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Abstract
Machine Learning is currently a well-suited approach widely adopted for solving data-driven problems in predictive main-
tenance. Data-driven approaches can be used as the main building block in risk-based assessment and analysis tools for
Transmission and Distribution System Operators in modern Smart Grids. For this purpose, a suitable Decision Support Sys-
tem should be able of providing not only early warnings, such as the detection of faults in real time, but even an accurate
probability estimate of outages and failures. In other words, the performance of classification systems, at least in these cases,
needs to be assessed even in terms of reliable outputting posterior probabilities, a really important feature that, in general,
classifiers very often do not offer. In this paper are compared several state-of-the-art calibration techniques along with a set
of simple new proposed techniques, with the aim of calibrating fuzzy scoring values of a custom-made evolutionary-cluster-
based hybrid classifier trained on a set of a real-world dataset of faults collected within the power grid that feeds the city of
Rome, Italy. Comparison results show that in real-world cases calibration techniques need to be assessed carefully depending
on the scores distribution and the proposed techniques are a valid alternative to the ones existing in the technical literature in
terms of calibration performance, computational efficiency and flexibility.

Keywords Calibration · Fault recognition · Smart grids · Probability estimation · Evolutionary optimization · Clustering

1 Introduction

Predicting and modeling outages and failures in electri-
cal power grids is of paramount importance, either from
the power grid operator and consumer viewpoints. Small-
and large-scale faults and disturbances in the grid often
cause power outages and thereby affect the system reliability
and customer satisfaction, reason why it would be a great
achievement for the electricity operator to be aware of which
elements of the grid have a high risk of failure in order to
deploy a preventive maintenance system.
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The conditions related to the physical grid and the envi-
ronment in which it operates can be detected in real time by
placing smart sensors throughout the power grid. Through
reliable telecommunication networks, these heterogeneous
data can be sent to powerful data-centers for collecting and
processing purposes (De Santis et al. 2018b). Modern data-
driven techniques, within the Artificial Intelligence field, can
exploit this amount of data in order to “x-ray scan” the power
grid states, driving a lot of interesting pattern recognition
and data science applications. In this context, a very inter-
esting task consists in modeling and recognizing faults in
the power grid in order to design a Decision Support System
(DSS) that provides decision support for the commanding
and dispatching system, for Condition-Based Maintenance
(CBM) programs (Raheja et al. 2006) and for providing
high-level information to support business strategies, such
as in programming and controlling task (De Santis et al.
2018b). As an example, such a DSS, besides the capabil-
ity of providing real-time early warnings, can be adopted
to estimate the failure rate starting from a series of hetero-
geneous measures collected within the power grid and the
surrounding dynamic environment. The underlying model
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can be exploited, from one hand, for gaining insights over
the failure phenomena, while from the other, the probability
rate can feed an advanced risk assessment tool. For example,
it can be used for estimating the risk of power grid equipment,
given a suitable series of impacts metrics. Furthermore, once
obtained the overall risk associated with the power grid, the
system allows driving scenario-based risk identification and
analysis.

For this important purpose, in the current paper we deal
with a significative extension of our previous works (De San-
tis et al. 2015a, c, 2017), where it is presented amodeling and
recognition systemof faults and outages occurring in the real-
word power grid managed by Azienda Comunale Energia e
Ambiente (ACEA) company in Rome, Italy. The recognition
system, known as the OCC_System, has been developed in
collaboration with the ACEA personnel within the “ACEA
Smart Grids project” (ACEA 2016), as the main core of a
larger DSS. It follows a One-class classification paradigm
that exploits a cluster-based evolutionary technique in order
to learn a model of a specific class of faults, called Localized
Faults (LFs). The custom-made system, which works in a
supervised fashion, is fed by a historical dataset of power grid
states, providing information about endogenous and exoge-
nous factors and is able to learn a model together with a
custom-based dissimilarity measure used, in turn, for clas-
sifying fault states in real time (De Santis et al. 2018b). On
the one hand, the clustered model acts as a gray box for
knowledge discovery tasks in line with the explainable AI
paradigm (xAI) (Gunning 2017). On the other hand, the out-
put of the recognition system is a Boolean decision together
with a score value assigned to a given unseen test pattern,
allowing both classifying a power grid state and providing a
reliability measure of the decision (score value).

Therefore, the current study starts from the needof extract-
ing from a learned model of fault useful information for
programming and control task, such as the estimation of the
final risk associated with a set of power grid states. As stated,
when dealing with risk assessment and cost benefit analysis
for maintenance planning, the availability of reliable prob-
ability estimates is of utmost importance. The score values
assigned to the test pattern by the recognition system under
study are obtained from a suitable fuzzy membership func-
tion. In our previous works, these scores were interpreted
as a measure of predictions reliability. However, fuzzy val-
ues cannot be considered as reliable probability estimates. In
fact, a probability measure P(A) defined on a universe U is
a mapping function that assigns a number P to each subset
of the universe U , and satisfies the so-called Kolmogorov
axioms:

1. P(A) ≥ 0;
2. P(U ) = 1;

3. for any countably infinite sequence of events (Ai )i≥1 that
are mutually exclusive (i.e., Ai ∩ A j = ∅):

P(∪∞
i=1Ai ) =

∞∑

i=1

P(Ai ). (1)

On the other hand, a fuzzy set F on a universe U is defined
by a membership function μF : U → [0, 1] and μF (u)

is the degree of membership of element u in F . In gen-
eral, fuzzy memberships represent similarities of objects to
imprecisely defined properties, while probabilities convey
information about relative frequencies of events. However,
the relation between Probability Theory and Fuzzy Logic is
a controversial issue in the literature and an in-depth analy-
sis on the argument is provided in Mendel (1995) and Hajek
et al. (2013). Due to their nature of fuzzy values, the scores
provided by OCC_System do not reflect the empirical prob-
abilities associated with grid states; more specifically these
scores are likely to be uncalibrated. Given a classifier which
outputs a score s(x) in range [0,1] for each example x , by
definition it is said to be well-calibrated if P(c|s(x) = s),
namely the empirical class membership probability of x ,
converges to the score s(x) = s as the number of classi-
fied patterns tends to infinity (Murphy and Winkler 1977;
Zadrozny and Elkan 2002). For instance, a predictive model
is well calibrated if among the samples to which it gave a
score (or probability) close to, e.g., 0.7 for the membership
to the class c, approximately 70% of these samples actu-
ally belong to the considered class. In analytical terms, the
calibration of a classification system consists in finding a
function that maps the scores (or not calibrated probabil-
ity estimates) into effective probability estimates bounded in
range [0, 1] by definition (Martino et al. 2019).

The calibration of predictive models is currently a pop-
ular object of study in Machine Learning applications. In
particular, calibration is widely used for clinical problems,
since probability estimates are very important in order to
build reliable diagnostic models. These models can be used
to guide clinical decisions in real-world situations concern-
ing the patient’s treatment. At a sufficiently abstract level of
reasoning, by extension, we can consider aDSS adopted even
for CBM tasks as a diagnostic system, where the “patient’’
is not an individual but a power grid, following the same
rationale adopted in clinical problems.

Among the several calibration techniques described in
literature, for our case study, we consider the well-known
Platt scaling (Platt 1999), Isotonic Regression (Zadrozny and
Elkan 2002; Naeini et al. 2015) and SplineCalib (Lucena
2018). The first two are the most commonly used methods
for probability calibration, while SplineCalib is a recently
proposed non-parametric calibration method. In addition, in
this paperweevaluate three further proposed calibration tech-
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niques based on several suitable fitting procedures of the
reliability diagram, investigating the effectiveness of these
simple techniques in solving real-world calibration prob-
lems.

