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Abstract: Aberrant expression of the programmed cell death protein ligand 1 (PD-L1) constitutes
one of the main immune evasion mechanisms of cancer cells. The approval of drugs against the
PD-1-PD-L1 axis has given new impetus to the chemo-therapy of many malignancies. We performed
a literature review from 1992 to August 2022, summarizing evidence regarding molecular structures,
physiological and pathological roles, mechanisms of PD-L1 overexpression, and immunotherapy
evasion. Furthermore, we summarized the studies concerning head and neck squamous cell carcino-
mas (HNSCC) immunotherapy and the prospects for improving the associated outcomes, such as
identifying treatment response biomarkers, new pharmacological combinations, and new molecules.
PD-L1 overexpression can occur via four mechanisms: genetic modifications; inflammatory sig-
naling; oncogenic pathways; microRNA or protein-level regulation. Four molecular mechanisms
of resistance to immunotherapy have been identified: tumor cell adaptation; changes in T-cell
function or proliferation; alterations of the tumor microenvironment; alternative immunological
checkpoints. Immunotherapy was indeed shown to be superior to traditional chemotherapy in locally
advanced/recurrent/metastatic HNSCC treatments.

Keywords: head and neck squamous cell carcinoma; immunotherapy; PD-1/PD-L1; immunotherapy
molecular mechanism; immunotherapy resistance; pembrolizumab; nivolumab; metastatic head and
neck cancer; chemotherapy

1. Introduction

The programmed cell death protein 1 (PD-1) was isolated in 1992 [1]. It is a trans-
membrane protein mainly expressed by immune system cells such as T lymphocytes
with a crucial role in immune self-tolerance [2–6]. The interaction with its ligands, the
programmed cell death protein ligand 1 and 2 (PD-L1 and PD-L2), induces T-cell inhibi-
tion [2,7]. Physiologically, T-cells destroy aberrant cells, such as pathogen-infected and
cancer cells, by binding the T-cell receptor (TCR) to the major histocompatibility complex
(MHC) [2]. The aberrant expression of PD-L1 by cancer cells inhibits the T-cells’ cytotoxic
activity, a leading mechanism of cancer immune evasion [8]. Following this discovery, new
drugs active on PD-1/PD-L1 have been produced, tested, and approved [9–11].

Head and neck squamous cell carcinomas (HNSCC) are the sixth most common cancer
worldwide [12–14]. The first-line regimen for recurrent or metastatic HNSCC, before the
introduction of immunotherapy, was the EXTREME protocol with Cetuximab + Cisplatin
or Carboplatin + 5-Fluorouracil (5-FU). The results of this protocol were not optimal.
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The median overall survival (mOS) was only 10.1 months, the median progression-free
survival (mPFS) was 5.6 months, and the response rate (RR) was 36% [15,16]. This value
dropped between 3 and 13% in the second-line treatment with a median survival of less
than 6 months [16–19]. The introduction of PD-1/PD-L1 immunotherapy significantly
improved this percentage, but they are still not optimal, and only 20 to 30% of patients
have long-term benefits [8,20].

This literature review aims to describe the molecular mechanisms of the PD-1/PD-
L1 axis underlying the aberrant expression of PD-L1 within neoplastic tissues. We also
analyzed mechanisms of drug resistance and examined preclinical and clinical data on
HNSCC immunotherapy. Finally, we focused on future prospects concerning new markers
for patient selection, molecules, and treatment protocols.

2. Materials and Methods

We searched papers in the PubMed, Embase, and Cochrane Central Register of Con-
trolled Trials databases for articles in the literature from the year of isolation of PD-1 (1992)
to August 2022. Search terms included the following: PD-1 molecular mechanism, PD-
L1 molecular mechanism, Pembrolizumab, Nivolumab, head and neck cancer resistance,
immunotherapy, anti-PD-1, anti-PD-L1, metastatic head and neck cancer, recurrent head
and neck cancer. We also hand-searched bibliographies for relevant articles. We excluded
non-English language papers. All authors discussed results with conflicts solved by our
senior author A.M. Hence, we have selected those papers, according to our research group,
showing the most important evidence in defining the molecular mechanisms concerning
PD-1-PD-L1. We have divided the evidence into paragraphs, starting from molecular struc-
tures and mechanism of action, then analyzing the mechanisms that underlie the aberrant
expression in neoplasms. We then dealt with the main clinical trials concerning molecules
active on PD-1 or PD-L1 in HNSCC. Finally, we examined all the possible criticalities of the
present studies and the future therapeutic and diagnostic perspectives.

3. Results
3.1. Molecular Structure and Function

In 1992, Ishida Y. et al. isolated the PD-1 gene. The nucleotide sequence encodes for a
288 amino acids protein with two hydrophobic regions, the N-terminal acting as a signal
peptide and the other in the middle as the transmembrane segment. After cleavage of the
signal peptide, the mature form of the PD-1 protein is 268 amino acids, with an extracellular
part of 147, a transmembrane of 27, and a cytoplasmic part of 94. The PD-1 extracellular
domain is similar to that of the immunoglobulin superfamily. The cytoplasmatic tail is like
that of most of the polypeptides associated with antigen receptors and Fc receptors (proteins
found on the surface of certain cells binding to antibodies that are attached to infected
cells or invading pathogens). The protein is expressed on the surface of antigen-stimulated
T-cells [1]. PD-1 interacts with its ligands PD-L1 and PD-L2. Despite the PD-1/PD-L2
having a 2-6-fold higher affinity than the PD-1/PD-L1 interaction, PD-L1 is the primary
inhibitor of T-cells via PD-1 binding [2,7].

