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A B S T R A C T

The availability of continuous spatiotemporal land surface temperature (LST) with high resolution is critical for
many disciplines including hydrology, meteorology, ecology, and geology. Like other remote sensing data, sat-
ellite–based LST is also encountered with the cloud issue. In this research, over 5000 daytime and nighttime
MODIS–LST images are utilized during 2014–2020 for Yazd–Ardakan plain in Yazd, Iran. The multi–channel
singular spectrum analysis (MSSA) model is employed to reconstruct missing values due to dusts, clouds, and
sensor defect. The selection of eigenvalues is based on the Monte Carlo test and the spectral analysis of eigen-
values. It is found that enlarging the window size has no effect on the number of significant components of the
signal which account for the most variance of the data. However, data variance changes for all the three com-
ponents. Employing two images per day, window sizes 60, 180, 360, and 720 are examined for reconstructing
one year LST, where these selections are based on monthly, seasonal, semi-annual, and annual LST cycles,
respectively. The results show that window size 60 had the least computational cost and the highest accuracy
with RMSE (root mean square error) of 2.6 ◦C for the entire study region and 1.4 ◦C for a selected pixel. The
gap–filling performance of MSSA is also compared with the one by the harmonic analysis of time series (HANTS)
model, showing the superiority of MSSA with an improved RMSE of about 2.7 ◦C for the study region. In
addition, daytime and nighttime LST series for different land covers are compared. Lastly, the maximum, min-
imum, and average LST for each day and night as well as average and standard deviation of LST images in the
seven-year-long time series are also computed.

1. Introduction

Land surface temperature (LST) is a crucial climate system variable
used for various purposes, including climate, environmental, and natu-
ral hazard studies (Arabi Aliabad et al., 2023a; Ghaderpour et al., 2023;
Hu et al., 2024; Xing et al., 2021). Meteorological stations lack an
adequate spatial coverage to provide a reliable temperature estimate for
their surrounding areas (Ahmed et al., 2023; Metz et al., 2017). Due to
several factors, such as variations in solar radiation, atmospheric con-
ditions, and land surface characteristics in space and time, LST changes
both spatially and temporally (Li et al., 2018). The LST estimated using

satellite images can capture in more detail the local temperature dif-
ferences (Almeida et al., 2022; Arabi Aliabad et al., 2023b; Hengl et al.,
2012).

The availability of spatially and temporally continuous LST time
series with high resolution is critical for a wide range of disciplines
including hydrology, ecology, and geology as well as numerous appli-
cation fields and studies concerning sandstorms and desertification
(Ghaderpour et al., 2024; Piao et al., 2023; Shawky et al., 2023; Weng,
2009; Zhu et al., 2013). LST can be utilized to retrieve relevant climate
variables, such as soil moisture, evapotranspiration, thermal inertia, and
water-stress vegetation (Agam et al., 2008; Aliabad et al., 2022; Kustas
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and Anderson, 2009). Its application is vast, being effective in urban
heat island (UHI) research (Almeida et al., 2021; Dousset and Gour-
melon, 2003), cryosphere melting (Schneider and Hook, 2010), global
warming studies (Hall et al., 2012), insect infestation (Pasotti et al.,
2006), vector-borne diseases (Neteler et al., 2011), etc.

However, like other remote sensing data, LST faces the cloud prob-
lem (Ahmed et al., 2023). For example, the presence of data gaps created
by cloud cover or the presence of outliers in pixels prevents the use and
any subsequent interpretation of these images (Metz et al., 2014). Time
series of satellite images usually havemissing data and contain noise and
outliers, due to cloud, aerosol, and algorithm malfunction that cause
irregular observations (Ahmed et al., 2023; Pan et al., 2024). About 68
% of the Earth surface is covered by clouds every day on average,
limiting LST applications (Li et al., 2023; Stubenrauch et al., 2013).
Many attempts have been performed to properly mask clouds from
remote sensing satellite imagery (Ahmed et al., 2023; Simpson and
Gobat, 1996; Stowe et al., 1991; Taheri Dehkordi et al., 2022). Having
regularly sampled time series need gap–filling, determining outliers and
removing them from the original time series.

Many models dealing with gap–filling and removing outliers from
time series are proposed in the past decades (Ahmed et al., 2023; Fang
et al., 2007; Julien et al., 2006; Kondrashov et al., 2010; Moffat et al.,
2007). The LST gap–filling models can be divided into five groups: (1)
temporal gap–filling based on temporal information from each pixel, i.
e., these models are based on per–pixel LST time series (Arabi Aliabad
et al., 2024; Zhou et al., 2021), (2) spatial gap–filling based on infor-
mation of adjacent pixels, i.e., these models are image–based, such as
Kriging (Siabi et al., 2022; Zhang et al., 2007), (3) spatiotemporal
reconstruction methods, where LST information of the neighboring
pixels is considered both in space and time (Yan et al., 2023; Yao et al.,
2021; Zhang et al., 2020), (4) multi-fusion methods (Duan et al., 2017;
Mo et al., 2023), and (5) gap–filling methods based on surface energy
balance (Jia et al., 2021; Mo et al., 2023; Song et al., 2023). Each of these
models has its own advantages and limitations, summarized in Table 1.

Temporal models rely on the information content that may exist in
time series, e.g., trends and periodic cycles. Such models work well
when gaps are not too long and continuous, and so the harmonic com-
ponents can be well approximated by methods, such as Fourier and
wavelet analyses (Ahmed et al., 2023; Ghaderpour et al., 2023). Xiao
et al. (2021) proposed a random forest regression technique to fill the
gaps in LST time series in Chongqing City, reaching R2 = 0.89. Although
machine learning models have good performance accuracy, their results
are limited by the quality of the training datasets (Tian and Zhang,
2022). Moreover, it is also hard to find appropriate auxiliary spatial
parameters with fine resolution given the complex formation of the
dependent variables (Buo et al., 2021; Sarafanov et al., 2020).

As one among various temporal models, annual temperature cycle

(ATC) models enable a continuous description of the LST cycle on an
annual scale (Fu and Weng, 2018). Zhu et al. (2022) showed that the
root mean square error (RMSE) using an ATC model is between 0.9 and
2.5 K. However, the prediction accuracy of the ATC models in literature
is usually low because of their limited parameters and ignoring spatial
information (Fu et al., 2022; Liu et al., 2019). In areas where daily and
seasonal temperature changes are extreme, such as arid regions, ATC
models may not be able to respond well to these rapid and extreme
changes and provide inaccurate estimates for the missing LST values.
The ATC models are based on some simplifying assumptions which may
not be true in all situations.

