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Abstract
The viability of populations can be quantified with several measures, such as the 
probability of extinction, the mean time to extinction, or the population size. While 
conservation management decisions can be based on these measures, it has not yet 
been explored systematically if different viability measures rank species and scenar-
ios similarly and if one viability measure can be converted into another to compare 
studies. To address this challenge, we conducted a quantitative comparison of eight 
viability measures based on the simulated population dynamics of more than 4500 
virtual species. We compared (a) the ranking of scenarios based on different viability 
measures, (b) assessed direct correlations between the measures, and (c) explored if 
parameters in the simulation models can alter the relationship between pairs of viabil-
ity measures. We found that viability measures ranked species similarly. Despite this, 
direct correlations between the different measures were often weak and could not be 
generalized. This can be explained by the loss of information due to the aggregation 
of raw data into a single number, the effect of model parameters on the relation-
ship between viability measures, and because distributions, such as the probability 
of extinction over time, cannot be ranked objectively. Similar scenario rankings by 
different viability measures show that the choice of the viability metric does in many 
cases not alter which population is regarded more viable or which management option 
is the best. However, the more two scenarios or populations differ, the more likely it 
becomes that different measures produce different rankings. We thus recommend 
that PVA studies publish raw simulation data, which not only describes all risks and 
opportunities to the reader but also facilitates meta-analyses of PVA studies.
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1  |  INTRODUC TION

Population-viability analyses (PVAs) are broadly used in ecology 
to assess the potential development of populations over time, to 
characterize their current status and future development, and 
to suggest effective conservation interventions (Beissinger & 
McCullough,  2002). Even though PVAs have been criticized for 
being too imprecise or are of low quality (Chaudhary & Oli, 2020, 
2021; Morrison et al., 2016), they are still considered a helpful tool 
in conservation biology (Brook, 2000; Brook et al., 2002), in par-
ticular, to evaluate the status, threats, and management options 
for populations (Lacy, 2019). Soulé  (1987) defined viability as the 
minimum conditions for long-term persistence and adaptation of 
populations, following the concept of the minimum viable popula-
tion (Shaffer, 1981). According to Soulé (1987), population viability 
involves a range of properties beyond persistence, including genetic 
properties, individual vigor, fertility, and fecundity. Various mea-
sures exist to quantify population viability, among them the mean 
time to extinction and the probability of extinction. Multiple at-
tempts have been made to improve existing viability measures or 
to introduce new measures, e.g., the expected minimum population 
size Nmin (t) (McCarthy & Thompson, 2001) or the intrinsic mean time 
to extinction Tm (Grimm & Wissel, 2004). However, no measure has 
been proposed, or broadly adopted, that can successfully be applied 
to a broad range of questions of conservation practitioners or to 
compare different viability studies. The lack of a unifying measure 
probably results from the complexity of the viability concept and 
reflects the multifaceted nature of extinction risk, as well as the di-
versity of questions that PVA is used to answer.

Viability measures can be roughly categorized into three classes, 
namely probabilistic measures, time measures, and population-size 
measures. (1) Probabilistic measures, especially the probability of ex-
tinction P0 (t), were the earliest and most widely used class of viabil-
ity measures. Probabilities of extinction, quasi-extinction (Ginzburg 
et al., 1982), or the risk of decline focus on the likelihood of extinc-
tion or falling below critical population-size thresholds within a de-
fined time horizon. Therefore, they require setting population size 
(N) and time thresholds (t), thus incorporating a subjective decision 
into viability assessment. (2) Time measures, especially the mean 
time to extinction, are frequently used as well (Foley,  1994; Reed 
et al.,  2002). They highlight the temporal component of viability 
and the crucial role of population survival. The importance of time 
measures was underlined by the development of the intrinsic mean 
time to extinction Tm (Grimm & Wissel, 2004), which considers the 
skewness of the distribution of extinction times (Ludwig, 1996) and 
the probability of reaching the established phase. (3) Examples of 
population-size measures are the expected average population size 
NE (t) and the expected minimum population size Nmin (t) (McCarthy 
& Thompson, 2001). In addition to these three rough categories, the 
population growth rate λ is not a traditional viability measure but a 
very important population property which is clearly related to viabil-
ity, as it describes the trend of a population size (declining, stable, or 

increasing) (Lande, 1993). We therefore regard it here as a viability 
measure as well.

