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Analytical Solution of the Zero-Thickness Perfectly-Conducting
Circular Disk in the Presence of an Axisymmetric Magnetic Dipole:

A Second-Kind Fredholm Integral-Equation Approach

Luigi Verolino1, Giampiero Lovat2, *, Dario Assante3, Amedeo Andreotti1,
Rodolfo Araneo2, Paolo Burghignoli4, and Salvatore Celozzi2

Abstract—The problem of radiation of a magnetic dipole axially symmetric with an infinitesimally thin
perfectly conducting circular disk is solved in an exact closed form. This is done by transforming the
original dual integral equation system describing the problem into a single second-kind Fredholm integral
equation and searching for the solution as a power series. Both low- and high-frequency asymptotic
limits are also discussed from which simple approximate solutions are readily derived. Numerical results
are provided to validate the proposed formulation.

1. INTRODUCTION

The interaction of electromagnetic waves with a circular metal disk constitutes a classical diffraction
problem that, along with its Babinet-complementary problem of diffraction by a circular hole in an
infinite metal plate, has received considerable interest in the literature of the last decades (see, e.g., [1–
20] and references therein).

Such a canonical configuration is in fact of interest for scattering (e.g., radar cross-section
evaluation), antennas, as well as electromagnetic-shielding problems. Its electromagnetic features,
in particular the presence of shape-dependent charge and current density distributions, also bear an
interesting relation to the recently discovered optical resonances due to moving electric charges [21].
Limiting the discussion to time-harmonic regimes, different approaches have been proposed depending
on the frequency range of interest (i.e., on the ratio between the wavelength of the incident wave and
the involved dimensions of the scatterer), ranging from the classical Bethe theory for small holes to
asymptotic high-frequency techniques such as the Physical Theory of Diffraction (PTD), Geometrical
Theory of Diffraction (GTD), and derived methods. In the intermediate range, where the wavelength
is comparable with the radius of the disk or of the aperture, numerical approaches are typically used;
however, in order to alleviate the associated computational burden and also to gain physical insight
into the involved solution, semi-analytical regularization techniques of various kinds have also been
introduced.

In this paper we consider the incidence of spherical waves produced by a point source placed at
a finite distance from a circular metallic disk, i.e., a Vertical Magnetic Dipole (VMD) placed along
the axis (say, z) of azimuthal symmetry of the structure. This canonical source constitutes a valid
representation for a practical electric-loop radiator parallel to the disk and co-axial with it, with radius
small with respect to the operating wavelength.
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Starting from the rigorous formulation of the problem in terms of a system of dual integral equations,
different routes are illustrated to convert the system into a unique Fredholm integral equation of the
second kind, whose favorable properties in connection with numerical discretization schemes are well
known. The proposed approach is based on classical work on dual integral equations (see, e.g., [22–24]),
also used in [25, 26] for a different problem involving point charges in uniform motion along the axis of
circular holes. It allows for easily obtaining asymptotic approximations to the current induced on the
disk valid either in the low- or in the high-frequency regimes, as well as a series representation of the
exact solution valid at arbitrary frequencies.

The paper is organized as follows. In Section 2, the problem under analysis is formulated in terms
of a system of dual integral equations in the unknown surface electric current density on the disk. In
Section 3, this system is converted into suitable second-kind Fredholm integral equations, capable to
provide asymptotic low- and high-frequency approximate solutions. In Section 4, a third transformation
route is illustrated which allows for obtaining a general formulation valid at arbitrary frequencies, from
which a representation of the unknown current density in terms of a power series in the ratio between
the disk radius and the wavelength is derived. In Section 5, numerical results that check the accuracy
and computational performance of the proposed formulation are provided. Finally, in Section 6 some
conclusive remarks are given.

2. FORMULATION OF THE PROBLEM

The configuration under analysis consists of an infinitely thin, perfectly conducting (PEC) circular disk
of radius a placed on the plane z = 0 of a Cartesian coordinate system (x, y, z) with center at the
origin and a vertical magnetic dipole (VMD) with magnetic dipole moment mz placed along the z axis
at a height z = h (see Fig. 1). Time-harmonic sources and fields are assumed with an implicit ejωt

dependence.
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Figure 1. Configuration under analysis: an infinitely thin, perfectly conducting (PEC) circular disk of
radius a placed on the plane z = 0 of a Cartesian coordinate system (x, y, z) with center at the origin
and a vertical magnetic dipole (VMD) placed along the z axis at a height z = h.

