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Abstract: The NASA’s Artemis project intends to bring humans back to the Moon in the next decade.
A key element of the project will be the Lunar Gateway, a space station placed in a peculiar, near
rectilinear Halo orbit in the vicinity of a collinear libration point in the Earth–Moon system. This
study focuses on the high-fidelity description of the relative orbit dynamics of a chaser spacecraft
with respect to the Gateway, as well as on the design of a proper orbit control strategy for rendezvous
maneuvers. A novel formulation of the Battin–Giorgi approach is introduced, in which the reference
orbit is that traveled by the Gateway, i.e., it is a highly non-Keplerian, perturbed orbit. The modified
Battin–Giorgi approach allows for the description of a relative orbit motion with no restrictive
assumption, while including all the relevant orbit perturbations on both the chaser and the Gateway.
Moreover, nonlinear hybrid predictive control is introduced as a feedback guidance strategy. This
new technique is shown to outperform the classical, well-established feedback linearization in terms
of success rate and accuracy on the final conditions. Moreover, a Monte Carlo analysis confirms
that hybrid predictive control is also effective in the presence of the temporary unavailability of
propulsion or thrust misalignment.

Keywords: Lunar Gateway; orbit rendezvous; relative orbit motion; feedback linearization; spacecraft
guidance; near rectilinear Halo orbit

1. Introduction

In the context of the NASA Artemis program for lunar exploration, Gateway will
play a crucial role. This space station will serve as a permanent advanced logistics out-
post, collecting supplies and resources for human missions in the lunar environment and
beyond [1]. Gateway will travel a near rectilinear Halo orbit (NRHO) in cislunar space,
beneficial for extended communication periods between Gateway and potential future
facilities at the lunar South pole. The stability properties of this peculiar orbit were already
tested by the CAPSTONE mission [2], while the launch of the first two modules of Gateway
are scheduled at the end of 2025.

Designing orbit transfers to and from the Gateway is essential to enable the station’s
operations. Various strategies have been explored for both stable and unstable orbits, using
underlying manifold structures for optimal departures and approaches. Howell et al. [3]
proposed low-cost transfers between the Earth–Moon and Sun–Earth systems using transit
orbits. Alessi et al. [4] developed a two-impulse transfer strategy between Low Earth Orbits
(LEOs) and Lissajous orbits at two collinear libration points, with the use of the related
stable invariant manifold in the dynamical framework of the Circular Restricted 3-Body
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Problem (CR3BP). A polyhedral representation for invariant manifolds was introduced by
Pontani et al., to classify trajectories near the interior collinear libration point and identify
optimal low-thrust and two-impulse transfers from LEOs to Lyapunov orbits [5]. More
recently, Singh et al. [6] investigated low-thrust transfers to the southern near rectilinear
Halo orbit at L2 leveraging invariant manifolds.

Transfer trajectories for stable orbits have been designed using both low-thrust and
impulsive maneuvers. More specifically, low-thrust transfers between Distant Retrograde
Orbits (DROs) and halo orbits in the Earth–Moon system were obtained by Parish et al. [7],
while Pino et al. [8] identified intermediate orbits for low-thrust transfers by exploiting
energy surfaces. Pritchett et al. [9] used a collocation algorithm for low-thrust transfers,
while Das et al. [10] combined machine learning and numerical optimization for trajectory
design, while leveraging dynamical structures. McCarty et al. [11] proposed a monotonic
basin hopping optimization technique to find low-thrust transfers from a Gateway-like
near rectilinear Halo orbit (NRHO) to a DRO. Additionally, Vutukuri [12] investigated in-
termediate resonant orbits and their manifolds for transfers between stable orbits, whereas
Zimovan et al. [13] utilized higher-period orbits and the related dynamical structures to
achieve similar goals.

Low Lunar Orbits (LLOs) are the most convenient parking paths for lunar descent
and safe touchdown [14]. In the context of the CR3BP, several studies addressed transfers
between Gateway and LLOs. Rozek et al. [15] used an elitist non-dominated sorting genetic
algorithm to find two-impulse transfers, further refined by gradient-based optimization.
Lu et al. [16] combined local gradient optimization with a numerical continuation strategy
to yield optimal direct transfers, while constraining the time of flight to the maximal value
of six days. Bucchioni et al. [17] compared Lambert/differential corrections, direct numer-
ical optimization, and Hohmann/differential corrections for similar transfers. Giordano
and Topputo [18] focused on the orbit transfers of nanosatellites from LLO to a halo orbit
in the presence of uncertainties. Recently, Sanna et al. [19] proposed a fast, minimum-fuel
two-impulse transfer strategy suitable for manned missions, incorporating all relevant
perturbations in a high-fidelity model. Pozzi et al. [20] also used a high-fidelity dynamical
framework to determine minimum-time low-thrust transfers from Gateway to LLO. It
is worth remarking that the actual Gateway’s orbit (available from the NAIF kernel [21])
requires modest stationkeeping maneuvers (of a few millimeters per second), to perform at
aposelenium, with the intent of avoiding inadvertent departure from the nominal quasi-
periodic orbit after a few periods [22]. Related to this aspect, Alvarado and Singh [23]
recently proposed an interesting technique for orbit maintenance in the framework of the
elliptic restricted three-body problem.

Once a spacecraft has completed its orbit transfer to Gateway, active orbit control is
required for successful rendezvous. Numerous studies have addressed rendezvous maneu-
vers, often assuming that the target spacecraft travels a circular orbit, with the consequent
application of linear orbit theory, i.e., the Hill–Clohessy–Wiltshire (HCW) equations of
relative orbit motion. Using the latter theoretical framework, Pontani et al. [24] focused on
minimum-time and minimum-fuel rendezvous maneuvers. Relative orbit elements were
used by Bevilacqua et al. [25] to develop an analytical solution for spacecraft relative orbit
control by means of on/off continuous thrusters. Gurfil [26] investigated relative motion
between two elliptic Keplerian orbits without linear orbit theory, while Lopez et al. [27]
proposed a guidance scheme based on Lyapunov stability theory for impulsive velocity
changes. Kluever [28] tackled the same problem with a feedback control scheme capa-
ble of yielding the continuous thrust vector along two orthogonal axes. More recently,
Karlgaard [29] introduced a guidance strategy using polar coordinates and feedback lin-
earization. The latter technique was also employed by Santoro et al. [30], in conjunction
with the Battin–Giorgi description of relative orbit motion, without any linearizing ap-
proximation. Nonlinear approaches such as sliding mode control and adaptive control
have also been explored for close-range maneuvering. In this context, Anand et al. [31]
utilized a nonsingular terminal sliding mode controller based on the HCW equations.
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Capello et al. [32] and Li et al. [33] also investigated the final phase of rendezvous through
sliding mode control.

