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ABSTRACT Over the years, significant work has been done on high-integrity systems, such as those found
in cars, satellites and aircrafts, to minimize the risk that a logic fault causes a system failure, thus having
functional safety as a key requirement. In this study, we employ an innovative approach to harness the benefits
of both Dual Modular Redundancy and Triple Modular Redundancy techniques within an Interleaved-Multi-
Threading microprocessor core, by means of a microarchitecture design capable of dynamically switching
fromDual Modular Redundancy to Triple Modular Redundancy in case of faults. We explain the quantitative
results obtained from an extensive fault injection simulation campaign on the fault tolerant core compared
with its previous version regarding fault tolerant capabilities. The results show that in several application
cases the fault resilience improvement and the hardware and timing overhead are better compared to the
lockstep-based dual core approach. The proposed technique achieves 98,6% fault mitigation at the expense
of only 4 clock cycles for roll-back overhead, with no checkpointing redundancy.

INDEX TERMS Circuit faults, digital integrated circuits, fault detection, fault tolerant computing, field
programmable gate arrays, microprocessors, multithreading, radiation hardening (electronics), redundancy,
robustness.

I. INTRODUCTION
The recent evolving technological era is scaling tran-
sistor feature sizes resulting in very densely integrated
chips with elevated clock frequencies and low operating
voltages [1], [2]. Due to such technological evolution, along
with more and more complex computing system architec-
tures, today’s systems exhibit an increased susceptibility to
transient errors triggered by radiation phenomena, leading
to issues like bit-flip occurrences and the subsequent risk
of failures [3], [4]. Transient errors are non-permanent
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faults caused by various phenomena, including electrical
noise, electromagnetic interference, temperature fluctuations,
or cosmic radiation. While they do not typically cause
permanent damage, they still impact the correctness and
stability of a system.

Mitigating transient errors involves implementing error-
detection or error-correction mechanisms, as well as strate-
gies for recovering or re-executing the affected parts of
the application. Research efforts aim to develop techniques
enhancing the overall resilience while paying attention to the
overheads in cost and performance.

Ad-hoc techniques dedicated to fault tolerant control
algorithms exist, based on fault detection and diagnosis.

95720

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-1902-7188
https://orcid.org/0000-0002-8453-6536
https://orcid.org/0000-0003-4495-5960
https://orcid.org/0000-0003-4243-1258
https://orcid.org/0009-0002-5955-8378
https://orcid.org/0000-0002-0214-9904
https://orcid.org/0000-0003-1379-9301


M. Barbirotta et al.: Dynamic Triple Modular Redundancy in Interleaved Hardware Threads

After detecting a fault, the control algorithm reconfigures
to compensate for the fault effect and stabilize the system.
The method of reduced-order observers [5] estimates system
states and faults without being influenced by the estimation
error. Dynamic Output Feedback [6] incorporates past and
present output measurements to determine the control action.
Our work, as well as the compared lockstep architectures,
differs from algorithm-specific solutions as it relies on a
hardware-based method for error detection and recovery
within microprocessor cores executing generic application
programs.

Triple Modular Redundancy (TMR), regardless of the
abstraction level at which it is applied (e.g., registers, units,
or sub-systems), offers the advantage of nearly immediate
error correction but comes at the cost of tripling hardware
resources or execution time. On the other hand, Double
Modular Redundancy (DMR) imposes a lower overhead
but typically requires a relatively expensive procedure to
recover the correct system state. In fact, since DMR just
allows error detection, a higher-level handler (e.g. at the
software level) is invoked to restore a previously saved
safe state (system roll-back). In addition to the performance
penalty of the roll-back, the periodic saving of a safe state
(system checkpoint), inherently impacts the performance.
Consequently, traditional DMR implementations incur a cost
globally exceeding twice that of a non-redundant system [7].

In the technical literature and industrial practice, lockstep
dual-core techniques represent the most used approach for
introducing DMR redundancy to enhance the reliability and
resilience of microprocessor systems. Lockstep architectures
consist of two identical processor cores executing the
same instruction flow, with a shift of some cycles to
introduce time diversity resilience, periodically comparing
their results, along with checkpoint and rollback recovery
procedures. While it can be considered an established
solution, adopting a lockstep dual-core configuration presents
its challenges, including the need for core synchronization,
extra delay components and data storage for comparisons and
checkpoints [8].

In [9], starting from a RISC-V Interleaved-Multi-
Threading (IMT) core equipped with a temporal-spatial TMR
scheme, we developed a special form of DMR scheme called
Dynamic TMR, based on thread duplication along with a third
thread that is dynamically activated only in case of a recovery
procedure. From the software point of view, the architecture
operates like a lockstep dual core while being implemented
by a dual IMT execution to reduce the hardware impact.

The innovation of the proposed approach is to combine
the lightness of DMR with the safety of TMR without
compromising performance, and also drastically mitigating
the cited gaps and limitations of DMR-based lockstep
architectures, such as checkpointing and rollback overhead.

This work significantly extends the results presented
in [9] through a deeper design implementation discussion
and a novel detailed comparison with other fault-tolerant
(FT) architectures presented in literature, addressing power

consumption, achievable clock frequency, hardware resource
utilization and checkpoint/recovery timing degradation. The
results are obtained by an extensive fault injection campaign
with Single Event Upset (SEU) faults targeting all register
bits in the microarchitecture while executing widespread
benchmark application kernels.

The main contribution of this work to the state of the art is
composed of the following:
• The work provides a comparison between IMT and
multi-core approaches to fault tolerance. The demon-
strated advantage of the proposed method is that
Dynamic TMR behaves as a DMR lockstep dual core yet
without the overhead of duplicating the whole hardware
and with drastically reduced impact of checkpoint
saving and rollback;

• It illustrates the detailed hardware modifications
required in an IMT core to implement theDynamic TMR;

• It details the advantage of the proposed approach in
terms of in-depth quantitative data on the Architecture
Vulnerability Factor (AVF) and Mean Work Between
Failure (MWBF), derived from an extensive fault
simulation campaign;

• It details all the comparisons of results with the
most important studies on Dual Core and Triple Core
lock-step techniques in the literature. The reported
comparison data cover mitigation rate, checkpoint time,
recovery time, and hardware overhead.