2.1. Incident Field

As is well known, the vector potential and electromagnetic field associated with a VMD in free space
can be expressed in a spherical coordinate system (r, φ, θ) centered in the VMD as [27]

A0
φ (r, θ) = −mz

4π

(
1
r2

+
jk0

r

)
sin θ e−jk0r (1)

E0
φ (r, θ) =

ζ0mz

4π

[
jk0

r2
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(jk0)2

r

]
sin θ e−jk0r (2)
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1
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+
jk0
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)
cos θ e−jk0r (3)

H0
z (r, θ) = −mz

4π

[
1
r3

+
jk0

r2
+

(jk0)2

r

]
sin θ e−jk0r (4)

where k0 and ζ0 are the free-space wavenumber and characteristic impedance, respectively.
However, due to the geometry of the problem under investigation, it is more convenient to express

the above fields in a cylindrical coordinate system (ρ, φ, z), with a trivial change of variables.

2.2. Scattered Field

In the presence of the PEC disk, because of the symmetry of the configuration, the electric current
density J induced on the disk is azimuthally directed and independent of the coordinate φ and can thus
be expressed as

J(ρ, z) = JSφ(ρ)δ(z)φ̂ (5)

where δ (·) indicates the Dirac delta distribution.
It is then convenient to introduce the following Hankel-transform pair [28]:

F̃ (λ) =
∫ ∞

0
ρF (ρ)J1(λρ)dρ F (ρ) =

∫ ∞

0
λF̃ (λ)J1(λρ)dλ (6)

where J1 (·) is the first-kind Bessel function of order 1.
Therefore, the scattered vector potential and fields associated with the current distribution (5) are

also independent of the variable φ and can be expressed as

As
φ (ρ, z) = −1

2

∫ ∞

0
J̃Sφ(λ)

e−|z|
√

λ2−k2
0√

λ2 − k2
0

J1 (λρ) λdλ (7)

Es
φ (ρ, z) =

jk0ζ0

2

∫ ∞

0
J̃Sφ(λ)

e−|z|
√

λ2−k2
0√

λ2 − k2
0

J1 (λρ)λdλ (8)

Hs
ρ (ρ, z) = −sign (z)

1
2

∫ ∞

0
J̃Sφ(λ)e−|z|

√
λ2−k2

0J1 (λρ)λdλ (9)

Hs
z (ρ, z) = −1

2

∫ ∞

0
J̃Sφ(λ)

e−|z|
√

λ2−k2
0√

λ2 − k2
0

J0 (λρ) λ2dλ (10)

where J̃Sφ(λ) is the Hankel transform (6) of the induced current density, sign (·) the sign function, and
J0 (·) the first-kind Bessel function of order 0.

2.3. Dual Integral Equations

In order to evaluate the unknown current density, it is necessary to enforce the appropriate boundary
condition on the disk, i.e., that the total tangential electric field vanishes. From Eq. (8), with some
trivial manipulations it is possible to obtain∫ ∞

0

J̃Sφ(λ)√
λ2 − k2

0

J1 (λρ) λdλ = − 2
jk0ζ0

E0
φ (ρ, z = −h) ρ < a

∫ ∞

0
J̃Sφ (λ)J1 (λρ)λdλ = 0 ρ > a

(11)

where E0
φ indicates the φ-component of the incident electric field, and the second equation in Eq. (11)

expresses the fact that the current density vanishes outside the disk. Equation (11) constitutes a system
of dual integral equations.
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In addition, the presence of a sharp PEC edge at ρ = a entails a singular behavior of the current
density in the proximity of the edge [29], i.e.,

lim
ρ→a

√
a2 − ρ2 JSφ(ρ) → finite value (12)

Several techniques allow for solving the system in Eq. (11). In particular, several transformations
allow to express the system of integral equations as a single Fredholm integral equation of second kind.
In the next sections some of these techniques will be discussed.

3. ASYMPTOTIC HIGH- AND LOW-FREQUENCY SOLUTIONS

3.1. High-Frequency Transformation

In order to find an asymptotic high-frequency solution for the current density, it is useful to turn the
dual system of integral Equation (11) into a Fredholm integral equation of the second kind. To this
aim, one can observe that the system (11) is equivalent to the following equation:∫ ∞

0
λJ̃Sφ(λ)J1 (λv) dλ = u (a−v)

[
− 2C

jk0ζ0
E0

φ(v,−h)+
∫ ∞

0
λJ̃Sφ(λ)

(
1− C√

λ2−k2
0

)
J1 (λv) dλ

]
(13)

where C is an arbitrary constant (with the dimension of a propagation constant); u (·) is the unit-step
Heaviside function; and the variable v has been used instead of ρ for further convenience. By Hankel
transforming both sides of Eq. (13), one obtains