3.1.1. PD-1 and PD1-L1 Structures

PD-1 has a weight of about 55 kDa. It has 3 domains, an extracellular Ig-V-like domain
(20 aa), a transmembrane domain, and a cytoplasmic domain with a signal transduction
system with two tyrosine kinases (95 aa). The intracellular domain also contains two
motifs, an immunoreceptor tyrosine-based switch motif (ITSM) and an immunoreceptor
tyrosine-based inhibitory motif (ITIM). ITSMs usually deliver inhibitory signals [1,21]. The
C-terminal tyrosine is related to the Src homology region 2 domain-containing phosphatase-
1 (SHP-1) and SHP-2 [22–25].
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3.1.2. PD-1/PD-L1 Interaction

The binding between PD-1 and PD-L1 induces a PD-1 conformation change that
activates the kinase cascade of the SRC family and leads to the phosphorylation of the cyto-
plasmic ITIM and ITSM. Which in turn activates SHP-1 and SHP-2, reducing the activation
signals of T-cells. Recent studies have suggested that the main target of dephosphorylation
is the CD28 co-stimulator receptor (Figure 1) [26–32]. PD-L1 also interacts with CD80 with
an inhibitory effect on activated T cells [33].
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Figure 1. PD-1/PD-L1 mechanism of action and PD-L1 expression in cancer cells. ITIM, immunore-
ceptor tyrosine-based inhibitory motif; ITSM, immunoreceptor tyrosine-based switch motif; SHP-1,
SHP-2, tyrosine phosphatases; ZAP70, zeta-chain associated protein kinase 70; IL-2, interleukin-2;
JAK-2, Janus kinase 2; IFN-γ, interferon γ; IRFs, interferon responsive factors; LPS, lipopolysaccha-
ride; TLR-4, toll-like receptor 4; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells;
HIF, hypoxia-inducible factors; HRE, hypoxia responsible elements; CDK5, kinase cyclin-dependent
kinase 5; EGFR, epidermal growth factor receptor; ALK, anaplastic lymphoma kinase; miRNA,
micro-RNA; CSN5-COP9, signalosome complex subunit 5.

3.1.3. Biological Role

In PD-1 gene-deficient or PD-L1 genes inhibited by antibodies in animal models, it
has been observed the development of autoimmune diseases and cardiomyopathies, the
onset of diabetes, alteration of thymic T-cells, and impaired feta maternal tolerance [2–6].
Furthermore, it has been shown that PD-1 inhibition modulates the cellular T response
with an increase in their responsiveness [34–37].

In T-cells, the interaction between PD-1 and PD-L1 leads to suppressive signals and
dephosphorylation of the TCR pathway [38]. When PD-1 binds, its ligand causes the
tyrosine phosphorylation of the cytoplasmic region and the binding of SHP-2 to the C-
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terminal of tyrosine in the ITSM region. Hence, SHP-2 dephosphorylates both the zeta-
chain associated protein kinase 70 (ZAP70) and the CD28 PI3K pathway proteins, initiating
inhibitory signaling downstream of the cascade. Furthermore, the inhibition of PI3K
activation leads to reduced IL-2 production and glucose metabolism with the induction of
T-cells energy (see Figure 1) [39–41].

It has been observed that PD-L1 does not appear to be just a ligand. Still, its binding
with PD-1 seems to initiate a cascade of signals in cancer cells that induces a decreased
resistance to some forms of apoptosis, reducing the activity of both mTOR and glycolytic
metabolism that protects against the cytotoxic effect of interferons I and II and cytolysis
mediated by cytotoxic T lymphocytes. Although it is not yet crystal, what is the intracellular
signal transduction mechanism [42–44].

3.2. PD-L1 Tumor Expression

In most cases, the increase in membrane PD-L1 levels gives cancer cells an advantage
in evading immune defenses. But when these subjects are treated with immunotherapy
at higher levels of PD-L1, there is also a greater susceptibility to drugs [2] as observed for
other types of cancer [45–47].

3.2.1. Genetic Modifications

PD-L1 and PD-L2 are only 42 kilobases away on chromosome 9 (9p24.1). The mech-
anisms adopted by cancer cells to increase their transcription are both amplification and
translocation (Table 1, Figure 1) [2]. Their proximity, therefore, allows a single mutation of
this type to lead to an increase in the expression of both genes. Analyzing chromosome
9, Green et al. observed that Janus kinase 2 (JAK2) is located at the 9p locus. If the mod-
ification of the DNA also involves the gene that decodes for it, a further increase in the
expression of PD-L1 would be obtained thanks to the action on the IFN-γ receptor pathway
(Table 1, Figure 1) [48]. PD-L1 levels are also regulated by microRNAs (miRNAs) that bind
the 3 ‘UTR of the gene. miRNAs play an inhibitory role at the post-transcriptional level. Its
loss or modification was related to an increase in PD-L1 expression, and its deletion via
CRISPR Cas9 led to greater stability of PD-L1 mRNA (Table 1, Figure 1) [2,49–51].

Table 1. PD-L1 tumor hyperexpression mechanisms.

Mechanism/Molecule Mechanism of Action Refs

Genetic modifications

Amplification Amplification and translocation of PD-L1 gene (9p24.1) [2,52]
Translocation

JAK-2 JAK-2 hyperexpression due to amplifications and/or
translocation (9p) [48,53]

miRNAs 3′UTR binding [2,49]

Inflammatory signaling

IFN-γ IFN-γ activates JAK-STAT pathway (especially STAT1),
causing the expression of IRFs [53–55]

LPS LPS activates TLR4, which activates NF-κB. The latter
increases type I interferons expression [56,57]

IL-17, IL-10, TNF-α, IL-4, IL-1b, IL-6, IL-27 Inflammatory factors that enhance PD-L1 expression. [58–62]
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Table 1. Cont.

Mechanism/Molecule Mechanism of Action Refs

Oncogenic pathways

MYC MYC interacts with the PD-L1 promoter which causes
an increase in gene transcription [63]

HIF-1a, HIF-2a HIF-1a and HIF-2a interact with HRE and activate the
PD-L1 promoter [64–67]

STAT3 STAT3 acts on PD-L1 promoter increasing his expression [68,69]

NF-κB NF-κB p65 (RELA) subunit binds PD-L1 promoter and
increases his expression [70,71]

CDK5 CDK5 destabilizes IRF2-inducing PD-L1 expression [72]

AKT-mTOR cascade PI3K activates AKT-mTOR cascade, that cascade
increases PD-L1 expression [73–76]

RAS GTPase and/or BRAF tyrosine
kinase activity Increase in PD-L1 expression [77,78]

K-RAS, EGFR, ALK
K-RAS induces PD-L1 expression. EGFR acts through
mTOR and ERK-dependent mechanisms. ALK uses

STAT3 and MEK-ERK.
[79–82]

miRNA-mediated regulation

miR-513, -155, -34a, 142-5p, -93, -106b, -138-5p,
-217 (laryngeal cancer), -200, -152, -570, -17-5p,

