, it should be noted that handling low processing
level near-real-time imagery would significantly increase the workload of the
fire danger data provider.

e Furthermore, it would be interesting to explore the impact of using high-
resolution weather data and a scalable fuel map such as [6] in place of the
static one currently used in the fire danger assessment. This would provide
adaptability to different spatial scales also at the level of the fuel maps and
properties, and would be especially interesting for the high-resolution product.

o Finally, the analysis of the Planargia-Montiferru megafire showed that not
only it happened on a day of extreme fire danger, but at the same time when
a sharp, generalized increase of the fire danger occurred at the regional scale.
It would be interesting to repeat the analysis on other megafires to verify if a
similar pattern can be recognized.
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Appendix

Software used for this project

Only free and open source software was used in the development of this research
project. All the existing software components mentioned in the thesis are freely
available, and all the code that was created specifically for the innovative parts of
the project was written in Python in an Anaconda environment. In particular, our
fork of jgomezdans/pyprosail will soon be made publicly available on GitHub.

e Anaconda
e Cartopy

« GDAL

e Geopandas
o INTEX

e Matplotlib
o Numpy

o Pandas

o Pyprosail
e Python

e Proplot

e SaLib

e Sentinelsat

e Scikit-image

Procedure used to Calculate the Reference Evapotranspi-
ration

In order to calculate daily values of the reference evapotranspiration, we follow
the procedure described in the Food and Agriculture Organization (FAO) irrigation
and drainage paper 56 [3], to which we refer the reader for an extensive and detailed
explanation of each single variable and calculation step. We are only interested
in the calculation of the reference evapotranspiration, denoted as ETy, for hourly



Appendix 95

timescales using weather data. However, the aforementioned paper contains a number
of different ways in which the variables involved in the process depending on the
available data type, that may be weather forecast data or directly obtained from
weather stations, and on the different types of measurements that may or may not
be available. In order to ensure the repeatability of our process, we will now describe
how we obtained each individual variable.

The first half of the procedure relies on atmospheric data to quantify the vapour
pressure deficit. The first step consists in using a digital elevation model to calculate
the atmospheric pressure at the mean elevation of each of our pixels. If z is the
elevation above sea level in meters, equation 6.1 returns the atmospheric pressure P
in kPa:

(6.1)

293 — 0.
P:101.3( 93 00065z>

293

Since DEMs are generally calculated at a resolution that is much higher than
that of the weather data, we need to determine at which resolution to calculate this
variable. Since the fire danger index maps will be calculated at the same resolution
of the satellite images, it makes sense to upscale the DEM and downscale the weather
data at the same resolution as the satellite images. The simplest way to achieve this
is to upscale the DEM using an averaging function and to downscale the weather
data using a bilinear algorithm.

The atmospheric pressure is then used to compute the psychrometric constant -:

cpP

7= Sy (6.2)

where:

7 psychrometric constant in [kPa °C~1].

cp = 1.013-10 — 3[MJ kg — 1°C 1] specific heat at constant pressure

P atmospheric pressure in [kPa] as calculated in 6.1

€ = 0.622 ratio between the molecular weight of water vapour and dry air

e A =245[MJ kg~!] latent heat of vaporization

In particular, the value of the latent heat of vaporization A is referred to the
average atmospheric conditions. Thus, the psychrometric constant varies only with
the atmospheric pressure, and consequently only with elevation.

Then, we use the air temperature and dewpoint temperature to calculate the
actual vapour pressure and the saturation vapour pressure as done previously to
compute the relative humidity:

17.27 1
0 dew
a=¢€ (Tiew) = 0.61 —_— .
e €’ (Tyew) = 0.6108 * exp Toow 2373 (6.3)
17.27 1
0
s =¢e(T)=0.61 _ 4
es =¢€ (1) = 0.6108 * exp 5373 (6.4)

The vapour pressure deficit e — e, is then defined as the difference between
saturation vapour pressure and the actual vapour pressure. The air temperature is
also used to calculate the slope of the saturation vapour pressure curve A:
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4098 06108 exp (122075 ) |

A= (T + 237.3)2 (6:5)

where:

e A[kPa°C~1] slope of saturation vapour pressure curve at air temperature T

o T[°C] air temperature

The second half of the procedure uses a digital elevation model, the day of the
year and the latitude of the target area to quantify the net radiation that reaches the
surface. Since we’re interested in providing hourly estimates of fire danger, we follow
the procedure to compute the radiation variables for hourly or shorter periods.

