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Abstract—Software Defined Networking (SDN) is a recent
network architecture based on the separation of forwarding
functions from network logic, and provides high flexibility
in the management of the network. In this paper, we show
how an attacker can exploit SDN programmability to obtain
detailed knowledge about the network behaviour. In particular,
we introduce a novel attack, named Know Your Enemy (KYE),
which allows an attacker to gather vital information about the
configuration of the network. Through the KYE attack, an
attacker can obtain information ranging from the configuration
of security tools, such as attack detection thresholds for network
scanning, to general network policies like QoS and network
virtualization. Additionally, we show that the KYE attack can
be performed in a stealthy fashion, allowing an attacker to
learn configuration secrets without being detected. We underline
that the vulnerability exploited by the KYE attack is proper of
SDN and is not present in legacy networks. Finally, we address
the KYE attack by proposing an active defense countermeasure
based on network flows obfuscation, which considerably increases
the complexity for a successful attack. Our solution offers
provable security guarantees that can be tailored to the needs of
the specific network under consideration.
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I. INTRODUCTION

Software Defined Networking (SDN) is a recently proposed
network architecture which aims to address the shortcomings
of traditional architectures by simplifying the management
of network infrastructure. SDN is based on the premise that
network logic and the physical network devices should not be
conflated into a single entity, but rather separated in different
layers. To this end, SDN introduces the concepts of data plane
and control plane: the data plane is comprised of the physical
network devices (from here on, called switches) and implements
the forwarding functions of the network, while the control plane
manages the network logic and decision making process. The
decisions related to traffic management are taken only by the
control plane, which pushes instructions to the switches in the
data plane. The data plane is therefore relegated to the role of an
actuator, implementing the decisions of the control plane. This
separation between logical control and physical implementation
of the network functions provides a high degree of flexibility,
which is one of the main reason for the widespread adoption
of SDN even amongst big companies [9], [39].
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While the programmability of SDN allows for fast prototyp-
ing and high adaptability to different scenarios, it also creates
new vulnerabilities [21], [22], [46]. In this paper, we show that
the centralization of the decision making process in the control
plane, and the consequent distribution of the policy enforcement
throughout the switches, introduces a new interesting venue
for attack. We show that an attacker can exploit the distributed
policy-enforcement of SDN in order to gather intelligence
about the control logic of the network in a stealthy fashion.
In particular, our attack only requires the adversary to obtain
a flow table side-channel, i.e., a way of learning which rules
are installed, for a single switch (which we call entry switch,
see Section II). By analyzing the conditions under which a
rule is pushed, and the type of such rule, an attacker can
infer sensitive information regarding the configuration of the
network. The final result is that through a single switch, the
attacker can gather information which, in a classical network,
would have required access to numerous distinct devices, such
as firewalls, intrusion detection/prevention systems, etc. The
information gathered can subsequently be exploited to mount
different attacks, tailored to the target network, without being
detected. Finally, we propose a configurable countermeasure
to the KYE attack, which allows network managers to choose
the best trade-off based on the needs of the specific SDN.

To summarize, in this paper, which is an extended version
of our work in [30], we make the following contributions:

• We propose a novel, attack, the Know Your Enemy (KYE)
attack, that allows stealth intelligence gathering about the
configuration of a target SDN network. The information
that an adversary can obtain ranges from configuration
of security tools, such as attack detection thresholds for
network scanning, to general network policies like QoS
and network virtualization.

• We prove the feasibility and efficacy of the KYE attack
through its implementation and a thorough experimental
evaluation on a test network.

• We further discuss new, concrete instances of the KYE
attack. In particular, we explain how the attack can be
used to infer SDN-related configuration information, such
as control plane scalability and flow table saturation
countermeasures.

• We further propose a new countermeasure to the KYE
attack, called flow obfuscation. The countermeasure, which
is based on the obfuscation of inbound network flows,
is configurable: this allows network managers to tailor it
based on the vulnerability of the considered network.

• We experimentally evaluate our countermeasure and pro-
vide an accurate evaluation of the overhead it introduces.
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• We analyse the security of the proposed coutnermeasure,
along with potential solutions to improve its efficiency.

The remainder of this paper is organised as follows. In
Section II we introduce our threat model and assumptions.
Section III presents the details of the KYE attack and Section IV
describes several possible instances of the attack. In Section V
we describe our experimental evaluation of the KYE attack and
present our results. Section VI describes our contermeasure to
the KYE attack, as well as the results of our experimental
evaluation of the countermeasure. Section VII discussess
the limitations of the KYE attack and venues for possible
improvements from the point of view of attack automation.
In Section VIII we discuss related works and we present our
conclusions in Section IX.

II. ASSUMPTIONS AND SDN ISSUES

While having a logically centralized point of control allows
to improve the decision-making process, distributing the policy
enforcement introduces new problems with regard to informa-
tion disclosure. Where network functions in legacy networks are
relegated to the specific devices implementing them, providing
higher control over access to their configuration, in SDN they
are distributed throughout the OpenFlow switches. Indeed, net-
work policies and functions like intrusion detection/prevention
systems (IDS/IPS), network virtualization, or access control,
are often enforced by the OpenFlow switches, through the
application of the flow rules installed by the controller [29],
[33], [34]. Unfortunately, this behaviour considerably broadens
the attack surface for an attacker.

As we show in this paper, by having a flow table side-
channel on a single OpenFlow switch (called entry switch), an
attacker can gather a relevant amount of information regarding
the behaviour and configuration of the SDN network the switch
belongs to. A flow table side-channel is defined as any mean
by which an attacker can learn or infer the content of the flow
table of a switch. The KYE attack is independent from how
this side-channel is obtained, and the detailed description of
how to obtain it is out of the scope of this paper. However,
for completeness, we list some of the possibilities an attacker
could leverage:

• Connect to a passive listening port on the entry switch to
retrieve the flow table. In fact, most OpenFlow switches
can be remotely debugged by means of a passive listening
port, which also allows retrieval of the flow table [26], [47].
For instance, an attacker could use the dpctl utility [4]
on the unprotected listener port of an HP Procurve [7].