Together, over 20 different viability measures have been used 
in the literature (Pe'er et al., 2013), demonstrating the multidimen-
sionality of the viability concept. It has been argued (e.g., Burgman 
et al. (1993)) that different viability measures might address differ-
ent questions. For instance, the probability of extinction can help 
decision-makers assess how necessary it is to act, while the mean 
time to extinction might be suitable to assess how urgent an inter-
vention may be. Choosing the best of several conservation actions 
could be done based on the expected population size at a given time 
(e.g., 10 years) after an intervention was taken.

Attempts to compare the results from multiple PVA studies that 
used different viability measures concluded that quantitative com-
parisons and generalizations remain virtually impossible, and little 
progress has been made over time (Burgman & Possingham, 2000; 
Crone et al., 2011; Naujokaitis-Lewis et al., 2009; Pe'er et al., 2013; 
Shaffer et al., 2002). There remains a need to assess different mea-
sures in terms of their consistency and suitability for different pur-
poses. Ideally, such an assessment could guide the choice of viability 
measures and help mitigating the risk that the choice of a certain 
measure over another may affect the outcomes (e.g., in terms of the 
proposed intervention). Furthermore, it would be useful to identify 
the quantitative relationships between viability measures, in order 
to advance potential attempts for integration and quantitative anal-
yses across studies to foster generalizations. If different viability 
measures ranked the same set of populations, species, or scenarios 
differently, this would complicate decision-making in nature conser-
vation. By contrast, a consistent ranking of viability measures would 
enhance comparability.

This study compares eight viability measures: probability of 
extinction P0 (t), risk of decline to a threshold population size PN 
(t), probability of quasi-extinction PQE,N (t) (Ginzburg et al.,  1982), 
mean expected population size NE (t), expected minimum popu-
lation size Nmin (t) (McCarthy & Thompson, 2001), expected/mean 
time to extinction TE, intrinsic mean time to extinction Tm (Grimm 
& Wissel, 2004), and population growth rate λ. These eight viability 
measures were chosen because they are commonly used in the liter-
ature or proposed to be key measures for extracting important infor-
mation from PVA simulations (Grimm & Wissel, 2004; IUCN, 2012). 
We put emphasis on measures that represent the classes mentioned 
above, namely probabilistic, time, and population-size measures, as 
well as the growth rate as a measure to characterize populations' tra-
jectory over time.

To evaluate the differences between these measures we simu-
lated virtual species with diverse life histories on different habitat 
maps. From the model output, we computed the eight viability mea-
sures and tested: (a) if different viability measures ranked species 
and scenarios differently, (b) if viability measures correlate and if 
one measure can directly be computed from another, and (c) if the 
simulation model and scenario parameters affect the relationship 
between two viability measures.
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    |  3 of 11TROUILLIER et al.

2  |  MATERIAL S AND METHODS

2.1  |  Simulating virtual species

Viability measures are computed from modeled population-size 
time series. Thus, we first parametrized the agent-based model 
RangeShifter (Bocedi et al.,  2014) to simulate populations. The 
model allows a detailed parameterization that fits the life histories of 
a wide variety of species. For the parameterization, we used a pub-
lished dataset that covers the parameters of 4574 virtual mammals. 
This dataset was created to cover the diversity of sizes and life histo-
ries of real animals while accounting for the collinearity of different 
characteristics (Santini et al., 2016). The simulated species vary with 
respect to body mass, sexual maturity age, litters per year, litter size, 
home range area, population density, dispersal distance, and annual 
survival rate. All species were simulated with 100 repetitions for 
100 years on three artificial fractal habitat maps. The habitat maps 
were created with RangeShifter (65 × 65 cells, Hurst exponent = 0.1) 
with 5%, 10%, and 20% habitat cover to reflect landscapes of dif-
ferent suitability to the species. This resulted in 13,722 scenarios 
(3 maps × 4574 species). Map resolution and extent were adapted 
to account for the large differences in species size and life histories. 
The RangeShifter model returned 100 time series of population sizes 
over 100 years for each species. These time series were then used to 
calculate the viability measures.