Therefore, the main aim of this paper is to calibrate the
OCC_System output (fuzzy) scores by applying several cal-
ibration techniques in a post-processing fashion, in order
to identify the calibration procedure that provides the best
performances in terms of well-suited calibration metrics on
several real-world datasets. This study faces the calibration
of the OCC_System classifier on three real-world dataset of
power grid faults described by heterogeneous data, of which
one of them is heavily unbalanced on the Test set, provid-
ing misleading results in terms of calibration performances.
In this case, after a deep analysis, an ad hoc over-sampling
procedure for structured data is designed, allowing to face
also unbalanced data. The best calibration method is further
adopted to increase the capabilities of the recognition system,
which will be in charge of outputting well-calibrated prob-
abilities so that it can be exploited as an important feature
within the pipeline used by the distribution utility for estimat-
ing the overall network risk, given suitable impact metrics.
Part of the calibration techniques are treated in Martino et al.
(2019), facing three classical classification problemswith the
standard SVM algorithm. Specifically, the calibration proce-
dure is experimented on two UCI datasets (Dua and Graff
2019) (ABALONE, ADULT) (Asuncion and Newman 2007)
and on a protein contact network datasets for predicting the
function of specific proteins (De Santis et al. 2018a). It is
noted that the datasets were mainly balanced and no fur-
ther procedures were needed for evaluating the performance.
Moreover, data patterns were standard real-valued n-tuples.
Instead, as already stated, in the current paper the calibration
procedures are considered as plug-in modules in a real-world
custom classification pipeline. This pipeline is used in a deci-
sion support system for fault recognition and diagnosis in a
MV power grid, where data are heavily structured and the
available dataset is heavily unbalanced.

The remainder of this paper is organized as follows: in
Sect. 2, we discuss related works, while in Sect. 3, we pro-
vide a briefly description of the ACEA power grid and the
available dataset of power grid states. In Sect. 4, we review
the main functional blocks of the designed recognition sys-
tem. In Sect. 5, we give an overview of existing calibration
techniques and the suitable figures of merit for addressing
the goodness of calibration, along with three new procedures
to be compared with state-of-the-art approaches. In Sect. 6,
we describe the experimental setting and compare the results
providing a discussion about the reliability of the considered
techniques on the case-study. Finally, in Sect. 7, conclusions
are drawn.

2 Related work

In this section, the main adopted techniques for fault predic-
tion andmodeling in power grids are reviewed and discussed,
along with the use of calibration procedures to improve
the reliability of predictive models. Specifically, a series
of updated related works on fault detection, classification
and localization in power grids through Artificial Intelli-
gence algorithms are discussed in Sect. 2.1, while Sect. 2.2
summarizes some related works about the use of calibration
techniques.

2.1 Fault detection and predictionmethods for
power grids

Several machine learning-based approaches for power grid
fault detection and prediction have been proposed in the last
two decades, along with the raise of Smart Grid concept,
namely an interconnected power system able to provide a
huge amount of data about the status of the grid thanks to
an Advanced Metering Infrastructures (AMI). The last one
consists of at least a reliable telecommunication networkwith
a set of suitable data centers and smart sensors. Some of the
existing literature on power grid fault analysis are discussed
in the following.

Collecting heterogeneous data about the power grid state
together with environmental information where the power
grid works can lead to several data mining and pattern
recognition problems, such as events classification (Afzal
and Pothamsetty 2012) or diagnostic systems for cables
and accessories (Rizzi et al. 2009). A Decision Support
System for the preventive maintenance of New York city
power grid is described in detail in Rudin et al. (2012). The
proposed system includes classification algorithms, such as
Support Vector Machines (SVM), for ranking the electrical
components according to their failure probability, and regres-
sion algorithms, such as Classification and Regression Tree
(CART), to estimate the mean time between failure (MTBF).
Dealing with fault detection and localization problems in
power grids, in Jiang et al. (2014) authors propose a sys-
tem based on a clustering algorithm and a Hidden Markov
Model (HMM) that operate on frequency signals acquired
by frequency disturbance recorders scattered in the power
grid. In Souza Pereira et al. (2018) an evolutionary algo-
rithm for fault localization is proposed, while in Thukaram
et al. (2005) the authors present a combined approach SVM–
Artificial Neural Network (ANN), where the former detects
the type of fault, while the latter estimates the location of
the fault. In the field of fault analysis, modeling and recogni-
tion, in Tokel et al. (2018) the authors present a system based
upon an ANN which processes Phasor Measurement Unit
(PMU) data. PMU data are exploited in Bhattacharya and
Sinha (2017) too, where the authors propose an innovative
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approach based on Long Short Term Memory (LSTM) net-
work. Two fault detection and classification techniques based
on the One-Class Quarter-Sphere SVM algorithm are pro-
posed in Shahid et al. (2012). Other approaches may include
fuzzy logic (FL) (Das 2006; Sang-Won Min et al. 2004),
fuzzy Petri-nets (Luo and Kezunovic 2008; Jing Sun et al.
2004), decision trees (Samantaray 2009). As concern faults
diagnosis in power grids, inZufengWangandPuZhao (2009)
is proposed a SVM-based method to perform the recogni-
tion of faults related to high-voltage transmission lines. In
Kordestani and Saif (2017) a fusion method, grounded on
circuit breakers data, wavelet transform and radial basis func-
tion network, is proposed for fault diagnosis.

As concerns a DSS equipped with a fault recognition
system, one can find several heterogeneous approaches
depending both on the final objective and the available data.
For a fault recognition system, it is very important the nature
of information acquired that is intrinsic to the physical power
grid, extrinsic or both, but also the granularity with which
data are acquired through smart sensors. In other words, the
architecture of the systems, and specifically the features engi-
neering phase, is related to the objectives of the applications.
Onemay include in the learnedmodel exogenous causes such
as weather conditions or endogenous ones, such as the elec-
trical load. In this way, further studies can be undertaken,
such as for example the one explained in Guikema et al.
(2006), where authors have established a fruitful relationship
between environmental features and fault causes.

2.2 Calibration of machine learningmodels: a
review

Calibration techniques play an important role in many
machine learning applications.

Calibrating probability estimates is a crucial step for risk
analysis tools in many settings (Pleiss et al. 2017). Most of
available works in the literature about calibration of pre-
dictive models deal with medical predictive analytics with
numerous publications focusing on models that estimate
patients’ risk of a disease or a future health state based
on machine learning algorithms (Van Calster et al. 2019).
Pereira et al. (2020) a Decision Support System for the treat-
ment of Alzheimer’s disease patients based on calibration
techniques is presented. Specifically, the authors propose
an ensemble-based approach, where outputs from multiple
classifiers, such as SVM, Gaussian Naïve Bayes, Neural
Networks, are combined with calibration models, such as
Platt scaling and Isotonic Regression, and other uncertainty
methods [Venn-ABERS predictors (Vovk and Petej 2014;
Vovk 2012) and Conformal Predictors (Vovk et al. 2005)].
In order to optimize the quality of predictions, the best pair
(classifier—uncertainty method) is chosen for the data under
study.Remaining in clinical setting, inWalsh et al. (2017) cal-

ibration is used to improve the reliability of a decisionmaking
system for the readmission of patients. The authors propose
a framework to select the best calibration method, among
Platt scaling, Logistic calibration (Steyerberg et al. 2004)
and Prevalence Adjustment (Morise et al. 1996), for a risk
readmission predictive model, created via a L1-regularized
Logistic Regression. In addition, the effect of miscalibration
on clinical cost is evaluated.