The harmonic analysis of time series (HANTS) is another temporal
model that is based on a series of sinusoidal (harmonic) functions (Xu
and Shen, 2013). Models with relatively more sophisticated forms have
a higher accuracy, but their generalization abilities are relatively low
due to the large number of parameters (Zhou et al., 2023). A limitation
of HANTS is that only the temporal correlation between observations is
used to fill the gap in LST images (Zhou et al., 2021).

The singular spectrum analysis (SSA) is a robust time series analysis
model that uses multivariate statistical analysis, linear algebra, and
signal processing (Broomhead and King, 1986; Golyandina and Zhigl-
javsky, 2013). The SSA is primarily a data matching technique which
decomposes a time series into meaningful components, such as trend,
periodic and quasi-periodic, and noise. In practice, several significant
components form most data variance (signals), while others are usually
referred to noise. One of the main concepts of SSA is how components
can be separated from one another (Golyandina et al., 2001). The
multi–channel SSA (MSSA), a robust extension of SSA, considers the
temporal and spatial correlations between multiple time series simul-
taneously (Ghil et al., 2002; Weinberg and Petersen, 2021).

In a dynamic Earth system, LST variation over time can be due to
several factors, such as land cover change variation and tilted spin axis
of the Earth and its motion around itself and the Sun (Ghaderpour et al.,
2023). Therefore, LST change over time often contain periodic and
aperiodic/irregular components. Using this theory, SSA uses empirical
orthogonal functions (EOFs) and principal component analysis (PCA) to
directly separate signal from noisy time series without any prior
knowledge about their nature (Vautard and Ghil, 1989). The trend and
structure of a time series in a defined time interval, e.g., in a window
size, can be considered as the sum of several simple and elementary
processes, such as trend, significant fluctuations and noise. The main
goal of PCA is to transform a set of dependent variables into another set
of independent variables that is smaller, so that the first few components
form the most data variance (Jolliffe, 1990). The methodological aspects
and applications of SSA and MSSA have attracted the attention of many
researchers (Vautard et al., 2013; Yiou et al., 2000). These models
proved to be robust in various applications and have recently become
standard tools for climate and geoscience studies.

Seitola et al. (2015) carried out random MSSA of climate data and
showed that a 2–6 year variability concentrated in the pacific ocean has
been taken by all datasets with differences in statistical significance and
spatial patterns. Ghafarian Malamiri et al. (2018) filled the gaps of LST
time series products using SSA and estimated a RMSE of 2.95 K between
the reconstructed and original LST time series data in their study region.
Their findings showed that SSA using spatiotemporal interpolation can
effectively be used to solve the cloud contamination issue resulting in
missing data. Ghafarian Malamiri et al. (2020) utilized HANTS and
MSSA for reconstructing normalized difference vegetation index (NDVI)
images of Landsat with a 16-day sequence and showed that MSSA is a
suitable method for solving the challenge of missing data in vegetation
time series.

Selecting the best gap–filling model depends on the specific condi-
tions of the study. In studies where rapid temporal changes are more
important, temporal models are more appropriate. While in studies
where spatial variation is paramount, spatial models are suitable.
Spatiotemporal methods can reconstruct LST images with a higher

Table 1
A summary of gap–filling models with their advantages and shortcomings.

Models Advantages Shortcomings

Temporal Simplicity, high speed,
suitable for data with fast
temporal changes

Not considering spatial
changes, sensitivity to noise
and strong spatial changes

Spatial Consideration of spatial
changes, suitable for data
with gradual spatial
changes

The need for high-quality
spatial data, sensitivity to
rapid temporal changes

Spatiotemporal Considering both temporal
and spatial changes, high
accuracy in reconstruction

High computational
complexity, need for high
quality data

Multi-fusion High flexibility, ability to
adapt to different data
conditions

Complexity of choosing and
combining methods, the need
to adjust multiple parameters

Based on surface
energy balance

Strong physical base, high
accuracy in certain
conditions

The need for large input data,
high computational
complexity
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accuracy, especially when LST significantly changes both temporally
and spatially. In Yazd-Ardakan plain, since LST varies significantly in
time and space due to high desert conditions, MSSA, a robust spatio-
temporal model, is applied to reconstruct LST images. The main con-
tributions of the present research are as follows.

• Reconstructing daytime and nighttime MODIS-LST images for the
study region via MSSA by finding the most optimal window size.

• Comparing MSSA with HANTS using RMSE to show the advantage of
MSSA over HANTS for reconstructing LST images.

• Investigating the relationships between land cover/use classes and
LST within the study region in a one-year period.

In addition, for each daytime and nighttime LST image, the
maximum, minimum, and average values of the LST image are estimated
from the LST values between the 2nd and 98th percentiles of the LST
image, reducing the effect of potential outliers. Then the LST time series
for period 2014–2020 for the study region are illustrated. The daily and
nightly averages and standard deviations of the reconstructed LST im-
ages for the study region are also illustrated. The present study, unlike
most studies that use a one-year time series to reconstruct LST images, a
seven-year time series is chosen for gap–filling of MODIS images as
mentioned in the literature review.

The results of this research are practical and useful for studies that
are based on the complete time series of LST in day and night in
monitoring temperature changes, geothermal, land cover change
monitoring, and others. In the remaining of the present article, the study
region, datasets, mathematical details of MSSA, and gap–filling results
are demonstrated, and a comparison is made between HANTS and MSSA
by calculating their RMSEs. The LST variation for different land use/

cover classes in a one-year period and LST time series for the seven-year-
long period are illustrated as well as maps of averages and standard
deviations of the reconstructed LST images. In addition, a comprehen-
sive discussion is given on the advantages and limitations of gap-filling
models and implications of complete LST image time series in environ-
mental monitoring and ecosystems.