To assess if the parameters of the simulation model can affect 
the relationship between two viability measures, we created three 
additional sets of scenarios: In each set, we varied either the carry-
ing capacity of habitat patches, the mean dispersal distance, or the 
fraction of habitat patches in the map, while not changing any of the 
other parameters.

All RangeShifter parametrization files and outputs can be found 
in the Appendix S1.

2.2  |  Computing viability measures

For each simulated scenario, we calculated eight viability measures 
in the following way:

1.	 Probability of extinction P0 (t): the share of simulation runs 
in which an extinction (population size  =  0) occurred within 
the specified time horizon t.

2.	 Risk of decline PN (t): the proportion of simulation runs in which 
the population size was equal to or lower than a population-size 
threshold N after the specified time horizon t.

3.	 Probability of quasi-extinction PQE,N (t) (Ginzburg et al., 1982): the 
fraction of simulation runs in which the population size dropped 
at least once below a population-size threshold N within the spec-
ified time horizon t.

4.	 Expected population size NE (t), also referred to as the mean pop-
ulation size, was calculated as the average population size of all 
simulation runs at time t.

5.	 Expected minimum population size Nmin (t) was obtained by calcu-
lating the mean of every simulation run's minimum population size 
within the time horizon t (related to the concept of the minimum 
viable population (Gilpin & Soulé, 1986)).

6.	 Intrinsic mean time to extinction Tm was calculated from the prob-
ability of extinction over time, as the inverse slope of the linear 
regression through the tail of the –ln (1  − P0) graph (Grimm & 
Wissel, 2004).

7.	 The mean time to extinction TE was extrapolated from the mean 
population size and the growth rate λ (intercept at NE (t) = 0). This 
allowed to compute TE even when not all simulation runs led to 
extinction within the simulated time frame.

8.	 The growth rate λ was calculated as the slope of the linear regres-
sion line of the mean population-size time series.

The viability measures 1–5 require further specifications of a 
time horizon (t) and/or a population-size (N) threshold. We used 25, 
50, 75, and 100 years as time horizons and population-size thresh-
olds of 1%, 5%, and 10% of the initial population size.

2.3  |  Comparing viability measures

In this study, we (a) compared scenario rankings to find out if viability 
measures ranked scenarios the same, (b) explored if viability meas-
ures correlated directly or whether it was possible to calculate one 
measure from another, and (c) evaluated if the relationship between 
any two viability measures was affected by the parameters in the 
simulation model.

First, we evaluated if the rankings produced by the different 
measures were consistent with each other. To this end, we ranked 
all species based on each of the eight viability measures and used 
Kendall rank correlation coefficients to compare if different mea-
sures resulted in a similar ranking. Ties were handled by assigning 
the same rank and skipping one level (e.g., two species with rank 1 
were followed by a rank of 3).

Second, we explored direct correlations and mathematical rela-
tionships between different viability measures that might allow for 
converting one measure into another. To do so, we fitted various 
linear and nonlinear models using the nls2 package (Baty et al., 2015; 
R Core Team, 2015) in R (R Core Team, 2015).

Lastly, for a more detailed assessment of the relationship be-
tween two viability measures, we explored if changes in single model 
parameters altered these relationships. In particular, we changed the 
carrying capacity per habitat patch and the mean dispersal distance 
(negative exponential dispersal kernel), and we used different hab-
itat maps with different fractions of habitat (Appendix S2). If single 
model parameters caused changes in the relationship between via-
bility measures, it would indicate that fixed functional relationships 
between viability measures might not exist. We thus computed the 
probability of extinction and the expected population size for all 
100 years and plotted these values against each other for each pa-
rameter setting.
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3  |  RESULTS

3.1  |  Viability rankings

The computed viability measures show that each measure only 
worked for a fraction of all scenarios (Figure  1). For example, the 
population-size measures NE (100) and Nmin (100) returned 0 for 
more than 50% of all scenarios. In those scenarios, the populations 
always went extinct before 100 years. Similarly, the probability of 
extinction after 100 years, P0 (100), returned either 0 or 1 for 93.6% 
of all scenarios. For the same reason, the mean (extrapolated) time 
to extinction could only be calculated for 77.65% of all scenarios 
because the remaining scenarios were stable or showed a positive 
growth trend.