J̃Sφ(w) = − 2C
jk0ζ0

∫ a

0
vJ1 (wv) E0

φ(v,−h)dv +
∫ ∞

0
λJ̃Sφ(λ)

(
1 − C√

λ2 − k2
0

)
M (w, λ) dλ (14)

having used the well-known completeness relation [30]∫ ∞

0
vJ1 (λv)J1 (wv) dv =

δ (w − λ)
λ

(15)

and having defined

M (w, λ) =
∫ a

0
vJ1 (λv) J1 (wv) dv =

a2wλ

2
J0 (λa) J2 (wa) − J0 (wa) J2 (λa)

w2 − λ2
(16)

The fact that M (w, λ) is a symmetric function (i.e., it is possible to exchange w and λ) helps to
make numerical methods stable.

It is worth noting that the constant C may assume any complex value. The best choice is to assume
C = jk0, since in this way the second integral in Eq. (14) vanishes for k0 → ∞. Therefore, at high
frequencies it results

J̃Sφ(w) � − 2
ζ0

∫ a

0
vJ1 (wv) E0

φ(v,−h)dv (17)

By inverse Hankel transforming (17), it is possible to finally obtain

JSφ(ρ) � − 2
ζ0

E0
φ(ρ,−h) = −mz

2π

[
jk0

(ρ2 + h2)3/2
+

(jk0)2

ρ2 + h2

]
ρ e−jk0

√
ρ2+h2

(18)

This high-frequency asymptotic solution does not satisfy the boundary condition (12), since such
a behavior has been lost by neglecting the kernel in the integral equation. Moreover, in the asymptotic
limit k0a � 1 the disk tends to be infinite, the edge tends to disappear and, therefore, the proposed
approximation does not include Meixner’s condition (12).

It is worth noting that Eq. (18) could also be obtained by directly observing that the system in
Eq. (11), in the limit a → ∞, would simply reduce to the first equation which, in turn, could be inverted
by means of a simple Hankel transform. However, the proposed transformation leads to the integral
equation (14) which can be used not only to find an asymptotic high-frequency solution, but, more
in general, to compute the solution in a broader range of frequencies, e.g., by means of a fixed-point
iterative method.
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3.2. Low-frequency Transformation

Let us now consider the opposite low-frequency asymptotic limit k0 → 0. To this aim, it is convenient
to transform the kernel of Eq. (11) into a trigonometric one. In particular, by using the following
representation of the Bessel function J1:

J1 (λρ) =
2
πρ

∫ ρ

0

x sin (λx)√
ρ2 − x2

dx (19)

inserting it in the first of Eq. (11), exchanging the order of integrations, and performing an inverse Abel
transform, the first of Eq. (11) becomes∫ ∞

0

J̃Sφ(λ)√
λ2 − k2

0

sin (λx) λdλ = Ĵ0
φ (x,−h) (20)

where, for the sake of simplicity, we have introduced

Ĵ0
φ (x,−h) = − 2π

jk0ζ0
A−1

4

{
ρE0

φ (ρ,−h)
}

(21)

with A−1
4 {·} being the inverse Abel transform of fourth type [31], whose general definition is

f̂ (r) = A4 {f (x)} = 2
∫ r

0

xf (x)

(r2 − x2)1/2
dx

f (x) = A−1
4

{
f̂ (r)

}
=

f̂ (0)
πx

+
1
π

∫ x

0

f ′ (r)

(x2 − r2)1/2
dr

(22)

For the second of Eq. (11) it is sufficient to use the integral [26]∫ ∞

x

J1 (uρ)√
ρ2 − x2

dρ =
sin (ux)

ux
(23)

so that the system of dual integral Equation (11) becomes∫ ∞

0

J̃Sφ(λ)√
λ2 − k2

0

sin (λx)λdλ = Ĵ0
φ (x,−h) x < a

∫ ∞

0
J̃Sφ (λ) sin (λx) dλ = 0 x > a

(24)

By adopting a technique similar to that used in the previous subsection, the system in Eq. (24)
can be reduced to a single integral equation as∫ ∞

0
J̃SΦ(w) sin (wx) dw = u (a − x)

[
Ĵ0

φ (x,−h) +
∫ ∞

0

(
1 − w√

w2 − k2
0

)
J̃SΦ(w) sin (wx) dw

]
(25)