Dealing with calibration of fault predictive models, in
Cremer and Strbac (2019) the authors propose a machine
learning-based Dynamic Security Assessment (DSA) for a
power grid. An ensemble of classifiers that combines multi-
ple CART is learned and calibrated by using Platt scaling to
provide accurate probability estimates. The reported experi-
mental evaluation is performed on a real-world dataset about
the French Transmission Grid. In the field of fraud detection
in electric power distribution, in Massaferro et al. (2020)
the authors describe a machine learning solution to make
long- and short-term decisions about customer inspections.
Decisions are based on the estimates of posterior fraud prob-
abilities, obtained bymeans of the calibration of score values
output by a suitable classifier. Simulations on real-world
datasets, regarding the customers distributed across Monte-
video (Uruguay), involve classifiers such as SVM, Random
Forest, ANN, and two calibration methods, which are Platt
scaling and Isotonic Regression. Furthermore, the best pair
is selected for the data under study. It is worth noting that our
approach follows a similar pipeline, since we seek to esti-
mate the posterior fault probability given a power grid state
described by several suitable features.

Calibration techniques are used for pattern recognition
tasks as well. In Gosztolya and Busa-Fekete (2018), cali-
bration methods such as Linear Scaling, Platt scaling and
Isotonic Regression are applied to the AdaBoost.MH algo-
rithm (Schapire and Singer 1999) for a speech recognition
task. In Blair et al. (2014) calibration is applied as post-
processing step for an object detection task. The authors
investigate the performance of Platt scaling and Isotonic
Regression in converting a score, obtained from a machine
learning detector based on anAdaboost classifier or an SVM,
to a probability representing confidence in measuring the
presence of an object in a given location.

3 The dataset of localized faults

In this paper,we dealwith the problemof estimating the prob-
ability of faults occurring in Medium Voltage (MV) feeders
of the power grid managed by ACEA S.p.A. in Rome, Italy.

The ACEA power grid is a wide and interconnected grid
located in the middle of Italy. It is made up of MV back-
bones of uniform section exerting radially. Each backbone
is fed by two distinct Primary Station (PS), and each half-
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line is protected against faults through breakers. The ACEA
power grid consists of lines (feeders) in which the nominal
voltage is 20kV, and some few legacy lines that still work
at 8.4kV. Each MV line supplies a given number of Sec-
ondary Stations (SSs) through cables that can be placed on
air or underground. The cable’ section is variable along the
backbone, with the presence of bottlenecks. By several years
the power grid is undergoing a modernization process in line
with the concept of Smart Grids. In fact, the power grid is
equipped with several TLC systems able to transport data
related to the main system, collected from smart sensors, as
well as environmental variables. Data are collected and sent
to the main server for storing and processing tasks (De Santis
et al. 2015c). Further details about the ACEA power grid are
available in (De Santis et al. 2015b, c).

Within the “ACEA Smart Grids Project”, together with
ACEA field-experts, a two-class dataset of real power grid
states, including standard functioning states (SFs) and LF
states, has been built (De Santis et al. 2018c). Specifically,
a state of the power grid is described by several features
obtained from data related to environmental factors, such as
weather condition, temporal data (i.e., when the fault hap-
pens), geo-spatial data (i.e., latitude and longitude pairs),
physical data related to the state of the power grid and its
electric equipment (e.g., measured voltage and currents). As
concerns the data type, features belong to categorical (nom-
inal), quantitative (i.e., data belonging to a normed space)
and time series (TSs) data. TS data are in form of unevenly
spaced sequence of short outages that are automatically reg-
istered by the protection systems (Petersen Alarm System)
as soon as they occur. A detailed description of the dataset
structure, the features and the preprocessing stage are treated
in (De Santis et al. 2015b, c, 2017).

A state of the power grid depends upon a lot of different
factors. Hence, in order to improve the fault probability esti-
mation, as suggested by a group of field-experts and in line
with the real-world case study, it could be convenient to build
datasets constituted by a subset of the total features, where
each subset is more specific to certain parts of the power grid.

Following these prescriptions, three datasets have been
built:

Nodes: the nodes dataset is composed by 486 instances
and 19 attributes. It contains data relative to the sub-
stations where generators, load or transmission lines
interconnect.
Branches: the branches dataset is composed by 689
instances and 23 attributes. It contains data relative to
transmission lines connecting two nodes.
Standard (Std): the standard dataset is composed by
2651 instances and 26 attributes. It contains information
about the whole power grid.

We remark that the Standard (Std) dataset, built
together with the ACEA field experts, is conceived at a more
abstract level compared to the Nodes and Branches ones.
While the last ones are specific for the real-world power grid
partition in nodes and branches, in the Standard case the
power grid as a whole is considered, taking into account
the overall set of equipment. The Standard dataset is con-
structed on more features and in the following study has to
be treated as a benchmark dataset.

Table 1 reports the list of considered features, including a
brief description and the dataset they belong.

4 A brief review of the OCC_System

ThedesignedOCC_System for the recognition ofLFpatterns
in theACEApower grid is based on a clustering-evolutionary
hybrid approach. The clustering approach derives from the
assumption that similar states of the power grid have similar
chances of generating a LF (De Santis et al. 2018b).

A dataset of target patterns is partitioned in k (disjoint)
clusters, where each cluster contains faults having similar
features. For clustering computation, the recognition system
uses a custom-based dissimilarity measure computed as a
weighted Euclidean distance. Given two LF patterns x1, x2,
the proposed weighted dissimilarity is defined as follows:

d(x1, x2;W) =
√

(x1 � x2)TWTW(x1 � x2), (2)

where W is a diagonal matrix whose elements comes from
suitable vector of weights w and the � operator represents
a generic dissimilarity measure, which has to be specified
depending on the semantic of data at hand, since the dissimi-
larity measure is component-wise (De Santis et al. 2018b). A
complete description of the various dissimilarity measures,
involved in computing the distance between the patterns, is
treated in De Santis et al. (2015c).

The architecture of the classifier is grounded on a set
of clusters Ci , each one represented by its medoid ci . The
ensemble of clusters defines a decision region through sev-
eral parameters, such as the radius δ(Ci ), computed as the
average distance of cluster members from the medoid, plus
a threshold σ . These last, together with the dissimilarity
weights w = diag(W), constitute the parameters of the
classification model. Once obtained the model grounded on
clusters, for a given test pattern x, the classification proce-
dure need a decision rule in two steps. The first one consists
of finding the closest cluster, the second foresees evaluat-
ing if the test pattern falls inside or outside the overall faults
decision region made up of that cluster. Hence, the overall
learning phase involves clustering the Training set composed
by LF (target) patterns, employing a standard Genetic Algo-
rithm (GA). The latter is in charge of evolving a family of
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Table 1 List of the considered features in power grid dataset records

Feature Data type Data set Description

Day start Quantitative (integer) Nodes–Branches–Std Day in which the LF was detected

Time start Quantitative (integer) Nodes–Branches–Std Time stamp (min) in which the LF was
detected

Primary station code Categorical (string) Nodes–Branches–Std Unique backbone identifier

Protection tripped Categorical (string) Nodes–Branches–Std Type of intervention of the protective device

Kind of element Categorical (string) Nodes–Branches–Std Kind of faulty element

Voltage line Categorical (string) Nodes–Branches–Std Nominal voltage of the backbone