-15a, -193a, -16 and -197
PD-L1 suppressors [79–92]

miR-20, -21 and -16 PD-L1 enhancers [83]

Protein level regulation

CMTM6 and 4 CMTM6 and 4 bind PD-L1 and prevent ubiquitination
and lysosomal degradation. [2,84,85]

D-CDK4 (loss of function) D-CDK4 phosphorylates SPOP and elicits the
ubiquitination and degradation of PD-L1 [86]

NF-κB NF-κB removes ubiquitin chains via CSN5 [87]

3.2.2. Inflammatory Signaling

Physiologically PD-1/PD-L1 serves to regulate the action of T cells, and the discovery
of PD-L1 regulation by inflammatory signaling is not surprising. Tumors, in addition
to determining DNA modifications as systems to increase their expression, also exploit
inflammatory molecules. IFN-γ is considered the main inducer of PD-L1 expression. The
binding to the receptor activates the Janus Kinases- signal transducer and activator of
transcription proteins (JAK-STAT) pathway, especially STAT1, causing the expression of
interferon-responsive factors (IRFs) (Figure 1, Table 1) [54,55]. The fact that IFN-γ is not
the only one responsible for PD-L1 expression is also demonstrated by the experiments of
Noguchi et al., who observed how inhibition of IFN-γ by antibodies reduces but does not
eliminate the expression of PD-L1 [88].

Lipopolysaccharide has also been observed to increase PD-L1 levels. Its mechanism of
action occurs throughout the toll-like receptor (TLR) 4, which activates the nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB). The latter increases the expression
of type I interferons [56,57]. TLR3 also appears to increase PD-L1 expression. The same has
been observed for numerous other inflammatory factors such as IL-17, IL-10, TNF-α, IL-4,
IL-1b, IL-6, and IL-27 (Table 1, Figure 1) [58–62].
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3.2.3. Oncogenic Pathways

The regulation of PD-L1 production is also regulated by some oncogenic transcription
factors. MYC contributes to the tumorigenesis of 70% of all neoplasms [89]. Its pharmaco-
logical inhibition significantly reduces PD-L1 expression. The mechanism of action appears
to be the link between the MYC proto-oncogene—bHLH transcription factor (MYC) and
the PD-L1 promoter which causes an increase in gene transcription [63]. Consistent with
this observation, MYC levels correlate with PD-L1 expression (Table 1, Figure 1) [90].

Neoplasms often overcome the obstacle of hypoxia by producing hypoxia-inducible
factors (HIFs), which promote angiogenesis. HIFs also increase PD-L1 expression by the
interaction between HIF-1A and HIF-2B with the hypoxia response element (HRE) on
the promoter of the PD-L1 gene (Table 1, Figure 1) [64–67]. STAT3 is a molecule found
downstream of many signal cascades and is known to be active in many neoplasms. It acts
directly on the PD-L1 promoter and increases its expression [68,69]. In addition to activating
type I interferons, as mentioned above, NF-κB has a direct action on the PD-L1 gene. This
transcription factor can be activated by both oncogenic mutations and inflammatory factors.
One of its subunits, p65 (or RELA), directly binds the PD-L1 promoter and increases its
expression [70,71].

Another suspected molecule is serine-threonine kinase cyclin-dependent kinase 5
(CDK5), known to destabilize the competitive IRF1 repressor called IRF2 and cause the
induction of PD-L1 (Figure 1, Table 1) [72]. As discussed above, the role of IFN-γ in inducing
PD-L1 expression has been described by many authors. Consequently, the molecules acting
on IFN-γ can also be indirectly active in this sense (Figure 1, Table 1). The AKT-mTOR
cascade, located downstream of the phosphatidylinositol 3-kinase (PI3K) signaling, can be
directly activated by type I and II IFN. Some authors have observed how suppression of the
AKT-mTOR pathway reduces IFN-γ-induced PD-L1 expression. Moreover, the suppression
of the Phosphatase and tensin homolog (PTEN) gene, which negatively regulates the
signaling of PI3K-AKT, increases the expression of PD-L1 (Figure 1, Table 1) [73–76].

The increase in RAS GTPase and/or BRAF tyrosine kinase activity typical of many tu-
mors activates the MEK-ERK pathway. Numerous studies have indicated that this pathway
regulates PD-L1 expression. Again, the action is further confirmed by the observation that
their inhibition reduces the transcription of PD-L1 (Figure 1, Table 1) [77,78]. K-RAS, epi-
dermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) can induce
PD-L1 expression in cancer cells [91,92]. EGFR acts through mTOR and ERK-dependent
mechanisms; ALK uses STAT3 and MEK-ERK (Figure 1, Table 1) [79–82].

3.2.4. miRNA-Mediated Regulation

It is well known from the literature that miRNA acts as post-transcriptional regulators
of gene expression targeting mRNA [2]. The expression of PD-L1 is also regulated by its
action. miR-513 was the first to be identified. It binds the PD-L1 3′UTR and inhibits IFN-γ
induced PD-L1 expression; IFN-γ, instead, suppresses miR-513 expression. Subsequently,
many inhibitory miRNAs have been isolated, such as miR-155, -34a, 142-5p, -93, -106b,
-138-5p, -217 (laryngeal cancer), -200, -152, -570, -17-5p, -15a, -193a, -16, and -197 [93–106].
By contrast, miR-20, -21, and -16 increase their expression (Table 1, Figure 1) [83].

3.2.5. Protein Level Regulation

CMTM6 and 4 are the positive regulators of PD-L1 expression. The entity of the
CMTM6 effect seems to vary among the tissues studied. CMTM6 binds PD-L1 and prevents
ubiquitination and lysosomal degradation. CMTM6 allows PD-L1 molecules to clump
together (Table 1, Figure 1) [2,84,85]. Starting from the observation that the level of PD-
L1 varies during the cell cycle, Zhang et al. noted that the cascade of cyclin D-CDK4,
through the phosphorylation of Speckle-type POZ protein (SPOP), elicits the ubiquitination,
therefore the degradation, of PD-L1 (Figure 1, Table 1) [86]. The glycosylation of PD-L1
by glycogen synthase kinase 3b (GSK3b) increases its degradation and influences the
interaction with PD-1 [107]. NF-κB, in addition to the transcriptional regulation of PD-L1,
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increases PD-L1 protein levels by removing ubiquitin chains via COP9 signalosome 5
(CSN5) [87].