The rest of the article is organized as follows: Section II
discusses the related works about DMR and lockstep
architectures, providing the basis for performance compar-
ison; Section III discusses the microarchitectural details of
the proposed design; Section IV reports the performance
evaluation methodology along with the results; Section V
analyzes the hardware overhead; Section VI discusses the
results compared to other FT architectures; Section VII
summarizes the conclusions.

II. RELATED WORKS
DMR techniques intrinsically had significant advantages
over TMR concerning area overhead and power consump-
tion reduction, with less efficiency and reliability. Several
research works have been presented aiming to enhance DMR
approaches. In [10], three different checkpointing schemes
for DMR inmulti-core architectures, namely Store-Compare-
Checkpointing (CSCP), Store-Checkpointing (SCP) and
Compare-Checkpointing (CCP), are compared to determine
the optimal checkpointing frequency for minimizing the
Mean Execution Time of a single task. In [11], the authors
employ DMR with design diversity between two modules to
generate distinct error patterns and easily detect mismatches,
still relying on checkpointing and restoration procedures.
More recently, in the study by Popov et al. [12], the authors
introduce a DMR scheme with global/partial reservation,
performing a comparative analysis of its reliability with
respect to TMR. The DMR approach with global reserva-
tion involves a duplicated DMR structure comprising four
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identical modules. When one of the modules in the first pair
encounters a failure, it is dynamically replaced by the other
pair. Similarly, the DMR with partial reservation employs
four identical units, and when one of the two units fails, only
the failed unit is substituted with a reserved one. The study
indicates that TMR is more reliable than global reservation
DMR but less reliable than partial reservation DMR, which is
more expensive regarding hardware resources. A novel tech-
nique called Complementary Double Modular Redundancy
(CDMR), inspired by the Markov Random Field (MRF)
theory, is introduced in the work by Li et al. [13]. The
technique involves optimizing two voting stages with MRF,
leading to improved performance, reduced overhead and
enhanced fault resilience in the voting logic.

It is worth noting that redundancy is not always mandatory
for the whole duration of an application execution. DMR
may be activated only when needed, based on runtime
Architectural Vulnerability Factor (AVF) estimation [14].
Nomura et al. [15] present a method for implementing
sampling-DMR, which enables using DMR for just a
small fraction of time, such as 1% of a 5 million-
cycle time slot. This approach yields benefits in terms of
power consumption and design complexity. Furthermore,
Matsuo et al. [16] introduce an FPGA-CPU architecture
featuring a self-monitoring scheme with health indicators.
These indicators, which track parameters like temperature
and system usage, are used to determine the health state of
both systems, enabling selecting the most reliable system
and facilitating software-based voting when results become
available. Authors in [17] created a multi-core processor
with four cores (single-cycle RISCVRV32IM instruction set)
working in DMR pairs that can be reconfigured to activate a
normal execution mode or a fault tolerant execution mode,
so that the number of executed instructions per time unit is
reduced only in the second case. When the processor is in
fault tolerant mode, the two pairs of cores execute two copies
of the same instructions. A mismatch in the final comparison
of the two results can lead to keeping the same program
counter and re-executing the incorrect instruction.

The most used DMR technique in industrial applications
is the dual-core lockstep (DCLS) architecture. DCLS was
implemented in FPGA by [18] using a Virtex II-Pro platform.
Authors in [19] present a DMR system which combines
a lockstep approach for error detection and checkpointing
for error recovery. They employ a checker logic block
to identify errors and periodically generate an interrupt
request for checkpoint creation through a DMA transfer.
Similarly, in [20] a DMR system is implemented using a
dual-core lockstep architecture involving two cores within
an ARM Cortex-A9 processor. This setup runs the FreeR-
TOS operating system and employs interrupts to manage
checkpoint operations and rollback procedures. When a
CPU triggers an interrupt, the active thread is halted, and
the processor registers are saved in the stack. Authors
in [21] built the SafeLS, a DCLS architecture made by

two NOEL-V RISC-V cores, testing two different Sphere
of Replication (SoR) called FullCore and CachesExcluded.
In the first one, the SoR includes caches and a memory
management unit (MMU); in the second one, these are
excluded. Similarly, they also worked on SafeDE [22], which
contains a monitoring module to enable lowly intrusive
diverse redundancy with a flexible scheme that can be turned
on or off conveniently in a lightweight lockstep environment.
Nikiema et al. [23] proposed a fine-grained DCLS using
HLSwith two different approaches and different upper bound
detection and correction levels: Partial Shadow Register with
Rollback (PSRR) and Full Shadow Register (FSR). The
two approaches use two identical cores executing the same
instruction at each clock cycle, and each pipeline stage stores
the result of its logic computation in a pipeline register,
checking the execution consistency every clock cycle. In the
first approach, when a fault is detected, the current instruction
(stored in a shadow register) is re-fetched again inside
the pipeline. In contrast, in the other approach, all the
shadow registers are substituted inside the pipeline. Another
approach is detailed in [24], where a DCLS configuration
is built with a 666 MHz Arm A9 hard-core and a 25 MHz
LowRISC soft-core on the Zynq-7000 platform. This system
allows for the suspension, resumption, restoration from
checkpoints and seamless continuation of execution. In [25],
Silva et al. introduce CEVERO, a RISC-V System-on-Chip
deployed on a PULP platform. CEVERO comprises two
Ibex cores operating in a lockstep configuration, which are
continuously monitored by a hardware unit to check for
the occurrence of errors in each executed instruction. The
traditional DCLS configuration is also found in systems
based on commercial ARM Cortex-M7 processors [26]
and Cortex-R processors. The recovery procedure in these
systems involves resetting the cores or returning to a
previously save checkpoint. In Iturbe et al. [27], a Triple Core
Lockstep (TCLS) architecture is introduced, comprising three
identical Cortex-R5 lockstep cores, managed by a central
Assist Unit responsible for voting on the generated outputs.
Specific assembly routines are triggered when discrepancies
arise to save the state within a dedicated ECC-protected
Stack (113 registers). These registers are restored after a
global reset, requiring around 2351 clock cycles (including
the save and restore time). Authors in [28] propose two
FPGA-based methodologies (Lock-VA & Lock-VM) in
which a heterogeneous architecture uses the DCLS technique
at the ISA level. Each core receives the same input, and
the system can pause, resume, or revert to a checkpoint.
In another approach [29], a heterogeneous architecture
compares two ARM cores to a MicroBlaze, operating in a
TCLS fashion. The design incorporates verification points
in the code to store the execution state within the FPGA
BRAM memory and compare the registers. As soon as
the first ARM core reaches one of these VPs, the status
of the core is saved inside the BRAM memory, and the
execution is locked until the other ARM core reaches the
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same point and the produced results are compared. If the
comparison gives no error, the VP is saved as a checkpoint,
and the execution continues. In contrast, in case of errors, the
state of the core is compared with that of the MicroBlaze
core, finding and recovering the faulty ARM core. Finally,
Rogenmoser et al. [30] introduced a pioneering approach
called Hybrid Modular Redundancy (HMR) to reduce the
additional costs associated with conventional methods of
radiation hardening and modular redundancy, involving a
cluster of RISC-V processors in a versatile DCLS and TCLS
arrangement. The arrangement can be adjusted in real-time
with two recovery methods, one software-based and the other
hardware-based, trading-off between performance and space
utilization.