2. Materials and methods

2.1. Study region

The Yazd–Ardakan plain has an area of more than 1,174,000 ha,
located in the southwest of Yazd province. This region is limited to the
heights of Siyakouh, Shirkouh, and Kharanaq. It has a long-term annual
average rainfall of 60 mm and has a hot and dry climate (Pouriyeh et al.,
2021). Fig. 1 displays the study region located in Yazd-Ardakan, Yazd,
Iran. The main part of the region is covered by rangelands which include
lowland plains with very poor vegetation. Due to low amount of rainfall,
the life span of vegetation which mainly grows in spring is very short.
The second largest area is covered by mountainous lands which are poor
in terms of vegetation. The study region is also covered by sand dunes
and bare lands with almost no vegetation cover. In addition, a small part
of the study region is residential and agricultural lands. For the purposes
of visualization, validation, and showing the performance of different
window sizes in MSSA for LST reconstruction, one pixel is selected as an
example that does not have significant missing data during the seven-
year period and is near a weather station, shown by a star in Fig. 1d.
The land cover map is produced by the authors for a general under-
standing of the study region. This map was prepared using Sentinel 2
images from the summer of 2020, with a spatial resolution of 10 m and

Fig. 1. Study region: (a) the location of Iran in the world, (b) Iran, (c) Yazd province, and (d) the land cover map of the study region.
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using the maximum likelihood algorithm (Phiri et al., 2020).

2.2. Datasets

The estimation of LST image using satellite images started in 1970
(McMillin, 1975). Numerous satellite LST products have been developed
from a variety of sensors (Chander et al., 2009; Jiang and Li, 2008). The
MODIS–LST imagery have been widely utilized in many studies for
climate and environmental monitoring (Ahmed et al., 2023; Ghaderpour
et al., 2023; Shawky et al., 2023; Song et al., 2021). The MODIS product
with a spatial resolution of 1 km and repeating 4 times a day has widely
been used (Xian et al., 2021; Yoo et al., 2018). The split window algo-
rithm is used to estimate the temperature product of the MODIS (Wan
and Dozier, 1996). The accuracy of MODIS–LST products is between 1
and 2 Kelvin (Duan et al., 2019; Tan et al., 2021). Unfortunately, MODIS
or other thermal infrared (TIR)–based LSTs are sensitive to clouds and
atmospheric noise and so cannot produce reliable results in regions with
high humidity due to rainfalls (Cho et al., 2020, 2022; Ghaderpour et al.,
2023). In this research, the daily and nightly MODIS–LST products are
employed for every day of the year over the period of 2014–2020 which
includes 5114 images – MOD11A1 (Duan et al., 2019; Li et al., 2021)
provided by National Aeronautics and Space Administration (NASA):
https://modis.gsfc.nasa.gov/data/dataprod/mod11.php

(Last accessed on Sep 1, 2023).

2.3. Multi–Channel singular Spectrum analysis (MSSA)

The MSSA is an extension of SSA used when there is more than one
time series, e.g., time series of daily LST maps (Broomhead and King,
1986; Rodrigues and Mahmoudvand, 2018). The SSA is a linear model
for processing and predicting the behavior of a time series. The SSA is a
non-parametric model (adaptive to the data), and so it has advantage
over classical Fourier analysis. Fourier analysis is a model-based method
that can effectively process stationary and periodic time series. How-
ever, when the time series contains many periodic/aperiodic compo-
nents, it requires many frequencies for time series reconstruction. In
Fourier analysis, harmonic functions are estimated while elementary
components are estimated in SSA. Thus, if the time series has intrinsic
components, SSA will also be periodic. Due to its data adaptivity nature,
SSA can process nonlinear dynamics without any underlying assump-
tions about the data. The main aim of SSA is spectral division. There are
two types of matrix simplification, elimination for solving linear systems
and spectral decomposition. The SSA has four steps that are briefly
described below.

Step 1. A time series f1, f2,…, fn is converted to a multidimensional
trajectory matrix containing lagged vectors as follows.

X =

⎡

⎢
⎢
⎣

f1 f2 ⋯ fκ
f2 f3 ⋯ fκ+1
⋮ ⋮ ⋮ ⋮
fm fm+1 ⋯ fn

⎤

⎥
⎥
⎦ (1)

where m (m < n) is the window size, n is the size of a time series and κ =

n − m+ 1. Matrix X contains the complete records of patterns in the
window. Large window sizes result in expanding spectral domain of SSA
and processing more data for recognizing initial time series pattern.
However, reducing the window size expands the statistical confidence as
the time series structure is considered continuously (Elsner and Tsonis,
1996).

Step 2. Decompose X using the singular value decomposition (SVD):

X = DLET (2)

where T is transpose,D is the left and E is the right singular vectors of the
matrix X with dimensions m×m and κ × κ, and L is the rectangular
diagonal matrix with dimensions m× κ. The entries of L are the square
roots of the eigenvalues of the lagged-covariance matrix S = XTX with

dimension m× m. Matrix S is symmetric and its entries are proportional
to correlation between snapshots pairs. The columns of matrix D are
input features of S or empirical orthogonal functions (EOFs). The rows of
the ET matrix are the eigenvectors of S. For a periodic time series whose
corresponding eigenvalues contain large covariance values toward the
diagonal entries of posterior-covariance matrix, their periodic compo-
nents reflect the eigenvectors. Parts of periodic patterns can appear in
phase and other parts can be outside the phase. Entries with high
covariance along the diameter of the lagged-covariance matrix S show
variations in the time series. If the unique values are plotted in
descending order, it is often possible to separate a steep initial slope
(signal) and a flat level (noise). Then, each subset of d eigenvectors,
1 ≤ d ≤ m, (EOFs) such that their corresponding eigenvalues are posi-
tive, gives best representation of matrix X as X = X1 + ⋯+ Xd.

Step 3. Partition the elementary matrices Xj (j = 1, …, d) into p
disjoint subsets and summing the matrices within each subset. More
precisely, let Iℓ =

{
ℓ1,ℓ2,…,ℓp

}
be a group of indices belonged to

{1,2,…, d}, where 1 ≤ ℓ ≤ m. Then

X = XI1 +XI2 ⋯+XIm , (3)

where XIℓ =
∑

k∈IℓXk for ℓ = 1,2,…,m. The process of choosing the sets
I1,…, Im is known as the eigentriple grouping. Matrices XIℓ are ideally in
a Hankel matrix form, and thus they can fit the trajectory matrices
(Ghafarian et al., 2012).

Step 4. The XIℓ matrices must be transformed into a Hankel matrix
form if they are not already to be aligned with the trajectory matrices
(diagonal averaging). Therefore, adding these matrices can produce the
original matrix.

X = YI1 +YI2 ⋯+YIm , (4)

where YIℓ = HXIℓ is Hankelization of a matrix XIℓ for ℓ = 1,2,…,m.
The MSSA usesM number of spatiotemporal profiles (M ≤ m), where

m is the size of the selected window in SSA and spatial data. An optimal
number of significant components (S–PCA) of the spatial time series
along with temporal data (T–PCA) is used for more accurate recon-
struction of time series, especially the parts with long missing data. If
there are M time series, then the multivariate covariance matrix C as an
important step of MSSA can be produced as follows.