The aim of this study is the analysis, development, and test of a convenient formu-
lation to model relative orbit motion, together with an effective orbit control strategy for
the rendezvous of a spacecraft with Gateway. In particular, a new formulation of the non-
linear BG approach is presented for the description of relative orbit dynamics. Feedback
linearization is first applied to orbit rendezvous in cislunar environment. Then, nonlinear
hybrid predictive control, i.e., a new feedback guidance strategy for approaching Gateway,
is introduced and discussed. Several tests are run in both nominal and nonnominal condi-
tions in order to evaluate the performance of hybrid predictive control.

The paper is organized as follows: In Section 2 a detailed overview of Gateway’s orbit
characteristics is offered. In Section 3 the dynamical model employed for the description of
the relative motion is presented. The rendezvous strategy is discussed in Section 4, while
Section 5 treats the orbit control used to perform the rendezvous maneuver. Tests in both
nominal and nonnominal conditions are reported in Section 6 and in Section 7, respectively.
Final conclusions are drawn in Section 8.

2. Orbital Motion of Gateway

The reference orbit of Gateway is a southern L2 NRHO. The selection of this specific
orbit followed several criteria [34]: (i) an L2 family offers improved visibility of the far
side of the Moon for communications with respect to the L1 family [14]; (ii) L2 NRHOs
exhibit more advantageous stability properties than L1 NRHOs, which implies lower
orbit maintenance requirements [35,36]; (iii) a southern NRHO requires less propellant
for returning paths directed toward the Earth’s northern hemisphere; (iv) the southern
NRHO provides excellent communications coverage of the lunar South pole, a region of
high scientific interest due to large water ice deposits in shadowed craters [37]; (v) the 9:2
Lunar Synodic Resonance (LSR) prevents eclipses due to the Earth [38], which can exceed
current hardware limitations. Avoiding Earth shadowing was a primary design goal for
this reference orbit, while lunar eclipses, though common, pose no threat because they have
short duration (80 min or less). The operational orbit of Gateway has a periselenium radius
ranging from 3196 to 3557 km, with an average value of 3366 km, and an average orbital
period of 6.562 days.

The Gateway’s ephemeris accounts for perturbing effects from the gravitational fields
of the Earth, Sun, and Jupiter, as well as the selenopotential harmonics up to an order and
degree of 8. Figure 1 depicts the ephemeris-based Gateway trajectory in the Earth–Moon
synodic frame.

Figure 1. Gateway trajectory in the Earth´Moon synodic reference frame, for ten periods.
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3. Relative Orbit Dynamics

Successful rendezvous maneuvers require a high-fidelity description of the spacecraft
motion relative to Gateway. In this framework, the spacecraft, also referred to as the chaser,
approaches Gateway, termed the target. Several approaches to describe relative motion
were developed. Linear orbit theory, i.e., the Eulero–Hill equations [39], is commonly used.
These methods are based on the linearization of the relative motion equations around the
position of the target. For this reason, they provide an accurate description of the motion
only when the chaser is sufficiently close to the target. An interesting alternative option is
represented by the BG approach. It does not require any linearization, therefore there exist
no constraints on the relative distance ρ. The classical BG approach describes the motion
of a perturbed spacecraft with respect to a reference body on a Keplerian orbit. Hence,
in order to obtain the relative motion of the chaser with respect to the target, one should
study, separately, the relative motion of target and chaser with respect to a virtual reference
body, which travels a Keplerian orbit. The difference of the two relative positions describes
the nonlinear relative motion of the chaser with respect to the target. However, because the
target travels a highly non-Keplerian path, recurrent updates of the reference Keplerian
path are required, and the approach at hand reveals to be rather impratical. In the following,
a new formulation of BG method is proposed, where the reference orbit is non-Keplerian.
This allows for a more straightforward description of the motion of the spacecraft with
respect to Gateway.

In a generic inertial reference frame, the target acceleration is

:⃗rt “ ´
µ

r3
t

r⃗t ` a⃗p,t (1)

where

• r⃗t indicates the inertial position vector of the target, rt “ |⃗rt|;
• µ represents the gravitational parameter of the main attracting body (i.e., the Moon);
• a⃗p,t is the sum of all the relevant perturbing accelerations acting on the target.

In a similar way, for the chaser

:⃗rc “ ´
µ

r3
c

r⃗c ` a⃗p,c ` a⃗t,c (2)

where

• r⃗c indicates the inertial position vector of the chaser, rc “ |⃗rc|;
• a⃗p,c is the sum of all the relevant perturbing accelerations acting on the chaser;
• a⃗t,c represents the thrust acceleration of the chaser.

The relative position is defined as ρ⃗ “ r⃗c ´ r⃗t, thus :⃗ρ “ :⃗rc ´ :⃗rt. Considering Equations (1)
and (2), :⃗ρ can be expressed as

:⃗ρ “ ´
µ

r3
c

r⃗c `
µ

r3
t

r⃗t ` a⃗p,c ` a⃗t,c ´ a⃗p,t (3)
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Moreover, because r⃗c “ ρ⃗ ` r⃗t,

:⃗ρ “ ´
µ

r3
c

ρ⃗ ´
µ

r3
c

r⃗t `
µ

r3
t

r⃗r ` a⃗p,c ` a⃗t,c ´ a⃗p,t

“
µ

r3
t

r⃗t

„

1 ´
r3

t
r3

c

ȷ

´
µ

r3
c

ρ⃗ ` a⃗p,c ` a⃗t,c ´ a⃗p,t

“
µ

r3
t

r⃗t

„

1 ´
r3

t
|⃗ρ ` r⃗t|3

ȷ

´
µ

r3
c

ρ⃗ ` a⃗p,c ` a⃗t,c ´ a⃗p,t

“
µ

r3
t

r⃗t

«

1 ´
r3

t
`

ρ2 ` r2
t ` 2⃗ρ ¨ r⃗t

˘3{2

ff

´
µ

r3
c

ρ⃗ ` a⃗p,c ` a⃗t,c ´ a⃗p,t

(4)