Material Categorical (string) Nodes–Branches–Std Constituent material element (CU, AL)

Location element Categorical (string) Nodes–Branches–Std Element positioning (aerial or underground)

#Secondary stations (SS) Quantitative (integer) Std Number of out of service secondary stations
due to the LF

Current out of bounds (CoBs) Quantitative (integer) Nodes–Branches–Std The maximum operating current of the
backbone is less than or equal to 60% of the
threshold “out of bounds”, typically
established at 90% of capacity

Cable section Quantitative (real) Branches–Std Section of the cable, if applicable

Max. temperature Quantitative (real) Nodes–Branches–Std Maximum registered temperature

Min. temperature Quantitative (real) Nodes–Branches–Std Minimum registered temperature

Delta temperature Quantitative (real) Nodes–Branches–Std Difference between the maximum and
minimum temperature

Rain Quantitative (real) Nodes–Branches–Std Millimeters of rain calculated as the average
in the 24h preceding the LF

Interruption (breaker) Time series (integer) Nodes–Branches–Std Outages caused by the opening of the
breakers in the primary station

Petersen alarms Time series (integer) Nodes–Branches–Std Alarms detected by the device called
“Petersen’s coil” due to loss of electrical
insulation on the power line

Saving intervention Time series (integer) Nodes–Branches–Std Decisive interventions of Petersen’s coil
which have prevented the LF

Backbone electric current (BEC) Quantitative (real) Branches–Std Absolute difference between the average
current in two non-overlapping windows
each one of 12h registered in the 24h
preceding the LF

Secondary station type Categorical (string) Nodes–Std Type of secondary station

Transformer voltage Quantitative (integer) Nodes–Std Size of the transformer

Number of couplings Quantitative (integer) Branches–Std Number of couplings in a branch

Year Quantitative (integer) Branches–Std Year of installation

Branch length Quantitative (real) Branches–Std Length of the branch

branch positioning type Categorical (string) Branches–Std Position of the branch (air or ground)

Std Standard

cluster-based classifiers by finding the parameter values that
minimize a suitable objective function or fitness. The fitness
function consists in a convex linear combination of the accu-
racy of the classification computed on the Validation set that
should be maximized, and the value of the thresholds that
we seek to minimize. The Validation set is composed by LFs
and normal functioning states. Since the classification model
is built using only target patterns, while non-target ones are
used only in the cross-validation phase, the adopted learning
paradigm is theOne-Class classification one (Khan andMad-

den 2010; Pimentel et al. 2014). Due to the high sensibility
of the standard k-means algorithm to the random initializa-
tion of cluster representatives, the OCC_Systems runs more
than one instance of the clustering algorithm with different
random initializations. Therefore, during the test phase (and
also during validation) a voting procedure for each cluster
model is adopted. In this way, it is provided a more robust
data-driven model of the power grid faults (De Santis et al.
2018b).
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Together with the Boolean classification rules able to
check if a state of the power grid is a fault or not, the system
is in charge of computing a soft decision value in the real-
valued range [0, 1]. For this purpose,we equip each clusterCi

with a suitable membership function, denoted in the follow-
ing as µCi

. The membership function allows us to quantify
the reliability (or the uncertainty) about the recognition of a
test pattern. In our previous works (De Santis et al. 2015b, c,
2018b), the soft decision value was computed by a sigmoidal
fuzzy membership function, whose parameters were related
to clusters geometry. Instead, in this work, we consider a
Gaussian fuzzy membership function. Given a test pattern x,
its score value is computed as follows:

s(x) = µCi
(d(ci , x)) = e

−(d(ci ,x))
2

2t2i , (3)

where ci is the representative of the clusterCi . The Gaussian
membership function associated with each cluster has zero
mean, while the variance t2i is set in order to output a value
close to 0.5 for patternswhich are placed close to the decision
region boundary. Figure 1 depicts this idea by an intuitive
illustration; since the function is symmetric around the mean
value, only half of the bell shaped curve is depicted in Fig. 1.

The last procedure allows the classifier to assign to x a
score value in the unitary interval that increases as the dis-
similarity decreases, depending on the dissimilarity between
the test pattern x and the representative of a given cluster.
We underline that the computed score is not a fault probabil-
ity estimation since it is the output of a fuzzy membership
function.

Figure 2 reports a schematic representation of the various
subsystems of the proposed OCC_System. Specifically, we
have the Clustering subsystem and the GA one. Furthermore,
it is shown the test subsystem, where for a test pattern the

Fig. 1 Gaussianmembership function associatedwith a decision region

Fig. 2 Schematic of the recognition system able to learn a model of
faults providing a reliability decision score s of a fault input pattern x

classifier associates a predicted label (Boolean classification)
and a fault score value (soft decision).

Further information about the OCC_System learning
model, the data description and preprocessing can be found
in our previous works (De Santis et al. 2014, 2015a, b, c).

5 On calibration techniques

5.1 The reliability diagram

In the first instance, the calibration of a classifier can be visu-
alized through a reliability diagram (DeGroot and Fienberg
1983a).

The reliability diagram is a graph where the empirical
probabilities P(c|s(x) = s), namely the number of patterns
with score s that belongs to class c dividedby the total number
of patterns with score s, are plotted against the predicted
scores/probabilities.

If the classifier is well calibrated, all points fall near the
diagonal line as the scores are equal to empirical probabil-
ities. In the context of binary classification, as the problem
concerned in this study, the empirical probabilities are com-
puted for positive patterns only, that is, the total number of
positive examples with score s divided by the total number
of examples with score s (Martino et al. 2019).

In practical applications, the number of possible scores is
large compared to the number of available patterns, since they
are real-valued scalars, and reliable empirical probabilities
cannot be calculated using the procedure described above.1

In this case a binning of the score space is needed:

– on the x-axis, the average score value for each bin is
considered;

1 For each score s there will be only one pattern in most cases, conse-
quently P(c|s(x) = x) would be either 0 or 1.
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– on the y-axis, we get the ratio between the number of
positive patterns lying in that bin and the total number of
patterns in the same bin (i.e., the true fraction of positive
instances).

It is worth noting that the bin size must be selected
carefully, in order to have enough examples in each bin
for calculating reliable probability estimates (Zadrozny and
Elkan 2002), although in some works, such as Niculescu-
Mizil and Caruana (2005), scores are merely divided into 10
equally spaced bins in the range [0, 1] regardless of their dis-
tribution. For the considered dataset, a 10-bins discretization
procedure does not performwell, so othermethods have been
considered, such as:

– Scott’s normal reference rule (Scott 1979), which evalu-
ates the bin width taking into account the total number
of observations (scores for this case) n and their standard
deviation σ as:

bin width = 3.5 · σ

n1/3
, (4)

– Freedman–Diaconis’ choice (Freedman and Diaconis
1981), which computes the bin width as follows:

bin width = 2 · I QR

n1/3
, (5)

where I QR is the interquartile range of scores.

Other interesting binning methods are reported in Martino
et al. (2019).

5.2 Current approaches

Given a set of labeled examples, if c is the positive class
we can assume that P(c|x) = 1 for positive examples and
P(c|x) = 0 for negative ones. Calibration techniques work
similarly to supervised learning methods. In other words,
they need a calibration set, made up of predicted scores and
actual labels, in order to learn a function (or model) formally
defined as:

f : s(x) → P̂(c|x). (6)

In practice, Eq. (6) is a function in charge of mapping scores
into probability estimates.