Regarding lockstep techniques, it is important to
distinguish between two possible approaches, namely
non-intrusive and intrusive [23]. Non-intrusive ones (actually,
the majority of those described above) do not modify the core
internal architecture (allowing COTS or third-party IP usage).
The lockstep execution is achieved by a synchronization
module wrapper, which checks for a mismatch between the
status of the cores at the interface level generating interrupts
in case of faults. Software procedures periodically create
checkpoints and are responsible for rolling-back in case of
fault revelation. Conversely, intrusive approaches modify the
internal hardware structure of the core and do not generally
require creating checkpoints at the software level since faults
are detected as they occur (single bits in the case of SEU),
requiring execution of just the last instruction. Examples of
such techniques are [23] and the approach presented in this
work.

III. DYNAMIC TMR: A NEW APPROACH
The DMR architecture presented in this work evolved from
the Buffered TMR technique described in [31] and [32].
The Buffered TMR exploits the intrinsic capability of an
Interleave-Multi-Threading (IMT) core of running three
identical threads, each having its own Register File (RF),
Program Counter (PC) and Control/Status Registers (CSRs),
yet sharing the pipeline logic. Each instruction reaching the
execution stage stores its result in thread-dedicated write-
back buffers, and voting is applied when all results are
available, thus performing an intrinsic TMR protection and
correct result retention. In an IMT pipeline, executing the
same instructions in identical threads on the same hardware
units in different clock cycles protects the architecture from
both Single Event Upset (SEU) faults in sequential logic
and Single Event Transient faults (SET) in combinational
logic [9].

To mitigate the performance loss associated to Buffered
TMR [9], we conceived an architecture that we named
Dynamic TMR, in which two identical threads are executed
in a DMR Interleave-Multi-Threading pipeline, while the
third thread is only activated in case of fault detection. The
Buffered TMR issue is that it implies a fixed execution time
triplication, which is efficiently mitigated by the proposed

Dynamic DMR technique. The inactive thread will not insert
any instruction in the pipeline, ideally saving 1/3 of the
execution time with respect to the Buffered TMR, thus
resulting in higher perceived performance for the active
threads.

Our baseline processor allows for three hardware threads:
Thread 2, Thread 1 and Thread 0. In the Dynamic TMR
scheme, only Treads 2 and 1 are normally active, while
Thread 0, which we call the auxiliary thread, is activated just
in case of fault detection to implement instruction-level roll-
back and voting.

IV. KLESSYDRA-dfT03: THE MICROARCHITECTURE
In conventional DMR systems like dual-core lockstep
(DCLS), periodic checkpoint procedures introduce a time
overhead and hardware overhead to store checkpoint data.
Furthermore, depending on the fault rate the system is
subject to, re-executing many instructions that were correctly
completed uselessly adds time overhead to the computing
system.

In the proposed microarchitecture, the hardware IMT
mechanism is exploited to save and retrieve the correct state
with instruction granularity, minimizing the performance
impact of checkpointing and restoring operations. The system
is able to restore the state corresponding to the instruction
preceding the clock cycle in which the fault was detected, and
only the instruction that experienced the fault is repeated. The
checkpoint saving mechanism requires introducing a single
register that saves the address of the last correct instruction
and restores it in the PCs of the three threads in case of fault.
This is possible since the result of an instruction is written to
its destination (either the register file or the data memory)
only after voting among the three results produced by the
same instruction in the three threads, so the processor state
is never corrupted and does not need restoring.

Figure 1 depicts the essential elements of the proposed
design. The microarchitecture resembles a classical 4-stage
single-issue in-order pipeline, with the IMT-specific feature
of having multiple, thread-dedicated PCs, RFs, and CSRs.
In the execution stage, a Load-Store (LS) unit manages
memory accesses while all other operations are managed
by the Execution unit. In the Figure, blocks indicated with
‘‘ECC’’ represent Error Correcting Code logic applied to
values coming from the data and program memories, blocks
indicated with ‘‘V’’ represent voting logic among three
values, while blocks indicated with ‘‘D’’ represent fault
detection logic by comparison of two values.

Overall, the architecture may operate in three modes:

• Normal, or Detection, mode: Identical Threads 2 and 1
execute the same instructions in an interleaved fashion
to provide spatial and temporal redundancy while the
PCs, RFs, Write-Back (WB) buffers and LS buffers
implement a buffered comparison to possibly detect a
fault occurrency. The signal flows in this mode are
represented by blue arrows in Figure 1).
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FIGURE 1. Klessydra-dfT03 microarchitecture. Blue arrows: Normal mode;
black arrows: Restore mode; brown arrows: End Restore Phase.