Introducing the parameter

q “
ρ2 ` 2⃗ρ ¨ r⃗t

r2
t

(5)

the preceding equation becomes

:⃗ρ “
µ

r3
t

q
”

2 ` q ` p1 ` qq1{2
ı

p1 ` qq3{2
“

p1 ` qq1{2 ` 1
‰ r⃗t ´

µ

r3
c

ρ⃗ ` a⃗p,c ` a⃗t,c ´ a⃗p,t (6)

In the previous relation, :⃗ρ is expressed in an inertial reference frame. Anyway, for relative
motion, the Local Horizontal Local Vertical (LVLH) frame centered on the target is preferred
with respect to an inertial frame. The axes of this reference system are defined as follows:

• r̂ is parallel to the position vector of the spacecraft with respect to the main body,
i.e., the Moon;

• ĥ is parallel to the spacecraft angular momentum;
• θ̂ completes the right-hand triad.

However, since the LVLH frame is rotating, one has to take into account the transport
theorem

N 9⃗ρ “ R 9⃗ρ `N ω⃗ R ˆ ρ⃗ (7)

where N 9⃗ρ and R 9⃗ρ indicate the time derivatives of the relative position with respect to the
inertial and the rotating LVLH frame, respectively, while Nω⃗ R represents the angular
velocity of the LVLH frame with respect to the inertial frame. Applying the transport
theorem two times yields

N :⃗ρ “ R :⃗ρ ` 2 Nω⃗ R ˆ R 9⃗ρ ` N 9⃗ω R ˆ ρ⃗

` Nω⃗ R ˆ Nω⃗ R ˆ R 9⃗ρ
(8)

Comparing Equation (6) with Equation (8), one obtains the final expression of :⃗ρ in the
LVLH frame,

:⃗ρ “ ´ 2 ω⃗ ˆ 9⃗ρ ´ 9⃗ω ˆ ρ⃗ ´ ω⃗ ˆ ω⃗ ˆ ρ⃗

`
µ

r3
t

q
”

2 ` q ` p1 ` qq1{2
ı

p1 ` qq3{2
“

p1 ` qq1{2 ` 1
‰ r⃗t ´

µ

r3
c

ρ⃗ ` a⃗p,c ` a⃗t,c ´ a⃗p,t

(9)

In the last equation, superscripts are neglected for simplicity; the same choice is adopted in
the following. For the sake of clarity, all time derivatives are expressed in the rotating LVLH
frame, while ω⃗ and 9⃗ω represent the angular velocity and acceleration, respectively, of the
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LVLH frame with respect to the inertial frame. The angular velocity can be computed at
any desired time from the instantaneous Classical Orbit Elements (COE) of the target [40],

ω⃗ “

¨

˚

˝

9Ω sin i sin θt ` 9i cos θt
9Ω sin i cos θt ´ 9i sin θt

9Ω cos i ` 9θt

˛

‹

‚

T
¨

˝

r̂
θ̂

ĥ

˛

‚ (10)

where

• Ω represents the Right Ascension of the Ascending Node (RAAN),
• i indicates the orbit inclination, and
• θt “ ω ` ν is the argument of latitude, with ω and ν denoting the argument of periapse

and true anomaly, respectively.

The time derivatives of COE are provided by the Gauss Variational Equations; in particular
9i, 9Ω, and 9θt are described by the following formulae [40]:

9i “ r
cos θt

h
ah

9Ω “ r
sin θt

h sin i
ah

9θt “

c

µ

p3 p1 ` e cos νq2 ´ r
sin θt cos i

h sin i
ah

(11)

with par, aθ , ahq being the components of the total perturbing acceleration acting on the
target, expressed in the LVLH frame. The angular acceleration 9⃗ω can be computed in
a numerical way. In particular, the target orbital motion is forward propagated for the
time interval of interest, by integrating the dynamic equations of the Modified Equinoctial
Elements (MEE). Then, Equation (10) is employed to obtain the components of ω⃗. The time
histories of each component are interpolated through a cubic spline, whose time derivative
leads to the computation of the components of 9⃗ω. The spline and its derivative are carried
out with the MATLAB functions spline and fnder, respectively.

The perturbations included in Equations (9) and (11) and in the dynamic equations of
MEE are represented by the higher harmonics of the selenopotential and the third-body
gravitational perturbation due to the Earth and the Sun [19]. In particular, all the harmonics
with coefficients |Jl,m| ą 5 ¨ 10´6 are included in the dynamical model.

It is worth noticing that in this model only the target state and the relative motion of
the chaser are propagated. In fact, the positions of the Earth and the Sun with respect to
the spacecraft are provided by the NAIF ephemeris. The initial position and velocity of
Gateway are retrieved from ephemeris data as well.

The main differences introduced with respect to the classical BG scheme depend on
the fact that in this formulation the reference orbit is the real path traveled by Gateway,
which considers the perturbations that affect it. In particular

1. the expressions of ω⃗ and 9⃗ω take the time variations of COE into account, unlike the
case of unperturbed Keplerian motion;

2. the target perturbing acceleration a⃗p,t is also explicitly included in Equation (6).

The introduction of this high-fidelity framework is fundamental for the study of the motion
of the spacecraft relative to Gateway, because the orbit of the latter is strongly perturbed.
In fact, any simplifying assumption regarding the target orbit, e.g., considering it as Keplerian
or even circular (as in the Eulero–Hill approach), would yield unacceptable inaccuracies.