Platt scaling (Platt 1999) is one of the main methods for
calibrating scores in a binary classification problem. In order
to get calibrated probabilities, Platt proposed to pass output
scores through a sigmoid function:

P̂(c|x) = 1

1 + eAs(x)+B
, (7)

where the parameters A and B are found by minimizing
the negative log likelihood of the training data (calibration
set). This parametric approach was motivated by Platt show-
ing that the relationship between SVM scores and empirical
probabilities P(c|x) can be often fitted well by a sigmoid
function. Obviously this technique can be applied for cali-
brating any type of classifier, not only SVM, and in general,
it works well if the reliability diagram of the dataset shows a
sigmoidal trend. With regard to the sigmoid parameter esti-
mation, an improvedoptimizationprocess basedonNewton’s
method is proposed in Lin et al. (2007).

Isotonic regression (Zadrozny and Elkan 2002; Naeini
et al. 2015) is a nonparametric approach for model calibra-
tion, inwhich the calibration function is chosen from the class
of all isotonic functions. Given a calibration set made up of
example labels and their scores (y, s), the Isotonic Regres-
sion applied for a calibration problem consists in finding the
non-decreasing function m̂ such that:

m̂ = argmin
z

N∑

i

(yi − z(si ))
2. (8)

Pair-adjacent violators (PAV) (Ayer et al. 1955) are one of the
main algorithms in order to compute Isotonic Regression.

PAV works as follows:

1. sort (y, s) according to s;
2. initialize a vector ŷ = y;
3. while ∃ i s.t . ŷi ≤ ŷi−1;

set ŷi = ŷi−1 = yi + yi−1

2
;

4. return ŷ.

This procedure makes ŷ contains probability estimates for
scores in s. Further, due to the piecewise nature of iso-
tonic regression, ŷwill contain sequences of repeated values,
namely the same probability estimate is associated with
several scores. Following the procedure described above,
Pair-Adjacent Violators returns more samples in the score
space where the classifier ranks them incorrectly according
their score and less samples where patterns have been ranked
properly by the classifier.

Platt scaling and Isotonic Regression are the two main
methods for calibrating score in a binary classification prob-
lems, but both of them have some limitations:

– Platt scaling gives good results only when the calibra-
tion function is well approximated by a sigmoid function
(strict parametric approach);

– Isotonic regression works well for many problems due
its nonparametric approach with the piecewise constant
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approximation, but it tends to overfitting when the cali-
bration set is small (less than 1000 instances).

SplineCalib (Lucena 2018) is a new calibration method,
which aims at overcoming limitations of previous models.
SplineCalib is a nonparametric approach, and as its name
suggests, it uses (cubic) smoothing splines to fit the calibra-
tion function, rather than a piecewise constant or sigmoid
function. Standard spline regression requires to place K dif-
ferent knots throughout the range of data and fit a polynomial
(usually with degree 3 or 4) for each interval: using more
knots leads to better fitting of data, but also high risk of
overfitting. Smoothing splines (Wahba 1990) performs a reg-
ularized regression and use all of the available points as knots.
Given a set of predictors and labels (xi , yi ), i = 1, ..., N , the
smoothing splines estimate is obtained by finding, among all
the twice-differentiable functions f (x), the one that mini-
mizes the following relation:

N∑

i=1

(yi − f (xi ))
2 + λ

∫
f

′′
(t) dt, (9)

In Lucena (2018), instead of minimizing the residual sum of
squares, the author adopt a log-likelihood criterion:

−
N∑

i=1

[(yi · log f (xi ) + (1 − yi )

· log(1 − f (xi ))] + 1

2
λ

∫
f

′′
(t) dt, (10)

which is referred as non parametric logistic regression
(Hastie et al. 2001). The regularization term λ ≥ 0 in Eqs. (9)
and (10) is a smoothing parameter. In detail, for λ = 0, the
second term from Eqs. (9) and (10) is 0, so f can be any
function that interpolates data, no smoothing is tolerated. If
λ → ∞ no curvature at all can be tolerated, leading to a
simple least square line fit.

The most basic version of SplineCalib follows this steps:

1. take K knots randomly2;
2. use the sampled knots to compute the natural basis expan-

sionmatrixX ∈ R
n×k of the values in s. Let be {ξ1, ..., ξK }

the set of knots, the natural cubic spline basis is defined
as:

N1(s) = 1, N2(s) = s,

Nk+2(s) = dk(s) − dK−1(s), ∀k = 1, ..., K − 2

where dk(s) = (s − ξk)
3+ − (s − ξk)

3+
ξK − ξk

; (11)

2 All the available points could be used, yet the Author states that 200
points should be sufficient.

3. fit a l2-regularized logistic regression model to the set
(X, y) by considering a proper range of value for the reg-
ularization term λ and choose the value λ∗ which gives
the best cross-validated Log-Loss;

4. re-fit the model on the pair (X, y) using λ∗;
5. output the calibration function f (s) : [0, 1] → [0, 1]

applying in sequence the operation from step 2 and 4, in
order to predict probability estimates.

5.3 Fitting-based calibration techniques

In Sect. 5.2, we showed that the reliability diagram of a cali-
bration set is obtained by plotting uncalibrated scores against
empirical probabilities. A calibration function, learned by
means of one of the three methods described in the previous
section, should fit the Reliability Diagram well, because this
means that for each uncalibrated score the function returns a
probability estimate near to its empirical probability. It fol-
lows that a potential calibration function could be computed
byfindingdirectly the functionwhichbetter approximates the
reliability diagram’s trend. Actually, as we have described in
Sect. 5.2, for real problems the reliability diagram is produced
after a binning of the score space, so for this new approach,
instead of working with “score-label” pairs, we work with
“average bin value-fraction of positive patterns in that bin”
pairs.

In real cases, as the one shown in Sect. 6, a reliability
diagram is unlikely to show a linear trend; therefore, more
complex functions shall be used for this fitting. For these
purposes, we consider (Martino et al. 2019):

1. polynomial fitting: the relationship between the indepen-
dent variable and the dependent variable of the reliability
diagram is modeled as a 3-degree and 4-degree polyno-
mial;

2. spline fitting: after sampling a suitable set of knots K =
{k1, k2, ..kt }, a natural cubic spline fitting is performed.
It returns a piecewise cubic polynomial function f such
that:

– f is a polynomial of 3-degree for each interval
[k1, k2], ..., [kt−1, kt ];

– f is linear to the left of the leftmost knot (−∞, k1],
and to the right of the rightmost knot [kt ,∞];

– f , f
′
and f

′′
are continuous at the knots k1, ..., km .

Actually we exploits the smoothing spline estimate—
described in the previous section for the SplineCalib
method—also for this proposed approach in order to avoid
the knots selection. We remind that the solution of Eq. (9)
is a natural spline.
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Fig. 3 Generic scheme of a
calibration system for
classification tasks for both the
training phase and the test phase
(use)

5.4 Performancemetrics

For assessing the accuracy of probability estimates obtained
after a calibration procedure, twometrics have been proposed
in literature: the Brier Score (DeGroot and Fienberg 1983b;
Brier 1950) and the Log-Loss score.

In the context of binary classification, the Brier score is
defined as:

BS = 1

N

N∑

i=1

(T (yi = 1|xi ) − P(yi = 1|xi ))2 , (12)

where N is the number of samples, T (yi = 1|xi ) = 1 if
yi = 1 and T (yi = 1|xi ) = 0 otherwise and P(yi = 1|xi )
is the probability estimated for pattern xi to belong to the
positive class (label “1”). Since the Brier score is the mean
squared error between actual labels (“0” or “1”) and predicted
probabilities (which must be between 0 and 1), it always
takes a value in range [0, 1]. Obviously the lower is the Brier
score for a set of predictions, the better the predictions are
calibrated.