3.2.6. Mechanisms of PD-L1 Overexpression Observed in HNSCC

Some of the mechanisms listed above have also already been observed in HNSCC;
however, as regards the others, this does not exclude that they can be identified in head and
neck tumors with future studies. Furthermore, some mechanisms have been discovered in
mouse cell models and only subsequently studied in human cells; we cannot exclude that
this may also happen for HNSCC.

Gene amplification is a mechanism of PD-L1 overexpression that has been observed
in HNSCC. Straub et al. observed PD-L1 expression in 45% of oral cavity carcinomas and
gene amplification in 19% (with high levels in 15% and low in 4%) [52]. IFN-γ and EGFR
both use JAK2 to transmit signals of extrinsic or intrinsic origin, respectively. In HNSCC,
overexpression of EGFR correlated with that of JAK2 and PD-L1. Furthermore, PD-L1
expression is dependent on that of EGFR and JAK2/STAT1, and JAK2 inhibition prevents
PD-L1 upregulation [53].

miRNA-217 has been observed to have a role in esophageal, ovarian, and glioma carci-
noma. Subsequently, Miao et al. have also observed its action in laryngeal carcinoma, i.e.,
that its expression is significantly lower in neoplastic cells than in healthy ones. Insertion
of miRNA-217 into cells of the Hep2 lineage reduces their ability to migrate and invade
tissues, as well as their ability to proliferate while increasing apoptosis and cell necrosis.
The authors, therefore, concluded its fundamental role in inhibiting metastatic cell traits
and, at the same time, that its downregulation is one of the mechanisms by which laryngeal
carcinoma cells become metastatic [100]. This demonstrates that many of the mechanisms
observed in vivo or in other cell populations must be studied in HNSCC.

STAT3 appears to have a very important role in regulating PD-1-PD-L1 in HNSCC.
Their levels are associated, and inhibition of STAT3 downregulates that of PD-L1 [108].
A significant share of discoveries concerning the PD-1-PD-L1 axis is inherent in immune
cells such as lymphocytes, dendritic cells, monocytes, macrophages, neutrophils, or even
endothelial cells. These populations are not specific to a single neoplasm, so it is necessary
to evaluate whether these findings can be generalized to all tumors in which PD-L1 is
overexpressed. Among the inflammatory signaling molecules, IFN-γ is involved in the
PD-1-PD-L1 axis in monocytes, neutrophils, dendritic cells, macrophages, and endothelial
cells [109–112].

The involvement of INF-α and -β was also observed in the latter three cell popula-
tions. [113–115] TLR4 has a role in the PD-1-PD-L1 axis in macrophages, monocytes, and
dendritic cells, and TLR3 in dendritic and endothelial cells [84,116–119]. Interleukins have
also been widely identified as related to the action of PD-1-PD-L1, such as with IL-12
in endothelial cells or IL-27 in dendritic cells [61,113]. It has been observed that human
endothelial cells produce molecules such as PD-L1 itself, capable of activating T cells.
PD-L1 expression on endothelial cells is not constitutive but induced by IFN-γ and TNF-α.
Furthermore, PD-L1 also has a negative feedback function on the production of these
cytokines; in fact, its blockage increases their production. Furthermore, PD-L1 expression
is an active regulator of T-cell-activated cytokine synthesis [109]. Even though monocytes
are subject to the action of PD-L1, it has been observed that this action is regulated by
NF-κB [117].

3.3. Immunotherapy in HNSCC

The treatment of recurrent or metastatic HNSCC before the introduction of im-
munotherapy had unsatisfactory results. The mOS among platinum-sensitive patients
treated with the EXTREME protocol was only 10.1 months. The second line of treatment
had an even significantly lower mOS of 6 months with a response rate between 3 and
13% [17]. More than 50% of advanced HNSCC had disease recurrence within 3 years.
Furthermore, chemotherapy may be associated with significant toxicity and adverse effect
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incidence [120]. The introduction of immunotherapy gave new impetus to HNSCC treat-
ment [9–11,121]. Following two Phase 3 clinical trials, two molecules have been approved
for treating HNSCC, Nivolumab, and Pembrolizumab [9–11,20].

Nivolumab is a fully human monoclonal antibody anti-PD-1. It was approved ac-
cording to a phase III trial called Checkmate-141 that compared it to single chemotherapy
agents (methotrexate, docetaxel, or cetuximab) in locally advanced HNSCC that progressed
within 6 months of platinum-based therapy. The nivolumab group showed better out-
comes in terms of mOS, which was 7.5 months versus 5.1 months in the standard therapy
group. The overall survival (hazard ratio for death, 0.70) and 1-year survival rate were
longer in the Nivolumab group than with standard therapy, 36.0 vs. 16.6, respectively [11].
The Nivolumab group demonstrated better outcomes in median progression-free survival
(2.0 months vs. 2.3 months), in the rate of progression-free survival at 6 months (19.7% vs.
9.9%), and in response rate (13.3 % vs. 5.8%). The 2-year survival rate was almost tripled
in the Nivolumab group compared to standard therapy (16.9% vs. 6.0%), with a bigger
difference in CPS PD-L1 patients. The outcomes were not influenced by the HPV status.
The authors also observed a lower incidence of treatment-related adverse events in grades
3 or 4 (13.1% N 35.1%) [11].

After a short time, another molecule has shown robust results, Pembrolizumab. It is
an anti-PD-1 humanized monoclonal immunoglobulin. Its interaction with PD-1 inhibits
binding to its ligand PD-L1 expressed by cancer cells allowing the action of T lympho-
cytes against neoplastic cells. The Keynote-040 was a randomized multicentric phase III
study that compared Pembrolizumab with standard therapy in patients with recurrent or
metastatic HNSCC that progressed after platinum-containing treatment or patients with
locally advanced disease with recurrent or progressed cancer within 3–6 months of previous
multimodal therapy containing platinum. They observed an mOS in the Pembrolizumab
group of 8.4 months vs. 6.9 months in the standard of the care group. The mortality at the
end of the observation period was 10% lower in the Pembrolizumab group (73% vs. 83%).
The incidence of treatment-related adverse events was lower in the experimental group
than in the standard-of-care one (13% vs. 36%). The immunotherapy treatment also had a
more durable response (18.4 vs. 5 months). The differences were more significant in the
PD-L1 CPS ≥ 1 sub-population [9].