4. Rendezvous Strategy

The rendezvous maneuver of the space vehicle toward Gateway is studied in the LVLH
frame. In particular, the new version of the BG method, explained in detail in Section 3, is
employed. Gateway is assumed to be passive, therefore the entire maneuver is performed
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by the chaser. At the starting time, an initial relative distance ρ “ 1.5 km is considered.
The rendezvous is designed as a maneuver with specified duration set to 12 h. Gateway
is modeled as a sphere with radius of 5 m. Moreover, the docking port is assumed to be
aligned with r̂. Therefore, the desired final relative position, expressed in the target LVLH
frame, is

ρ
f

“

¨

˝

5
0
0

˛

‚m (12)

At the same time, for the purpose of performing a smooth docking, the following final
relative velocity is selected (in the LVLH frame):

9ρ
f

“ ´

¨

˝

1
0
0

˛

‚

cm
s

(13)

The chaser propulsion system consists of a low-thrust engine, characterized by an
effective exhaust velocity c “ 30 km

s and a maximum thrust acceleration umax “ 5 ˆ

10´5 g0 “ 4.90310 ˆ 10´4 m
s , where g0 represents the gravitational acceleration on Earth at

sea level.
In most cases, the role of the propulsion system is in reducing the relative velocity of

the spacecraft with respect to Gateway, starting from the dynamical conditions at the end
of an orbit transfer. This means that the plume might be pointed toward Gateway at the
end of the rendezvous maneuver, which represents a possible threat for the integrity of the
lunar station. Moreover, an attitude maneuver is usually necessary in the last meters before
mating, in order to align the docking port of the chaser with that of Gateway. To allow
this, the last 5 m of the rendezvous maneuver are assumed to be traveled in the absence
of propulsion, in a phase termed natural drift. In light of this, when the approaching
spacecraft reaches a distance of 10 m from Gateway, low-thrust propulsion is turned off and
natural drift begins. For this reason, identifying a suitable dynamical state (i.e., position
and velocity) of the chaser at 10 m from Gateway appears crucial. To find this specific
state at 10 m from Gateway, the desired final state at docking is backward propagated
until the distance reaches 10 m, while assuming no propulsion acceleration in Equation (9).
The dynamical state at 10 m from Gateway represents the final target state of relative
orbital control, which drives the spacecraft in the thrusted phase. In the next sections,
the dynamical state obtained at the end of the powered phase is propagated in the high-
fidelity model until the final distance of 5 m is reached, to obtain the outcome of rendezvous
at the end of natural drift, even in the presence of nonnominal flight conditions.

5. Feedback Control Techniques

At the end of the orbit transfer directed toward Gateway, the target is in the proximity
of the lunar space station, with a certain relative velocity. At this stage, in order to perform
a successful rendezvous, an active orbital control that drives the position and velocity of
the spacecraft toward the desired ones is crucial. In this study, orbit control for the final
approach is based on feedback linearization. Moreover, the limits of classical feedback
linearization are discussed and an advantageous modification of this control scheme is
presented. An improved feedback orbit control is employed in the rendezvous maneuvers
investigated in this work.

5.1. Feedback Linearization

According to Equation (9), the relative dynamics of the chaser with respect to Gateway
can be written as

:ρ “ f ` u (14)
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where f represents the natural relative dynamics, while u indicates the chaser thrust
acceleration. In particular,

f “ ´ 2 ω ˆ 9ρ ´ 9ω ˆ ρ ´ ω ˆ ω ˆ ρ

`
µ

r3
t

q
”

2 ` q ` p1 ` qq1{2
ı

p1 ` qq3{2
“

p1 ` qq1{2 ` 1
‰ rt ´

µ

r3
c

ρ ` ap,c ´ ap,t

(15)

The desired relative path, associated with ρ
d
ptq and subscript d, is computed using a cubic

spline for each position component. Let subscript f stand for final. These spline functions
connect the initial relative position coordinates to the final desired position coordinates,
while also enforcing 9ρ

d
pt f q “ 9ρ

f
. Once the interpolating spline is identified, 9ρ

d
ptq and

:ρ
d
ptq are obtained as the first and second time derivative of ρ

d
ptq, respectively. The spline

is computed by means of the MATLAB spline function, while its time derivatives are
computed with MATLAB fnder function. The state error is defined as

E :“ ρ ´ ρ
d

(16)

The thrust acceleration needed to drive the spacecraft toward the desired state is com-
puted as

u “ ´ f ` :ρ
d

´ Kdp 9Eq ´ KppEq (17)

where Kp and Kd are the proportional and derivative gain matrices, respectively. After sub-
stituting Equation (17) in Equation (14), a second order error equation is obtained

:E ` Kd 9E ` KpE “ 0 (18)

The gain matrices are constant and positive definite. Moreover, they are assumed to be
diagonal, with equal postive elements

Kp “

»

–

kp 0 0
0 kp 0
0 0 kp

fi

fl , Kd “

»

–

kd 0 0
0 kd 0
0 0 kd

fi

fl (19)

Given the diagonal structure of the gain matrices, Equation (18) corresponds to three
uncoupled scalar equations in the form

:ei ` kd 9ei ` kp ei “ 0 , i “ r, θ, h (20)

This last equation, as any linear second-order differential equation with constant coefficients,
can be rewritten in terms of damping ratio ζ and natural frequency ωn [41]

kp “ ω2
n

kd “ 2ζωn
(21)

The two coefficients kd to kp can be related by imposing the critical damping condition [41],
i.e., ζ “ 1. Unlike the underdamped (ζ ă 1) condition, critical damping assures convergence
toward the desired state without an oscillatory transient, with a convergence time that is
shorter than any overdamped (ζ ą 1) system. In critical damping regime,

kd “ 2
b

kp (22)
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By introducing the vector coefficients

a “ ´ f ` :ρ
d

b “ 2
´

9ρ ´ 9ρ
d

¯

c “ ρ ´ ρ
d

(23)

the norm of the thrust acceleration can be expressed as a function of their components in
the target LVLH frame,

u “ |u| “

ˇ

ˇ

ˇ
a ´

b

Kp b ´ Kp c
ˇ

ˇ

ˇ
(24)

Using the auxiliary variable k “
a

kp and requiring u “ umax, Equation (24) can be
rearranged as

|c|2 k4 ` 2 bTc k3 ` p|b|2 ´ 2 aTcq k2 ´ 2 aTb k ` |a|2 ´ u2
max “ 0 (25)

At any time t, all the quantities a, b and c are known. Therefore, this fourth-degree equation
for k can be solved at the initial time, and the value of k is found. Finally, kp is obtained from
k as kp “ k2. Only a real positive value of kp can lead to the convergence of the actual state
to desired one. Thus, only real positive solutions of Equation (25) are regarded acceptable.
If multiple real positive solutions exist, then the one with the minimum magnitude is
selected.

In short, this procedure allows for the finding the value of kp, such that

• error components show a critical damping behavior, with convergence toward the
desired values, without the occurrence of overshooting;

• the initial thrust acceleration magnitude is exactly equal to the maximum available
value.