The extraterrestrial radiation R, represents the amount of radiation that impacts
a given point of the top of Earth’s atmosphere. If this quantity is referred to a
surface perpendicular to the Sun rays, it is named solar constant and has a value of
0.0820M J/m~2min~!. Depending on the geographic position, season and time of
day, this value will decrease depending on the incidence angle of the sun rays. To
this end, if J is the day of the year', the inverse relative distance between Earth
and the Sun d, is given by:

27
d, =1+0. i :
+ 0.033 cos (365J) (6.6)

The sunset hour angle depends on the latitude and on the day of the year. It
can be calculated using the former and the solar declination:

ws = arccos[— tan(¢) tan(9)] (6.7)

The solar declination § in radians is given by:

2T
0 =0409sin [ —J — 1. .
0.409 sin (365J 39) (6.8)

The solar time angles at the beginning and end of the hourly period are given

by:

t
{M:w_gz‘l (69)
_ ™ :

WQ—W+2741

where:

o w [rad] solar time angle at midpoint of hourly or shorter period

o t1 [hour] length of the calculation period

The solar time angle w at the midpoint of the period can then be obtained as:

w= %{[t +0.06667(Ly, — L) + S,] — 12} (6.10)

where:

o tstandard clock time at the midpoint of the period [hour]

!The day of the year is counted from 1, 1 January, to 366, 31 December of leap years.



Appendix 97

o L, longitude of the centre of the local time zone [degrees east of Greenwich]
o L,, longitude of the measurement site [degrees east of Greenwich],

o S. seasonal correction for solar time [hour]

The seasonal correction for solar time depends on the day of the year:

Se = 0.1645sin(2b) — 0.1255 cos(b) — 0.025 sin(b)
 — 2r(J—81) (6.11)
= T 364

For hourly or shorter periods, the extraterrestrial radiation can be calculated as
follows:

R, = @Gscdr{(wg —w1) sin(¢) sin(d) 4 cos(¢) cos(d)[sin(wz) — sin(wr )]} (6.12)

where:

o Ry[MJ m~2hour~!] extraterrestrial radiation in the hour (or shorter) period
o Gs. = 0.0820 MJ m~2min! solar constant

¢ d, inverse relative distance Earth-Sun

e ¢ solar declination

e ¢ latitude

e wj solar time angle at beginning of period

e wy solar time angle at end of period

The number of daylight hours depends on the day of the year and on the latitude.
Thus, it can be calculated using the sunset hour angle w; calculated in equation 6.7:

N =", (6.13)
T

The portion of the extraterrestrial radiation that reaches the surface depends
not only on the geographic location and on the season, but also on the actual
sunshine duration. Since we are mainly targeting a regional or national spatial
scale, calibrated values of the coefficients required to calculate the solar radiation
are unavailable. Thus, we use the recommended coefficients a; = 0.25 and b; = 0.50:

Ry = (0.25 + 0.50;) R, (6.14)

where N is the maximum possible duration of sunshine in hours we calculated in
6.13 and n is the actual duration of sunshine. The FAO procedure [3] relies on the
usage of a Campbell-Stokes sunshine recorder for direct measurement of the actual
duration of sunshine. In our case, we have no way of including cloud cover in this
calculation, but we can exploit knowledge of the topography based on the DEM to
determine whether a given pixel, at a given time of day of a given time of the year
is illuminated or in shade. To do so, we follow the process shown in [42], which is
based on equations developed by [52].
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Let us consider a surface located at a latitude ¢, when the local declination is 9.
The angle between the normal to the surface and the horizontal plane (slope) is f,
and the displacement between the horizontal projection of the normal from the local
meridian (azimuth) is 7. If w is the solar hour angle at the target time, the cosine of
the angle between the incoming beam radiation and the normal to the surface 0 is:

cos ) = sin §[sin ¢ cos 5 — cos ¢ sin 3 cos | (6.15)
+ cos 0[cos ¢ cos  cos w + sin ¢ sin 5 cosy cosw (6.16)
+ sin 4 sin y sin w] (6.17)

While the slope angle £ can be directly obtained using GDAL’s gdaldem function,
some work must be done to obtain the v angle. gdaldem outputs the aspect angle,
which has the same significance as -, but is 0 when the surface is facing North and
is defined between 0 and 360 degrees. To obtain v from the aspect angle we need
only subtract 180 degrees:

~v = aspect — 180° (6.18)

A scheme of the illumination geometry of a south-facing surface (i.e. v = 0) with
a [ sloped is represented in 2.3.