According to the Checkmate-141 and Keynote-040 trials, FDA and EMA approved
Nivolumab and Pembrolizumab in the HNSCC treatment [20]. Pembrolizumab was then
investigated as a first-line agent alone in the Keynote-048 study. This phase III multicentric
clinical trial compared three different treatment protocols, the first one with Pembrolizumab
alone, the second with Pembrolizumab and Platinum or 5-FU, and the third with Cetuximab
and Platinum or 5-FU. The mOS in the two groups treated with Pembrolizumab was
greater than the one treated with chemotherapy alone (11.5 months vs. 10.7 months) [10].
The grade 3 and 4 treatment-related adverse events occurred in 55% of patients treated
with Pembrolizumab alone, 85% of the Pembrolizumab and chemotherapy group, and
83% of the Cetuximab + chemotherapy population. The percentage of deaths among
the groups was 8% for Pembrolizumab alone, 12% for Pembrolizumab + chemotherapy,
and 10% for Cetuximab + chemotherapy-treated patients. The response rate was higher
in patients treated with the EXTREME protocol (36% vs. 19.6% in the Pembrolizumab
group). However, the duration response was greater in Pembrolizumab-treated patients
(22.6 months vs. 4.5 months). The authors concluded that Pembrolizumab alone is an
appropriate first-line treatment for PD-L1 positive recurrent or metastatic HNSCC, and
the association between Pembrolizumab and chemotherapy is an appropriate first-line
treatment for recurrent or metastatic HNSCC [10].

Considering the findings in the Keynote-048 study, Pembrolizumab was approved as
a first-line agent alone or in combination with Cisplatin or 5-Fu in HNSCC patients with
unresectable PD-L1 combined positive score (CPS) ≥ 1 [10,20]. The CPS, or immunohis-
tochemistry combined positive score, for PD-L1 is calculated as 100 times the number of
PD-L1 positive cancer cells, lymphocytes, and macrophages, divided by the number of
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viable tumor cells [8]. Two other molecules, Durvalumab and Atezolizumab, have also
been studied in the context of anti-PD-1-PD-L1 drugs. The results of the trials have not led
to their approval in the treatment of HNSCC.

Durvalumab is an anti-PD-L1 high-affinity IgG1. In the Hawk phase II trial, authors
studied its efficacy in platinum-refractory recurrent o metastatic HNSCC with high PD-L1
expression not previously treated with immunotherapy. Durvalumab demonstrated an
overall response ratio of 16.2% with better efficacy in HPV-positive cancers (overall response
ratio of 29.4% in the HPV+ sub-population and 10.9% in the HPV- sub-population). The
mOS was 7.1 months with particularly low toxicity demonstrated by an 8% incidence rate
of treatment-related adverse events with grade ≥ 3 [122]. Durvalumab was also compared
to Tremelimumab alone and associated with it. Tremelimumab is an inhibitor of cytotoxic
T-lymphocyte-associated antigen 4 (CTLA-4). In the 3-arm phase II trial called Condor, the
authors compared the association of Durvalumab + Tremelimumab, Durvalumab alone,
and Tremelimumab in patients affected by recurrent or metastatic HNSCC with low or
negative CPS for PD-L1. The association group had an mOS of 7.8%, the Durvalumab
alone group of 9.2%, and the Tremelimumab alone group of 1.6%. Tremelimumab was
associated with a greater incidence of adverse events in grades 3 or 4. The Tremelimumab
alone group and the Durvalumab + Tremelimumab group had an incidence of treatment-
related adverse events of grade ≥ 3 of 16.9% and 15.8%, respectively, compared to the
Durvalumab alone group with an incidence of 12.3%. The authors concluded that there
was no advantage in mOS with Durvalumab alone or in combination with Tremelimumab
vs. chemotherapy. However, they observed a median 1-year and 2-year survival with
Durvalumab comparable to that obtained in the Checkmate-141 trial with Nivolumab and
Keynote-040 with Pembrolizumab [9,11,123]. Surely the choice made in the Condor study
to have a population of patients with CPS for PD-L1 negative significantly influenced
the outcome of the active drug against this axis. This makes comparing Pembrolizumab,
Nivolumab, and Durvalumab trials difficult [9,11,123]. Another drug active against PD-
L1 is Atezolizumab, which showed a very tolerable safety profile in a phase I trial and
encouraging data about its activity with mOS of 6.0 months and median progression-free
survival of 2.6 months. Its action was unrelated to PD-L1 aspiration or HPV [124].

3.4. Immunotherapy Resistance Mechanisms in HNSCC

Pembrolizumab and Nivolumab outperformed traditional chemotherapy in HNSCC
treatment [2,10,11]. However, a significant proportion of patients do not respond to im-
munotherapy or develop resistance quickly. The identification of the mechanisms responsi-
ble for this phenomenon could help us to better identify patients eligible for therapy and to
identify new therapeutic targets.

The resistance mechanisms to anti-PD-1/PD-L1 immunotherapy in HNSCC were
divided into four categories: tumor cell adaptation, T-cell function and proliferation,
change in the tumor microenvironment, and use of alternative immune checkpoint [11].
Cancer cells respond to the selective pressure induced by immunotherapy by selecting
those populations in which DNA modifications make them less sensitive to drugs. The
HPV+ HNSCC cells are more prone to TRAF3 and β-2-microglobulin (β2M) mutations. The
latter is part of the MHC Class I complex heavy chain, and its mutation hesitates in reducing
T-cell recognition of cancer cells [125,126]. Some authors hypothesized that this mutation
could be one of the mechanisms underlying the immune escape of cancer cells to anti-PD-1-
PD-L1 immunotherapy [54,55]. IKZF1 is a transcription factor that induces recruitment of
the immune infiltrate to tumors and increased sensitivity to PD-1 and CTLA4 inhibitors,
including HNSCC. Its loss of function, on the other hand, has the opposite effect and could
constitute a mechanism of resistance to immunotherapy (Table 2, Figure 2) [56,57,127].
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We know that the action of drugs against PD-1/PD-L1 is to remove the inhibition that
these molecules have against the action of T lymphocytes [11], and a possible mechanism
of resistance originates from the inhibition of the T cells themselves. Cyclic GMP-AMP
(cGAMP) synthase (cGAS) stimulator of interferon genes (STING) activates innate immu-
nity against infected or neoplastic cells. This molecule is suppressed by histone H3K4 lysine
demethylases KDM5B and KDM5C, and activated by H3K4 methyltransferase. In HNSCC
HPV+, the values of KDM5B are inversely related to those of STING, to CXCL10 (one of
the interferon-induced chemokines that promotes inflammatory infiltrate in the tumor
microenvironment), and to the amount of CD8+ infiltrate. CD8+ T-cell values in the T
infiltrate are directly correlated with cancer survival. Consequently, high levels of KDM5B
are correlated with poor prognosis indicating this molecule is a potential target for im-
munotherapy (Table 2, Figure 2) [128]. The tumor microenvironment plays a fundamental
role in immunotolerance. CD44+ stem-like cells are part of it in HNSCC immune microen-
vironment; they are capable of inhibiting T-lymphocytes proliferation and Th1 response
while inducing immunosuppressive T-regulatory cells and myeloid-derived suppressor
cells (MDSC) [58–62,129]. Their action is not dependent on the PD-1/PD-L1 pathway. Their
increase in the tumor microenvironment is suspected to be an immunotherapy escape
mechanism (Table 2, Figure 2) [8].