C =

⎡

⎢
⎢
⎣

C1,1 C1,2 ⋯ C1,M
C2,1 C2,2 ⋯ C2,M

⋮ ⋮ ⋮ ⋮
CM,1 CM,2 ⋯ CM,M

⎤

⎥
⎥
⎦ (5)

where Ci,j is the multivariate covariance matrix of order κ between
channels i and j like matrix S for SSA with one univariate time series
(Weinberg and Petersen, 2021). This covariance matrix simultaneously
autocorrelates individual time series and cross-correlates different time
series, accounting for significance of spatiotemporal information of
multiple time series. The rest of the process is like SSA, noting that each
eigenvector has a block of length κ, one block for each time series.

The SSA considers segments of a single pixel time series while MSSA
considers segments of multiple pixels time series simultaneously. In
other words, each submatrix Ci,j in covariance matrix C has the same
dimension as in the one-dimensional SSA; however, C simultaneously
auto-correlates both individual time series like in SSA and cross auto-
correlates different rime series. Hence, C considers the common tem-
poral information that is significant among different time series within a
spatial window, especially useful for a more accurate estimation of
missing values when there exist long temporal gaps in spatial time series
as compared to temporal based models like HANTS. Further details
about MSSA can be found in Ghil et al. (2002); Weinberg and Petersen
(2021).

F.A. Aliabad et al. Ecological Informatics 83 (2024) 102830 

4 

https://modis.gsfc.nasa.gov/data/dataprod/mod11.php


2.4. Monte Carlo singular Spectrum analysis

Auto-correlated noise (red noise) is serially correlated in time, i.e.,
two successive observations have lag-one autocorrelation:

xt = axt− 1 + ϵt , (6)

where xt is an observation at time t, xt− 1 is a modified copy of the same
variable at time t − 1, lag-one is the covariance between xt and xt− 1, ϵt is
a random error (white noise) whose mean is zero and has a standard
deviation of σ that along with a are the process parameters (Ghafarian
Malamiri, 2015). Allen (1992) proposed Monte Carlo SSA to detect
signal from noise. The red noise hypothesis will be accepted in many
cases. To define a red noise, the parameters σ and a which describe it
need to be estimated. The red noise value at time t is dependent on the
value at time t − 1, and the parameters can be estimated from the time
series itself. If one selects a set of parameters that results in rejecting of
the red noise null hypothesis, while another set of parameters result in
accepting the null hypothesis, then the decision will be indecisive. Allen
(1992) estimated unbiased red noise parameters utilizing maximum
likelihood criteria. The easiest way to compute the red noise parameters
is using the time series lag-one auto-covariance a and standard deviation
σ. Given the red noise parameters, different realizations of the red noise
can be created considering an initial value (x0) and different white noise
sets. The idea is that if one takes various realizations of the red noise, the
same expected variance and lag-one covariance are expected as those of
the time series itself.

Thus, in this case, there are P sets of alternative time series, each has
the same values. For each surrogate (surr), Ssurr and its eigenvalues λsurr

are computed by

λsurr = EsurrTSsurrEsurr. (7)

Then, a set of P values for each state is utilized to form a distribution
function according to the percentage of significance levels that can be
computed. By plotting the eigenvalues, statistically significant eigen-
values and its corresponding eigenvectors can be determined (e.g., at 95
% confidence level). If the eigenvalue is higher than the percentage λsurr,
it can be deduced that this eigenvalue is statistically significant, and so
the noise null hypothesis of noise is not accepted. This mode is associ-
ated with a specific signal with its corresponding frequency and period
(Ghafarian Malamiri, 2015).

2.5. Time series reconstruction

The MSSA process to fill missing data and outliers includes several
steps. For a window size m, first calculate the average values of the time
series to centralize the time series and set the missing data to zero. The
first EOF of the index is found by an iterative process, which runs MSSA
on the zero-centered data. Then update the missing values according to
the reconstructed components of the current EOF derived by displaying
the EOF on the original time series. The MSSA is used again on this
updated set so that the EOF is computed twice, and the missing values
are filled. This process is repeated until the convergence test is satis-
factory. The normalized RMSE (as a benchmark) is computed between
the new reconstructed data and the missing data from the former iter-
ation till the difference between two consecutive normalized RMSE
values becomes less than 2.5 % (Gupta and Ramani, 1980). Iteration is
then started for the second prominent EOF (holding the first constant)
until convergence is achieved for the second EOF. For the selected
number of EOFs, this process continues while the previous parameters
are kept constant each time. Cross-validation is used to determine an
optimal window size and SSA modes for time series reconstruction. A
part of the available data, chosen randomly, is converted to missing
data, and the reconstruction RMSE is computed to determine the
optimal value for the window size and number of EOFs. The general
formula for RMSE is given by

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ŷi)2

√

, (8)

where n is the size of time series, yi are time series values (true) and ŷi
are the estimated values (predicted). Considering that RMSE is propor-
tional to the measurement unit of the variable, one may not use it
directly for comparing the performance of models built for variables
with different units. The normalized RMSE is calculated by dividing the
value of RMSE into the range of data of the dependent variable, suitable
for comparing different models. Generally, the normalized RMSE below
10% indicates good accuracy of the model, 10–20% indicates the model
is appropriate, 20–30 % indicates an average accuracy, and more than
30 % indicates that the model is weak. There exists no straightforward
way in MSSA to remove outliers, but as few principal components are
employed in the reconstruction, the outliers are removed indirectly in
the final normalized signal. However, outliers still affect the recon-
struction. The overall workflow of this work is summarized in Fig. 2.

3. Results

In this section, the ability of MSSA to fill in the missing data of the
image and remove and correct outliers under the presence of noise is
discussed. Then MSSA validation is carried out using original and
reconstructed data. It is shown how to select an optimal window size, the
number of main components of MSSA, and the number of eigenvalues by
eigenvalue spectrum analysis and the Monte Carlo test.

3.1. An optimal window size for reconstructing MODIS–LST images

FromMonte Carlo examination and eigenvalues spectrum analysis, a
number of eigenvalues is chosen, covering most part of the eigenvalue
spectrum. If the eigenvalues of a time series are plotted in descending
order, the resulting graph shows two different slopes. At the beginning
of the graph, a steep slope is created, which indicates the significant
components of the signal. After that there is a smooth trail with a low
slope that represents signal noise.