Pairwise correlations of viability measures showed positive cor-
relations of varying strength (Figure 2). Kendall rank correlation co-
efficients were only computed for those scenarios where the pairs 
of viability measures both returned meaningful values. Correlation 
coefficients ranged from 0.65 to 0.88, except when the growth rate 
was involved. Growth rate versus mean time to extinction had a 
correlation coefficient of 0.57 and the correlation between growth 

rate and probability of extinction got as low as 0.08 (Figure 2). Most 
species and scenarios were ranked relatively similarly by the differ-
ent viability measures, and the relationship was often mostly linear 
but rarely was the ranking exactly the same for two measures. The 
growth rate λ was a notable exception to this trend because its rank-
ings differed greatly from all other rankings (Figure 2).

3.2  |  Functional relationships between 
viability measures

The quantitative relationship between viability measures was in 
some cases linear but more often nonlinear (Figure  3, Table  1). 
Often, these functions describe asymptotes, for example, the 
probability of extinction approaches zero at high population sizes 
(Figure 3a). This is related to the same issue described above, that 
certain viability measures only returned meaningful values within 
a limited viability range. Additionally, various issues impeded the 
conversion of one viability measure into another. For example, the 
variance between NE and Nmin (Figure 3c) increased greatly toward 
larger values. Another example was the relationship between Tm 

F I G U R E  1 Frequency distributions of the eight viability measures that were computed for the 13,722 scenarios. Percentage values 
indicate the fraction of scenarios for which each measure could be calculated and returned meaningful values.
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    |  5 of 11TROUILLIER et al.

F I G U R E  2 Relationships between different viability measures' scenario rankings. Percentage values indicate the fraction of scenarios 
where both measures returned meaningful values. Additionally, Kendall's correlation coefficient (τ) is shown. We selected a broad range of 
all possible pairwise combinations of measures representative of all possible relationships.
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6 of 11  |     TROUILLIER et al.

F I G U R E  3 Relationships between different viability measures. For some measures, the functional relationship can roughly be described 
with adapted reciprocal functions (e.g., a, b, k, l), logistic functions (e.g., d, e), or simple linear functions (e.g., h), as shown in Table 1. However, 
significant variance and heteroscedasticity rendered even these relationships mostly useless to reliably calculate one measure from another.

 20457758, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9752 by C

ochraneItalia, W
iley O

nline L
ibrary on [25/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  7 of 11TROUILLIER et al.

and TE, which showed a breakpoint (Figure 3f), which is an arti-
fact related to the length of the modeled time period (100 years), 
while the relationship before this breakpoint was approximately 
linear (Table 1). A positive growth rate always corresponded to a 
P0 (100) of zero. On the other side, even strongly negative growth 
rates were sometimes linked to a P0 (100) of zero, if the population 
size was very large. Lastly, some measures showed a distinct re-
lationship when one or both measures were log-transformed (e.g., 
Figure 3e,f). On a log–log scale even very coarse correlations can 
look meaningful, but in practice, this will hardly be useful to com-
pute one measure from another because it hides the large variance 
(e.g., NE vs. TE).