• Restore mode: If the detection logic identifies a
fault, specific control signals labelled as ‘‘restore_’’ in
Figure 1 are activated, causing the core to enter the
Restore mode. Notably, faults are detected before
writing any result in the RF or the memory. The
signal flows in this mode are represented by black
arrows in Figure 1). The ‘‘restore_’’ signals trigger
the restore block, waking up the inactive auxiliary
thread. As the new thread enters the IMT pipeline,
it retrieves the address of the last successfully executed
instruction, indicated by the Checkpoint-PC register
(further discussed in the next section), while the other
threads hold a stall state. The duration of Restore mode
is never longer than 8 clock cycles, and it is 2 cycles in
the vast majority of cases.

• End-of-Restore mode: Once the recovered instruction
is executed, the resulting output is compared with the
non-matching results previously generated by Threads 2
and 1, implementing a TMR majority voting system.
The signal flows in this mode are represented by brown
arrows in Figure 1). The voted value is then written back
into the RFs or the memory, and the recovery procedure
ends with the suspension of the auxiliary Thread 0 and
the loading of the subsequent instruction address into
the PCs of Threads 2 and 1, continuing the execution in
Normal mode. The duration of the End-of-Restore mode
is 2 cycles.

The following description outlines the modifications to the
three main architectural units required to implement the
Dynamic TMR (dTMR) technique: the PC unit, the LS unit,
and the RF Write-Back unit.

A. PROGRAM COUNTER UPDATE AND RESTORE UNIT
A fault in a Program Counter (PC) can result in an invalid
instruction fetch or a spurious jump. To mitigate this risk, if a
fault affects a PC value, the dedicated detection will detect it
and trigger the Restore operating mode.

In any multi-threading processor structure, each Thread
operates with its own PC. In the Klessydra-dfT03 microar-
chitecture, the PC of the auxiliary Thread 0 is used as a
checkpoint register (Checkpoint-PC), saving the address of
the last correct instruction for potential recovery if a fault is
detected. During Normal operatingmode, the Checkpoint-PC
is updated every two cycles (corresponding to the interleaved
time slots of Thread 2 and Thread 1, respectively). The
updated value is produced by the agreement of the PCs
of Thread 1 and Thread 2, obtained by the dedicated
detection logic. Figure 2 depicts the temporal instruction
flow, representing threads by different colours within the
instruction pipeline. When the Restore procedure starts
as a consequence of a PC fault detection, the PC of
Thread 0 already contains the address of the last uncomitted
instruction (green colour). As a result, the instruction is
re-fetched, re-inserted in the pipeline and executed again.
Under the reasonable assumption that no further faults
occur during Restore mode (a statistically realistic scenario,
considering typical fault rates [33]), the execution of this last
correct instruction yields the valid address of the subsequent
instruction, now stored in the PC of Thread 0. This address is
then loaded in the PCs of Thread 2 and Thread 1, enabling
fetching the next correct instruction and resume Normal
operating mode.

The Program Counter Update/Restore unit structure is
illustrated in Figure 3. It contains the standard logic for
updating the PC in case of jumps, exceptions, or regular
operations. Additionally, it includes a block designed to
handle the ‘‘Thread Sleeping’’ function, which is responsible
for waking up and suspending threads. The ‘‘PC voting &
restoring block’’, along with the ‘‘PC control block’’,
manages the detection process based on signals coming from
the executing threads. Furthermore, it supervise the Restore
operating mode, based on the restore_ signals received from
the LS unit and the RFs.

B. LOAD STORE UNIT
The Load Store (LS) unit has been deeply redesigned for fault
tolerance with respect to the original unprotected core due to
the specific features of memory access operations.

Barely replicating memory operations would lead to
repeating the effects of multiple memory accesses to the
same location. While this may be harmless when load-
ing/storing data from/to the memory, replicated read or
write accesses at special addresses, such as memory-mapped
peripherals, could produce undesired side effects. Moreover,
replicating store operations to the data memory would
result in storing the sole value written by the last thread
accessing the memory without further checks. Therefore,
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FIGURE 2. Restore phase for program counter unit. The green stars represent successful comparison, while
the red x represents a detected error.

FIGURE 3. Internal structure of the program counter update unit.

similarly to the solution adopted in [32], we designed an
LS unit capable of buffering all the signals produced by
load/store operations in Thread 2, then comparing with the
signals produced by Thread 1 in the next clock cycle and
executing a single load/store memory access after error
checking.

Notably, since buffering logic and comparison logic
resulted in worsening the delay of the post-synthesis critical
path in the LS unit, we decided to augment the internal
state machine from two states to three states, one of which
dedicated to the comparison operation. The latency increase
affects only the load/store operation executed by Thread 1,
so that the total latency passes from 4 cycles to 5 cycles for
both threads. The resulting reduction in the critical path delay

is largely dominant over the increased latency of load/store
instruction execution.

The LS unit internal structure is shown in Figure 4. The
‘‘dTMR Logic Control Block’’ is responsible for buffering
the signals coming from the threads and is required for
the comparison operation. Inside this block, further units
manage the handshaking signals, such as ‘‘load_valid’’ and
‘‘store_valid’’, which notify when a thread has finished
buffering, and the load/store execution status signals, such as
‘‘LS_is_running’’, which notifies if there is a flying memory
access.

The ‘‘dTMR Logic Control Block’’ operation is controlled
by a Finite State Machine whose specification is sketched in
Algorithm 1 as a pseudo-code state diagram. The buffered
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FIGURE 4. Internal structure of the Dynamic TMR Load Store Unit (LS unit).

values address, and data are used during the comparison
step. In case of successful comparison the load/store access
is executed to memory/peripherals. In case of mismatch
(fault detected) the ‘‘restore_LSU’’ signal is activated,
directly connected to the ‘‘restore block’’ (as visible in the
microarchitecture pipeline in Figure 1).

A cycle-accurate waveform diagram of the signals
involved is shown in Figure 5. It is possible to observe
the buffering of some of the signals responsible for the
load/store operations and then the comparison cycle during
the execution of Thread 1.

Finally, the LS unit also receives signals from other fault
detection units (green arrows in Figure 4), such as the
‘‘restore_fault_PC’’ signal, which notifies a fault detection
occurrence in other units, to be followed by a pipeline flush
and start of Restore operating mode.