Fig. 3a shows the spectrum of eigenvalues corresponding to the
selected pixel in the seven-year-long time series of the MODIS–LST with
the sequence of day and night with a window size 60 (one month) as a
representative of the data. According to Fig. 3a, the three main com-
ponents are located in the steep part of the graph, which are the sig-
nificant components of the signal and account for the largest amount of
data variance. At the beginning of the graph, there is an initial steep
slope, which shows the significant components of the signal, after this
sequence of the graph, there is a low and relatively smooth slope, rep-
resenting noise. Fig. 3b presents the temporal EOFs of the significant
components in this time series according to the results of the Monte
Carlo test. Component 1 (in blue) in Fig. 3b shows the same day/night
temperature changes. Component 2 (in black) of the image indicates the
annual temperature changes, and component 3 (in pink) almost shows
the seasonal changes in this time series. Note that only a small portion of
the annual (in black) and seasonal (in pink) components is shown in
Fig. 3b, explaining why they look like trends, i.e., if one zooms out the
entire annual and seasonal cycles will be visible.

For better visualization, the variances for each components are
normalized and the results are illustrated in Fig. 4. This figure shows the
three main components are in the steep section of the plot, showing the
significant signal components have a large total variance. Eigenvalues 1
to 3, located in the steep part of the graph, represent the signal part of
the spectrum (useful data) and constitute 98 % (first mode 50 %, second
mode 47 %, third mode 1 %) of the variance of the data. When the
window size increases to the values of 180 (about three months), 360
(about six months) and 720 (about one year), there is no significant
change in the number of significant components, but the variance of the
third state increases and reaches 9 %, 25 %, 26 %, respectively (Fig. 4).
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Pairs of SSA eigenvalues that are close to each other and also have a
one-quarter (90◦) phase difference can effectively represent a periodic
oscillation in a time series. This is because a particular mode pair of a
data adaptive method such as SSA can capture periodicity in fluctuating
data. When a window size 720 is selected, components 2 and 3 are
almost pairwise next to each other. To verify that these components are
significantly related to the signal, the Monte Carlo test is conducted. The
Monte Carlo test uses a first-order autoregressive process to generate
alternative time series according to parameters determined from the
series. Then, for each realization, SSA is employed to compute the ei-
genvalues. Next, error estimation is carried out at the 95 % confidence
level to determine whether the eigenvalues are statistically significant.
The eigenvalues on top of the error bar are statistically significant and
show the important part of the spectrum (i.e., signal). The results of data

analyses and the null hypothesis of EOFs are illustrated in Fig. 5. The
panels demonstrate eigenvalue power and the replaced data values vs
the frequency of EOFs. Given that SSA-induced EOFs for an inherently
periodic time series are not fully sinusoidal, deriving a single frequency
for each EOF is not an easy task. In other words, the SSA-induced EOFs
for a periodic time series are not perfectly sinusoidal unless they consist
of perfectly periodic components, e.g., time series of compound periods.
Panel (a) in Fig. 5 shows the results of the Monte Carlo test with the
original data and panel (b) with the null hypothesis EOFs test.

From Fig. 5, components 1, 2, and 3 are the most significant with a
specific percentile of 97.5 %. In this figure, the components are sorted
based on their associated variances. In other words, the frequencies of
components 1, 2, and 3 are 0.494, 0.001, and 0.006 (cycles/day),
belonged to daily, annual, and three-month periods, respectively. The

Fig. 2. Flowchart of this study: the steps of reconstruction of MODIS–LST time series using multi–channel singular spectrum analysis (MSSA) and their validations.
The gaps in images are shown in black. The LST and RMSE are short for land surface temperature and root mean square error, respectively.

Fig. 3. (a) The spectrum of eigenvalues of data with a window size 60, where the red arrows show the most significant components, and (b) Empirical–time
orthogonal functions of the three significant components of MSSA with a window size 60. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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EOFs of the null hypothesis test in Fig. 3b confirm the significance of the
components. The advantage of the null hypothesis test is that it selects a
noise component with low probability as a significant signal component.
This feature helps to identify the main and significant signals and its
results are more reliable.

3.2. Examining RMSE of missing values in LST time series

In addition to the results obtained from the previous tests, MSSA is

applied to the seven-year-long time series of MODIS–LST with the
sequence of day and night with the window sizes 60, 180, 360, and 720.
Images are divided into several blocks before reconstruction. The MSSA
is applied to each block individually. After running the algorithm, the
blocks are connected to each other and the images are converted to the
original dimensions. First, the comparison of the accuracy of land sur-
face temperature reconstruction is carried out using the 4 mentioned
windows in the LST images of the time series of 2014 (720 images) in
order to compare the accuracy of the reconstruction in these windows.
The RMSE image obtained by comparing the reconstructed LST using
MSSA and different window sizes with the original MODIS–LST is
prepared.

To examine the gap-filling performance of MSSA, in one-year time
series of MODIS–LST images, twenty images without gaps related to day
and night are selected from the images, and their values are removed
from the time series, creating artificial gaps. The cloud data (data with
zero value) are removed and not considered in RMSE calculation. Then
gap–filling is performed by different window sizes in MSSA, and finally
the reconstructed and initial values are used to compute the RMSE image
by Eq. (8), see Fig. 6. The results show that by using the window size 60,
about 92 % of the study region is reconstructed with an RMSE of less
than 3 ◦C. From Fig. 6 one can observe that increasing the window size
results in an increase in RMSE. For example, about 7 %, 12 %, 33 %, and
48 % of the region has RMSE greater than 3 ◦C for window sizes 60, 180,
360, and 720, respectively. Therefore, window size 60 is more accurate
in reconstructing LST images. In addition to examining the entire image,
the reconstructed values of the time series of LST with the sequence of
day and night in different window sizes for the selected pixel (the star in
Fig. 1) are compared with the initial values usingMSSA (Fig. 7), showing
a very good reconstruction result using window size 60 with RMSE of
1.4 ◦C.

Next, given that the percentage map of missing data in the MOD-
IS–LST images and the RMSE image resulting from the reconstruction of
the time series using MSSA is prepared in a categorized manner, the area
of the categories of the gap percentage in each of the RMSE error

Fig. 4. The plot of normalized eigenvalues (variance changes for each component) for window size (a) 60, (b), 180, (c) 360, and (d) 720. The red arrows show the
most significant components. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. The SSA Monte Carlo test based on (a) original data and (b) null hy-
pothesis tests. The red arrows show the most significant frequencies. Note that
the same y-axis is used to read the length of each error bar. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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categories is verified (Fig. 8). In every category with RMSE greater than
3 ◦C, there exists more than 24 % of missing data. The seven-year-long
MODIS–LST time series are processed by MSSA with window size 60
(optimal) to fill in the missing values. An example of the day and night
LST image before and after reconstruction is illustrated in Fig. 9,
showing the areas covered by cloud and missing data have been
completely reconstructed. Since LST during daytime is significantly
different than LST during nighttime due to the desert nature of the study
region, the same colormaps are used in Fig. 9 but with different value
ranges for day and night to aid visualization.