3.3  |  The effect of model parameters on 
relationships between viability measures

We found that changing parameters in the simulation model al-
tered the relationship between viability measures. In particular, 
changing the carrying capacity, mean dispersal distance, or the 
habitat map altered the relationship between P0 and NE (Figure 4). 
For example, at a given P0, NE increased with increasing carrying 
capacity (Figure 4a) and with decreasing mean dispersal distance 
(Figure  4b). This dependence was slightly weaker when consid-
ering the change in P0 at a given NE (Figure 4a–c). We also note 
that there were threshold behaviors, such as a decrease in the 
maximum possible P0 with decreasing mean dispersal distances 
(Figure 4b) and a complete absence of extinctions when the pro-
portion of suitable habitat exceeded about 10% (Figure 4c). This 
means that the same population size can correspond to different 
probabilities of extinction, which likely also partly explains the 
low correlation strength between different viability measures 
(Figure  3). Consequently, we did not find any universal relation-
ship between viability measures, that would not be sensitive to 
simulation model parameters.

4  |  DISCUSSION

Our systematic comparison of eight different population-viability 
measures across different scenarios and species showed three 
main results: First, all viability measures, except the growth rate 
λ, ranked the population viability of the simulated species similarly 
but not identically. Second, we found rough correlations, but no 
fixed relationships between viability measures, that would allow 
the conversion of one measure into another. Third, species and 
scenario parameters of the simulation model (including the habitat 
map) altered the relationship between any two viability measures. 
Consequently, it appears to be impossible to compute one viability 
measure directly from another one. At best, functional relationships 
between two measures could be approximated for very similar sce-
narios. Hereafter, we outline the causes and implications of these 
findings and discuss whether a single number can represent viability.

4.1  |  The relationships between viability measures

Our result that different viability measures rank species or scenarios 
similarly and that at least some viability measures correlate, indi-
cates that most measures are based on a similar concept of viability. 
As a result, identifying the best management option for a population 
seems to be robust with respect to the choice of the viability meas-
ure. By contrast, some scenario rankings were not identical and it 
was not possible to determine fixed relationships between viability 
measures. Thus, there are cases where the choice of the viability 
measure will affect which management option is considered the 
best for a population or which population is deemed more viable. 
Furthermore, our results imply that two studies that reported two 
different viability measures cannot directly be compared by con-
verting one measure into the other.

The relationships between viability measures seem to depend 
on species traits, carrying capacity, and habitat configuration. For 
example, increasing the species trait dispersal distance reduced the 
population size NE at a given extinction probability P0. This may be 
due to more intra- and interspecific interactions when species cover 
greater distances. This explanation is in line with our observation of 
decreasing maximum possible values of P0 with decreasing disper-
sal distances. Furthermore, carrying capacity and the proportion of 
suitable habitat modified the relationship between NE and P0 in an 
intuitive way, i.e., NE increased with increasing carrying capacity and 
P0 became zero beyond a 10% threshold of habitat suitability. These 
are interesting theoretical interdependencies, but conservation sci-
entists may often not have enough species trait and habitat data 
to assess these dependencies in detail. Thus, a pragmatic recom-
mendation for conservation scientists, especially when supporting 
on-the-ground measures for population management, would be to 
choose (several) viability measures that show the least dependence 
on traits. In our case, P0 should, for example, be chosen over NE be-
cause it was relatively less affected by differences in the traits we 

TA B L E  1 Approximated functional relationships between 
selected viability measures as shown in Figure 3

Viability 
measure 1

Viability 
measure 2

Approximated functional 
relationship

P0 (100) NE (100) P0 (100) =
2

1+ 1.295
NE (100)

P0 (100) Nmin (100) P0 (100) =
2

1+ 1.518
Nmin (100)

P0 (100) TE Po(100) =
1

1+ e
0.965×(TE−72.285)

P0 (100) Tm P0 (100) =
1

(

1+e1.272×(Tm−11.753)
)0.014

Tm TE Tm = 4.521 × TE − 10.371

Tm NE (100) Tm = 6.914 × NE + 15.622

λ TE λ =
1

− 0.0004 × TE

λ Tm λ =
1

− 0.0062 × Tm

 20457758, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9752 by C

ochraneItalia, W
iley O

nline L
ibrary on [25/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 of 11  |     TROUILLIER et al.

investigated (Figure 4). However, such dependencies may not always 
be as straightforward nor as intuitive as in our study. Moreover, re-
lationships of viability measures may respond differently to distinct 
trait syndromes, such as fast versus slow pace-of-life syndromes 
(Healy et al., 2019), and these dependencies may be subject to spatial 
or temporal variability. Taken together, this calls for more research 
into the trait dependence of viability measures and the relationships 
between viability measures.