By recalling that ∫ ∞

0
sin (λx) sin (wx) dx =

π

2
[δ (λ − w) − δ (λ + w)] (26)

and introducing the function

N (w, λ) =
∫ a

0
sin (wx) sin (λx) dx =

w sin (λa) cos (wa) − λ cos (λa) sin (wa)
λ2 − w2

(27)

Eq. (25) can be rewritten as a Fredholm integral equation of second kind as

J̃SΦ(λ) =
2
π

∫ a

0
Ĵ0

φ (x,−h) sin (λx) dx +
2
π

∫ ∞

0

(
1 − w√

w2 − k2
0

)
J̃SΦ(w)N (w, λ) dw (28)
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It is worth noting that N (w, λ) is a symmetric function. The integral equation (28) is equivalent
to Eq. (14), but it is more suitable for low-frequency considerations. In fact, for k0 → 0 the second
integral in Eq. (28) vanishes, so that the low-frequency solution of the problem is

J̃SΦ(λ) � 2
π

∫ a

0
Ĵ0

φ (x,−h) sin (λx) dx (29)

By inverse Hankel transforming Eq. (29), after some manipulations one finally obtains

JSφ(ρ) � 2
π

∫ ∞

0
λ

(∫ a

0
Ĵ0

φ (x,−h) sin (λx) dx

)
J1(λρ)dλ

=
2
π

⎡
⎣ ρĴ0

φ (a,−h)√
a2 − ρ2

(
a +
√

a2 − ρ2
) +

Ĵ0
φ (ρ,−h)

ρ
−
∫ a

ρ

ρĴ0′
φ (x,−h)√

x2 − ρ2
(
x +

√
x2 − ρ2

)dx

⎤
⎦ (30)

where Ĵ0′
φ (x,−h) indicates the first derivative of Ĵ0

φ (x,−h).
Equation (30) represents the generic low-frequency solution of the problem under consideration. It

is worth noting that the first term in Eq. (30) exhibits the expected boundary divergence (12). The
second term tends to be a finite value as ρ tends to be zero, since Ĵ0

φ(0,−h) is O(ρ) in this limit. Finally,
the last term is a regular and quickly convergent integral.

With reference to the considered source, the electric field produced by the VMD is

E0
φ (x,−h) =

mzζ0

4π

[
jk0

(x2 + h2)3/2
+

(jk0)2

x2 + h2

]
x e−jk0

√
x2+h2

(31)

which can be approximated at low frequencies as

E0
φ(ρ,−h) � jk0mzζ0

4π
ρ

(ρ2 + h2)3/2
(32)

From Eqs. (21), (22), and (32), the function Ĵ0
φ(x,−h) can thus be approximated as

Ĵ0
φ(x,−h) � −mz

2π

∫ x

0

ρ√
x2 − ρ2

2h2 − ρ2

(ρ2 + h2)5/2
dρ = −mz

π

hx

(h2 + x2)2
(33)

which can be used in Eq. (30) to obtain the sought low-frequency solution.

4. SOLUTION OF THE PROBLEM

In the previous section, the system of dual integral Equation (11) has been turned into different single
Fredholm integral equations of second kind (e.g., Eqs. (14) and (28)), whose numerical discretization
formally solves the problem for any frequency of interest. However, the involved integrals extend
over an infinite domain and have oscillating integrands, hence their computation may be numerically
troublesome. In this section we present an alternative method for turning the system of dual integral
equations into a single Fredholm second-kind integral equation, involving integrals extended on finite
domains.

To this aim, it is convenient to represent the induced surface current density as

J̃SΦ(λ) =
∫ a

0
q(y, k0) sin (λy) dy (34)

where q(y, k0) is an unknown auxiliary function, continuous with its first derivative in the interval
[0, a]×[0,+∞], i.e., q ∈ C1 ([0, a]×[0,+∞]). It is worth noting that, since Eq. (34) has the same
functional form of Eq. (29), the expression of the induced current density adopting such a representation
has the same functional form of Eq. (30), i.e.,

JSφ(ρ) =
ρ q (a, k0)√

a2 − ρ2
(
a +
√

a2 − ρ2
) +

q (ρ, k0)
ρ

−
∫ a

ρ

ρ√
y2 − ρ2

(
y +
√

y2 − ρ2
) ∂q (y, k0)

∂y
dy (35)
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However, there is a fundamental difference between the two expressions. In fact, while Eq. (30) is a
low-frequency approximation, Eq. (35) is valid for arbitrary frequencies, due to the presence of the
frequency-dependent function q (y, k0). However, they coincide in the low-frequency limit, as it will be
verified later on in this section.