• Exploit poor device configuration settings, such as the use
of default or weak passwords. Indeed, misconfiguration
is an important source of vulnerabilities in deployed
systems [2], [6], and is already identified as one of the
main venues of attacks in the literature [28].

• Use Round Trip Time (RTT) variance to infer information
about the content of the flow table [31], [41].

• Sniff the control traffic. Indeed, the use of TLS on the
control channel is optional [12], and many commercial
switches do not support it [26]. Additionally, in most cases
OpenFlow switches that support TLS do not implement
certificate authentication [47].

• Exploit backdoors built-in by the device manufacturers [1],
[5], [8] and government agencies [14].

• Compromise the switch. Indeed, attackers demonstrated
multiple times the ability of compromising several differ-
ent types of switches [3], [15]. In particular, this venue
of attack is going to become increasingly important with
further studies on switch vulnerability and frameworks
for automated vulnerability discovery, such as the recently
presented DELTA [50] and FlowFuzz [44].

It is worth noting that the attacker uses the flow table side-
channel only to read the state of the flow table, therefore the
overall state of the entry switch is not modified in any way.
This means that, even in case of a controller monitoring the
integrity of the entire state of the switches, e.g., through direct
query [40] or checksum [26], the flow table side-channel would
not be detected. Through the KYE attack the attacker can learn
all sorts of relevant information, from routing policies, to more
complex and important behaviours regarding attack detection
and defense mechanisms.

We would like to point out that, while OpenFlow allows
to pre-install flow rules in the switches, this severely limits
the capabilities of SDN, reducing its advantages over classical
network architectures. Indeed, most of the novel applications
that can be realized with SDN are based on on-demand man-
agement of network flows, like reactive defence mechanisms
against various types of attacks [53], [37], [45], [22], [54]
(see Section IV-A). Using proactive rule installation would
also impact network efficiency by preventing dynamic traffic
engineering [35], [36], one of the key applications of SDN
that allows to considerably reduce the cost of the network
infrastructure by eliminating the need of overprovisioning [39].
In brief, dynamic network flow management is one of the
main features of SDN and is the key enabler of most SDN
applications, therefore we assume that an SDN network will
employ reactive rule installation.

Threat Model. Our threat model assumes that the attacker
has a flow table side-channel for a single switch. His goal is
to gather information on the network without being detected.
Therefore, the attacker uses the flow table side-channel only
to read the state of the flow table, without modifying the
overall state of the entry switch in any way. In particular, the
only abilities of the attacker are (i) sending packets through
the target network and (ii) using the side-channel to learn
the rules that are installed on the entry switch. The attacker
can be either internal or external. Furthermore, we assume
that the switch only provides the functionality described in
the OpenFlow standard [12], and that the attacker does not
increase its capabilities in any way.

In our threat model, the attacker can be modeled as
a host connected to the target network, either directly or
indirectly, who can generate arbitrary traffic though the network.
Additionally, the attacker has the ability to arbitrarily read the
flow table of one switch in the network and identify which
flow rules are installed in response to his traffic.

III. THE KYE ATTACK

The details of the attack vary based on the specific informa-
tion the attacker wants to gather (see Section IV). However, all
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Fig. 1: Overview of a general KYE attack.

instances of the KYE attack share a common kernel, as detailed
below. The KYE attack exploits the on-demand installation of
rules of SDN, allowing an attacker to gather knowledge about
which conditions trigger the installation of a given rule, as
illustrated in Figure 1. The KYE attack is structured in two
phases: (A) the probing phase and (B) the inference phase.

In the probing phase (A), which is repeated numerous times,
the attacker attempts to trigger the installation of flow rules
on the entry switch (steps 1 through 5 in Figure 1):

• The attacker sends carefully crafted probing traffic through
the entry switch in order to trigger the installation of new
flow rules. The specific characteristics of the probing
traffic depend on what kind of information the attacker is
interested in learning (see Section IV and Section V).

• Through the flow table side-channel, the attacker obtains
the flow rule (if any) installed in response to the probing
traffic.

In the inference phase (B), the attacker analyzes the correla-
tion between the probing traffic sent in the probing phase and
the corresponding rules installed (step 6 in Figure 1). From
this analysis, it is possible to infer what network policy is
enforced for specific types of network flows (see Section IV).
Additionally, by studying the features of the probing traffic, the
attacker can potentially infer the trigger conditions for network
policies that require a specific trigger before being activated
(e.g., scanning detection thresholds, see Section V).

From the point of view of the attacker, knowing which type of
attacks are detected by the target network, the countermeasures
employed and the detection treshold is a great advantage. Ideed,
knowing the detection and defence mechanisms employed by
the network, the attacker can, for instance, craft malicious
payloads specifically designed so that they will not be detected
by IDS/IPS, perform DDoS attacks while disguising the traffic
so that the attack is not detected, or learn which machines in
the network are honeypots (by looking for possible redirection
rules towards such hosts). In general, the information provided
by the KYE attack allows an attacker to minimise the risk
of detection when moving about the target network, and to
maximise the potential damage by means of targeted attacks.

It is worth noting that introducing probing traffic in the
network does not expose the KYE attack to detection. Indeed,
one of the strengths of the KYE attack is that it is hidden
by other attacks: for instance, an attacker performing a KYE

attack to gather information related to DoS countermeasures
will generate DoS traffic through the target network during the
probing phase. When the DoS traffic is detected, the network
will categorise it as a DoS attack, and the KYE attack will
remain undetected. Effectively, the probing traffic hides the
real attack to the network, making it extremely hard to detect
the KYE attack reliably. Moreover, the attacker can employ
IP spoofing or other techniques, such as proxies, during the
probing phase, so that it is not possible to link him to the
probing traffic.