The lack of fixed relationships between viability measures can 
be explained by how viability measures process raw data. First, 
many viability measures are only based on a data subset, for exam-
ple, NE (100) only requires the population size of all scenario repe-
titions after 100 years but discards all other information. Similarly, 
P0 (100) only evaluates the fraction of simulation runs that went 
extinct after 100 years. Second, each viability measure aggregates 
the data in a unique way into a single number. Of course, the goal 
of a viability measure is exactly this, to describe viability in a single 
number, but this necessarily entails a loss of information regarding 
the underlying data distribution. A useful analogy is the compu-
tation of mean and median: Both can be calculated for the same 
distributions and both values will correlate when computed for a 
number of datasets. However, it is arguably not very meaningful 
to compute the mean from the median and vice versa. The same 

effect applies to viability measures. Each modeled scenario will 
result in a unique population-size frequency distribution over time 
(Figure  5). These 3D distributions are characterized by different 
means, skewness, kurtosis, and how these characteristics change 
over time. Viability measures intend to summarize all the infor-
mation from these distributions into a single number, but from 
this number, one cannot reconstruct the original distribution. 
Consequently, one cannot accurately calculate one viability mea-
sure from another.

4.2  |  Can a single number describe viability?

Given that there are many ways to aggregate raw population-
viability data into a single number and that they all entail an in-
formation loss (Table 2), it seems questionable if viability can or 
should be expressed as a single number. However, if viability is not 
expressed as a single number, it is also not possible to objectively 
rank different scenarios because only single numbers, not distri-
butions, can be ranked at all. Thus, if we want to rank scenarios to 
support management decisions, what would be the most suitable 
single number viability measure (acknowledging that none of them 
will be perfect)?

F I G U R E  4 The relationship between the expected population size (NE) and the probability of extinction (P0) depends on scenario 
parameters. Here, all RangeShifter parameters were kept constant, except (a) the carrying capacity per habitat patch (K2), (b) the mean 
dispersal distance (meanDistI), and (c) the map with different fractions of suitable habitats in the landscape (scenarios that are not plotted 
showed no extinctions).

F I G U R E  5 Three examples of probability distributions (P) of population sizes (N) over time t. The distributions show (a) a population that 
stabilizes very early at a high level and also shows a high variance, (b) a population whose size first decreases but then stabilizes with a low 
variance at a certain population size, and (c) a population that declines and where some simulation runs already led to extinction.
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Extinction and survival are at the core of the viability concept. 
At first sight, this might imply that population sizes or growth 
rates are nonideal proxies of viability, because, by definition, a sin-
gle surviving individual is sufficient to prevent the extinction of a 
species. However, population sizes and growth rates do affect vi-
ability via their effect on the occurrence and timing of extinctions. 
Nevertheless, measures related to population size or growth rate 
capture viability less explicitly than measures related to extinction 
probability. Thus, the extinction probability distribution over time, 
P0 (t), is the most fundamental description of viability.

To rank scenarios by P0 (t) requires to aggregate a distribution into 
a single number. The probability of extinction at one (more or less 
arbitrary) point in time, e.g., 100 years, is one way to summarize the 
P0 (t) distribution. Time measures like TE and Tm are another way to 
summarize the P0 (t) distribution into a single number. But TE has been 
criticized because the P0 (t) distribution is often right-skewed (Grimm & 
Wissel, 2004; Ludwig, 1996), and Tm only works in stable environments 
(because if the environment changes in the simulated time period, the 
tail of the –ln (1 − P0) graph will not be linear, as required by Tm).