3.3. Comparison between gap–filling performances of MSSA and HANTS

The HANTS is also applied to the same set of images used to obtain
RMSE images in Fig. 7. As demonstrated by Arabi Aliabad et al. (2024),
19 frequencies are used in HANTS to reconstruct LST images and esti-
mate the RMSE image, displayed in Fig. 10. The comparison results show
that in gap–filling LST using HANTS, the use of LST images as a sequence

of day and night cannot provide acceptable results and day and night
images should be reconstructed separately. The HANTS reconstruction is
based on the annual temperature cycle model (Arabi Aliabad et al.,
2024). In LST image reconstruction using HANTS, only 4 % of the study
region has been reconstructed with an RMSE less than 3 ◦C, while in
MSSA with a window size 60, about 92 % of the area has been recon-
structed with an RMSE less than 3 ◦C, see Fig. 10.

3.4. Investigating the reconstructed LST for different land cover/use
classes

The reconstructed one-year time series of MODIS–LST are classified
according to each land cover/use class, and the changes of daytime and
nighttime LST for the classes are illustrated in Fig. 11. In bare lands, the
nighttime LST decreases by almost 37 ◦C as compared to the daytime,
while in rangelands and sand dune this decrease is 34.8 ◦C and 32.5 ◦C,
respectively. Mountainous areas and residential lands have a lower
temperature drop between day and night in the one-year time series, and

Fig. 6. The RMSE image for reconstructing the MODIS–LST images (◦C) based on MSSA using window size: (a) 60, (b) 180, (c) 360, (d) 720, and (e) comparison of
their percentage areas. The RMSE images are calculated based on true and reconstructed values. First, gaps are artificially created by removing 20 images, and then
MSSA is applied to estimate the RMSE images.
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their LST at night decrease compared to the day by about 22 ◦C. bare
lands, sand dune and rangelands show the highest daily LST during the
one-year time series. LST in the agricultural areas during the summer
does not generally follow the same pattern as other land covers, and they
require more irrigation to prevent stress in this season. Unlike daytime,
the analysis of nighttime LST images show that the highest LST at night
in the whole year is related to residential land cover. In other words,
compared to nighttime LST in other land covers, residential areas have
higher LST during the night.

3.5. Estimating maximum, minimum, and average LST images in each
day and night

The maximum, minimum, and average values of MODIS–LST in each
day and night are calculated in the seven-year-long time series
(2014–2020). Fig. 12 shows that the sinusoidal pattern in all the mini-
mum, maximum, and average values of LST in day and night are well
defined. The maximum, minimum, and average values of each LST
image are calculated from the LST values between the 2nd and 98th
percentiles of the LST image to reduce the effect of potential outliers.
The average daytime and average nighttime LST images for spring,
summer, fall, and winter and for period 2014–2020 are calculated and

displayed in Fig. 13. Examining the average values of the daily LST
images in the seven-year period shows that in the summer season, the
average daily LST images is approximately 56 ◦C, while at night, it is
about 24 ◦C. In other words, the average LST during the day and night of
the study region differs by about 32 ◦C. The maximum MODIS–LST in
the daily imagery in the summer season and the peak of heat is around
60 ◦C to 65 ◦C and in the coldest days of the year is around 22 ◦C. The
maximum LST in the night time series images is between 28 ◦C and 30 ◦C
during the peak of summer heat and between 9 ◦C and 11 ◦C in the
coldest days of the year. Usually, there is no complete time series of
minimum LST due to being located in mountainous areas and usually on
top of mountains, but in this part, considering that LST has been
reconstructed MSSA, it is possible to verify them. The daily minimum
LST in the hot season is between 39 ◦C and 41 ◦C and at night is between
9 ◦C and 11 ◦C. In other words, in summer, there is about a 30 ◦C dif-
ference between day and night minimum LST.

3.6. Producing daily and nightly average and standard deviation LST
maps

Using the reconstructed images of MODIS–LST in the seven-year-
long time series, the average and standard deviation of the day and
night LST images are estimated separately and illustrated in Fig. 14,
showing that in 26 % of the study region, the LST range from 35 ◦C to
37 ◦C and 12 % of the study region had a temperature higher than 39 ◦C,
and 7 % of the area had LST less than 25 ◦C. In general, in more than half
of the region, the average LST in daily images is higher than 35 ◦C. The
average nightly MODIS–LST map shows that about 58 % of the study
region had a temperature more than 10 ◦C. At night, the average LST has
decreased so much that only in 3 % of the region the LST is more than
14 ◦C, while during the day, 93 % of the region had an average tem-
perature of above 25 ◦C. Considering that the study region is a desert,
the big difference between day and night LST, as shown in the standard
deviation maps, can be expected.

4. Discussion

4.1. The choice of window size in MSSA

Optimal selection of the window size is not an easy task in MSSA. As
mentioned earlier, a large window size can capture longer period os-
cillations (low frequency components) in a data set, but a small window
size, in contrast, increases the statistical significance because low and
high frequency components will not compete for limited available
variance. Note that the window sizes 60, 180, 360 and 720 are examined
in detail in the present research because these window sizes respectively
correspond to the monthly, seasonal, semi-annual and annual LST cycles
that are usually the most dominant cycles in LST time series (Ahmed
et al., 2023; Ghaderpour et al., 2023). Other window sizes, such as 30,
90, 120 and 150 were also examined, and the RMSE results of the entire
study region and the selected pixel were also estimated. Table 2 sum-
marizes the RMSE results of eight different window sizes examined in
this research, where the results of window sizes 60, 180, 360 and 720
were demonstrated in more detail in the present study. Window sizes
less than 60 did not provide acceptable results, and window size 60 had
the lowest RMSE with a faster computational speed compared to larger
window sizes.