A. KYE Attack and Network Probing in Traditional Networks

Attackers already employ network probing in today’s net-
works to learn as much information as possible about their
target. With this regard, our main contribution is to instantiate
the general concept of network probing in SDN networks,
and show how an attacker can exploit dynamic flow rule
installation to gather a much greater amount of information
that traditionally possible. This level of information gathering
is not achievable in traditional networks, where probing
yields less information due to the separation of network
functions across different devices. Moreover, in general the
accuracy of the information obtained is also lower in traditional
networks, as it is more complex to understand exacly when
a given countermeasure is activated (as opposed to an SDN
environment, where it is easily detectable by analysing the
rules pushed by the controller). Indeed, while in traditional
networks it might be possible to understand when a flow is
dropped, it becomes increasingly difficult to distinguish more
complex (and interesting for the attacker) actions such as, for
instance, flow redirection.

IV. KYE INSTANCES

As we discussed before, the KYE attack is a general
attack strategy, and the details of the attack vary based
on the specific information the attacker wants to gather.
In this section, we discuss different instances of the KYE
attack, with respect to what type of information the attacker
wants to obtain. Additionally, we provide a non-exhaustive
list of concrete examples of KYE attack, showing how an
attacker can exploit the flow table side-channel to infer
different configuration features of the network. Due to space
constraints, we limit our discussion to KYE attacks aimed
at disclosing security-related configuration information in
Section IV-A, and SDN-related configuration information
in Section IV-B. However, the KYE attack can be easily
employed to disclose almost any type of network-configuration
information, such as network virtualization functions or quality
of service rules.

A. Gathering Network Security Configuration Information

When planning an attack, knowing what detection and
defense mechanisms are used by the target network is
obviously invaluable to an attacker. In this section we discuss
how, through repeated probing and analysis of the flow table,
an attacker can infer detection mechanisms and defense
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measures in place in an SDN network for different types of
attack. Due to space limitations, in our analysis we focus on
some popular SDN-based defense mechanisms proposed in
the literature [17], [49].

1) Worm Infection/Scanning: Scanning is one of the main
preliminary intelligence gathering techniques, used by attackers
to gather information about a given target network and by
worms to detect vulnerable targets to spread the infection to.
Through scanning, an attacker can learn about the number, type
and address of hosts in a network, along with what services
are offered on which port. This information is a prerequisite
for mounting more complex attacks. Therefore, being able to
detect and mitigate scanning is extremely important for any
network.

KYE Attack. In SDN, an attacker can infer information
regarding the type of defense mechanisms used to mitigate
scanning and, depending on the detection mechanism employed,
the detection threshold for scans. In order to infer such
information, an attacker simply needs to send scanning probes
from a spoofed address IPA, varying the characteristics of
the scan (e.g., increasing scanning rate, different duration of
the scan, various success/failed connection ratios). After each
probe, the attacker reads the content of the flow table of the
OpenFlow switch and takes note of the new flow rule installed
in response to the probe. As long as the scanning is not detected,
the flow rules installed simply instruct the switch to forward
the traffic coming from IPA towards different exit ports, based
on the destination address. When the scanning rate becomes
high enough or the scanning activity lasted long enough for
the attack to be detected [45], the controller will install flow
rules implementing an appropriate defense measure against
scanning.

Detection and Defense Mechanism Inference.
Depending on the defense measure used by the network,
different types of flow rules will be installed, for instance: traffic
filtering [37], rate limiting [45], [58], honeypot redirection [53],
or whitehole network approaches [21], [22], [54]. All these
defense mechanisms require the installation of very specific
flow rules, which differ from the normal flow rules installed
when no attack is detected (see Section IV-C). Consequently,
by recognizing this change in the type of rules installed, the
attacker can learn that the network scanning was detected.
Moreover, the flow rules required by these mechanisms
are easily identifiable and, just by looking at what rule is
installed, the attacker can infer the defense mechanism used
by the network (see Section IV-C). Finally, for some defense
mechanisms that are activated on-demand by the controller, the
attacker can also infer the traffic features that trigger detection
by the network. For instance, if we consider TRW-CB [48],
which is one of the most frequently used anomaly detection
algorithms [24] and is already implemented in SDN [45], [53],
the attacker can learn the ratio between successful/unsuccessful
connections used as detection criteria through repeated probing.
Once the attacker discovers the detection threshold, he is then
able to carry out the network scan undetected in a second
phase, by alternating unsuccessful scanning with successful
connections.

Implementation. In Section V-A we report on the
implementation of this instance of the KYE attack. We show
that, for realistic detection and defense mechanisms, an
attacker is able to learn both the scanning traffic features that
trigger detection, and the defense mechanism used.

2) Denial of Service: DDoS attacks are one of the most
widespread type of attacks and their diffusion and sophistication
increases every year [11]. Indeed, attackers often use DDoS
attacks as a smokescreen to cover data theft and malware
installation on target systems [11]. Moreover, the financial
damage these attacks cause can range in hundreds of thousands
of dollars in peak hours [16]. As a consequence, most
organizations adopt one or more DDoS detection and mitigation
system [16]. In the context of SDN, DDoS detection schemes
tend to employ lightweight mechanisms, such as threshold
and entropy-based systems [37], [33] to avoid overloading the
controller. Other more complex and computationally expensive
approaches do exist, like [27], where the authors employ
machine learning techniques to detect possible DoS attacks.
Depending on which detection mechanism is used, an attacker
can perform a KYE attack to learn if a DoS detection
mechanism exists, what defense measure is applied by the
network and potentially even the detection criteria employed.

KYE Attack. The KYE Attack for DoS detection is very
similar to the one used for network scanning; in the probing
phase, the attacker starts a DoS with a low attack rate,
simulating a behaviour that is as close as possible to that of a
legit client, then gradually increases the profile of the attack.
Throughout the attack, the attacker monitors the flow rules
installed by the controller on the OpenFlow switch, looking
for a change in the flow rules pushed. Indeed, under normal
circumstances the controller will simply instruct the switch to
route the traffic towards the destination host. However, when
the DoS attack is detected, the controller pushes different rules
based on the defense mechanism employed by the network,
allowing the attacker to learn that the DoS was detected.