By observing the first term in Eq. (35), it is clear that the proposed representation automatically
satisfies the edge condition. Moreover, Eq. (35) does not present any singularity at the origin,
as expected, since the second term for ρ → 0 approaches ∂q/∂y (y = 0, k0), which is finite since
q (y, k0) ∈ C1.

In addition, by multiplying Eq. (34) by sin (λx), integrating over [0,+∞], and using Eq. (26) with
λ → x, w → y, and x → λ, the second equation in Eq. (24) is automatically satisfied. On the other
hand, the first equation in Eq. (24) becomes∫ ∞

0

∫ a

0

λq (y, k0)√
λ2 − k2

0

sin (λy) sin (λx) dydλ = Ĵ0
φ (x,−h) (36)

The latter can also be written as∫ ∞

0

∫ a

0
q (y, k0) sin (λy) sin (λx) dydλ +

∫ ∞

0

∫ a

0
q (y, k0)

(
λ√

λ2 − k2
0

− 1

)
sin (λy) sin (λx) dydλ

= Ĵ0
φ (x,−h) (37)

Taking into account the identity in Eq. (26), Eq. (37) can be rewritten as

π

2
q (x, k0) = Ĵ0

φ (x,−h) +
∫ ∞

0

∫ a

0
q (y, k0)

(
1 − λ√

λ2 − k2
0

)
sin (λy) sin (λx) dydλ (38)

so that the following second-kind Fredholm integral equation is obtained:

q (x, k0) = T (x) +
k0

2

∫ a

0
{G [k0 (y − x)] − G [k0 (y + x)]} q (y, k0) dy (39)

where
T (x) =

2
π

Ĵ0
φ (x,−h) (40)

while the kernel is

G (t) =
2
π

∫ ∞

0

(
1 − v√

v2 − 1

)
cos (vt) dv (41)

It is worth noting that, in the asymptotic low-frequency limit k0a → 0, the integral in Eq. (39)
vanishes so that, in such a limit, q (x, 0) � T (x). Therefore, as anticipated in the introduction of
the section, in the low-frequency limit the functions q (x, k0) and Ĵ0

φ (x,−h) become proportional, and
Eqs. (30) and (35) coincide.

More in general, it is possible to represent the function q (·) as a power series of (k0a), i.e.,

q (ρ, k0) =
∞∑

n=0

qn (ρ) (k0a)n (42)

Similarly, it is possible to represent the functions T (·) and G (·) as

T (ρ, k0) =
∞∑

n=0

Tn (ρ) (k0a)n G (t) =
∞∑

n=0

Gn|t|n (43)

By inserting such representations into Eq. (39) and using the Cauchy product of two power series,
it is easy to obtain the following recurrence equation:

qn (ρ) = Tn(ρ) +
1
2

n−1∑
m=1

Gm

am+1

∫ a

0
[|y − ρ|m − (y + ρ)m] qn−m−1(y)dy (44)
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for n > 0 and q0 (ρ) = T0 (ρ). It is worth noting that the coefficients Tn (ρ) and Gm can be computed
analytically, as shown in Appendix A (see Eqs. (A4), (A11), and (A20)-(A21)). In particular, it is found
that

q0 (ρ) = T0 (ρ) = −2mz

π2

hρ

(h2 + ρ2)2
(45)

Moreover q1 (ρ) = T1 (ρ) = 0 and

q2 (ρ) = − mzh

2π2a2

(
1

ρ2 + h2
+

1
a2 + h2

)
ρ (46)

q3 (ρ) = j
4mzρ

3π3 (a2 + h2) a3

[
ah +

(
a2 + h2

) (π

2
− tan−1 a

h

)]
(47)

q4 (ρ) =
mzhρ

48π2 (a2 + h2) a4

[(
27a2 + 12h2 + r2

)
+ 3
(
a2 + h2

)
log
(

ρ2 + h2

a + h2

)]
(48)

The higher-order terms qn can also be calculated analytically through Eqs. (44), (A4), (A11), and
(A20)–(A21). The expressions for the odd terms q2n+1 involve terms of the kind ρk (k = 0, . . . , 2n− 1).
The expressions for the even terms q2n involve terms of the kind ρk (k = 0, . . . , 2n − 1) and
ρ
(
ρ2 + h2

)n−2 log
(
ρ2 + h2

)
. However, for n > 4 the expressions are quite involute and not reported

here for brevity. Once the coefficients qn (ρ) (and hence the function q (ρ, k0)) are known, the current
JSΦ(ρ) can be obtained through Eq. (35).