Coefficients a, b and c are computed at the beginning of the rendezvous. In this way,
Equation (25) can be employed in order to find the constant kp that assures the use of all
the available thrust. This is a desired behavior; because the initial state is relatively far from
the desired one, then it is rather natural to require maximum thrust at the beginning. It is
worth remarking that this strategy does not require any further gain tuning. The thrust
acceleration follows the time history shown in Figure 2.

Figure 2. Time history of the thrust acceleration magnitude, yielded through feedback linearization.
Initial conditions: ρ “ p1.5, 0, 0qT km, 9ρ “ p–1, 0, 0qT m/s.
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As one can notice, thrust acceleration is at maximum only at the very beginning of
the maneuver.

5.2. Nonlinear Hybrid Predictive Control

It is desirable to design a control law such that, in the early phase of the rendezvous,
the thrust acceleration is saturated, i.e., u “ umax. In fact, if the maximum thrust is employed
in the first time interval of the maneuver, a faster convergence toward the desired state
can be expected, with respect to the feedback linearization approach. This time behavior
can be achieved by solving Equation (25) at any time, which provides the value of kp
associated with the maximum available thrust. This means kp is time-varying in this first,
saturated phase. Then, feedback linearization drives the spacecraft in the subsequent
phase, using a constant value of kp equal to the last one computed in the preceding phase.
The switching time from saturation to feedback linearization can be identified by evaluating
the peak thrust magnitude after the switching time. In fact, as shown in Figure 3, the peak
value increases as the duration of the saturated phases increases. This behavior allows for
formulating the following criterion for the duration of the saturation regime: saturation is
maintained until the subsequent thrust acceleration peak exceeds 90% of umax. Predictive
forward propagations are performed during the saturation regime, while considering a
constant value of kp equal to the current value, until the preceding condition is met. When
this occurs, variable-gain saturation ends and pure feedback linearization starts.

(a) ∆tsat “ 30 min.

(b) ∆tsat “ 55 min.

Figure 3. Thrust acceleration profile for several saturation time intervals ∆tsat. Initial conditions:
ρ “ p1.5, 0, 0qT km, 9ρ “ p-1, 0, 0qT m/s.
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6. Rendezvous in Nominal Conditions

In order to prove its efficiency, the nonlinear hybrid predictive control is tested in
several scenarios. Three cases are considered for tests in nominal conditions, where it is
assumed that the control u provided by Equation (17) is applied. Each study presents a
performance comparison between the constant-gain feedback linearization approach and
hybrid predictive control. In all simulations, the starting epoch of the maneuver is set
to 23 May 2025 at 10:00 UTC, while the final epoch corresponds to 23 May 2025 at 22:00
UTC. The final epoch coincides with a periselenium passage. This choice represents a
sort of worst-case scenario, because the target has maximum velocity, and rendezvous is
more challenging as a result. A predictive integration is performed every 2 min, through
the forward propagation of the relative orbit dynamics by 30 min, in order to meet the
criterion established in Section 5. However, in Section 6.3, the prediction rate is increased,
and forward propagations are performed every 30 s, because relative orbit dynamics is
faster. In all cases, the components of all vector quantities are expressed in the LVLH frame.
All simulations are performed in a PC with i7-6700HQ processor and 32 GB of RAM.

6.1. Initial Radial Position ρ⃗0 and Velocity 9⃗ρ0

Consider radial approaching as the initial conditions for rendezvous, with

ρ
0

“

¨

˝

1.5
0
0

˛

‚km , 9ρ
0

“ ´

¨

˝

1
0
0

˛

‚m{s (26)

The control scheme and final desired state are described in Section 4. The resulting time
evolution of the components of relative position and velocity is reported in Figure 4 and
Figure 5, respectively. Thanks to the critical damping condition, the components of ρ⃗ have
a smooth convergence toward the desired relative position, without overshooting. Using
constant-gain feedback linearization, ρr reaches ρr “ 0 in the first part of the maneuver.
When this condition occurs, ρθ and ρh are both below the Gateway radius, set to 5 m. Thus,
this situation means that an impact with Gateway occurs. In contrast, nonlinear hybrid
predictive control successfully drives the chaser state toward the desired final state. In fact,
given a certain initial relative state, constant-gain feedback linearization requires much
longer convergence time than the hybrid predictive control. This is due to the fact that
feedback linearization uses the maximum available thrust only at the very beginning of the
maneuver, as appears in Figure 6, where the norm of the thrust acceleration is illustrated.
Looking at the thrust acceleration magnitude, a sudden drop at the end of the saturation
time is evident. If the components of the thrust acceleration in Figure 7 are also taken into
consideration, it can be noticed that this drop in thrust acceleration magnitude coincides
with a change in the sign of ur, which is the main component. This sign change corresponds
to thrust direction reversal. Although the transition is rather steep, it is not instantaneous.

The trajectories followed by the chaser using both control algorithms are reported in
Figures 8 and 9. Due to the specific initial conditions, the motion is near monodimensional
along r̂, with only a small component along θ̂. This is in agreement with the modest value
of uθ that appears in Figure 7. The fact that the chaser does not only move along r̂ is caused
by the introduction of a final drift phase. The final part of the trajectory obtained using
nonlinear hybrid predictive control is depicted in Figure 10, where the drifting portion is
highlighted. The final errors on relative position and velocity at the end of the rendezvous,
i.e., at the end of the drifting phase, are reported in Table 1. Only the results regarding the
nonlinear hybrid predictive control are reported. It is evident that the final desired relative
state is achieved with high accuracy.
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(a) r-component of the relative position.

(b) θ-component of the relative position.

(c) h-component of the relative position.
Figure 4. Components of the relative position using either constant´gain feedback linearization or
nonlinear hybrid predictive control.
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(a) r-component of the relative velocity.

(b) θ-component of the relative velocity.

(c) Zoom on the final drift phase for the θ-component of the relative velocity.
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(d) h-component of the relative velocity.

(e) Zoom on the final drift phase for the h-component of the relative velocity.

Figure 5. LVLH components of relative velocity using either constant´gain feedback linearization or
nonlinear hybrid predictive control.