Detection and Defense Mechanisms Inference.
Defense mechanisms proposed against DoS attacks, like traffic
redirection [43], rate limiting [58], [45] or traffic filtering [37],
require very specific flow rules that an attacker can easily
distinguish from normal routing rules (see Section IV-C).
Therefore, as soon as these security flow rules are installed on
the monitored OpenFlow switch, the attacker will know that
the DoS was detected. By analyzing the specific flow rules
installed, he can also infer the defense mechanism applied
(see Section IV-C). Additionally, when the attack is detected,
the attacker can try to infer the detection criteria used by the
network. Indeed, for certain type of detection mechanisms
such as threshold [33] or entropy-based [37], it is possible
to find a good approximation of when exactly an attack is
detected. In order to learn these detection thresholds, an
attacker can repeat the probing phase several times varying the
characteristics of the attack. Upon detection, the attacker will
log such characteristics, like duration, attack rate and number
of packets sent from each IP address, for instance. After
obtaining a sufficiently large sample, the attacker can look for
correlations between the characteristics of the detected attacks
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to learn approximately what values trigger the detection. Even
in case of more complex detection systems based on machine
learning [27], the attacker can still obtain knowledge about
the traffic features used for detection. Indeed, previous work
on the area of machine learning shows that it is possible
to infer meaningful information about the training set of a
classifier [25], which in our case would reveal information
about which flows are considered malicious or benign.

3) Access Control: Access control mechanisms, like fire-
walls, are the first and most basic defense mechanism used by
networks to enforce security policies. Through its centralized
view of the network and distributed enforcement of rules, SDN
provides the optimal functionality to implement a consistent
distributed firewall in the network [38], [57], [59]. Given that
such access control systems are the first defense mechanism
that an attacker needs to bypass before attacking a network,
learning the exact configuration of such devices would provide
a huge advantage in preparing an attack. While this would be
extremely challenging in classical networks, due to the fact
that access control rules are relegated only to specific security
devices, this task is considerably simpler in SDN.

KYE Attack. By performing a KYE attack, the attacker
can infer all the access control policies he is interested in by
simply probing the monitored OpenFlow switch. In its most
basic form, the attacker will send a probe packet to test any
given access control policy. For instance, the attacker can try
to connect to a protected service using a set of different IPs, in
order to understand which subnets are allowed to access that
service. For each of these probes the controller will push either a
forwarding flow rule, to forward the packets to their destination,
or a drop rule if the access is not allowed [20]. By repeating the
probing for all interesting services and using different source
IP addresses, the attacker can map which addresses (or address
ranges) are allowed towards/from a certain critical service.

Defense Mechanism Inference. For access control en-
forcement, the policy that is most used in general is to drop
unauthorized traffic flows [20]. If such defense mechanism is
in place, the attacker is able to recognize it immediately just
by reading the new flow rule installed (see Section IV-C). SDN
also allows for more complex defense mechanisms to enforce
access control, like traffic redirection towards a honeypot/IDS
for instance [43], [53]. As we discuss in Section IV-C, the
attacker can easily identify even this more complex mechanisms
just through observation of the OpenFlow switch flow table.

Implementation. In Section V-B we report on the imple-
mentation of this instance of the KYE attack. We show that,
given an access control mechanism, an attacker is able to learn
the complete access control matrix enforced by the controller.

B. Gathering SDN-Related Configuration Information

Through a KYE attack, an attacker can infer vital
information about SDN-related network configuration, such as
flow table management [19], [32] and control plane scalability
measures [21], [54]. Knowledge about the configuration of
such critical systems provides an attacker with a wider attack
surface, as well as allowing him to better focus his resources

during an attack.

1) Flow Table Saturation: Flow rules, and therefore flow
tables, are the core enablers of SDN in OpenFlow. While
fine-grained flow rules allow for targeted policy enforcement,
the number of flow rules that can be installed on OpenFlow
switches is limited. If the flow rule limit is reached (e.g., as a
result of a deliberate saturation attack), the switch will not be
able to accept rules for new inbound network flows, which will
be ignored. To mitigate this vulnerability, the control plane can
employ wildcard rules to aggregate the management of multiple
network flows with a single flow rule [19], [32]. From the point
of view of an attacker, learning under which conditions the
controller uses wildcard rules and, more importantly, how to
force it to install targeted flow rules, is essential to successfully
mount saturation attacks.

The main consideration behind aggregate network flow
management is that, in general, it is important to route flows on
an individual basis only under certain conditions. In particular,
for the purpose of network engineering, this conditions are
generally related to the weight of a specific network flow;
network flows that surpass a certain threshold (be it a data
rate [19] or size [32] threshold), are marked for individual
routing through targeted flow rules.

KYE Attack. Through a KYE attack an attacker can infer
the thresholds used to classify network flows, allowing him
to flood the network with flows for which the controller will
generate targeted flow rules. Indeed, similarly to a KYE attack
against threshold based detection systems (see Section IV-A1),
an attacker can easily detect if such aggregation systems are in
place and, if so, what thresholds they employ. As a first step,
the attacker reads the OpenFlow switch flow table and creates
a new network flow not matching any flow rule present. If
network flow aggregation is in use, the new flow rule installed
on the switch will be a wildcard flow rule, otherwise it will
be a flow rule targeted specifically at the new network flow.
If a wildcard rule is installed, the attacker can then increase
the data rate transmission for that network flow until a new,
flow-specific rule is installed by the controller. At this point,
the attacker knows the exact attack rate and/or size of the
flow (cumulative amount of data transmitted) required for the
controller to install a targeted flow rule.