5. NUMERICAL RESULTS

To check the validity and accuracy of the proposed formulations, a case study is presented here, i.e.,
a VMD placed at z = h = 50 cm over a PEC disk with radius a = 5 cm. The current-density profile
obtained through Eqs. (35) (Proposed analytical solution), (30) (Low-frequency solution), and (18)
(High-frequency solution) is reported as a function of ρ/a for different frequencies (Figs. 2–6) and
compared with numerical results obtained through a conventional Method-of-Moment (MoM) solution
with entire-domain basis functions (Exact (MoM)) [18].
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Figure 2. Surface current density as a function of ρ/a for k0a = 0.01 with a = 5 cm, i.e., f = 9.54 MHz.
Parameters: h = 50 cm, mz = 1 Am2.

In Fig. 2, the comparison is shown for k0a = 0.01 (i.e., f = 9.54 MHz) between the exact numerical
MoM results and the proposed low-frequency solution (which also considers only one term in the
proposed analytical formulation). As can be seen, the curves are perfectly superimposed. On the other
hand, for k0a = 0.1 (i.e., f = 95.4 MHz), the exact solution starts to deviate from its low-frequency
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Figure 3. Surface current density as a function of ρ/a for k0a = 0.1 with a = 5 cm, i.e., f = 95.4 MHz.
Parameters: h = 50 cm, mz = 1 Am2.
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Figure 4. Surface current density as a function of ρ/a for k0a = 0.5 with a = 5cm, i.e., f = 0.48 GHz.
Parameters: h = 50 cm, mz = 1 Am2.

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Exact (MoM)

Low-frequency solution

Proposed analytical solution (n = 25)

ρ / a

|J |  [A/m ]Sφ

Figure 5. Surface current density as a function of ρ/a for k0a = 0.7 with a = 5cm, i.e., f = 0.67 GHz.
Parameters: h = 50 cm, mz = 1 Am2.
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Figure 6. Surface current density as a function of ρ/a for k0a = 100 with a = 5 cm, i.e., f = 95.4 GHz.
Parameters: h = 50 cm, mz = 1 Am2.
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Figure 7. Surface current density as a function of frequency f for ρ/a = 0.25. Parameters: h = 50 cm,
a = 5 cm, mz = 1 Am2.

approximation, while the proposed analytical solution is correct by taking n = 4 terms in the power
expansion of the q function (i.e., in Eq. (42)), as it can be seen in Fig. 3. By increasing frequency (i.e.,
by increasing k0a), more terms are needed in the expression of the q function to correctly reproduce
the exact behavior of the surface current density, as it can be seen in Figs. 4 and 5 where the results
correspond to the cases k0a = 0.5 (i.e., f = 480 MHz) and k0a = 0.7 (i.e., f = 670 MHz) and where
n = 18 and n = 25 terms are used, respectively. Finally, the high-frequency case k0a = 100 (i.e.,
f = 95.4 GHz) is reported in Fig. 6 where, as expected, the simple high-frequency solution in Eq. (18)
is perfectly superimposed to the exact numerical MoM solution, except very close to the edge ρ/a = 1.
In this case, the exact MoM result presents slight oscillations starting from ρ/a � 0.84 and starts to
increase monotonically towards infinity from ρ/a = 0.993.

The comparison among all the formulations for the surface-current density as a function of the
product k0a is instead reported in Figs. 7–9 for ρ/a = 0.25, ρ/a = 0.5, and ρ/a = 0.75, respectively, to
point out the limits of the low- and high-frequency solutions. The proposed analytical solution is always
perfectly superimposed to the exact numerical MoM results, provided that a sufficient number of terms
are considered in the series expansion of the q function. As can be seen, the low-frequency solution is
a good approximation up to k0a � 0.08 (i.e., f = 76.3 MHz) while the high-frequency solution starts to
correctly reproduce the exact surface current behavior from k0a � 5 (i.e., f = 4.77 GHz).
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Figure 8. Surface current density as a function of frequency f for ρ/a = 0.5. Parameters: h = 50 cm,
a = 5 cm, mz = 1 Am2.
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Figure 9. Surface current density as a function of frequency f for ρ/a = 0.75. Parameters: h = 50 cm,
a = 5 cm, mz = 1 Am2.