As regards the Log-Loss (also known as cross-entropy),
for a binary classification problem it is defined as follows:

LL = − 1

N

N∑

i=1

[yi log pi + (1 − yi ) log(1 − pi ))], (13)

where pi is the predicted probability and yi the actual
label (“0” or “1”). A perfect calibrated model would have
a Log-Loss score of 0. The Log-Loss measures the confi-
dence of predicted probabilities using a logarithmic penalty,
namely the index increases rapidly as the estimated proba-
bility diverges from the actual label.

5.5 Calibration procedure summary

In general, the calibration procedure consists of learning a
suitable function that maps input raw scores (that are the

outputs of the generic classifier) with posterior probabili-
ties. Referring to the general scheme of Fig. 3, calibrating
a classifier means instantiating a learning procedure as for
the classifier system itself. In other words, it is possible to
distinguish two phases: (i) the training phase where the cal-
ibration model or function is learned on the calibration set,
that is a set of patterns extracted from the available dataset,
(ii) the test phase where, given a test pattern, is applied the
calibration model in order to obtain the (calibrated) posterior
probabilities. The test phase coincides with the real use of
the calibrated classification system.

Finally, for the next experimental section, we will use
specifically this scheme in order to evaluate the overall
performance of the OCC_System classifier, adopting the cal-
ibration procedures described in the current section.

6 Experimental settings and results

As concerns the experiments, the three ACEA datasets
described in Sect. 3 have been divided into Training, Valida-
tion and Test sets according to the partition shown in Table 2.

Experiment are conducted with a workstation equipped
with an A8-555M CPU@2.10GHz and 8GB RAM. Simula-
tions are performed with MATLAB R2020a on Windows 10
Home Edition (×x64).

As first task, the OCC_System is trained on the three
ACEA datasets, setting the k parameter for the k-means
algorithm to 16. We repeated the training procedure five dif-
ferent times for each dataset, by changing the random seed of

Table 2 ACEA dataset splits

Dataset Training set size Validation set size Test set size

Nodes 141 234 111

Branches 215 315 159

Standard 511 1067 1073
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Table 3 Average test results on the ACEA datasets

Data Nodes Branches Standard

A 0.96757 ± 0.027 0.93459 ± 0.034 0.99273 ± 0.005

TPR 0.96364 ± 0.038 0.94444 ± 0.021 0.95854 ± 0.010

FPR 0.03146 ± 0.035 0.08627 ± 0.064 0.00444 ± 0.006

S 0.96854 ± 0.035 0.91372 ± 0.064 0.99556 ± 0.006

P 0.89410 ± 0.102 0.95894 ± 0.030 0.95054 ± 0.063

F1 0.92458 ± 0.059 0.95158 ± 0.024 0.95368 ± 0.035

AUC 0.99724 ± 0.002 0.95995 ± 0.019 0.98813 ± 0.008

pseudo-random number generator. Table 3 shows the average
performances of the OCC_System. We focus on Accuracy
(A), false positive rate (FPR), true positive rate (TPR), Speci-
ficity (S), Precision (P), F1 Score (F1), Area Under a Curve
(AUC).

Besides the good classification performance reported in
Table 3, we are interested here in assessing the reliability
of the calibration procedures. Both measures will provide a
clear indication of the goodness of the recognition system.

For addressing the calibration performance of three
state-of-the-art-methods, namely Platt scaling (PS), Isotonic
Regression (IR), SplineCalib (SC) and the three fitting meth-
ods reported in Section 5.3, namely 3-degree polynomial
(Poly3), 4-degree polynomial (Poly4) and smoothing spline
(SplineFit), we consider the score values yield by the Gaus-
sian membership functions of the OCC_System models
trained previously. In particular, we have five set of scores
for each dataset, since we trained the model five different
times. For each dataset, we use the Validation set to create a
calibration function; therefore, from here on we refer to it as
the calibration set and report its performance on the Test set.

In Fig. 4, we plot the reliability diagrams for calibration
and Test set for the three ACEA datasets to asses how well
calibrated is the OCC_System. The binning for the Nodes
andBranches datasets has been performed using the Scott’s
normal reference rule, described in Sect. 5.1; therefore, the
number of points of the reliability diagrams depends upon
the distribution of the input scores. Instead, for the Stan-
dard dataset we have used 10 uniformly spaced bins, since
there are enough examples to calculate reliable empirical
probability estimates for each bin. In all cases, the trend is
way far from the y = x diagonal line, a clear sign that the
custom-made classifier is not well calibrated. For example,
focusing on the Nodes calibration set, we see that the reli-
ability diagram always lies above the diagonal line, namely
for all instances of the Nodes calibration set the true prob-
ability belonging to the fault class is greater than the score
value assigned by the classifier.

Figure 5 shows the resulting calibration functions overlaid
on the reliability diagrams of test sets for the three consid-

ered datasets. Conversely, in Fig. 6, we plot the reliability
diagrams of Test sets after calibration. For the Nodes (a)
and Branches (b) datasets, the trend of the reliability dia-
grams after calibration is close to the y = x line, while for
the Standard dataset (c), the points of the reliability dia-
grams fall away from the diagonal line. In particular, it seems
that the probabilities obtained by the calibration functions are
close to zero for instances with a score lower than 0.5. How-
ever, the graphs in Figs. 4, 5 and 6 refer to one of the five sets
of scores produced for each dataset.

Tables 4 and 5 report the value of the two figure of merits
(Brier score and Log-Loss score, respectively) on both cali-
bration set and Test set as averages over five trials for each
of the three datasets. For ease of comparison, Fig. 7 shows
through a bar-plot the Brier score (a) and the Log-Loss for
each dataset and each calibration method, by considering
only the performance on Test set.

We remark that the Log-Loss index matches the estimated
probability with the class label with logarithmic penalty.
Hence, for small deviations between yi (predicted score) and
pi (true probability) the penalty is low, whereas for large
deviations the penalty is high. In other words, this figure of
merit amplifies the penalty for large deviations.

As concerns the Nodes dataset, both the Brier score and
the Log-Loss measures exhibit somewhat similar perfor-
mance, higher than the uncalibrated case, as expected. In
particular, in terms of Brier score SplineCalib is the best
method, followed by Platt scaling. In terms of Log-Loss,
SplineFit reaches the higher values, followed very close by
Isotonic Regression and Poly3 techniques. This means that
Poly3 well behaves also in the extreme regions of the score.
For the Branch dataset, regarding the Brier score measure,
Platt Scaling and SplinCalib equally outperform other meth-
ods, even if the differences are in terms of small percentage
values. This is not true for the Log-Loss, as the Platt Scal-
ing and SplineCalib show very low values in comparison
with the other techniques. Specifically, Isotonic Regression,
Poly3 and SplineFit get worse results than the uncalibrated
case. Poly4 takes fourth place in the ranking. As concerns
the Standard dataset, all the techniques reach small val-
ues for the Brier score that are very close to the uncalibrated
case. In terms of Log-Loss, the Isotonic Regression obtains
the smaller value, followed by SplineCalib. Comparing the
results obtained with the calibration set and the Test set, it is
clear that all the calibration algorithms seem to lose the gen-
eralization capability, as, e.g., SplineCalib on the calibration
setwell behaves in comparisonwith the uncalibrated case and
performs better than the other techniques. However, a deep
investigation—proposed below—shows that for the Stan-
dard dataset the problem is related to the class unbalance of
the Test set.