To reconstruct the MODIS–LST images with day and night sequence
using MSSA over seven years, the processing is carried out separately for
each year. To process the images with window size 180, the images are
divided into two blocks each year. To process images with window sizes
360 and 720, the images are divided into 4 and 8 blocks, respectively.
Note that this division is carried out only due to the computer RAM
limitation. Since the nature of LST time series is periodic, the main shape
specified by SSA is also periodic functions. As observed in Fig. 4, by
enlarging the window size, the number of significant components does

Fig. 7. Comparison of reconstructed LST (◦C) for window sizes: (a) 60 (RMSE:
1.4 ◦C), (b) 180 (RMSE: 2.6 ◦C), (c) 360 (RMSE: 2.8 ◦C), and d) 720 (RMSE:
2.9 ◦C) at the selected pixel as an example. RMSE is short for root mean
square error.

Fig. 8. Examining RMSE (◦C) in each category of missing data, shown in
different colors and labeled as M(%), in the seven-year-long time series of LST.
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not change, but all three components of the total variance of the data
change. Correlation coefficient is also estimated at 99 % for window size
60 using MSSA and 97 % in other window sizes.

4.2. Sensitivity of MSSA to missing data

The MSSA is a powerful technique for decomposing time series data
into trend, seasonal, and noise components. While it is robust to some
degrees of missing data, the impact of continuous, spatially large
missing areas can vary depending on the following factors.

(i) Spatial extent of missing area: If the missing area is relatively
small and localized, MSSA may be able to interpolate values from
neighboring pixels or nearby time steps. However, large,
continuous missing areas can significantly disrupt the spatial
coherence of the data and make accurate reconstruction more
challenging.

(ii) Temporal duration of missing data: Short-term missing data gaps
might be less problematic because MSSA can use information
from surrounding time steps to fill in the missing values. Long-
term missing data can be more detrimental as it can affect the
estimation of trend and seasonal components.

(iii) Data characteristics: The characteristics of MODIS data, such as
spatial resolution, temporal frequency, and noise levels can in-
fluence the impact of missing data. For example, higher spatial
resolution data may be more sensitive to missing data, while
lower noise levels can improve reconstruction accuracy.

(iv) MSSA parameters: The choice of MSSA parameters, such as the
number of singular values and the window size can also affect the
algorithm’s sensitivity to missing data. In general, the longer the
time series is, the better the results will be, and this is why the
seven-year-long time series is used in this research. Also, the
presence of a gap at the beginning and end of the time series
period can cause more errors than the presence of a gap in the
middle of the time series.

4.3. Comparison of MSSA with HANTS for LST image reconstruction

Arabi Aliabad et al. (2024) demonstrated the capability of HANTS in
reconstructing time series images of daytime and nighttime MODIS–LST
for the same study region. They showed that HANTS faced limitations in
accurately reconstructing the day-night sequence, particularly due to
temperature disparities between day and night. Consequently, separate
LST image reconstructions for day and night using HANTS showed an
improved accuracy for the study region. Arabi Aliabad et al. (2024) also
found that with 15 and 19 frequencies and a minimum period of 2 im-
ages, HANTS is suitable for daily and nightly MODIS–LST reconstruction
in the study region. In Fig. 10, the average RMSE of HANTS is about
5.3 ◦C, while the average RMSE of MSSA with window size 60 is about
2.6 ◦C, indicating the superiority of MSSA for reconstructing daytime
and nighttime MODIS–LST images. In addition, RMSE between the
original and reconstructed LST time series for the same selected pixel
using HANTS and MSSA are 4.5 ◦C and 1.4 ◦C, respectively. The
reconstruction performance of the MODIS–LST images also agree with

Fig. 9. (a) Image of the daily LST reconstructed using MSSA in a seven-year period, (b) Original daily LST with data gaps, (c) Image of the nightly LST reconstructed
using MSSA in a seven-year period, (d) Original nightly LST with data gaps. The top colorbar ranging from − 2 ◦C to 24 ◦C is used for panels (a) and (b), and the
bottom colorbar ranging from − 9 ◦C to 7 ◦C is used for panels (c) and (d).
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Alfieri et al. (2013) and Ghafarian Malamiri et al. (2018) who stated that
MSSA can use the spatiotemporal correlation for an effective gap–filling.
The findings of the present research are in good agreement with those of
Menenti et al. (2016) who investigated the application of MSSA and
HANTS in reconstructing MODIS–LST. Their results showed that MSSA

is capable of reconstructing LST with high accuracy. The reason for
achieving this accuracy is that MSSA considers both spatial and tem-
poral information of LST images while HANTS only considers the tem-
poral information of LST images. In other words, HANTS reconstructs
per-pixel time series independently while MSSA also uses the

Fig. 10. Comparison between MSSA and HANTS using their optimal parameter values: (a) RMSE image using MSSA for window 60 (same as Fig. 6a to aid side-by-
side comparison with HANTS), and (b) RMSE image using HANTS with 19 frequencies. To aid visualizing different RMSE classes in the maps, the same color schemes
are used in panel (a) and (b) (both maps and bar charts) but with different value ranges, i.e., for each color, the RMSE range for HANTS is twice more than the one
for MSSA.

Fig. 11. Changes in MODIS–LST (◦C) in different land covers: (a) daytime, and (b) nighttime.
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information of neighboring clear–sky pixels for reconstructing LST
which is more effective especially for constructing time series with long
temporal gaps.

Compared with temporal gap–filling models, such as HANTS, MSSA
is more complex and has a higher computational cost. Due to the high
volume of processes in MSSA, it is sometimes necessary to divide the
images into several smaller blocks and reconnect after processing. In
image reconstruction using MSSA, the longer the time series is, the more
accurate the reconstruction accuracy will be. The presence of missing
data at the beginning and end of the time series generally reduces the
accuracy of the reconstruction. The MSSA is a linear technique to
analyze and predict the behavior of a time series. It is a non-parametric
method compatible with the data, and this is one of the advantages of
MSSA over classical spectral methods, such as Fourier series analysis.
The HANTS is a temporal Fourier-based method that works well when
the time series is clearly a mixture of periodic components. When the
time series contains some periodic components, it needs many fre-
quencies to reconstruct the time series. In Fourier series analysis, peri-
odic components are applied, while in MSSA, elementary components
are extracted from the data. This means that if the time series contains
intrinsic components, the SSA decomposition will also be periodic. The
data adaptive nature of MSSA makes it suitable for analyzing nonlinear
dynamics, since there are no assumptions about the underlying physical
processes that govern the observed time series. Therefore, it can be
applied to any type of time series.