6. CONCLUSION

The problem of an infinitesimally thin perfectly conducting circular disk excited by an axially symmetric
magnetic dipole has been addressed. The problem has been first formulated in terms of a system of
dual integral equations which has been converted in different second-kind Fredholm integral equations
amenable to different asymptotic low- and high-frequency solutions in closed form. An exact analytical
solution valid at arbitrary frequencies is also obtained in terms of a power series. Numerical results are
provided to validate the accuracy and the limits of the proposed solutions. In summary, the considered
problem has been solved successfully at all frequencies: the low-and high-frequency ranges are covered
by the approximate formulations; these are not accurate in the intermediate range, where the exact
formulation can instead be used.
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APPENDIX A. SERIES REPRESENTATIONS OF THE FUNCTIONS G AND T

The integral (41) can be solved in a closed form. In fact [32, 3.771.12–3.771.13]

G (t) =
2
π

{∫ 1

0

(
1 + j

v√
1 − v2

)
cos (vt) dv +

∫ ∞

1

(
1 − v√

v2 − 1

)
cos (vt) dv

}

=
2
π

{
sin t

t
+ j

π

2
H−1 (|t|) +

π

2
J1 (|t|) − sin |t|

|t|
}

= J1 (|t|) + jH−1 (|t|)

(A1)

where H−1 (·) is the Struve function of order −1 [32, 8.55].
The series expansion of the G function can thus be obtained through the series expansions of the

Bessel and Struve functions [32, 8.441.2–8.550]. From Eq. (A1) we thus have

G (t) =
∞∑

m=0

(−1)m
|t|2m+1

22m+1m! (m + 1)!
+ j

∞∑
m=0

(−1)m
|t|2m

22mΓ (m + 3/2) Γ (m + 1/2)
(A2)

i.e.,

G (t) =
∞∑

n=0

Gn|t|n (A3)

with

Gn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

j
(−1)n/2

2nΓ
(

n + 3
2

)
Γ
(

n + 1
2

) n even

(−1)
n−1

2

2n

(
n − 1

2

)
!
(

n + 1
2

)
!

n odd

(A4)

By considering the complete expression of the electric field E0
φ(ρ,−h), it is not possible to find a

closed-form expression for the function

T (ρ) =
2
π

Ĵ0
φ (ρ,−h) = − 4

jπk0ζ0

∫ ρ

0

∂

∂r

[
rE0

φ(r,−h)
] 1√

ρ2 − r2
dr (A5)

Therefore we assume the general representation

T (ρ) =
∞∑

n=0

Tn (ρ) (k0a)n (A6)

In order to compute all the coefficients of the series, we start from (A5), using (31), together with the
series expansion of the exponential function so that

xE0
φ (x,−h) =

mzζ0

4π

[
jk0

(x2 + h2)3/2
+

(jk0)2

x2 + h2

]
x2 e−jk0

√
x2+h2

=
mzζ0

4π

[
jk0

(x2 + h2)3/2
+

(jk0)2

x2 + h2

]
x2

∞∑
n=0

(−jk0)
n (x2 + h2

)n
2

n!

=
mzζ0x

2

4π

[
jk0

(
x2 + h2

)−3/2 +
∞∑

n=0

(−jk0)
n+3 (n + 1)

(n + 2)!
(
x2 + h2

)n−1
2

]
(A7)

and
∂

∂x

[
xE0

φ (x,−h)
]

=
mzζ0x

4π

{
jk0

2h2 − x2

(x2+h2)5/2
+

∞∑
n=0

(−jk0)
n+3 (n+1)

(n+2)!
[
2h2+(n+1)x2

] (
x2+h2

)n−3
2

}

(A8)
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Therefore, from Eq. (A5)

T (ρ) = − 4
jπk0ζ0

∫ ρ

0

∂

∂x

[
xE0

φ(x,−h)
] 1√

ρ2 − x2
dx

=
mz

π2

∫ ρ

0
x

{
− 2h2 − x2

(x2 + h2)5/2
+

∞∑
n=0

(−jk0)n+2 (n + 1)
(n + 2)!

[
2h2 + (n + 1)x2

] (
x2 + h2

)n−3
2

}
1√

ρ2 − x2
dx

(A9)

By letting τ =
√

x2 + h2 we obtain

T (ρ) =
mz

π2

{
−
∫ √

ρ2+h2

h

3h2 − τ2

τ4
√

ρ2 + h2 − τ2
dτ

+
∞∑

n=2

(−j)n (n − 1)
n!an

(k0a)n
∫ √

ρ2+h2

h

[
(3 − n)h2 + (n − 1)τ2

]
τ4−n

√
ρ2 + h2 − τ2

dτ

}
(A10)

The first integral in Eq. (A10) can be easily calculated: it corresponds to T0 (ρ), and the
computation leads again to the result in Eq. (33). In fact