\
n, -1.0“\0
ofm Q, ’ ‘\o‘ b /
8 % T —
aaiotio®
peo™ !
N
n
Ormal
]
s q,
(¢-B) EQUATOR

Figure 6.8. Scheme of the geometry of the incoming radiation on an inclined surface for a
south-facing slope (i.e. v = 0), adapted from [42]. § represents the slope, ¢ represents
the latitude and @ is the angle between the normal to the local surface and the incoming
beam radiation.

The complementary angle to the beam incidence angle 6 represents the solar
elevation with respect to the surface. We are more interested in this angle than in
0 itself, because when it is positive and sufficiently large we can assume that the
surface is directly illuminated by the Sun rays. Let the solar elevation angle be e.
We can calculate it as:
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€ = 180° — # = 180° — arccos(sin d[sin ¢ cos 5 — cos ¢ sin 3 cos | (6.19)
+ cos d[cos ¢ cos f cos w + sin ¢ sin 5 cos y cos w (6.20)
+ sin (3 sin 7y sin w)) (6.21)

For each hour of potential sunlight N, and therefore for each solar hour angle
w between the sunset hour angle w, and the sunrise sunset angle w, — %, we will
check if this value is higher than 5° for each individual pixel and its topography. If
it is, we will add 1 hour to n, otherwise we will not. The total count will give us the
approximate total amount of sunlight hours accounted for shade caused by the local
topography.

The clear-sky solar radiation can be obtained by setting n = N and applying a
correction for the local elevation:

Rso = (0.754+2-107°2)R, (6.22)

The net shortwave radiation R,s can be simply obtained by using an albedo or
canopy reflection coefficient o and calculating its one’s complement to obtain the
absorption coefficient:

Rns = (1 — a)R, (6.23)

For the reference canopy, we set & = 0.23. The net longwave radiation R,,; for
ho hourly periods can be obtained using the Stefan-Boltzmann equation and the
hourly mean temperature, while accounting for the actual duration of sunshine by
using the ratio between the clear sky and actual solar radiation:

R
Rt = Ohour T 1 (0.34 — 0.14, /) (1.35 R 0.35) (6.24)

SO

where o}, is the value of the Stefan-Boltzmann constant converted from
[MJ/(m? day)] to [MJ/(m? hour)):

o 4.903-10"9MJ/(m? day)

= =2.403-1071°M J/(m? h 6.25
24 24hours/day (m” hour) — (6.25)

Ohour =

Thus, the net radiation is defined as the difference between the incoming net
shortwave radiation and the outgoing net longwave radiation:

Ry = Rus — Ry (6.26)

The soil heat flux G for hourly or shorter periods cannot be reliably correlated
with air temperature, and is therefore estimated as a fraction of the net radiation:

{Ghr =0.1 Ry, during daytime (6.27)

Gpr = 0.5 Ry, during nighttime

Finally, we can use the Penman-Monteith equation adjusted for hourly timesteps
is the following:

0.408A(R, — G) + ’y%w(es —eq)
0~ A+ (1 +0.34uy)

(6.28)

where:
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e ET, reference evapotranspiration [mm hour ~!J;

e R, net radiation at the crop surface [MJ m~2 hour~!J;

o G soil heat flux density [MJ m~2 hour™!];

o T mean hourly air temperature at 2 m height [°C];

e uy mean hourly wind speed at 2 m height [m s~!] at the given time
o e; saturation vapour pressure [kPa] at the given time

o e, actual vapour pressure [kPa] at the given time

e e5 — e, saturation vapour pressure deficit [kPa]

A slope of the vapour pressure curve [kPa °C~!];

7 psychrometric constant [kPa °C~1].

As specified in the description of each parameter, all meteorological variables
should be either measured or converted at 2 m of height to maintain uniformity,
and in general the obtained values refer to an extensive surface of green grass that
covers the soil which is not suffering from water scarcity conditions. In our case, the
reference evapotranspiration is calculated for all the pixels in the area of interest,
using the latest available meteorological data at 2 m height and in particular the
temperature and wind speed. Even though the vegetation cover of the individual
pixel may not correspond at all to the description of the reference plot defined in
[3], the evapotranspiration value is still considered representative of the different
evaporation and transpiration conditions associated to that area: a pixel hit by
an higher amount of radiation, higher temperatures and higher wind speeds will
necessarily be more stressed than a pixel characterized by lower mean temperatures
and by a topography that causes it to be more hours in shade.
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