C. Correlating Flow Rules and Network Policies

Through the KYE attack, an attacker can infer the exact
network-level defense mechanism employed against specific
attacks. In this section, we present a non-exhaustive set of
defense policies [29] that are used in relation to our examples
in Section IV-A. Furthermore, we explain how an attacker can
correlate a sequence of flow rules obtained during the probing
phase to the network policy they implement.

1) Traffic Filtering: One of the most basic network-level
defense mechanisms is traffic filtering. A traffic filtering policy
can be employed to mitigate a large range of attacks, including
scanning and DoS attacks [21], [37]. In SDN, traffic filtering
is implemented simply by installing a drop rule matching the
offending network flows on OpenFlow switches. An attacker
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monitoring the flow table of an OpenFlow switch can easily
detect the application of such defense mechanism. Indeed,
before the policy is applied, the control plane will push on the
OpenFlow switch normal flow rules, instructing the switch to
forward the inbound traffic based on the destination address.
When the attack is detected and the filtering is applied, the
control plane will install only a single drop rule for the all the
traffic coming from the attacker’s IP address.

2) Rate Limiting: Rate limiting is a simple, yet effective
defense mechanism to mitigate a wide variety of attacks like
scanning and DoS [45], [58]. The most basic rate limiters, the
ones assigning a maximum bandwidth to a given aggregate of
network flows, are immediately recognizable for an attacker
since they are directly defined in the flow rule matching the
aggregate network flows [12]. More complex rate limiting
approaches like those implemented in [45], [58] limit the rate
of new network flows by delaying the installation of flow rules.
In particular, [58] introduces the notion of working set: for
each given host, its working set is defined as the set of recently
contacted hosts. Whenever a host creates a new network flow
addressed at a host outside its working set, the controller will
withhold the installation of the corresponding flow rule on
the switch for a certain time. After this waiting time expires,
the controller instructs the switch to forward the network flow
without installing a flow rule. Only when the switch receives
a positive reply from the destination host, the controller will
install a new flow rule on the switch. An attacker can infer the
presence of this defense mechanism by probing the flow table
of the switch after creating a new network flow. If rate limiting
is in use, the attacker will receive a response as soon as the
flow rule is installed in the OpenFlow switch. Conversely, when
no such technique is used, there will be a measurable delay
between the installation of the flow rule on the switch and the
moment the reply is received. Therefore, by monitoring the
delay in receiving a response after a flow rule is installed, the
attacker can infer the use of this defense mechanism.

3) Whitehole Network: Another defense mechanism pro-
posed in the literature is SYN proxy [21], [54]. SYN proxy
techniques aim at countering the SDN-specific control plane
saturation attack [21], [54]. Additionally, SYN proxy imple-
ments a whitehole network [54] at the switch level, providing
mitigation also against network scans. The attacker can infer
the existence and the exact type of the defense mechanism
employed by the network. Indeed when SYN proxy techniques
are used, the attacker will receive a response SYN-ACK
packet without a flow rule being installed on the OpenFlow
switch [54]. Additionally, the attacker will always receive a
response SYN-ACK packet to each and every of his probes,
even if directed to himself. This behaviour exposes the use of
proxy techniques at the data plane level to the attacker, who
can attack the OpenFlow switches through vulnerabilities of
the proxy approach [21].

4) Traffic Redirection: Traffic redirection is a widely-used
defense mechanism [43], [51], [53]. For instance, it allows a
defender to opportunistically route malicious traffic towards
a honeypot, isolating the attacker to study his behaviour [53].
In SDN these defense mechanisms are easy to detect for an
attacker. By monitoring how the control plane updates flow

rule entries for some given network flows, the attacker can
infer if his attack traffic is diverted towards a security mid-
dlebox/honeypot, nullifying the effect of the countermeasure.
An attacker first generates a new legit network flow towards
a given destination D1 which is routed through a port Pi

on the entry switch. The attacker then repeats this step with
different destinations, until for a given destination Dn the
controller pushes a flow rule instructing the switch to output
the matching flow on a port Pj <> Pi. As a second step, the
attacker generates probing traffic with a high profile (e.g., high
scanning or DoS rate) towards destinations D1 and Dn for a
length of time, observing the flow rules installed in response.
If traffic redirection techniques are in place, the control plane
will install on the switch a new rule diverting the attack traffic
towards the remote middlebox/honeypot. Therefore, all the
attack traffic will be routed through the same output port on
the OpenFlow switch. Since in the first phase the attacker
selected the destinations D1 and Dn such that packets towards
them would be output on different ports, if all attack packets
towards those same destinations are tunneled through the same
port, then a redirection mechanism is present in the network.

V. KYE SIMULATION STUDIES

In order to prove the feasibility and effectiveness of the KYE
attack, we implemented two instances of the attack on a test
network. In this section, we present the detailed implementation
of our attacks, that were aimed at disclosing:

1) The presence of a scanning detection and defense mecha-
nism in the network. If present, we also wanted to estimate
the detection threshold.

2) The presence of a subnetwork access control mechanism.
If present, we wanted to learn the subnetwork access
control matrix.

Figure 2 depicts the setup used for the evaluation, which
includes: the attacker h0, a single OpenFlow switch s1
connected to the controller c, and 100 legit hosts h1 − h100.
Hosts h1−h100 represent known web servers that always reply
to connection requests. Hosts h1 − h100, if needed, may be
used by the attacker to obtain different connection success
ratios during probing, and are not necessarily part of the target
network.

Fig. 2: Experimental evaluation setup.
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Fig. 3: Number of responses received vs. number of requests
issued towards h1, h100 at each batch.
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Fig. 4: Connection result for each request of the batch sent
towards a known host. 1 indicates a successful connection, 0
a failure (i.e., no response received).