Figure 6. Thrust acceleration magnitude using either constant´gain feedback linearization or nonlin-
ear hybrid predictive control. As a reference, the magnitude of the acceleration due to the natural
relative motion f is reported.
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Figure 7. LVLH components of the thrust acceleration required by the nonlinear hybrid predic-
tive control.

Figure 8. Rendezvous trajectory followed by the chaser using both control algorithms. θ̂ axis is
expanded for clarity.

Table 1. Desired terminal values and final errors on the relative state, using nonlinear hybrid
predictive control.

Desired Final Value Final Error

ρr rms 5 1.421 ˆ10´6

ρθ rms 0 ´3.491 ˆ 10´7

ρh rms 0 ´8.236 ˆ 10´11

9ρr
“ cm

s
‰

´1 3.665 ˆ 10´7

9ρθ

“ cm
s

‰

0 1.345 ˆ 10´7

9ρh
“ cm

s
‰

0 ´2.679 ˆ 10´11
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Figure 9. Zoom on the region around Gateway. The red dashed circle represents the 5 m sphere
of Gateway.

Figure 10. Final drift followed by the chaser, following thrusted arc with the use of nonlinear hybrid
predictive control. Green and red dashed circles represent the two spheres centered at Gateway’s
mass center center, with radii of 10 and 5 m, respectively.

6.2. Initial Radial Position ρ⃗0 and Transversal Velocity 9⃗ρ0

Consider the following initial conditions for rendezvous

ρ
0

“

¨

˝

1.5
0
0

˛

‚km , 9ρ
0

“

¨

˝

0
1
1

˛

‚m{s (27)
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In this scenario, 9⃗ρ0 has zero components along r̂, therefore the chaser is not approaching
Gateway at the beginning. Indeed, the initial relative velocity is orthogonal to the initial
relative position. Therefore, orbit control needs to steer the velocity in order to have a
negative component along r̂, while compensating the velocity components along θ̂ and ĥ.
The resulting relative position and velocity components are reported in Figures 11 and 12,
respectively.

(a) r-component of the relative position.

(b) θ-component of the relative position.

(c) h-component of the relative position.

Figure 11. LVLH components of relative position using either constant´gain feedback linearization
or nonlinear hybrid predictive control.
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(a) r-component of the relative velocity.

(b) θ-component of the relative velocity.

(c) h-component of the relative velocity.

Figure 12. LVLH components of relative velocity using either constant´gain feedback linearization
or nonlinear hybrid predictive control.

Also, in this case, nonlinear hybrid predictive control shows faster convergence toward
the desired relative state with respect to constant-gain feedback linearization. The nonlinear
hybrid predictive control succeeds in compensating the components of relative velocity
along θ̂ and ĥ, and their effect on the respective components of relative position. At the
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same time, this control yields a modest r-component of relative velocity (of order of a few
cm/s), which allows for the reaching of the desired final relative state in 12 h. On the
contrary, constant-gain feedback linearization is not able to drive the system in a proper
way in the required time interval. This is evident in Figure 13, where the chaser trajectories
using both control algorithms are compared.

Figure 13. Rendezvous trajectory using both control algorithms.

Since only the nonlinear hybrid predictive control proved to be effective in the case at
hand, the following part of the analysis regards only this. The magnitude and components
of the thrust acceleration are depicted in Figures 14 and 15. Final errors on the relative state
are shown in Table 2.

Figure 14. Thrust acceleration magnitude using either constant´gain feedback linearization or
nonlinear hybrid predictive control. As a reference, the magnitude of the acceleration due to the
natural relative motion f is reported.
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Table 2. Desired terminal values and final errors on the relative state, using nonlinear hybrid
predictive control.

Desired Final Value Final Error

ρr rms 5 1.416 ˆ 10´6

ρθ rms 0 ´3.499 ˆ 10´7

ρh rms 0 ´8.237 ˆ 10´11

9ρr
“ cm

s
‰

´1 3.655 ˆ 10´7

9ρθ

“ cm
s

‰

0 1.346 ˆ 10´7

9ρh
“ cm

s
‰

0 ´2.679 ˆ 10´11

Figure 15. LVLH components of the thrust acceleration required by the nonlinear hybrid predic-
tive control.

6.3. Relative Velocity Sphere

The time evolution of the relative state strongly depends on the initial relative velocity.
In order to evaluate the performance of the control laws previously presented for different
initial relative velocities, the following study is proposed. The initial relative position is
chosen as

ρ
0

“

¨

˝

1.5
0
0

˛

‚km (28)

The magnitude of the initial relative velocity is set to a certain value. Then, 110 different
directions in the LVLH-frame are considered. Each direction is associated with a point
on a unit sphere. Overall, 110 points are selected: two of them coincide with the poles,
whereas the remaining points are the intersections of nine equally-spaced parallels and
12 meridians. For each velocity direction, a simulation is performed. The outcomes are
divided in three different classes:

• impact, when the relative distance reaches a value lower than 5 m;
• unsuccessful rendezvous, when at least one of the following situation occurs:

1. u ą umax at any time;
2. the error on the norm of the final relative position or velocity is higher than 1%

of the desired value. For the desired final relative state, this implies a tolerance
of 5 cm and 0.1 mm/s, respectively;

• successful rendezvous, when none of the previous cases occur.

In order to make the following figures clearer, a reference sphere with a radius equal to the
magnitude of the relative velocity is depicted. The results corresponding to constant-gain
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feedback linearization are collected in Figures 16 and 17. If 9ρ0 “ 1 m/s, then negative
radial relative velocity yields an impact. This is in agreement with the example shown in
Section 6.1. However, other directions with negative radial components lead to successful
rendezvous. Instead, the initial relative velocity directions with zero or positive radial
velocity components are not properly tackled by the constant-gain feedback linearization.
In this case, a large error on the final position (of an order of 1 m) is found. This is due
to the ineffective use of the available thrust yielded by the use of constant gains, and this
circumstance does not allow for the reaching of the final position in the desired time interval.
Moreover, if 9ρ0 “ 1.5 m/s, then no direction exists for the initial relative velocity, such that
feedback linearization leads to a successful rendezvous.

If nonlinear hybrid predictive control is used, then successful rendezvous maneuvers
are obtained until 9ρ0 = 3 m/s, as shown in Figure 18. However, increasing the magnitude of
initial relative velocity to 5 m/s, directions with a sufficiently high positive radial direction
lead to unsuccessful rendezvous. This situation is depicted in Figure 19. Also, in this case,
the reason for the failure depends on the final relative position, which shows a maximum
error of 14 cm on the radial component. Because 5 m/s is already a rather big initial relative
velocity, the velocity sphere was not expanded further in this study.