Table 2. Immunotherapy resistance mechanisms in HNSCC.

Molecule Mechanism of Action References

β2M mutations Component of the MHC Class I heavy chain, his mutation
hesitates in reduction of T cell recognizant of cancer cells [54,55]

IKZF1 Mutation that reduces the inflammatory infiltrate [56,57]

KDM5B Suppresses STING, CXCL10 levels, CD8+ infiltrate [128]
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Table 2. Cont.

Molecule Mechanism of Action References

Increase of CD44+ stem-like cells CD44+ stem-like cells inhibit T-cells and enhance
immunosuppressive T-reg cells [8]

CD69 sufficient state T-cells exhaustion
[130,131]GCP1 Inhibition causes T-cells maturation prevention

BH4 Reduction of BH4 inhibited by kineurine T-cells inhibiting

IDO1 Increase of IDO1 reduces T-cells and inflammatory
cells proliferation [132]

Arg-1 Arg-1 increase expression leads to greater degradation of
L-arginine, a key nutrient for lymphocytes [133,134]

TGF-β Decrease dendritic cells in drainage lymph nodes and
CD8+ cells. [135–138]

CD38, CD39 CD8+ cells inhibition via adenosine receptor [139,140]

PMN-MDSC PMN-MDSC activates the nitric oxide pathway which
inhibits the proliferation and function of T-cells [140–143]

NRLP3 NRLP3 activation increases MDSCs, T-regs, and TAMs,
and reduces IL-1 β

[144]

STAT-pathway and cytokines Alteration of STAT-pathway leads to a dendritic cell loss
of function [131,145,146]

LAG3, pathway of T-cell
immunoglobulin, ITIM domain,

TIM-3, VISTA
Alternative immune checkpoint [8,147–153]

ATRA and IFB-β

ATRA and IFB-β increase CD38 production via
CD30-CD203a-CD73 axis. CD38 transforms NAD+ and
NADP+ into cyclic ribose ADP (zADPR), NAADP, and

ADPR, which act on calcium signaling

[8,142,143,150,154,155]

CD73

dephosphorylates extracellular AMP which leads to the
production of adenosine. Adenosine binds to the A2a and

A2b receptors of T and NK lymphocytes, neutrophils,
dendritic cells, and macrophages with an

immunosuppressive action

[139–141,155–157]

HLA, β-2-macroglobulin and
TRAF3 mutation

common in HPV+ HNSCC, whereas they are found in less
than 10% of HPV− cancers. HPV antigens also enhance

cytotoxic T-lymphocytes dysregulation.
[126]

The study of the tumor microenvironment has led to the discovery of numerous
molecules involved in resistance to immunotherapy with action on T-cells [130,131]. It
has been observed that the increase in the expression of indoleamine 2-3-dioxygenase-
1 (IDO1) reduces the proliferation not only of T-cells but also of other elements of the
inflammatory infiltrate in oral squamous cell carcinoma [132]. These neoplastic cells, in
addition to acting on the signals that regulate functioning and proliferation, can also act on
the nutrients that the cells of the immune system need to survive. A potential mechanism
observed is the increase in the expression of arginase-1 (Arg -1) by cancer cells which leads
to greater degradation of L-arginine, which is a key nutrient for T and NK cells (Table 2,
Figure 2) [133,134].

The production of TGF-β has a role in both intracellular and extracellular environ-
ments. Its secretion by cancer-associated fibroblasts inhibits CD8+ T cells and decreases the
dendritic cells in draining lymph nodes [135–138]. CD8+ lymphocytes are also inhibited
by CD38 via the adenosine receptor signaling and CD39 [139,140]. In addition to direct
inhibition of their action, the reduction of T lymphocyte activity is also induced through the
activation of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) which,
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through the nitric oxide pathway, inhibits the proliferation and function of T-cells [140–143].
The activation of the nucleotide-binding domain leucine-rich repeat and of the pyrin do-
main containing receptor 3 (NRLP3) inflamed induced an increase in MDSCs, T-regs, and
TAMs, and a reduction of IL-1β synthesis, leading to an immunosuppressive effect [144].
The action of immunotherapy escape mechanisms is also active against dendritic cells, alter-
ation in STAT-mediated pathways, and cytokines production leading to a loss of function
of dendritic cells (Table 2) [131,145,146,158].

PD-L1 is not the only immune checkpoint in HNSCC; indeed, activating alternative
tolerance mechanisms leads to cancer cells’ immune escape. The lymphocyte activation
gene-3 (LAG3), the pathway of the T-cell immunoglobulin and the ITIM domain, the T-cell
immunoglobulin mucin-3 (TIM-3), and the V tomorrow-containing IG suppressor of T-cell
activation (VISTA) are some examples of the alternative immune checkpoint that cancer cells
use [8,147–153]. Under immunotherapy selective pressure, neoplastic cells produce all-trans
retinoic acid (ATRA) and IFN-β, which increase CD38 production via the CD30-CD203a-
CD73 axis. CD38 transforms NAD(+) and NADP(+) into cyclic ribose ADP (zADPR),
NAADP, and ADPR, which act on calcium signaling [8,142,143,150,154,155]. Furthermore,
CD73 dephosphorylates extracellular AMP which leads to the production of adenosine.
Adenosine binds to the A2a and A2b receptors of T and NK lymphocytes, neutrophils,
dendritic cells, and macrophages with an immunosuppressive action [139–141,155–157].
HLA, β-2-macroglobulin, and TRAF3 mutation are common in HPV+ HNSCC, whereas
they are found in less than 10% of HPV cancers [126]. HPV antigens also enhance cytotoxic
T-lymphocytes dysregulation (Table 2, Figure 2) [141]. Individuals with locally advanced
HNSCC have a high incidence of local infections. Therefore, they are often treated with
antibiotic therapy. The consequent alteration of the microbiome seems to be related to
PD-1/PD-L1 drug resistance, although the mechanism by which dysbiosis leads to it is still
unclear [159–161].