In order to simplify the simulation, in our experiments the
target network is comprised only of the switch s1 and the
network controller c. Even though in our test network we
deployed only a single controller and a single switch, our
experiments do not lose generality. This is because the logic
used by the controller is the same that would be used in a more
complex network, and the rules pushed by the controller are
also the same. It is worth noting that it is not a requirement for
the attacker to be directly connected to the OpenFlow switch,
nor it is for hosts h1 − h100. This is just a simplification we
adopted in order to run our simulation. In this test network, we
implemented the TRW-CB scanning detection algorithm, which
is one of the most used anomaly detection algorithms [24]. Our
implementation of TRW-CB follows the SDN implementation
detailed in [45]. The test network also implements an IP-based
access control mechanism. We ran all our experiments in a
simulated network using the Mininet network simulator [10]
and the POX network controller [13].

A. Disclosing Scanning Detection and Defense Mechanisms

The target network implements TRW-CB at the control
plane as a scanning detection mechanism, and traffic filtering
as a defense measure (see Section IV-C). TRW-CB employs
both credit limiting, used to limit the amount of first contact
connections pending, and sequential hypothesis testing to
detect scanning hosts. In particular, we configured the TRW-
CB algorithm with the same parameters used in the original
paper [48] (base credit of 10, false positive rate ≤ 0.00005,
precision ≥ 0.99).

As an attacker, the first step is to learn if the target network
has any kind of scanning detection mechanism in place. To this

end, we first initiated a scan with high packet/sec ratio using a
spoofed IP, towards a remote subnet which is protected by the
target SDN. At the same time, we constantly monitored the flow
table for a flow rule implementing a defense mechanism, which
would indicate the presence of a scanning detection mechanism.
With our configuration, after the first 10 connection attempts
failed, TRW-CB correctly identified our probes as scanning
activity. Upon detection, the controller pushed a drop flow rule
matching all packets coming from the attacker’s IP address.
Since we were monitoring the flow table of the switch, we
detected the rule installation and concluded that the network
indeed implements a detection mechanism for scanning attacks,
as well as that it uses traffic filtering as a defense measure.

After confirming the existence of a scanning detection
mechanism, the following step is to learn which detection
criteria are used. As discussed in Section IV-A1, in order to do
so we initiate several batches of network scans with different
characteristics, like scan rate and successful/failed connections
ratio. The results of these batches of scans show two visible
characteristics:

1) The scanning activity is detected regardless of the scan-
ning rate. This behaviour excludes rate-based scanning
detection mechanisms.

2) For scan batches where connection requests were sent only
towards h1, h100 (which should all send back a response),
we received replies only from some of them, as illustrated
in Figure 3.

The behaviour shown in Figure 3 is consistent with rate
limiting techniques, where connection requests sent at a rate
above a certain threshold are dropped. To investigate this
anomaly, we started a new scan towards h1, h100 with slightly
lower rate. The results are illustrated in Figure 4. As we can
see, connections are allowed in bursts: replies were received for
the first 10 connections, then 39 requests were dropped, after
which connection attempts 50 through 69 were successful, and
then connections were dropped once again. Since the scanning
rate was constant for all the 100 connection attempts, this
behaviour excludes a standard rate limiting technique. Indeed,
from Figure 4 we can see how a host is allowed to contact
up to 10 new hosts (i.e., 10 starting credits), after which
connections are blocked until pending replies are received.
Upon receiving the replies, new credits are allocated to the
host, whose connections are correctly forwarded once again.

This pattern is consistent with the presence of a credit based
rate limiting mechanism [48]. At this point, through the KYE
attack, we learned that:

• The network is using a detection mechanism for scanning,
which is not rate based.

• The network is using drop rules as a defense mechanism
against scanning. Moreover, the network employs an
additional preemptive defense measure in the form of
credit based rate limiting. Each host is assigned a starting
balance of 10 credits and for each successful connection
the hosts receives 2 additional credits (the initial 10
successful connections allowed 20 more connections after
replies were received).
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Fig. 5: Ratio of the number of successful connections over the
number of total connections, for each batch of scans which
resulted in detection.

0.0 0.2 0.4 0.6 0.8 1.0

failed/total connections ratio

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

u
la

ti
v
e
 f

ra
ct

io
n
 o

f 
d
e
te

ct
e
d
 b

a
tc

h
e
s

Fig. 6: Empirical cumulative distribution function of the ratio
of failed connections over total number of connections, for
batches of scans which resulted in detection.

In the final step of the KYE attack, we initiated several
batches of scans, with varying successful/failed connection
ratios and scan duration. Each scanning batch terminated either
after all planned scans were preformed, or abruptly upon
detection. Since we are only interested in the characteristics
of the scanning attacks that are detected, we isolate detected
batches from undetected ones. For the batches of scans that
were detected, figure 5 shows the ratio of successful connections
over the total number of connections issued and Figure 6
shows the cumulative distribution function of the ratio of failed
connections over total number of connections. As these two
figures show, the scanning detection criteria employed by the
network is clearly based on the ratio of successful and failed
connections. Indeed, from Figure 5 we see that network scans
are never detected when the ratio of successful connection
over the total number of issued connections is above ∼ 0.45.
Conversely, from Figure 6 we can see that network scans are
detected when the ratio of failed connections over total number
of issued connections is above ∼ 0.55, and never detected
when it is below that threshold.

B. Disclosing the Subnetwork Access Control Matrix

After learning the scanning detection criteria used by the
network through a KYE attack, we show that we can also
infer the complete access control matrix used by the network
without being detected by the controller. In our test network,
we configured the POX controller with a set of static access
control policies, where access to a certain subnetwork is allowed
only from a subset of all subnetworks. Whenever a connection
request from an unauthorized address is received, the controller

instructs the switch to drop the packet without installing any
flow rule. If the connection request is from an authorized
address, the controller installs a normal forwarding flow rule
on the switch for subsequent packets. In this setting, we perform
a KYE attack, sending scan probes from each subnetwork to
every other. Since with the previous attack we inferred the
detection criteria used by the network for scans, we can now
perform this network scan attack completely undetected.