In general, for at least twodatasets (Nodes, andBranches)
the three alternative methods (Poly3, Poly4, SplineFit) have
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(b) branches (calibration
set)
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(c) std (calibration set)
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(d) nodes (Test set)
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Fig. 4 Reliability diagrams
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Fig. 5 Reliability diagrams vs. fitted curves

a Brier score comparable to state-of-the-art-techniques (PS,
IR, SC). In terms of Log-Loss, it is not true for Poly3 that
loses performance at the borders of the score scale due to the
high oscillations caused by the small polynomial degree.

Calibration’s results for the Standard dataset are cer-
tainly not satisfying for our purposes. By looking at the class
distribution for this dataset in Table 6, it can be easy to see
that the Standard Test set is highly imbalanced.

One of the appreciable features of the OCC_System is
that it learns a models of faults on the target class and the
unbalanced class problem is mitigated. This is not true for
the calibration procedure. Specifically, comparing the results
obtained for the calibration set and the ones obtained for the
Test set (in Standard dataset case) in Table 4 or Table 5
it seems that the problem is related to the unbalancing of
the Test set. In order to investigate this specific issue, two
techniques for balancing the test is further adopted. The first
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Fig. 6 Reliability diagrams after calibration

Table 4 Brier score

Method Nodes Branches Std

Calibration set Test set Calibration set Test set Calibration set Test set

Uncalibrated 0.12463 ± 0.017 0.03743 ± 0.005 0.05859 ± 0.011 0.08625 ± 0.020 0.05178 ± 0.011 0.00910 ± 0.004

PS 0.05399 ± 0.019 0.02782 ± 0.015 0.02730 ± 0.014 0.05553 ± 0.027 0.02809 ± 0.011 0.00964 ± 0.005

IR 0.04479 ± 0.018 0.02911 ± 0.019 0.02188 ± 0.013 0.05959 ± 0.031 0.02590 ± 0.011 0.00961 ± 0.004

SC 0.02657 ± 0.014 0.02657 ± 0.014 0.05554 ± 0.028 0.05554 ± 0.028 0.00962 ± 0.004 0.00962 ± 0.004

Poly3 0.05980 ± 0.017 0.03362 ± 0.016 0.03257 ± 0.012 0.05959 ± 0.024 0.02960 ± 0.012 0.01100 ± 0.004

Poly4 0.06032 ± 0.018 0.04522 ± 0.013 0.03546 ± 0.011 0.05633 ± 0.025 0.02837 ± 0.011 0.01052 ± 0.004

SplineFit 0.05703 ± 0.018 0.03074 ± 0.016 0.02939 ± 0.014 0.05678 ± 0.025 0.02771 ± 0.011 0.00965 ± 0.004

Table 5 Log-loss score

Method Nodes Branches Std

Calibration set Test set Calibration set Test set Calibration Test set

Uncalibrated 0.45449 ± 0.064 0.14160 ± 0.009 0.21803 ± 0.030 0.86381 ± 0.336 0.32532 ± 0.128 0.07242 ± 0.045

PS 0.19140 ± 0.050 0.12026 ± 0.053 0.10296 ± 0.043 0.20670 ± 0.080 0.10743 ± 0.039 0.06011 ± 0.023

IR 0.19140 ± 0.050 0.11833 ± 0.061 0.10296 ± 0.043 0.98519 ± 0.287 0.10743 ± 0.039 0.05563 ± 0.027

SC 0.17989 ± 0.056 0.12178 ± 0.048 0.09548 ± 0.045 0.21766 ± 0.079 0.10446 ± 0.041 0.05801 ± 0.027

Poly3 0.52169 ± 0.220 0.11959 ± 0.054 0.19125 ± 0.092 0.95396 ± 0.241 0.42450 ± 0.285 0.10052 ± 0.068

Poly4 0.39156 ± 0.252 0.16463 ± 0.049 0.24352 ± 0.111 0.35816 ± 0.144 0.14152 ± 0.038 0.09118 ± 0.087

SplineFit 0.48529 ± 0.192 0.10989 ± 0.052 0.18406 ± 0.110 0.93273 ± 0.232 0.15037 ± 0.053 0.07910 ± 0.068

one is a simple under-sampling of the non-target class, while
the other is specifically designed for the problem at hand and
consists in the over-sampling of the target class with an ad
hoc procedure tailored for heterogeneous and structured data
pattern.

In imbalanced cases, misclassification costs tend to be
asymmetric, namely incorrectly classifying minority class
examples is usually more costly than making mistakes in the
other direction. The same concept is applied in estimating
class membership probabilities context.

As an example, in Fig. 8 we show the residual errors
of probability estimates, produced by Platt scaling, for

the instances of the Standard Test set. Specifically, each
sub-plot displays the absolute differences between the true
labels and the corresponding probability estimates, namely
|yi − P(yi |xi )|. Lower values implies a better calibration,
since it means that the probabilities agreewith the true labels.
Figure 8a shows the histogram for all instances, correspond-
ing to overall calibration. More than 1000 instances lie in the
first bin; therefore, it would seem that Platt calibration had
worked well. But if we look at the right-most plot, which
is the same figure but includes only minority instances, it
shows that for few instances the probability estimates highly
disagree with the observed labels. These errors have a huge
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Fig. 7 Performance of calibration algorithms

Table 6 Standard class
distribution

Set LFs patterns (positive class) SFs patterns (negative class)

Calibration set 569 498

Test set 82 991

Fig. 8 Residual error of probability estimates Standard test set

impact on the overall score, producing a Brier score for Platt
scaling that is higher than the uncalibrated case.

Therefore, the available Standard Test set might be not
the most appropriate set for evaluating the calibration func-
tions learned from the balanced Standard calibration set.
As stated above, in order to have a balanced Standard Test
set, which is more reliable for assessing calibration results,
we follow two approach:

1. under-sampling majority class (SFs patterns);
2. over-sampling minority class (LFs patterns).

As regard the first approach, an under-sampled Stan-
dard Test set is built by taking 100 SF instances randomly
chosen from the original Standard Test set and all of the

LFs patterns. The new class distribution is 45% (LFs)—55%
(SFs).

The over-sampling approach requires amore sophisticated
procedure since features belong to different data types, as we
described in Sect. 3.

The procedure is the following:

– Split of Standard Test set in more subsets, in such way
that each of them presents the same values for the cate-
gorical features.

