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We analyze the stability and dynamics of dissipative Kerr solitons in the presence of a parabolic
potential. This potential stabilizes oscillatory and chaotic regimes, favoring the generation of static
DKSs. Furthermore, the potential induces the emergence of new dissipative structures, such as
asymmetric breathers and chimera-like states. Based on a mode decomposition of these states, we
unveil the underlying modal interactions.

Dissipative temporal Kerr soliton (DKS) [1] generation
and manipulation have been an emerging topic in pho-
tonics over the past decade, since they provide a break-
through framework for coherent frequency comb generation
in chip-scale microresonator platforms [2, 3]. In contrast to
conservative systems, where solitons are formed due to a
counter-balance between dispersion and nonlinearity, dissi-
pative solitons additionally require an equilibrium between
internal dissipation and external energy flow or driving.
The dynamics and stability of DKSs have been analyzed
in details in the mean-field approximation, where passive
Kerr resonators are described by a driven and damped non-
linear Schroedinger model [4, 5]. In this context, a large
variety of DKSs emerge in anomalous and normal disper-
sion regimes [6–8]. As the pump intensity grows larger,
DKSs undergo different types of instabilities, leading to
complex spatio-temporal dynamics, which can be either pe-
riodic (i.e., breathers) or chaotic [9–13].

Spatio-temporal dynamics can be stabilized through
high-order effects, such as third-order dispersion, which
considerably reduces the extension of unstable parameter
regions in favor of static DKSs [14, 15]. Moreover, third-
and fourth-order dispersion effects may lead to the appear-
ance of new type localized states, and to the coexistence of
bright and dark DKSs [16–18], as it also does the Raman
effect [19]. Spatio-temporal instabilities may also be sup-
pressed by the modulation of the intracavity background
field. These modulated defects can be induced through
the external phase of the driving field [20–25], or by in-
tracavity phase modulation. The latter can be introduced
via electro-optical modulators, and it leads to a synthetic
dimension [26, 27]. Both methods create an effective peri-
odic potential, which provides an additional degree of free-
dom for controlling spatio-temporal dynamics and emerg-
ing states. Together with the stabilization of chaotic states
[28], the potential may lead to the emergence of chimera-
like states [26, 29]. Furthermore, a modulated background
provides different advantages, such as enhancing the pump-
to-soliton conversion efficiency [25], and providing addi-
tional deterministic routes for DKSs generation, without
undergoing a spatio-temporal chaotic phase [30].

In this letter, we theoretically show that a parabolic po-

tential in time plays a key role on the stability of DKSs
and other spatio-temporal dissipative structures emerging
in a dispersive Kerr resonator with anomalous dispersion.
The parabolic potential approximates a periodic (e.g., sinu-
soidal) potential around the center of the DKS. Specifically,
we find that, for low pump values, the potential stabilizes
oscillatory and chaotic dynamics in favor of static DKS.
As the pump power grows larger, the potential induces
the appearance of asymmetric breathers and chaoticons,
i.e. chimera-like states, where the background field state
coexists with an incoherent spatio-temporal chaotic state.
Moreover, chaoticons coexist with single-peak DKSs, and
form a hysteresis loop. To support our findings, we carry
out a systematic bifurcation analysis, which establishes the
connection with the multimodal structure of the potential.

In the mean-field approximation, the coherently driven
and phase modulated passive cavity is described by the
equation

∂tA = i∂2τA− iCτ2A+ i|A|2A− (1 + iδ)A+ P, (1)

where A(τ, t) is the slowly varying envelope of electric field,
and τ , t are the fast and slow time, respectively[4]. The
term ∂2τ is second-order anomalous chromatic dispersion, δ
is the phase detuning, P is the driving pump field ampli-
tude, and the linear loss coefficient, without loss of gen-
erality, is fixed to the value of 1. We introduced the
parabolic temporal potential Cτ2, where C controls its cur-
vature. Note that such type of potential describes a trap
in Bose-Einstein condensates, and a transverse index pro-
file in graded-index multimode fibers [31]. With the usual
change of the meaning of the coordinates (e.g., modify time
τ with space x), Eq.(1) also describes the spatial dynamics
of one-dimensional (e.g., consider slab waveguides) driven
nonlinear passive cavities with a graded refractive index
[32]. To study the dynamics of Eq. (1), we performed both
direct numerical simulations (DNSs) with a pseudo spec-
tral method, and numerical path-continuation of stationary
DKS solutions As (i.e., ∂tAs = 0) by using AUTO-07p [33].