The attack itself is very simple: at each scan probe, we
spoof the source address to make it look like the source of the
connection is part of a given subnetwork. We repeat the scan
for each pair of source and destination remote subnetworks in
the range 10.0.0.0\24− 10.0.255.0\24, while opening enough
successful connections to remain below the detection threshold.
After each scan, we read the flow table of the switch to detect
which rule is installed. By monitoring the flow table, we see that
no flow rules are installed when the source IP is not allowed
to access the subnetwork, while a forwarding rule is installed
when the access is authorized. Through this observation we are
able to build the access control matrix illustrated in Table I,
which reflects exactly the access control rules that were set up
at the network controller.

VI. COUNTERMEASURE TO THE KYE ATTACK

In this section, we propose a countermeasure to the KYE
attack that does not require modifications to SDN, but rather
that takes advantage of SDN programmability. We call this
countermeasure flow obfuscation. In the following analysis,
we use a stronger attack model than the one presented in
Section II. In particular, we assume that the attacker can obtain
a flow table side-channel for up to n switches in the target
SDN network. Therefore, we consider an attacker who is much
stronger that the one previously considered.

A. Flow Obfuscation

As described in our attacker model (see Section II), to
perform a KYE attack an attacker needs to be able to identify
which flow rules are installed in response to his traffic. Our flow
obfuscation countermeasures exploits the ability of OpenFlow
switches to modify packets in transit, so that the attacker
cannot distinguish flow rules for his traffic flows from flow
rules of other users. Figure 7 provides an overview of this
countermeasure.

Fig. 7: Overview of the flow obfuscation countermeasure. The
dotted lines indicate the flow table side-channel.
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10.0.0.0/24 10.0.1.0/24 10.0.2.0/24 10.0.3.0/24 10.0.5.0/24 10.0.8.0/24 10.0.10.0/24
10.0.0.0/24 3 3 7 7 7 7 7
10.0.1.0/24 3 3 7 7 7 7 7
10.0.2.0/24 7 7 3 3 7 7 7
10.0.3.0/24 7 7 3 3 7 7 3
10.0.5.0/24 7 7 7 7 3 3 7
10.0.8.0/24 7 7 7 7 3 3 7
10.0.10.0/24 7 7 7 3 7 7 3

TABLE I: Subnetwork access matrix for the target network, learned by the attacker through a KYE attack. Notation 3: access
allowed; notation 7: access restricted.

Please note that the use of source and destination IP to
identify network flows is just used to present the countermea-
sure. Indeed, network flows can be matched on arbitrary header
fields. Even in such cases, the flow obfuscation countermeasure
can be implemented by modifying these fields through set field
actions [12].

Any time a new network flow fi is received by a switch, the
controller installs a single flow rule on the switch, with two
actions: the first action instructs the switch to modify some
header fields of the packets of fi (e.g., source and destination
IP), while the second action tells the switch which output port to
use for packet forwarding. This process is repeated for the first
k − 1 switches s1, ..., sk−1 in the path, after which, at switch
sk, the controller installs a rule to enforce the appropriate
network policy for fi. We refer to the path comprised of the
switches s1, ..., sk as the obfuscation path. The goal of this
countermeasure is to prevent the attacker from learning which
network flow causes the installation of a given flow rule; indeed,
since the attacker can control up to n switches, when k ≥ n+1
he will never be able to obtain the complete knowledge required
for a successful KYE attack. In fact, when k ≥ n + 1 there
are two possible scenarios:

• If the attacker monitors s1, ..., sk−1, then he does not
monitor sk, which is the switch applying the network
policy flow rule.

• If the attacker monitors sk, then he can not know if the
installation of a rule on sk is caused by a network flow
he generated. This is because the previous k− 1 switches
modify the packets at each step, and the attacker does not
monitor all of them.

It is worth noting that the number (k) of switches on the
obfuscation path can be chosen to be lower than the expected
number (n) of switch an attacker is able to probe, while still
maintain a probabilistic guarantee of security against KYE
attacks. Indeed, depending on the average out-degree of the
switches in the network, even with a value of k ≤ n the
probability of the attacker choosing as target the exact k
switches used for flow obfuscation can be low, as we show in
the next subsection.

Choosing the Value of K. Given an SDN network, let us
assume that o+ 1 is the average out-degree of a switch and
that an attacker knows the number of switches used in flow
obfuscation. If an attacker a can monitor at most n switches
(for simplicity, we assume n mod k = 0), the probability
P s
s1,sk of him monitoring exactly the k switches s1, ..., sk used

for flow obfuscation is:

P s
s1,sk =

(
(n/k)

o

)k−1

,

since attacker always knows the identity of s1 (the edge switch
through which the attacker’s traffic is routed). A network
manager can decide the appropriate value for k based on
the expected value of n and the maximum probability P s

s1,sk

that he is willing to accept.

B. Evaluation of Flow Obfuscation

In this Section we describe the experimental evaluation of
our flow obfuscation countermeasure. For our evaluation, we
use the widely used clos network architecture [18], [55]. In
particular, we employ the two-tier clos network depicted in
Figure 8, with two hosts connected to each aggregation switch
for a total of 12 hosts. We simulated this network using the
Mininet network simulator and we wrote a module for the POX
controller implementing our flow obfuscation countermeasure.
In this network, we evaluated the overhead introduced by
increasing obfuscation path length.

Fig. 8: Two-tier clos network used in the experimental
evaluation of the flow obfuscation countermeasure.