C. REGISTER FILE AND WRITE BACK UNIT
The key component of the dynamic TMR microarchitecture
is the Write Back (WB) management unit connected to
the Register Files (RFs). Similarly to the Buffered TMR
scheme [32], the results coming from the EXEC unit are
temporarily saved in WB buffer registers associated with
the two running threads and immediately compared for
fault detection. In the proposed scheme, a critical aspect is
represented by the presence of only two threads interleaved

in the pipeline. Delaying the actual writing of the results
until after both are ready to be compared causes the need
for data bypass logic (usually avoided in pure IMT processor
cores [34]).
Figure 6 shows the WB unit internal structure including

the RFs. It is possible to observe how the bypass block
generates the two bypass signals (for the two source
operands) ‘‘rs1_bypass’’ and ‘‘rs2_bypass’’, based on the
destination register used during the previous instruction and
the information from the decoding unit.

When in Restore mode, the result of the faulty instruction
re-executed by the auxiliary thread is also saved in a third
WB buffer, and majority voting is performed to solve the
faulty result. When each thread produces the result of the
instruction, the ‘‘Write Back Buffer control’’ block inserts it
into the respective buffer. The value from the voting process,
saved in the ‘‘WB_buf_voted’’ register, is written to the RF
when the ‘‘WB_EN Buffer Logic’’ asserts the WB enable
signals ‘‘WB_EN_buf’’.

When in Normal mode, the ‘‘Fault control block’’ notifies
discrepancies while comparing the WB buffer values. These
can be due to faults in data and/or control signals during the
instruction processing in the pipeline.

The most complex case is when a fault is detected in a
long latency operation (e.g. integer division), and the previous
instruction was a data processing operation that has already
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FIGURE 5. Load store unit: waveform implementation.

FIGURE 6. Internal structure of the write-back and register file management unit.

completed the WB phase. The recovery procedure starts with
a pipeline flush, and the preceding data processing instruction
is executed again. All the units also take the harc (hardware
thread counter) signal into account, which notifies which
thread the instruction belongs to, as well as fault detection
signals (in green color) coming from the other fault detection
units.

V. FAULT TOLERANCE ANALYSIS
The applied Fault Injection (FI) analysis is based on the
Time Frame Spanning method described in [35], which

deterministically targets each of the synchronous register bits
within the microarchitecture, while simulating the execution
of a set of software test programs at the Register Transfer
Level.

At first, the FI procedure was implemented on the baseline
microarchitecture lacking any fault tolerance mechanism
(Klessydra-T03 [36]. This preliminary analysis identifies
those bits that lead to program failures when subjected to
faults. Such bits are called Architecturally Correct Execution
(ACE) bits [37] and are inherently associated with the
executed software program. We used this information to
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Algorithm 1 For Finite State Machine LSU
1: when state = normal
2: if load_oporstore_op:
3: [output assignment for buffered load/store op]
4: nextstate_LS← voting when (harc_EXEC = 1
5: or harc_EXEC = 0) else data_valid_waiting
6: endif
7: when state = voting
8: if load_op_buf or store_op_buf or LS_is_running:
9: if harc_EXEC = 0:
10: [output assignment for real load/store from

Thread 0 buf.]
11: elsif restore_fault_PC = 0:
12: if voting = 1: (fault)
13: [ output assignment data retention ]
14: restore_fault_LSU_wire← 1
15: nextstate_LS← data_valid_waiting
16: elsif voting = 0andrestore_fault_PC = 0:
17: [ output assignment buffered load/store ]
18: LS_is_running_wire← 1
19: nextstate_LS← data_valid_waiting
20: elsif voting = 0andrestore_fault_PC = 1: (restore)

21: [output assignment data restoring]
22: nextstate_LS← normal
23: endif
24: endif
25: endif
26: when state = data_valid_waiting
27: if data_rvalid_i or load_valid or store_valid :
28: if store_op or store_op_buf _wire :
29: [ output assignment receiving data]
30: elsif load_op or load_op_buf _wire :
31: [ output assignment sending data]
32: endif
33: nextstate_LS← normal
34: else
35: nextstate_LS← data_valid_waiting
36: endif

reduce the fault analysis simulation time in the fault-tolerant
microarchitecture by limiting the analysis to ACE bits since
non-ACE bits do not cause failures anyway.

The analysis assumes that no additional fault occurs during
the few clock cycles in Restore mode consequent to a fault
(a statistically quite realistic assumption in the real-world
scenarios of interest). To speed up the simulation, fault
injection (FI) is active during Normal operating mode. The
analysis of the FI results focuses on Single Event Upset
(SEU) effects and assumes that physical SEU faults manifest
uniformly in time and in space. It is important to note that
concepts such as error margin and confidence level, as used
in the classical Monte Carlo random FI, can not be applied in
this approach because it does not test a statistical sample of

the population of bits. Instead, it entails testing the entire ACE
bit population in the microarchitecture to assess the achieved
FT coverage.

A. TIME-FRAME-SPAN METHODOLOGY
Different from a statistical Monte-Carlo approach, where
faults are randomly distributed during program execution,
in the time-frame-span methodology, the faults are injected
deterministically on each target bit of the microarchitecture
within specific time intervals during the whole program
execution. The approach leads to assessing the time percent-
age of the program execution during which a target bit of
the microarchitecture is Architecturally Correct Execution
(ACE), and ultimately the average number of ACE bits in a
generic clock cycle during program execution.

The program execution time is preemptively divided intom
intervals, referred to as time frames. For each target bit j in the
architecture, the RTL simulation of the program execution is
runm times, one for each selected time frame, while injecting
faults on bit j only within the selected time frame. If a fault
injected on bit j produces a program failure, the selected time
frame is marked as failing. Supposing we collect mF failing
time frames out of the total m and assuming that SEUs in
the physical system have a uniform time distribution, we can
estimate the probability that bit j is an ACE state for the
architecture:

PF (j) ≤
mF (j)
m

(1)

As expressed by (1), the analysis establishes an upper
bound to the failure probability [9].