Figure 16. Representation of the outcomes for different initial relative velocity directions, using
constant´gain feedback linearization ( 9ρ0 = 1 m/s).

Figure 17. Representation of the outcomes for different initial relative velocity directions, using
constant´gain feedback linearization ( 9ρ0 = 1.5 m/s).



Dynamics 2024, 4 630

Figure 18. Representation of the outcomes for different initial relative velocity directions, using
hybrid predictive control linearization ( 9ρ0 = 3 m/s).

Figure 19. Representation of the outcomes for different initial relative velocity directions, using
hybrid predictive control linearization ( 9ρ0 = 5 m/s).
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7. Rendezvous in Nonnominal Conditions

The control law provides the desired thrust acceleration u at any time during ren-
dezvous. However, the applied thrust acceleration is in general different from the com-
manded one, because of actuation errors. In order to evaluate the effects of these nonnomi-
nal conditions, two scenarios are considered:

• temporary propulsion unavailability;
• thrust pointing errors.

Since the hybrid predictive control proved to be better performing than constant-gain
feedback linearization, in the following only the former control law is employed. The total
time for rendezvous is set to 12 h: the maneuver begins on 23 May 2025 at 10:00 UTC
and ends on 23 May 2025 at 22:00 UTC. The starting epoch coincides with a periselenium
passage. The components of all vector quantities are expressed in the LVLH-frame. All
simulations are carried out with the same initial relative state,

ρ
0

“

¨

˝

1.5
0
0

˛

‚km , 9ρ
0

“ ´

¨

˝

1
0
0

˛

‚m{s (29)

Given the magnitude of initial relative position and velocity, these initial conditions repre-
sent the most challenging situation, as they require an important braking action in order to
avoid collision with the target.

7.1. Temporary Propulsion Unavailability

During the rendezvous maneuver, the propulsion system may be turned off for several
reasons:

• temporary malfunction;
• temporary reduction of electric power due to solar eclipse or power supply issues

implying thrust unavailability;
• nonnominal attitude that is inconsistent with the desired thrust pointing direction,

e.g., due to the requirement of different pointing of the antennas.

For the purpose of evaluating the effects of this occurrence, both the initial time and the
duration of thrust unavailability are treated as uniformly distributed random variables.
In particular, the occurrence time of the thrust unavailability, t˚, varies between the second
and the tenth hour of the maneuver. This means that the first saturation period and the final
phase are assumed to be unaffected by thrust unavailability. The duration, ∆t f ailure, is as-
sumed to vary in the interval between one minute and ∆tmax, where ∆tmax is the maximum
possible duration of thrust unavailability. When propulsion is ignited again, Equation (25)
is solved in order to find the highest kp that can be employed without exceeding umax.
Then, constant-gain feedback linearization is applied along the second thrusted phase.

A total number of 200 Monte Carlo (MC) simulations is run. A prediction rate equal to
30 s is employed in all simulated scenarios, i.e., the relative state is forward propagated
in time for 30 min, every 30 s. The result of each rendezvous maneuver is categorized
according to the same criterion stated in Section 6.3. The outcome is reported in Figure 20.
The peculiar choice for the random variables creates a correlation between t˚ and ∆t f ailure,
as apparent in Figure 20. In all cases, the control architecture compensates propulsion
unavailability and completes a successful rendezvous (cf. Figure 21). Figures 22 and 23
portray the components of the relative positions and velocities, respectively. During propul-
sion unavailability, the spacecraft follows natural drift. In general, the components of the
relative state tend to diverge from the desired value in this period. However, it can be
noticed that in all simulations successful recovery from this drift occurs, and convergence
toward the final desired state is obtained. The main component of both position and
velocity is along r̂, with a smaller component along θ̂ and a negligible component along ĥ.
Therefore, the trajectories develop in the (r̂, θ̂)-plane, as shown in Figure 21. These results
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can also be regarded and interpreted in light of the simulation presented in Section 6.1.
The mean error µ refers to the difference between the desired final value and the value
obtained at the end of rendezvous, and is evaluated for each component of the relative
state. Moreover, the corresponding standard deviation σ is evaluated. Table 3 summarizes
the overall results of the MC simulations.

Figure 20. Rendezvous outcomes for several initial times and durations of thrust unavailability.

Figure 21. Relative trajectories obtained in the Monte Carlo campaign.

Table 3. Mean error and standard deviation for each component of the relative state. Desired final
values are reported as a reference.

Desired Final Value µ σ

ρr rms 5 1.420 ˆ 10´3 7.364 ˆ 10´3

ρθ rms 0 7.552 ˆ 10´4 4.701 ˆ 10´3

ρh rms 0 3.866 ˆ 10´7 2.315 ˆ 10´6

9ρr
“ cm

s
‰

´1 ´3.455 ˆ 10´4 2.276 ˆ 10´3

9ρθ

“ cm
s

‰

0 1.167 ˆ 10´4 4.912 ˆ 10´4

9ρh
“ cm

s
‰

0 ´1.287 ˆ 10´7 7.144 ˆ 10´7
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(a) r-component of the relative position.

(b) θ-component of the relative position.

(c) h-component of the relative position.

Figure 22. Time histories of relative position obtained in the Monte Carlo campaign.
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(a) r-component of the relative velocity.

(b) θ-component of the relative velocity.

(c) h-component of the relative velocity.

Figure 23. Time histories of relative velocity obtained in the Monte Carlo campaign.

7.2. Thrust Pointing Errors

Consider the nominal commanded thrust, u⃗n. In the LVLH-frame, the direction of u⃗n
is identified by two angles, i.e., δn and αn (cf. Figure 24),

un, r “ un cos δn cos αn

un, θ “ un cos δn sin αn

un, h “ un sin δn

(30)
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In this study, a pointing error is assumed to occur, and the actual thrust direction û lies on
the cone depicted in Figure 24. The displaced direction changes in each MC simulation,
and is associated with two random angles illustrated in Figure 25:

• β, defined as the angle from î and the projection of û onto the (î, ĵ)-plane; it is generated
as a uniform random variable ranging from 0 to 2π;

• γ, defined as the angle between ûn and û; it is generated according to a normal
distribution, characterized by mean value µ “ 0˝ and standard deviation σ “ 2˝.
The distribution is truncated to ˘3σ.