T0 (ρ) =
mz

π2

∫ √
ρ2+h2

h

τ2 − 3h2

τ4
√

ρ2 + h2 − τ2
dτ = − 2mzhρ

π2 (ρ2 + h2)2
(A11)

It is worth noting that in Eq. (A10) the term proportional to k0 vanishes, i.e., T1(ρ) = 0. The
other integrals in the series (A10) are directly related to the higher-order Tn (ρ) terms, i.e.,

Tn (ρ) =
mz

π2

(−j)n (n − 1)
n!an

∫ √
ρ2+h2

h

[
(3 − n)h2 + (n − 1)τ2

]
τ4−n

√
ρ2 + h2 − τ2

dτ (A12)

For the integrals, it results in that

∫ √
ρ2+h2

h

(3 − n)h2 + (n − 1)τ2

τ4−n
√

ρ2 + h2 − τ2
dτ =

∫ √
ρ2+h2

h

(3 − n)h2τn−4√
ρ2 + h2 − τ2

dτ +
∫ √

ρ2+h2

h

(n − 1)τn−2√
ρ2 + h2 − τ2

dτ

(A13)

Now, by letting τ =
√

ρ2 + h2 sin t, we have∫ √
ρ2+h2

h

(3 − n)h2 + (n − 1)τ2

τ4−n
√

ρ2 + h2 − τ2
dτ = (3 − n)h2

(
ρ2 + h2

)n/2−2
∫ π/2

Θ(ρ)
sinn−4 tdt

+(n − 1)
(
ρ2 + h2

)n/2−1
∫ π/2

Θ(ρ)
sinn−2 tdt (A14)

where

Θ (ρ) = sin−1

(
h

h2 + ρ2

)
= tan−1 h

ρ
(A15)

By using ∫
sinn−4 tdt =

sinn−3 t cos t

(n − 3)
+

n − 2
n − 3

∫
sinn−2 tdt (A16)

we obtain∫ √
ρ2+h2

h

(3 − n)h2 + (n − 1)τ2

τ4−n
√

ρ2 + h2 − τ2
dτ =

hn−1ρ

(ρ2 + h2)
+
[
h2 + (n − 1)ρ2

] (
ρ2 + h2

)n/2−2
∫ π/2

Θ(ρ)
sinn−2 tdt

(A17)
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The integral in Eq. (A17) has different expressions depending on if the exponent of the sine function in
Eq. (A17) is even or odd [32, 2.511.2–2.511.3]. In particular, it results in

∫ π/2

Θ(ρ)
sin2m ydy =

1
22m

(
2m
m

)[
π

2
− tan−1 h

ρ

]
− (−1)m

22m−1

m−1∑
k=0

(−1)k

(
2m
k

)sin
[
(2m − 2k) tan−1 h

ρ

]
2m − 2k

(A18)

and ∫ π/2

Θ(ρ)
sin2m+1 ydy = − 1

22m
(−1)m+1

m∑
k=0

(−1)k

(
2m + 1

k

)cos
[
(2m + 1 − 2k) tan−1 h

ρ

]
2m + 1 − 2k

(A19)

Therefore, from Eqs. (A10), (A17), and (A18)-(A19), the remaining generic expansion coefficients
of the function T (ρ) (i.e., for n > 1) can be expressed as

T2n =
mz

π2

(−j)2n (2n − 1)
(2n)!a2n

{
h2n−1ρ

ρ2 + h2
+
[
h2 + (2n − 1)ρ2

] [(
ρ2 + h2

)n−2 (2n − 3)!!
2n−1 (n − 1)!

(
π

2
− tan−1 h

ρ

)

+
1

(2n − 2)
ρh2n−3

ρ2 + h2
+

1
(2n − 2)

n−2∑
k=1

(2n − 3) (2n − 5) . . . (2n − 2k − 1)
2k (n − 2) (n − 3) . . . (n − k − 1)

ρh2n−2k−3

(ρ2 + h2)1−k

]}
(A20)

T2n+1 =
mz

π2

(−j)2n+1 2n
(2n + 1)!a2n+1

·
[

h2nρ

ρ2 + h2
+

(
h2 + 2nρ2

)
2n − 1

ρh2n−2

(ρ2 + h2)
+

(
h2 + 2nρ2

)
2n − 1

n−2∑
k=0

2k+1 (n − 1) (n − 2) . . . (n − k − 1)
(2n − 3) (2n − 5) . . . (2n − 2k − 3)

ρh2n−2k−4

(ρ2 + h2)−k

]

(A21)
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