For the scope of the present work, we set the time frame
length as 1/10 of the benchmark execution time. In the view
of a characterization of the risk according to standards as
ISO 26262, which is beyond the scope of this research, the
accuracy of the probability estimation may be improved by
refining the time resolution of the FI time frames.

The obtained failure probabilities lead to an upper limit for
the average number of ACE bits NACE , calculated as the sum
of the estimated failure probabilities of all the N register bits
in the microarchitecture during the program execution [37],
[38], [39], as expressed in (2), while NACE can be utilized to
derive the Architectural Vulnerability Factor (AVF) as stated
in (3).

NACE =
N∑
j=1

PF (j) (2)

AVF =
NACE
N

(3)

The obtained AVF expresses the average fraction of bits in
the architecture that are vulnerable to faults (i.e. they cause
a failure if faulted) in the given application execution. The
AVF value can also be used to calculate the Mean Work to
Failure (MWTF) value, which expresses the average amount
of work (i.e. application runs) that a system can perform
until reaching a failure [40], [41] when subject to a certain
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FIGURE 7. Fault injection results with a time frame spanning approach for the T03, fT03, and dfT03 cores. Target registers on the horizontal axis and
failure probability (%) on the vertical axis.

fault rate. The MWTF metric is a widely used reference
to assess and compare the reliability of computing systems.

It can be calculated as the reciprocal of the average number
of application failures, which in turn is given by the product
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TABLE 1. Benchmark setup for fT03, T03 and dfT03 architectures. The total execution time is reported in [ms] with a 10-frame division and a fault every
30-40 clock cycles under specific faults per frame. During the test, each potentially ACE bit is fault-injected 10 times the number of Faults per frame.

of the assumed raw fault rate Rf , the application program
execution time T_exec and the architecture vulnerability
factor AVF:

MWTF =
1

Rf · AVF · T_exec
(4)

B. RESULTS ON TEST PROGRAMS
We analyzed the performance of the dynamic TMR
Klessydra-dfT03 core while running the benchmarks used for
the Klessydra-fT03 core verification setup and summarized
in Table 1, representing typical computational kernels of
embedded applications. As stated before, to evaluate the
advantages offered by the proposed technique, we compared
the Klessydra-dfT03 core with the unprotected three-thread
Klessydra-T03 core. To get a consistent comparison with
respect to fault resilience, the program benchmarks are
executed in the T03 core on a single thread, keeping the other
two threads busy executing NOP instructions (unaffected by
faults). This should be considered when reading data on
execution time on T03 in Table 1.

Additionally, we also produced a comparison with the fault
tolerant Klessydra-fT03 core, which exploits triple temporal
redundancy through the Buffered TMR technique [31], [32].
From the total clock cycle count reported in Table 1, it is
evident that completing the same program on the Klessydra-
dfT03 core requires approximately two-thirds of the total
cycles compared to the Klessydra-fT03 core. This efficiency
derives from the fact that the dfT03 core operates as a
temporal DMR core in the absence of faults. Regarding
the T03 core, keeping two threads in a busy waiting state
eliminates the occurrence of pipeline stalls, allowing for an
execution time slightly faster with respect to the fT03 core.

The results, as depicted in Figure 7, illustrate the prob-
ability of failure (Pf) concerning the unprotected T03 core
(indicated by red bars) and the protected fT03 and dfT03
cores (represented by dark and light green bars) for all
the target registers, each of which contains ACE bits. For
registers wider than one bit, we averaged the probability of
failure among all the bits.

In the unprotected architecture, the failure rates approach
nearly 100% for most registers. When examining the
dfT03 bars, it becomes evident that failures have a significant
reduction across nearly all registers for all the benchmarks.
Notably, failures are completely removed for many registers,
even for registers with relatively large bit widths (e.g. 32 bits).

TABLE 2. AVF estimation from (3) for all the analyzed benchmarks, it is
possible to see the Architectural Vulnerability Factor improved by an
order of magnitude with respect to T03, reflecting the high
resilience and low vulnerability of dfT03.

A limitation of the proposed design is evidenced in the
non-zero failure probabilities resulting for some architecture
bits. One specific scenario concerns the highest failing ACE
register in the protected dfT03 architecture, the LS_WB
register, responsible for storing the value read from the
load-store unit during load operations. Unfortunately, this
register cannot be buffered to apply the DMR check, as the
load operation is performed only once and control signals
already buffer the data from the load-store unit. Even
though the memory bus can be ECC-protected, ensuring the
correctness of the loaded value into LS_WB, a fault occurring
in the register is actually not corrected by the proposed
technique since the bus read operation is assumed to be a non-
repeatable operation. Thus, a classic spatial TMRmechanism
should be the preferred choice to protect that specific register.

The other registers with non-zero failure probabilities in
the dfT03 core are limited to three, including i) the Thread 2
pending interrupt signal, which would lead to unexpected
jumps on interrupt routines, ii) the decoded instruction from
the ID stage, iii) the Thread 0 PC. Comparing the two
redundant architectures, we observe that the dfT03 core
allowed additional protection of some internal registers,
resulting in reduced fault sensitivity with respect to fT03.

To better quantify the degree of protection, we use the
metrics defined in SectionV-A: the architectural vulnerability
factor (AVF) and the normalized Mean Work to Failure
(MWTF). Table 2 presents the AVF results calculated using
the data produced by the FI simulations on the three cores.
Lower AVF values indicate greater resilience. For all the
benchmarks, the resilience of the dfT03 core improves by
an order of magnitude compared to the T03 core and several
times compared to the fT03 core. Longer benchmarks exhibit

95730 VOLUME 12, 2024



M. Barbirotta et al.: Dynamic Triple Modular Redundancy in Interleaved Hardware Threads

TABLE 3. The trade-off between reliability and performance can be
obtained by the Mean Work To Failure estimation (4), considering the
analyzed benchmarks under a specific radiation rate. Using the AVF
values from Table 2 and Execution time values from Table 1, MWTF
still confirms high resilience for the dfT03 core.

a higher AVF, which can be attributed to the likelihood that a
longer benchmark utilizes more hardware registers (thereby
exposing them to failure) than a short benchmark. A similar
trend is observed in the MWTF metric defined in (4), having
as raw fault rate the weighted average of the values visible in
Figure 7. Table 3 shows the normalized MWTF with respect
to the fault rate for the three cores under consideration.