4. Discussion
4.1. Biomarkers of Immunotherapy Response in HNSCC

Although immunotherapy outcome results were encouraging, ∼60% of patients with
recurrent or metastatic HNSCC do not respond to anti-PD-1/PD-L1 therapy. [8] Identi-
fying molecular markers that, together with the CPS for PD-L1, allow us to predict the
possible response to therapy early could help us in the selection of patients. As well as
the identification of molecules that allow us to predict the response to treatment during
the course of the same could help us manage therapies. IFN-γ upregulates PD-L1 and
PD-L2 to downregulate the cytotoxic response. IFN-γ active signaling is associated with
anti-PD-L1 therapy response, and IFN-γ-related mRNA profile predicts clinical response to
PD-1 blockade in HNSCC [162].

Hypoxia within the tumor microenvironment leads to an “immune desert”, a decrease
in immune cells that is a further immune evasion mechanism. The resulting paucity of
T-cells explains the poor response to PD-1/PD-L1 immunotherapy. The biomarkers that
can highlight this phenomenon in HNSCC are hypoxia-inducible factor-1α (HIF-1α) and
its signaling [64,163,164]. The tumor microenvironment and the cells contained in it might
have a role in immunotherapy resistance. Intriguingly, head and neck cancer-associated
fibroblasts (HNCAF) modulate the immune response to HNSCC and could be used as
potential immunotherapy response biomarkers [165].

Usually, the higher the number of DNA mutations, the more neoantigens are presented
to the antigen-presenting cells (APCs). The more the cancer cells are susceptible to cytotoxic
killing by T-lymphocytes. A defect in DNA mismatch repair genes (hMLH1 and hMSH2)
causes the accumulation of DNA mutations and microsatellite instability. It leads to a
high tumor mutation burden (TMB-high). It has been observed that higher TMB predicted
response to anti-PD-1/PD-L1 in head and neck cancers [166]. The tumor cell mutation
burden is also a predictor of patient survival in HNSCC when measured as “peripheral
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blood tumor cell mutation burden” (bTMB). bTMB, TMB, and inflammatory biomarkers
are considered independent predictors of Pembrolizumab efficacy [167,168].

4.2. Future Perspectives in HNSCC

Despite the improvement that immunotherapy has brought to treating HNSCC, there is
a significant percentage of patients who have no long-term benefit. Currently, we perform
the patient selection by evaluating the PD-L1 expression only. A wider marker-based
patient selection, also based on other molecules, could help define the best therapeutic
approach for each patient [20]. In this way, a personalized treatment protocol could be
identified for each individual’s oncological profile. Indeed, PD-L1 levels have a predictive
value of the response to immunotherapy. In some patients, although the CPS for PD-L1 is
greater than 1, there is no response to therapy. Seiwert et al. proposed measuring, together
with the expression of PD-L1, the levels of IFN-γ in HNSCC, as they directly influence
the expression of PD-L1, and, likewise, to ensure that PD-L1 expression is related to T cell
activity and not inflammation of the tumor microenvironment [169].

Numerous additional factors seem to influence the response to PD-1/PD-L1 im-
munotherapy. One of these is the amount of non-synonymous DNA mutations whose
increase causes a greater presence of neoantigens with a consequent greater cellular T re-
sponse. Tumors with a higher rate of these mutations appear to have a greater susceptibility
to PD-1 and PD-L1 inhibitors [170,171].

Another advanced hypothesis was to use CMTM6 as a target, together with PD-
L1, to reduce the expression of PD-L1 induced by IFN-γ [2]. Despite the enthusiasm
regarding Pembrolizumab and Nivolumab, most HNSCC patients will not have long-
term benefits from immunotherapy treatment. Several trials test drug associations with
multiple immunotherapies or a combination of them with traditional chemotherapy [172].
The rationale behind the association of immunotherapy and traditional chemotherapy
is the observation that the latter makes cancer cells more recognizable by the immune
system. By combining them with the anti-PD-1/PD-L1 drugs, we obtain the combination
of two treatments. One that makes cells more visible to the immune system and one that
takes away the inhibition of T-cells. This effect was also observed with lower doses of
cytotoxic drugs (such as Cisplatin). Reducing the amount of drug administered induces
fewer adverse events, especially bone marrow hematopoiesis inhibition [173–175]. The
TPextreme trial studied the association between taxane chemotherapy followed by a second-
line treatment with immunotherapy in R/M HNSCC. The observed mOS was 21.9 months.
These results have not been compared with those of immunotherapy alone [176].

Another possible target that appears to be correlated with surviving immunotherapy
is KDM5B. It regulates the levels of STING, CXCL10, and therefore inflammatory infiltrates
of the tumor microenvironment, in particular CD8+ T lymphocytes, which in turn correlate
with survival. For this reason, some authors have indicated KDM5B as a potential target
for immunotherapy in HNSCC [128].

Obviously, not all associations have shown results superior to the treatments already
approved. According to the Eagle trial, it was observed that there was no synergy between
the two molecules in R/M HNSCC; probably because Tremelimumab is an IgG2 that does
not induce cell death via an antibody-dependent mechanism, while NK cells are the most
numerous lymphocytes in the HNSCC tumor microenvironment [17]. In any case, the
combination of anti-PD-L1 and anti-CTLA4 drugs is still under study. We are waiting for
the Checkmate-651, Checkmate-714, and Kestrel trials. The former compares the associa-
tion between Nivolumab (anti-PD-1) and Ipilimumab (anti-CTLA4) vs. standard therapy
(EXTREME protocol). Checkmate-714 compares the same drug association (Nivolumab
and Ipilimumab) with Nivolumab alone in platinum-sensitive and platinum-resistant dis-
eases. The Kestrel trial is a tree-arm study in HNSCC platinum-sensitive patients that
evaluates the association between Tremelimumab (anti-CTLA4) and Durvalumab (anti-
PD-L1) vs. Durvalumab alone vs. EXTREME protocol. Obviously, anti-CTLA4 molecules
are not the only ones to be studied in association with anti-PD-L1 drugs. The vascular
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endothelial growth factor (VEGF) is also an immunosuppressive molecule. The association
between its inhibitors and anti-PD-1 therapies is under examination in the LEAP-010 trial.
The results seem encouraging, with a superior anti-tumor activity compared with single
molecules [177–179].