– For each subset, a new set of LFs instances is generated,
by using a different synthesis technique for each kind of
data:
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Fig. 9 Reliability diagrams
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Fig. 10 Reliability diagrams vs. fitted curves
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Fig. 11 Reliability diagrams after calibration
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Table 7 Brier score for the
under-sampled and
over-sampled test set
(Standard dataset)

Method Dataset std

Calibration set Under-sampled test set Over-sampled test set

Uncalibrated 0.05178 ± 0.011 0.03745 ± 0.011 0.02255 ± 0.012

PS 0.02809 ± 0.011 0.01490 ± 0.006 0.00850 ± 0.006

IR 0.02590 ± 0.011 0.01458 ± 0.007 0.00868 ± 0.006

SC 0.00962 ± 0.004 0.01412 ± 0.007 0.00856 ± 0.006

Poly3 0.02960 ± 0.012 0.01525 ± 0.007 0.00985 ± 0.006

Poly4 0.02837 ± 0.011 0.01464 ± 0.008 0.00908 ± 0.006

SplineFit 0.02771 ± 0.011 0.01398 ± 0.007 0.00869 ± 0.006

Table 8 Log-Loss score for the
under-sampled and
over-sampled test set
(Standard dataset)

Method Dataset std

Calibration set Under-sampled test set Over-sampled test set

uncalibrated 0.32532 ± 0.128 0.32817 ± 0.220 0.14809 ± 0.101

PS 0.10743 ± 0.039 0.07773 ± 0.034 0.04353 ± 0.025

IR 0.10743 ± 0.039 0.07459 ± 0.038 0.04748 ± 0.025

SC 0.10446 ± 0.041 0.07496 ± 0.041 0.04322 ± 0.026

Poly3 0.42450 ± 0.285 0.31294 ± 0.184 0.10037 ± 0.103

Poly4 0.14152 ± 0.038 0.11360 ± 0.108 0.06285 ± 0.059

SplineFit 0.15037 ± 0.053 0.13823 ± 0.111 0.06682 ± 0.056

1. Numerical values of the new pattern are generated
using the well-known SMOTE technique (Chawla
et al. 2002);

2. Categorical values of the new pattern are the same
of the correspondent subset obtained grouping cate-
gories;

3. Time-series data that are in form of unevenly spaced
sequences are obtained by adding Gaussian noise to
the Time-series medoid of each subset built through
categorical variables in Item 2 above.

– The new LF patterns are then concatenated with the orig-
inal Standard Test set.

We add 910 new LF instances to the Standard Test set by
applying this procedure. In the over-sampled StandardTest
set the two classes are totally balanced (50–50%).

The OCC_System model trained for the Standard
dataset is used for generating the sets of score for the two
sampled Test set. Since the calibration set is the same, there
is no need to re-train the calibration algorithms, but we only
apply the already learned calibration functions to the two
new Test sets in order to produce the corresponding proba-
bility estimates. In Fig. 9, we show the reliability diagrams
for the under-sampled Test set and the over-sampled Test set
for the Standard dataset. In both cases, the trend does not
follow the y = x diagonal line, confirming that the classifier
is not well-calibrated for the Standard dataset. Figure 10
shows the resulting calibration functions overlaid the reli-

ability diagram for the two Test sets, while in Fig. 11 we
plot the reliability diagrams of the Test sets after calibration.
For the under-sampled Test set (a) the trend of the reliability
diagrams after calibration is close to the y = x line, while
for the over-sampled Test set (b) the reliability diagrams are
slightly noisy.

For ease of comparison, in Tables 7 and 8, we show
the two figure of merits (Brier score and Log-Loss score,
respectively) on both the calibration set and the under-
sampled and over-sampled Test sets as averages over five
trials for Standard dataset. The performance on calibra-
tion set (reported again for better readability) obliviously
is the same of Tables 4 and 5. By considering the perfor-
mance on the two Test sets, firstly it is possible to see that
the calibration algorithms work much better on them com-
pared to the original Standard Test set, since they mostly
performs better than the uncalibrated case. As concerns the
under-sampled Test set, SplineFit reaches the best value for
the Brier score, followed by Isotonic Regression. In terms
of Log-Loss score, Isotonic Regression and SplineCalib out-
perform other methods. For the over-sampled scenario, Platt
scaling and SplineCalib are the best methods. The former
produces the lowest Brier score, while the latter reaches the
lowestLog-Loss score, but actually their values are very close
for both metrics.

Finally, in Table 9 is reported the performance in terms of
execution time for the 7 calibration procedures and for each
investigated dataset.
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Table 9 Comparison of the execution time for the adopted calibration
procedures, for each dataset (measures are in seconds)

Method Nodes Branches Std

Platt 0.05897948 0.01953612 0.03728476

Isotonic 0.20002866 0.01791418 0.09415118

SplineCalib 41.45577378 9.57505456 14.718603

SplineFit 3.85662254 1.2260622 1.6423341

Poly3_fit 1.69367574 1.01460842 1.16662092

Poly4_fit 1.29023974 1.03621046 1.00169828

In general, Platt scaling is the fastest procedure in
performing the calibration training at least on our exper-
imented datasets, followed by Isotonic regression while,
as expected, SplineClib was the slowest. Poly3_fit and
Poly4_fit, although slower than Platt scaling and Isotonic
regression, are very far from the SplineCalib execution time
for all three datasets.

7 Conclusions

This study is part of a wider project concerning the design
and implementation of a modeling and recognition system
of faults and outages occurring in the real power grid man-
aged by “Azienda Comunale Energia e Ambiente” (ACEA)
company in Rome, Italy. The recognition system, based on
a one-class classification approach as the main core of a
larger system, has been developed within the “ACEA Smart
Grid Project”. An important task consists in extracting from
the learned fault classification model, called OCC_System,
useful information for programming and control procedures,
such as the estimation of the financial risk associated with a
set of power grid states and network resilience analysis. Reli-
able fault probability estimates are precious information in
order to assess risks and make cost benefit analysis, related
to maintenance planning and network expansion. The cur-
rent paper moves along this direction presenting an approach
based on calibration for estimating reliable fault probabil-
ities from classification scores yield by OCC_System. In
this study, we reviewed three state-of-the-art posterior cal-
ibration methods for calibrating the OCC_System classifier.
The three techniques (PS, IR and SC) have been experi-
mented on real-world data, coming from the MV power grid
of Rome, against three simple methods (Poly3, Poly4 and
SplineFit), which basically perform a plain curve fitting on
the reliability diagram. Tests confirm that the three state-
of-the-art calibration techniques well behaved for at least
two experimented datasets and, especially in terms of Brier
scores, results obtained by the proposed techniques are com-
parable with state of the art competitors. Furthermore, our
work shows that calibrating a classifier is a challenging task,

especially for custom-based classifiers adopted for predictive
maintenance purposes and real-world datasets. Specifically,
the performances evaluation can be challenging in unbal-
anced class problems and a solution is provided for this
case. It is noted that the proposed method can meet some
limitation with very high unbalanced datasets, despite the
balancing procedure. Specifically, when the reliability dia-
gram is populated with few points, or when the points are
clustered at the extremes of the unit interval in the reliabil-
ity diagram. In addition, as regards the polynomial methods
presented here, although a smaller degree means having a
less complex fitting model, such polynomials are subject to
edge oscillations that violate the monotone growth property,
especially at the edges of the unitary interval. This prob-
lem can be alleviated by increasing the polynomial degree
or by using other more exact fitting methods. Further inves-
tigations are needed at this point. However, being the fitting
methodologies less heavy that other methods, a trade-off
between the accuracy and the computational complexity
has to be taken into account in applications. Considering
the performance for the three investigated datasets, we are
confident for the application of the reviewed calibration tech-
niques on the existing on-going faults recognition system.
As future-work directions, further investigations will be car-
ried out on the performance of calibration methods in real
scenarios and in the big data environment. Moreover, the cal-
ibrated posterior probabilities will be adopted for computing
the vulnerability and the risk associated with equipment, a
fundamental tool for scenario analysis in predictive mainte-
nance. In particular, posterior probabilities will be adopted
for estimating simpler and interpretable models of faults
(e.g., linear models) usable by non-machine learning experts
in line with the explainable AI paradigm. This simpler mod-
els could be adopted also as a driver for correlation analysis
between fault causes and power grid constitutive parame-
ters.
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