The advantages of the method with respect to the
unprotected T03 core and the triple-redundant fT03 cores are
evidenced by two different metrics, AVF and MWTF, with
the proposed dfT03 core exhibiting an order of magnitude
advantage over T03 and an advantage over FT03 as
well.

VI. IMPACT ON HARDWARE RESOURCE UTILIZATION
Table 4 shows the hardware resource utilization of all
the architectures synthesized using Xilinx Vivado 2019 on
a Genesys2 board based on the Xilinx Kintex-7 FPGA.
Observing the reported data, the proposed design exhibits a
slight increase in LUTs and FFs compared to the fT03 version
due to the thread recovery logic. When comparing Klessydra-
dfT03 to the original Klessydra-T03 version, the increased
hardware resources are justified by the introduction of fault
tolerance features. Regarding dynamic energy consumption,
the final value is similar for all the architectures. The
Klessydra-dfT03 core exhibits a longer critical path, having
to compare the results from different hardware units inside the
Restoring Block located in the Program Counter Unit. The
proposed dynamic TMR (dTMR) core can reach 185 MHz
clock frequency, compared to 200 MHz and 220 MHz for
fT03 and T03 cores, respectively.

VII. RESULT COMPARISON WITH THE STATE OF THE ART
We conducted a comparative analysis between the results
obtained for the proposed dTMR core and the results
reported in the literature for multi-core lockstep archi-
tectures, considering both non-intrusive (checkpointing)
and intrusive architectures. Table 5 presents a comparison
chart listing RISC-V and non-RISC-V architectures, pre-
viously introduced in section II. We divide the discussion
addressing full mitigation approaches and partial mitigation
approaches.

A. FULL MITIGATION APPROACHES
A FT technique that reportedly detects and corrects all
injected faults is identified with the attribute full mitigation.
In [25], the reported the recovery time overhead, which

is 40 cycles, with a 2X area overhead in LUTs and FFs.
The authors do not provide information about the quantity of
injected faults, yet the tests are limited to the protected units,
with FI affecting only the instruction register. Although the
work reports full mitigation capabilities, identifying all the
injected errors, it does not present numerical data regarding
the general fault tolerance performance, nor the checkpoint
overhead.

In [17], the execution on the cores is shifted in time so that
two out of four cores execute the PC+4 instruction while the
other two cores execute the previous PC instruction.With this
mechanism, instruction checkpointing may occur with zero
overhead, paying in terms of core quadruplication, while the
roll-back overhead is not declared. The occupancy consists
of 12866 LUTs and 8367 FFs on the FPGA, including the
four cores and the checker modules.

Based on shadow registers, the approaches by Nikiema et
al. [23] can detect all the injected faults and replace the failed
instruction in one clock cycle. No other details are given on
the hardware overhead and the impact on the clock frequency,
except for reporting that the Partial Shadow Register with
Rollback (PSRR) approach requires 160 additional register
bits, while the Full Shadow Register (FSR) approach requires
716 additional register bits.

The Hybrid Modular Redundancy (HMR) approaches by
Rogenmoser et al. [30] reach full mitigation performance
by implementing triple-core lockstep (TCLS) and dual-core
lockstep (DCLS) schemes employing multiple cores to
execute the same task. The software-based recovery requires
363 clock cycles in the triple core version and implies a 1.3%
area overhead for error checking logic over the original 12-
core RISC-V cluster. The hardware-basedmethod in the triple
core version provides failure recovery in just 24 clock cycles,
with a 9.4% area overhead for error checking logic over the
original 12 core cluster.

B. PARTIAL MITIGATION
The remaining part of the compared works presents partial
mitigation results often linked to specific architectural aspects
or benchmark setups.

In [24], which features a heterogeneous dual-core archi-
tecture, the authors do not provide information about
the achieved fault mitigation extent nor the quantity of
injected faults. The approach presents a small overhead
in the LowRISC softcore architecture, required for the
communication with the ARM core. No data is reported on
the checkpoint and rollback time overhead.

In [19] and [20], based on software checkpoint and restore
routines, the execution time overhead depends on the chosen
checkpointing interval. The authors present a configuration
with a checkpoint every 300 write cycles, resulting in a time
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TABLE 4. Synthesis results obtained from Xilinx Vivado 2019 on a Genesys2 board (Kintex-7 FPGA).

TABLE 5. Performance comparison for relevant cores cited in Section II. Notes: (1) Authors do not report failure rate of unprotected architecture; (2) FI
affects only specific units (3) FI affects only instruction register.

overhead that varies from 17% for a FIR benchmark to 54%
for a Kalman filter benchmark. The reported mitigation is
84% of the failures induced by the injected faults.

Similarly, in [20], the authors compared a matrix multipli-
cation benchmark executed on a bare-metal environment and
on a FreeRTOS environment, demonstrating a checkpointing
overhead ranging from 59% for the bare-metal case to
81% for the FreeRTOS case. Regarding the achieved fault
mitigation, the authors observed a range from 60% to 70%
for the bare-metal environment and a range from 50% to 60%
for the FreeRTOS environment.

In the DCLS SafeDE approach [22], the reported FPGA
utilization reaches 76K LUTs and 34K FFs, despite the
SafeDE block itself being relatively small (261 LUTs
and 417 FFs). The solution inserts a maximum delay of
20 cycles between the main and follower cores. The authors
do not declare the temporal overheads due to checkpointing
and roll-back. The FI analysis was carried out on one
benchmark (factorial and accumulation) using stuck-at and

bit-flip faults for the duration of 1 cycle and 10 cycles, with
a failure mitigation level that varies from 90.25% to 99%.

Authors in [28] implement two heterogeneous DCLS
architectures (64-bit and 32-bit, respectively), obtaining
96.68% and 95.70% fault mitigation, respectively. They
declare that checkpoint saving takes 3128 clock cycles
in the Lock-VA architecture and 335 cycles in the Lock-
VM architecture. The restore procedure via rollback takes
2852 and 248 cycles in Lock-VA and Lock-VM, respectively.
From the hardware cost point of view, considering only the
softcore part, the overhead is 1.23X LUTs and 2.19X FFs
for the Lock-VA, being 1.07X LUT and 1.11X FF for the
Lock-VM.