Aggregating the P0 (t) distribution into a single number essen-
tially means that the risks at different time periods are weighted 

against each other. This weighting is subjective and depends 
on a person's risk affinity. For example, would you trade a 1% 
higher extinction risk at time t for a 1.1% lower extinction risk 
at time t +  1? What about a 2%, 5%, or 10% lower extinction 
risk at t + 1? While some pairs of P0 (t) distributions reflect clear 
differences in viability, distributions that, for example, mostly 
differ by lower or higher variance cannot be ranked objectively 
(Figure 6). These idiosyncrasies of P0 (t) distributions may be due 
to stochasticity effects on population dynamics (Melbourne & 
Hastings, 2008), as well as the typically right-skewed extinction-
time distributions.

While measures like the P0 (100) or the (intrinsic) mean time 
to extinction can be seen as established conventions on how to 
summarize the P0 (t) distribution into a single number, the inherent 
subjectivity of this process poses a problem to any viability rank-
ing and to any comparisons of populations, species or scenarios. 
Conservation scientists who support population management need 
to be clear about how a viability measure deals with probabilities, 
risks, and chances. This further supports that conservation scien-
tists should assemble and report the raw simulated population-size 
time series to facilitate the comparison of different studies because 

TA B L E  2 Advantages and disadvantages of the analyzed viability measures.

Measure Advantages Disadvantages

Probabilistic measures

P0 (t)—probability of extinction •	 focuses on population survival •	 extinctions need to happen within the modeled time horizon
•	 requires defining a time horizon
•	 only returns meaningful values (0 < P0 (t) < 1) for a fraction of all 
scenarios

PN (t)—risk of decline •	 incorporates that small 
population sizes are almost 
certainly doomed (extinction 
vortex (Gilpin & Soulé, 1986))

•	 requires defining a time horizon
•	 requires population-size threshold
•	 only returns meaningful values (0 < PN (t) < 1) for a fraction of all 
scenarios

PQE,N (t)—probability of 
quasi-extinction

•	 gives even more weight to the 
extinction vortex than the risk 
of decline

•	 requires defining a time horizon
•	 requires population-size threshold
•	 only returns meaningful values (0 < PQE,N (t) < 1) for a fraction of all 
scenarios

Time measures

Tm—intrinsic mean time to 
extinction

•	 aggregates population sizes 
and growth rate

•	 considers skewness in the 
extinction-time distribution 
(Grimm & Wissel, 2004)

•	 extinctions need to happen within the modeled time horizon
•	 if the probability of reaching the established phase is <1 viability 
rankings are not possible

Te—(extrapolated) mean time 
to extinction

•	 aggregates population sizes 
and growth rate

•	 does not consider skewness in the extinction-time distribution

Population-size measures

NE (t)—expected population 
size

•	 focuses on the state of a 
population

•	 requires defining a time horizon
•	 neglects growth rate

Nmin (t)—expected minimum 
population size

•	 changes more gradually than 
the risk of decline (McCarthy & 
Thompson, 2001)

•	 considers extinction vortices

•	 requires time horizon
•	 requires population-size threshold
•	 neglects growth rate

λ—growth rate •	 focuses on the change in 
population size

•	 must be interpreted in combination with population size
•	 only stable if model parameters do not change over time
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population-size time series are the basis for computing the P0 (t) dis-
tribution or any other required viability measure.

5  |  CONCLUSIONS

In this study, we show that viability measures rank species or sce-
narios similarly but not identically. To rank species or scenarios, 
viability measures have to aggregate the raw population-size time 
series into single numbers. This aggregation cannot be objective 
because it depends on how future risks and chances are weighted 
against each other. Furthermore, viability measures cannot be 
converted into each other because the specific parameterization 
of the population model affects the relationships between any 
two viability measures. Current viability measures, which have dif-
ferent advantages and disadvantages, represent established and 
useful conventions on how to quantify population viability into 
single numbers. For the future, however, it is advisable that PVA 
studies publish raw simulated population-size time series because 
they have many benefits not only for theory but also for conserva-
tion practice: First and foremost, raw population-size time series 
are the basis of a thorough probabilistic analysis including the pos-
sibility to determine all viability measures presented here; second, 
they make all risks and chances of the different analyses transpar-
ent, and finally, they allow for comprehensive and valid compari-
sons between studies, facilitating meta-analyses of studies that 
assess population viability.
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