In Figure 25 unit vectors (î, ĵ,) are defined as

î “
ûn ˆ ĥ

|ûn ˆ ĥ|
and ĵ “ ûn ˆ î (31)

After several steps, omitted for the sake of brevity, the displaced thrust direction in the
LVLH-frame is given by

ur “ un psin γ cos β sin αn ` sin γ sin β cos αn sin δn ` cos γ cos δn cos αnq

uθ “ un p´ sin γ cos β cos αn ` sin γ sin β sin αn sin δn ` cos γ cos δn sin αnq

uh “ un p´ sin γ sin β cos δn ` cos γ sin δnq

(32)

At the beginning of each simulation, β and γ are generated according to their respective
random distribution, and a constant pointing error of û relative to ûn affects each MC
simulation. A prediction rate equal to 2 min is employed in all simulated scenarios, i.e., the
relative state is forward propagated in time for 30 min, every 2 min. The outcome of
each simulation is evaluated according to the criterion presented in Section 6.3. A total
of 200 MC simulations are run, and the related final results are illustrated in Figure 26
through Figure 27. All simulations yielded a positive outcome. Thus, the hybrid predictive
nonlinear control law proved to be able to drive the spacecraft in a proper way, with a
constant pointing error as well. As a matter of fact, this control law depends on the error
between the desired state and actual state, and on its time derivatives. Therefore, at a certain
time, a pointing error produces a greater error at the subsequent time step, but a higher
error creates a stronger response by the feedback control law, which reduces the error.

In Figures 28 and 29, the LVLH components of relative position and velocity are
reported, respectively. The trajectories obtained in the MC campaign are represented in
Figure 27. For the sake of clarity, the results of only 100 simulations are shown in these plots.
The time histories of the relative state components along θ̂ and ĥ are roughly symmetric,
unlike the remaining radial component. This is due to the fact that the latter is subject
to most of the control effort, because of the specific initial conditions. This is apparent in
Figure 30, in which the component ur is larger than the other ones; this illustrative example
corresponds to γ “ 5.6˝ and β “ 32.4˝. The collection of 100 relative trajectories, portrayed
in Figure 27, reflect the symmetry noted for the relative position components. The mean
final error µ and the corresponding standard deviation σ are computed for each LVLH
component of the relative state, employing the data coming from the MC campaign. These
results are collected in Table 4.
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Table 4. Mean error and standard deviation for each component of the relative state. Desired final
values are reported as a reference.

Desired Final Value µ σ

ρr rms 5 8.596 ˆ 10´3 1.467 ˆ 10´2

ρθ rms 0 ´6.453 ˆ 10´4 6.410 ˆ 10´3

ρh rms 0 ´1.080 ˆ 10´5 2.432 ˆ 10´2

9ρr
“ cm

s
‰

´1 ´1.067 ˆ 10´4 9.519 ˆ 10´4

9ρθ

“ cm
s

‰

0 ´5.239 ˆ 10´4 1.009 ˆ 10´3

9ρh
“ cm

s
‰

0 ´2.423 ˆ 10´7 4.961 ˆ 10´4

Figure 24. Pointing error cone around the nominal thrust direction ûn in the LVLH-frame.

Figure 25. Representation of thrust misalignment.
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Figure 26. Rendezvous outcome according to the respective pointing error. Dashed concentric
circumferences indicate, outward from the center, γ “ 1σ, 2σ, 3σ.

Figure 27. Relative trajectories obtained in the Monte Carlo campaign.
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(a) r-component of the relative position.

(b) θ-component of the relative position.

(c) h-component of the relative position.

Figure 28. Time histories of relative velocity obtained in the Monte Carlo campaign.
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(a) r-component of the relative velocity.

(b) θ-component of the relative velocity.

(c) h-component of the relative velocity.

Figure 29. Time histories of relative velocity obtained in the Monte Carlo campaign.
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Figure 30. Thrust acceleration components (illustrative example with γ “ 5.6˝ and β “ 32.4˝).

8. Conclusions

This research addresses relative orbit dynamics and control, applied to rendezvous
maneuvers in cislunar space. An advantageous reformulation of the BG approach to
relative orbit motion is introduced, and allows for the obtaining of a description that does
not assume any linearizing approximation. Moreover, this new dynamical framework can
include all the relevant orbit perturbations, on both spacecraft, without introducing any
simplifying assumption on the target orbit, which instead must be Keplerian in the classical,
well-established formulation of the BG equations. A new nonlinear hybrid predictive
control is also introduced that leverages gain adaptation. This new guidance strategy
assumes time-varying gains in the first phase. They are selected by enforcing saturation of
the thrust magnitude. In the second phase, the classical feedback linearization scheme is
applied, while avoiding the violation of the maximum allowed thrust magnitude. This goal
is achieved through predictive propagations, which definitely determine the midway time
to step from phase 1 to phase 2. An extensive parametric analysis is presented in terms
of relative velocity magnitude and direction, and the novel guidance approach at hand
is shown to outperfom pure feedback linearization, with regard to both the rendezvous
success rate and the accuracy of the actual final relative state with respect to the desired one.
The rendezvous strategy with Gateway includes a final, unpowered drift phase, for safety
reasons, and also to accommodate possible attitude maneuvers. Furthermore, a Monte
Carlo analysis points out that the new orbit control approach at hand is very effective, even
when the chaser spacecraft experiences stochastic thrust unavailability or in the presence
of relatively large thrust pointing errors. Because the simulation runtime is by far shorter
than the total duration of rendezvous, hybrid predictive control can be deemed to be an
effective real-time technique in orbit rendezvous maneuvers toward Gateway.
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Abbreviations
The following abbreviations are used in this manuscript:

BG Battin–Giorgi
COE Classical Orbit Elements
CR3BP Circular Restricted 3-Body Problem
DRO Distant Retrograde Orbit
LLO Low Lunar Orbit
LVLH Local Vertical Local Horizontal
MC Monte Carlo
MEE Modified Equinoctial Elements
NAIF Navigation Ancillary Information Facility
NRHO Near Rectilinear Halo Orbit
RAAN Right Ascension of The Ascending Node
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