4.3. New Molecules in HNSCC

Several new molecules are currently in various stages of study. Monalizumab is an
anti-NKG2A receptor humanized antibody. This receptor is expressed on CD8+ and NK
lymphocytes. The Upstream trial is currently evaluating its efficacy alone and in combina-
tion with Durvalumab vs. standard care protocols in R/M HNSCC [180]. The Interlink-1
study analyzes the outcome of the association between Monalizumab and Cetuximab [181].
GSK609 is an anti-T-cell inducible co-stimulatory receptor (ICOS) monoclonal antibody.
ICOS is involved in T-cells proliferation, differentiation, and survival. We are evaluating
the results of a phase III trial INDUCE-3 which compares the association of Pembrolizumab,
Platinum/5-FU, and GSK609 vs. Pembrolizumab and Platinum/5-FU [182].

4.4. HNSCC Therapy

The mOS observed with Pembrolizumab-based protocols is greater than standard
chemotherapy in patients with recurrent or metastatic HNSCC. At higher PD-L1, CPS val-
ues correspond to a major treatment response [10]. Immunotherapy also has a better safety
profile, with 2.7 times less incidence of treatment-related adverse events. Furthermore, it
has greater durability [9]. The two approved drugs in HNSCC treatment, Pembrolizumab
and Nivolumab, had almost equal 1-year survival rates (37% and 36%). However, this
result is achieved by applying protocols with very different doses. The Pembrolizumab
posology was 75 mg/m2 every 3 weeks in the Keynote-040 trial, and the Nivolumab one
was 30–40 mg/week in the Checkmate-141 trial. Furthermore, the populations of the two
trials had slightly different eligibility criteria. The Keynote-040 considered patients with
disease progression between 3 and 6 months, and the Checkmate-141 patients with disease
progressed within 6 months of platinum-based therapy. Hence the population in this study
was also composed of patients that never responded to therapy, usually considered with a
worse prognosis [9,11].

The populations of Checkmate-141 and Keynote-040 trials also differed in PD-L1 CPS
values. In Keynote-040, over 75% of patients had CPS for PD-L1 ≥ 1; in Checkmate-141, it
was 72%. This small difference could have influenced outcomes because it is well-known
from the literature that a value greater than this threshold significantly influences the
immunotherapy response [9–11]. In the Eagle trial, there was an over-performance of the
standard of care group compared to the Pembrolizumab and Nivolumab trials. There
was also an over-mortality in the initial period of the immunotherapy administration [17].
The over-mortality and the high rate of progressive disease have also been observed in
Keynote-048 trials. The Pembrolizumab alone survival curve was below chemotherapy one
over the first eight months. Then they crossed with the stabilization of a better outcome for
immunotherapy-treated patients. This high rate of progressive disease at the beginning
of the treatment could be explained by the “hyper-progression” phenomenon, a faster
growth of cancer cells after immunotherapy initiation [17]. The excess of early deaths in
Pembrolizumab alone patients was eliminated in the Keynote-048 study with the addition
of chemotherapy to it. However, it comes at a price of higher toxicity. This association has
a significant advantage only in CPS PD-L1 ≥ 1 compared to chemotherapy only [10,17].

The findings of the Keynote-048 trial led to the approval of Pembrolizumab alone
for CPS ≥ 1 patients, and in association with chemotherapy for any CPS. The EMA ap-
proved it alone or in association only with CPS ≥ 1 patients. It has been observed that
early Pembrolizumab-based therapy in PD-L1 CPS ≥ 1 may sensitize the tumor to subse-
quent therapy thanks to microenvironment modification. The outcome of therapy given
after immune checkpoint inhibition is greater than predicted historically in patients who
both respond and do not respond to checkpoint inhibition [183–188]. Anti-PD-L1 therapy
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has higher efficacy in male and smoker patients. A possible explanation for this find-
ing is that smoking induces greater immunogenicity by increasing genetic mutations. It
makes neoplastic cells more recognizable by T cells whose action is not stopped for the im-
munotherapy inhibition of PD-L1 [189–195]. Clinical staging of HNSCC plays an important
role in immunotherapy efficacy. Indeed, Botticelli et al. observed that anti-PD-1 is more
effective in metastatic diseases and anti-PD-L1 in recurrent ones. The possible explanation
for this finding is the systemic effect given by PD-1 inhibition that strikes every circulating
lymphocyte. The metastases can be attacked by active T-cells that are no longer stoppable
by cancer PD-L1. The anti-PD-L1 drugs showed greater local efficacy in cancer with lower
heterogeneity [20].

4.5. Adverse Events in HNSCC Immunotherapy

The most common side effect of anti-PD-L1 agents is autoimmune endocrinopathies [11].
Particularly, the most commons were fatigue and hypothyroidism when associated with
Pembrolizumab alone therapy. The association with chemotherapy and the association of
Cetuximab and chemotherapy had a higher incidence of anemia and nausea [10]. Bleeding
is sometimes a side effect of immunotherapy. The bleeding incidence for Pembrolizumab
and the association of Pembrolizumab and chemotherapy were 7% and 9%, respectively;
the Cetuximab and chemotherapy group had a bleeding incidence of only 5% [10].

5. Conclusions

The introduction of anti-PD-L1 immunotherapy has significantly improved cancer
pharmacotherapy. But the way to achieve satisfactory results is still impervious. The
prospects regarding the new molecules, the new association protocols, and the new biomark-
ers are encouraging. Thanks to them, it is possible to move in the direction of personalized
medicine, in which the choice of therapy is not based on the patient’s pathology but
on the molecular characteristics of each patient. To date, immunotherapy constitutes a
fundamental weapon in the oncology of the cervical and facial area and beyond.
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