Figure 1(a,b) shows the dynamics solutions of Eq.(1) in
the absence of the potential (C = 0). The temporal evolu-
tion (|A(τ)|2 vs. t) of a chaotic Turing pattern, and its final
state are shown in Fig. 1(a) for (P, δ) = (2.5, 3). Whereas
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Figure 1. Comparison of solutions without the potential C =
0 in (a,c) and with the potential C = 1 in (b,d), when the
parameters are (a,b) P = 2.5, δ = 3 and (c,d) P = 4.5, δ = 8.

Fig. 1(b) shows a breather DKS for (P, δ) = (4.5, 8). For
this set of parameters, static DKSs are always unstable [34].
When the potential is introduced (C = 1) [see Figs. 1(c,d)],
these dynamics are stabilized, leading to stationary DKSs.

In order to understand the mechanism for this stabiliza-
tion, we performed a bifurcation analysis of the DKSs, with
and without a temporal potential. These results are illus-
trated in Fig. 2, using Icenter ≡ |A(0)|2 vs. δ. DKS bi-
furcation diagrams, either in the absence [see Fig. 2(a,c)]
or in the presence [see Fig. 2(b,d)] of the potential; we
set P = 2.5 [Fig. 2(a,b)] or P = 4.5 [Fig. 2(c,d)]. These
diagrams were computed by utilizing path-continuation al-
gorithms for stationary solutions, and DNSs for breathers
and chaotic solutions.

Figure 2(a) shows the bifurcation diagram in the absence
of potential, with P = 2.5. The blue curve corresponds
to the continuous-wave (CW) state of Eq.(1). The CW
state is stable until the saddle-node (SN) bifurcation SNl

h,
where it becomes unstable [see dashed blue lines]. The DKS
bifurcates from SNl

h with a small amplitude, and it remains
unstable [see orange dashed lines] [7]. By increasing δ, the
DKS eventually stabilizes at SNr, and it retains stability
until reaching SNl [see solid red line]. These solitons have a
non-zero background (corresponding to the CW state), and
their localized profile can be approximated by a sech-shape
[1]. When decreasing δ below SNl

h, the DKS background
becomes unstable, leading to chaotic Turing pattern states,
such as in the example shown in Fig. 1 for (δ, P ) = (3, 2.5).
The peak intensity values of these states are plotted by gray
dots in Fig. 2(a).

This scenario drastically changes in the presence of the
parabolic potential [ see Fig. 2(b)]. Now, the CW state
diagram merges with the solution branches corresponding
to the DKS, leading to the single curve of Fig. 2(b). Each
branch on this curve corresponds to DKSs, as depicted in
Fig. 2(i)-(iii); these branches are interconnected through
the SN bifurcations SNl,r

p .
The S3 state plotted in Fig. 2(i) is a small-amplitude lo-

calized pulse, which corresponds to the deformation of the
CW state, owing to the presence of the potential. This state
extends until SNl

p, where it connects to the unstable state
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Figure 2. Bifurcation diagrams showing Icenter vs. δ for
(P,C) = (2.5, 0) in (a), (P,C) = (2.5, 1) in (b), (P,C) = (4.5, 0)
in (c), and (P,C) = (4.5, 1)in (d). Panels (i)-(iii) show the inten-
sity |A|2 (solid line) and phase φ (dashed line) of the three DKS
solutions S1, S2 and S3, corresponding to the curve in panel (b)
for (δ, P, C) = (4, 2.5, 1); panel (iv) corresponds the DKS solu-
tion in panel (d) for (δ, P, C) = (4, 0.8, 1). Panel (v).1 represents
the evolution of a τ -asymmetric state ((δ, P, C) = (4, 2.5, 1)),
and panel (vi).1 shows a chaoticon ((δ, P, C) = (4, 0.8, 1)). The
corresponding field powers at different slow times are in panels
(v).2 and (vi).2, respectively [See Visualization I and II].

S2 [see Fig. 2(ii)]. At SNr
p, the latter leads to S1, which

is a stable localized pulse [see Fig. 2(iii)]. S1 represents a
deformation of the DKS with C = 0, sitting on the primary
state S3. Thus, S1 is asymptotically connected to a zero
intensity background. For C = 1, S1 extends until δ = 0
and it is stable, in contrast with the C = 0 case. Between
SNl

p and SNr
p, S1 and S3 coexist for the same range of pa-

rameters, and are both stable. DKS bistability is a feature
of Eq.(1), which is absent with C = 0. The localized states
S1 and S3 can be easily excited by a Gaussian function of
the form A(τ) = h exp

(
−(τ/r)2/2

)
, with h and r taking

different values.