In our experiments, we measured the RTT between each pair
of hosts in the network varying the length of the obfuscation
path between 1 (i.e., no countermeasure) and 6. Specifically, for
each host we pinged every other host in the network 10 times
and we took the average. Since our network is comprised of
12 hosts, two for each aggregation switch, for each obfuscation
path length we have a sample of 10 ∗ 12 ∗ 11 = 1320 RTTs.
Figure 9 illustrates the results of our experimental evaluation.
As expected, the average RTT increases as the length of the
obfuscation path increases, roughly doubling for k = 6. It
is interesting to notice how lower lengths of the obfuscation

9



2168-6750 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2018.2806977, IEEE
Transactions on Emerging Topics in Computing

1 2 3 4 5 6
Obfuscation path length (K)

30

40

50

60

70

80

90

100
Av

er
ag

e 
RT

T(
m

s)
Baseline (no countermeasure)
Flow Obfuscation

Fig. 9: Average RTT in ms between each pair of hosts in the
network, for varying length of the obfuscation path (k).

path increase the RTT between hosts only slightly, while still
provide mitigation against the KYE attack. For instance, in
this particular network a value of k = 3 provides a reasonable
tradeoff between increased latency and attack mitigation, with
a latency overhead of 15% and resilience against up to two
compromised switches. It is worth noting that 3 switches is
the average number of switches between each pair of hosts in
our network. In general, setting the length of the obfuscation
path equal to the average number of switches between any two
hosts will provide a good tradeoff between attack prevention
and overhead mitigation.

VII. LIMITATIONS OF THE KYE ATTACK AND FUTURE
WORK

The KYE attack requires constant assessments of the flow
table by the attacker and the ability to recognise deviations in
the type of flow rules installed. A human attacker can find this
process bothersome and non-trivial in certain cases, leading to
imprecise identification of detection conditions and/or defense
measures applied. Additionally, the attacker might not be able
to correctly identify the network policy applied if the policy
itself is new or unknown to the community. While this might
be the case, we argue that the attacker does not necessarily
need to learn the exact nature of the network policy applied, as
long as he is able to learn enough information for his purposes.
For instance in case of network scanning, not being able to
identify the defense mechanism used might be acceptable for
the attacker, as long as he is able to understand when the
scanning traffic is detected and when it is not. The attacker can
learn when the scanning is detected by observing a deviation
in the flow rules installed for different types of probing traffic
(e.g., very low scan rate probing traffic v.s. fast scan rate
probing traffic).

In our future work, we plan on automating the KYE attack
by means of machine learning techniques. Indeed, the efficacy
of the KYE attack is based on the ability to recognising
patterns in the features of the generated traffic and in the flow
rules installed in response, as well as to recognise significant
deviations from such patterns. We believe that machine learning
can be successfully applied to detect the baseline behaviour
of the control plane under normal traffic conditions. Once this

TABLE II: Latency overhead

Obfuscation Path Length RTT (ms) Ratio

1 42.57 1.0

2 44.2 1.04

3 48.87 1.15

4 65.09 1.53

5 63.27 1.49

6 80.0 1.88

Latency overhead and ratio for different lengths of the obfuscation path.

baseline behaviour has been identified, we can use a classifier to
detect and categorize deviations from such behaviour triggered
by specific traffic flows. It would then be possible to use another
classifier to find the most relevant features of the attack traffic
which caused the abnormal network state (e.g., detection of
an attack). In this system model, the OpenFlow switch acts
as an oracle: the switch can be repeatedly queried to learn if
some network flows trigger a deviation in the usual type of
flow rules installed. By analyzing the difference between the
features of network flows that triggered the abnormal network
state versus those which did not, it is possible to learn which
are the characteristics that caused the reaction.

Finally, in complex networks it is possible to have sev-
eral subnetworks, each with separate network policies. In
this scenario, the KYE attack allows to learn the network
configuration of the subnetwork for which the attacker has a
flow table side-channel. However, we argue that it is highly
unlikely for subnetworks belonging to the same network to
have completely different policies. Consequently, even in case
of extremely complex networks, the information that the KYE
attack provides about one subnetwork also applies to the other
subnetworks, and can be used to mount subsequent attacks.

VIII. RELATED WORK

SDN has become a popular research topic in recent years,
especially in relation to security. In [42], Kreutz et al. discuss
the effects of an attacker compromising a switch in the network,
which can result in traffic injection attacks, man-in-the-middle
attacks and traffic filtering. Similarly, in [23] the authors
consider an attacker with full control over the switch and
discuss several possible attacks like man-in-the-middle, state,
and topology spoofing. However, in these works the attacker
actively modifies the state of the switch, exposing him to
detection by the controller through querying the state of the
switch [26], [40] or RTT analysis [23]. In [41], Klöti et al.
prove that by analyzing the RTT for a specific network flow,
an attacker is able to infer if a rule is already installed for that
network flow. While the goal of this attack is to obtain some
information on the state of a switch, the KYE attack allows to
learn a much greater amount of information about the logic
and policies of the network, such as attack detection threshold
and defense mechanisms applied. More recently, Sonchack et
al. [56] developed a timing attack aimed at disclosing sensitive
information about the network. This attack shares the same
goal of obtaining knowledge on the behaviour of the network
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with our attack, but differs in both how it is achieved and in
the detail of information that can be gathered. Another set
of works related to ours pertain to SDN fingerprinting [52].
SDN fingerprinting techniques use RTT to infer if a given
network is an SDN or a classical network. These techniques
apply the observation, made in [41], that in SDN the first
packet belonging to a network flow has a higher RTT then
subsequent ones. By exploiting this asymmetry, an attacker can
successfully infer if a network is an SDN with high accuracy.
Fingerprinting attacks differ from our work since the type,
the amount, and detail of information retrieved with the KYE
attack is much greater and more fine-grained.

IX. CONCLUSIONS

In this paper, we proposed a thorough analysis of the
vulnerability introduced by the on-demand installation of
flow rules in SDN. We presented the novel KYE attack
which, with minimal requirements, allows an adversary to
gather an extensive amount of information regarding the
configuration of the network, ranging from security-related
aspects to network engineering policies. We implemented the
KYE attack and conducted a thorough evaluation, showing its
feasibility and efficacy against a popular scanning detection
algorithm and against standard access control policies. Finally,
we proposed and experimentally evaluated the flow obfuscation
countermeasure. We showed how the countermeasure provides
provable security guarantees and can be configured to adapt to
the needs of a specific network under consideration.
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