The work in [29] presents a TCLS system reported to
achieve 98% fault mitigation. Timing efficiency in the design
is achievedwhen the execution time of the useful computation
(e.g. matrix multiplication) consists of a large fraction
over the total block execution time considering the other
operations (i.e. consistency check and checkpoint) inside a
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verification point [29], moving from 12.1% for 60 × 60
MatMul and 62.6% for 10× 10 MatMul. From the hardware
perspective, the whole core occupies around 23.7K LUTs
and 18.4K FFs, counting the checker logic and the TMR
MicroBlaze module.

In the triple-core lockstep processor by Iturbe et al. [27],
the instruction output is compared every clock cycle. The
context-saving routine that generates the checkpoint takes
1171 clock cycles, while the restore routine takes 1180 cycles.
Considering just the three cores, the logic area overhead
varies from 1.27x to 1.33x, going down to 1.06x - 1.08x when
including the shared memory system. On the total injected
faults per benchmark we report the soft error results, although
the authors have also tried other types of fault injection. The
injected soft errors produce up to 5.6%of failures in the TCLS
output, with up to 14.72% latent errors, ranging from 85.28%
to 94.4% fault mitigation.

C. FINAL COMPARISON
When considering fault tolerance, directly comparing dif-
ferent FT cores may not bring meaningful insights unless
they undergo the same fault injection tests. Nonetheless, it is
possible to assess the effectiveness of a protection technique
by evaluating the percentage of mitigated faults with respect
to the total injected faults.

In the present work, by averaging the results in Figure 7,
the error mitigation rate ranges between 96.8% and 98.6%
for the ACE bits in the architecture on the tested benchmarks.
The values are higher or comparable to most of the works in
Table 5. Moreover, these values are reported (as well as the FI
results in 7 without considering extra FTmeasures (e.g. TMR
on specific registers) suggested by the analysis of the results.

In the presence of faults, the restore routine additionally
affects the program execution time with dependence on
fault rate, making direct comparisons more difficult [9].
The common recovery time for the dfT03 architecture is
four clock cycles, as the pipeline is flushed and restarted
(memory instructions normally lead to higher latency but
are less frequent). The recovery time is then smaller than
any other technique using software rollback routines since
many described approaches require the restoration of the
entire context, and only some of them, like the works in [23],
designed with fine-grained intrusive approach, introduce less
or comparable overhead.

From the checkpoint overhead, our work does not intro-
duce any particular penalty like [19], [20], [27], [28], and
[29], having the checkpoint automatically saved every two
clock cycles by the dynamic TMR approach, with the last
correct program counter saved in a dedicated register for
each executed instruction. Leaving aside the works [22]
and [25], in which FI analyses are performed only on
specific architectural units, our work reaches 98.6% in fault
mitigation. It is worth noting that full mitigation techniques
as [17], [23], and [30] reach 100% mitigation at the cost of
hardware complexity. In particular, the works in [17] and [30]
use 4 cores and 3-12 cores, respectively. The work in [23]

uses a dual-core lockstep technique and intrusive hardware
customization, which allows the detection of faults directly in
the pipeline and not only at the output interface, thus ensuring
greater coverage.

Generally speaking, our approach shows better or compa-
rable results in terms of SEU fault tolerance to many works
in the literature, guaranteeing better hardware occupations
with just 1.11X in FFs and 1.25X in LUTs, limiting to
a minimum temporal overhead due to the checkpoint and
restore processes, even compared to intrusive designs, which
implement these procedures purely in hardware.

The advantages of themethodwith respect to existing dual-
and triple-core lockstep methods are evidenced by reduced
hardware cost and/or drastically reduced time overhead for
Checkpointing and Rollback, along with superior or equal
failure mitigation rate.

The shortcomings of the approach are those of any
time-redundancymethod that partially trades off performance
for safety, thus making it suitable in systems where safety and
hardware cost are the primary concerns.

Looking at computational complexity, the intrinsic double
redundancy of the proposed method implies doubling the
computational load, like in dual-core lockstep architectures.
In dual-core solutions, the two cores execute two identical
threads, as in the proposed method the IMT core executes
two identical threads. When considering triple-core lockstep
solutions, the computational load is triplicated, and so is the
hardware cost. It is true that dual- and triple-core solutions
translate computational complexity in increased hardware
cost by implementing spatial redundancy, while the proposed
solution translates computational complexity in increased
execution time by implementing temporal redundancy. Yet,
the additional computational complexity due to Checkpoint
overhead and Rollback overhead is reduced with respect to
conventional dual-core lockstep, as resulting from Table 5,
so that the overall average computational complexity of the
proposed solution is lower than in the compared previous
methods.

VIII. CONCLUSION
The proposed work extensively investigated the design,
implementation and fault tolerance evaluation of the dynamic
TMR (dTMR) approach in an interleaved multi-threading
RISC-V compliant core, in comparison of more conventional
lockstep multi-core schemes. The FI campaign, based on a
deterministic time-frame-span approach that covered all the
register bits in the microarchitecture, produced a detailed
quantitative evaluation of the achieved failure mitigation rate
on the execution of real-world benchmark routines.

The investigated dTMR core design exhibited an average
failure mitigation rate of up to 98.6%, with negligible
performance penalty in case of fault detection. Compared to
an extensive list of lockstep multi-core architectures, both
DCLS and TCLS, the dTMR implementation trades off
speed (because of time redundancy) for fault tolerance, while
existing lockstep schemes trade-off hardware area for fault
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tolerance. The proposed solution has less than 25% hardware
overhead over the corresponding non-protected architecture
and 2X execution time penalty because of time redundancy
introduced by thread replication. Lockstep solutions always
imply at least a 2X hardware overhead, and in most cases
they pay a time penalty for checkpointing and for rollback in
case of fault. Overall, the dTMR scheme in multi-threading
cores results in representing a preferable choice whenever
time redundancy is more convenient than space redundancy,
with the advantage of practically zero penalty in case of fault-
detection.
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