As we have anticipated with Fig. 1, the stabilization of
the dynamics of solutions to Eq.(1) occurs for different val-
ues of P . To support this discovery, we computed the bi-
furcation diagram associated with a single-peak soliton for
P = 4.5, with and without the potential. This situation
is depicted in Fig. 2(c,d). Figure 2(c) shows the bifur-

https://youtu.be/7fObrzTnA7c
https://youtu.be/Vhz-yL41sB0
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cation diagram for C = 0. By increasing P , the role of
nonlinearity grows larger, which further tilts the resonance
[see the blue lines]. The DKS solution branches preserve
the morphology depicted in Fig. 2(a), although now their
range of existence has increased. In this regime, the top
DKSs branch undergoes a Hopf bifurcation (H), where the
soliton becomes unstable in favor of breathing states. The
minimal and maximal value of Icenter of these breathers
are plotted by means of red dots. These breather states
are similar to that depicted in Fig. 1(c), and their oscil-
lation amplitude grows larger with decreasing values of δ.
Eventually, when SNl

h is crossed, the stable CW state dis-
appears, and spatio-temporal chaos (STC) develops. Note
that STC extends their region over SNl

h, and coexists with
DKSs or breathers [see Fig. 2(a,c)].

For C = 1 [see Fig. 2(d)], STC is suppressed by the
potential, in favor of either static DKS or regular oscil-
latory states. The DKS S1 enlarges its stability region,
which now extends to Ha, where δHa

� δH. Once Ha is
crossed, a τ -symmetric breather arises supercritically, and
it increases its oscillation amplitude with decreasing values
of δ. Eventually, this stable breather disappears, possibly
in a fold of cycles at Xa. By decreasing δ below this point,
the system develops τ -asymmetric breathers, such as the
one which is depicted in Fig. 2(v) for (δ, P ) = (2.5, 4.5)
[See Visualization I]. A special feature of these states is the
different evolution of their leading and trailing tails. The
extrema of these states, at τ = 0, are depicted by using
brown dots in Fig. 2(d). Decreasing δ further, the asym-
metric breather branch meets with a symmetric one [see
dark red branch] and disappears. On the right, the latter
persists until reaching Xb. On the left, the τ -symmetric
breather decreases its amplitude, until it dies out at the
Hopf bifurcation Hb. Note the presence of a bistability re-
gion between the symmetric and asymmetric breathers [see
the light blue shadowed area in Fig. 2(d)]. For δ < δHb

,
DKSs exist [such as the one shown in Fig. 2(iv).], although
they lose stability once more around δ ≈ 0.5. After this, the
system evolves into a very complex spatio-temporal state,
such as the one shown in Fig. 2(vi). This state consists
of a portion of STC which is localized around the center of
the temporal domain owing to the presence of the potential
which acts as a trap, thus confining the STCs. This type
of state was named chaoticon by Vershueren et al. [35],
although it is also known as chimera state in other works
[26, 29]. The chaoticon coexists with DKSs [see the pink
shadowed area in Fig. 2(d)], as in the cases with the same
parameters which depicted in Fig. 2(iv) and Fig. 2(vi) [See
Visualization II].

The previously described states can be analyzed in terms
of a mode decomposition method. The parabolic potential
introduces boundary conditions for the fields, which trans-
late in a finite number of eigenmodes. Therefore, solutions
of Eq.(1) in Fig. 2 can be decomposed and analyzed in terms
of nonlinear eigenmodes. For the sake of simplicity, here we
perform this analysis by using the linear eigenmodes asso-

Figure 3. (a) shows the first six HG linear modes ψ0, · · · , ψ5 of
Eq.(1) and of the parabolic potential [see dashed line], for com-
parison. (b) illustrates the mode energy distribution associated
with the S1 DKS shown in Fig. 2(iii) for (δ, P ) = (4, 2.5), where
|Cn|2 represents the energy of the mode n.

ciated with the equation

∂tA = i∂2τA− iCτ2A, (2)

which also describes a quantum mechanical harmonic os-
cillator. Note that a similar equation was also used for de-
scribing the dynamics of mode-locked nanolasers [36, 37].
As it is well-known, the eigenmodes of Eq. (2) are the
Hermite-Gaussian (HG) family. The lowest order six modes
are plotted in Fig. 3(a). The neglected terms in Eq. (2),
compared with Eq. (1), can be considered as small pertur-
bations. The field envelope A(τ, t) can be written as a lin-
ear superposition of HG modes ψn(τ) with equally spaced

frequencies
√

2C(n + 1/2), A(τ, t) =
∑N
n=0 Cn(t)ψn(τ),

with N being the total number of modes considered in the
analysis. The mode coefficients are computed by project-
ing any state solution on the linear modes, and read as
Cn(t) =

´∞
−∞A(τ, t)ψn(τ)dτ = |Cn(t)| exp{iφn(t)}, where

|Cn(t)|2 represents the energy of mode n at time t, and
φn(t) is its phase. In Fig. 3(b), we plot the mode en-
ergy |Cn|2 distribution associated with the DKS state S1

in Fig. 2(iii). Note that the energies of asymmetric modes
(n = 1, 3, 5, · · · ) are zero, because the state has a symmet-
ric temporal distribution. S2 and S3 have a similar mode
distribution [not shown here].

The bifurcation structure shown in Fig. 2(d) (P = 4.5)
can be revisited by projecting the different DKS branches
on HG modes. This projection is depicted in Fig. 4(a),
where we plot the mode energy |C0|2 and |C2|2 vs. δ. Fol-
lowing this diagram, we can see how the ψ0,2-mode compo-
sition varies along the solution branches S1, S2 and S3.

More interestingly, in Fig. 4(b) we show the phase dif-
ference between the two modes ψ0 and ψ2 along the bi-
furcation diagrams of Fig. 4(a). This diagram shows that
the phase difference between adjacent symmetric modes is
−π in S1 [other higher-order modes are not shown here],
which means that these modes are locked in anti-phase, in
contrast with the in-phase mode locking that occurs for S3

states. Whereas the unstable states S2 undergo large phase
changes between the two modes. The bifurcation structure
is preserved, and one can appreciate the positions of Ha,b

and SNl,r
p .

We have analyzed in more detail the variation of the
mode composition of stable states S3 [see Figs. 4(c)] and

https://youtu.be/7fObrzTnA7c
https://youtu.be/Vhz-yL41sB0
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Figure 4. Mode decomposition of the solutions in Fig. 2(d).
Mode energies |C0|2, |C2|2 in (a) and their phase difference in
(b) as a function of δ, where solid (dashed) lines represent sta-
ble (unstable) solutions. Three panels in (c) plot even mode
energies |C(2n)|2, odd mode energies |C(2n+1)|2, and phase dif-
ference (φ(2n+2) − φ(2n))/π vs. δ, for S3 solutions in Fig. 2(d).
The same quantities of the solutions S1 of Fig. 2(d) are shown in
three panels in (d). The regime where chaoticon coexists with
DKSs (the regime of asymmetric breathers) is represented by
the pink (blue) shadowed area.

S1 [see Figs. 4(d)], as function of δ. For S3, the energy of
the symmetric modes (i.e., |C(2n)|2, n ∈ N) increases with

decreasing δ, until reaching SNl
p. Energy in each mode de-

creases with increasing δ, and the power fraction of higher-
order modes grows larger. This leads to a temporal broad-
ening of S3 states, owing to the contribution of higher-order
modes. In contrast, the contribution of asymmetric modes
(i.e., |C(2n+1)|2) remains close to zero [see Fig. 4(c).2]. Fig-
ure 4(c).3, illustrates how the phase difference between ad-
jacent even modes (φ(2n+2)−φ(2n))/π approaches zero when
δ increases. This shows that stronger phase locking occurs
for these modes with increasing δ.

Figures 4(d) illustrate the mode decomposition of S1:
here we may highlight three main aspects. First, in the
breather regimes between 1.8 < δ < 7.5, even mode powers
[see Fig. 4(d).1] and phase differences [see Fig. 4(d).3] fluc-
tuate. Second, in the regions of asymmetric breathers and
chaoticons, the power of odd modes becomes very high [see
Fig. 4(d).2], which give their contributions to the asymmet-
ric and chaotic evolutions. Finally, for S1 the mode energies
increase, in contrast to S3, for which they decrease.

In summary, by applying a bifurcation analysis, we re-
vealed the emergence and stability of dissipative states for
a driven passive nonlinear cavity with a parabolic poten-
tial. The potential may stabilize complex spatio-temporal
dynamics in favor of static DKSs, and leads to the coexis-
tence of high and low amplitude DKSs. A particular feature

of this system is that asymmetric breathers and chimera-
like states (i.e., a chaoticons) may arise. The latter, consist
of localized spatio-temporal chaos, and appear due poten-
tial trapping. By a modal decomposition analysis we have
shown that these states emerge from interactions of asym-
metric modes. The simple parabolic potential captures the
essential dynamics introduced by synchronous phase modu-
lation [26, 29], while providing useful physical insight based
on a linear mode decomposition.
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