4.4. Validation of the LST results

Validating the LST results is a challenging task due to the lack of LST
ground database as pointed out by Adeniran et al. (2024). The hourly air
and surface temperature records (ground-based) in a summer day for the
selected pixel (the star in Fig. 1d), are illustrated in Fig. 15. Due to cli-
matic conditions (e.g., wind), the air temperature pattern does not
match very well with the surface temperature pattern; however, there is
a good agreement between the reconstructed MODIS–LST and ground-
based surface temperature measurements, see the red circles and yel-
low squares in Fig. 15. In the current research, in addition to validation
by creating artificial gaps, as explained in Section 3.2, the reconstructed
MODIS–LST values are also further validated by the field survey done by
the authors through a thermometer as illustrated and documented in
Arabi Aliabad et al. (2023b, Fig. 5). Note that the air and surface tem-
perature measurements acquired by ground-based instruments are very
localized and may not be a good proxy for a larger area, e.g., at the scale
of one square kilometer that is the resolution of MODIS–LST, bringing
another challenge for validation.

4.5. LST variation for land cover/use classes

The results of the daily LST in different land covers show that the
lowest temperature in the whole year is related to the mountain land
cover, see Fig. 11. After the mountains, the lowest LST is related to
residential areas. Bare lands, sand dune, and rangelands had the highest
daily LST during the one-year time series. The LST in the agricultural
cover in the peak of heat and summer season did not have the same
pattern as other land covers, demanding more irrigation in this season to
avoid tension. The pattern of LST changes in different land covers in the
day and night time series is different. Contrary to the day, the analysis of
the time series of images of LST shows that the highest LST at night in the
whole year is related to residential land cover, so that other land covers
lost their temperature at night, but the temperature has slightly
decreased in residential areas. It is found that the difference in tem-
perature between day and night in different land covers is not the same
throughout the year. The biggest difference between LST during day and
night is due to the hot days of the year. The temperature of rangelands,
sand dunes, and bare land covers shows the highest change in day and
night LST compared to other covers. The change of night and day LST in
different land covers is due to the reaction of a material to the changes in

Fig. 12. Examining changes in average, maximum, and minimum LST (◦C) in reconstructed images using MSSA: (a) daytime, and (b) nighttime.

Fig. 13. The average daytime and average nighttime LST images for different
seasons during 2014–2020.
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temperature or their thermal inertia property. Estimating and utilizing
land surface emissivity may further improve LST estimation (Yan et al.,
2024).

The results of LST changes in different land covers (see Fig. 11)
showed that, the daytime LST in urban land is lower than the one in
rangelands, bare lands and sand dune, which agree with the results
presented by Tahooni et al. (2023) as their results indicated that
reflective surfaces can increase albedo and decrease the surface tem-
perature more efficiently than vegetation. The presented results indi-
cated that urban growth and the impervious surfaces expansion could
produce urban cold islands instead of heat islands if the rooftops have
reflective surfaces.

4.6. LST variation during 2014–2020

The results of comparing the average LST in a seven-year time series

Fig. 14. (a)–(b) The average and standard deviation images of daily MODIS–LST, and (c)–(d) the average and standard deviation images of the nightly MODIS–LST
(◦C), respectively. The bar charts under each geospatial map shows the percentage area of each class with the same color scheme as in the map.

Table 2
The RMSE (◦C) results of different window sizes for MSSA. The bold values are
the best values.

Window size 30 60 90 120 150 180 360 720

RMSE of the
study region

5.76 2.60 3.16 3.71 4.63 4.83 5.20 5.39

RMSE of the
selected pixel

2.96 1.40 2.56 2.00 2.30 2.60 2.80 2.91
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(Fig. 12) demonstrate that in 2014, the average temperature of daily
images is 32.58 ◦C and in 2015 it is 33.4 ◦C, while in 2019 and 2020 it is
estimated to be 35.3 ◦C and 35.1 ◦C, respectively. In addition, the ex-
amination of the average LST in each daily image in the seven-year-long
time series also shows that the maximum average value of the LST im-
ages in 2014 is 50.8 ◦C and in 2019 and 2020 are 54.2 ◦C and 53.7 ◦C,
respectively, in agreement with gradual Earth surface temperature in-
crease and global warming.

In winter, the minimum daily LST is estimated to be 0 ◦C to 3 ◦C for
the study region. In the time series of night images, the minimum LST in
this season is estimated to be − 15◦C. Considering that in the study area,
all meteorological stations are located in the plains, and it is not possible
to take land samples in the mountains using a thermometer. Therefore, it
is not possible to estimate the minimum temperature to validate LST at
night in the cold season – one of the limitations of this study. Among the
four window sizes (60, 180, 360, 720) examined in the present study, it
is found that window size 60 is the most optimal size that can recon-
struct the LST time series very well. Smaller window sizes than 60, such
as 20 and 30 are also examined but could not reconstruct the large data
gaps well because they are too small to capture adequate data for
computation.

4.7. Practical implications of the reconstructed MODIS–LST images

A complete time series of LST is required in many environmental
science applications, such as deriving climatic indices and modelings.
Using MSSA, it is possible to reconstruct LST images with acceptable
accuracy and estimate the values that are missed due to the presence of
clouds, dust and sensor problems. In climate studies, gaps in time series
can significantly bias the trend estimation (Ahmed et al., 2023). To es-
timate drought stress in plants, surface energy algorithms, such as sur-
face energy balance algorithm for land and surface energy balance
system can be utilized, where LST image is a main component (Zamani
Losgedaragh and Rahimzadegan, 2018). Therefore, to check the drought
stress status of plants in the time series, it is necessary to reconstruct the
LST images. Today, in urban areas, especially in desert areas, such as the
studied region, important topics are global warming and thermal
islands. In studies of heat islands, comparing the temperature in two
days of the year with another year cannot well express the temperature
change, so a time series should be compared. The first requirement for
such investigations is the existence of a complete time series of LST, so it
is necessary to reconstruct the temperature images first before pro-
ceeding to the next steps.

The complete series of LST, obtained from the reconstruction and
gap–filling of the images in the present study can be used as input data in
various applications, such as soil moisture estimation (Przeździecki
et al., 2023), temperature trends (Ghaderpour et al., 2024; Shawky
et al., 2023), retrieving evapotranspiration (Pan et al., 2024), plant

stress monitoring (Guo et al., 2023), and urban heat islands (Almeida
et al., 2021; Wang et al., 2021). Rapid urbanization in recent decades,
accompanied by the rapid conversion of natural landscapes to imper-
vious surfaces, has resulted in many ecological and environmental
problems. The UHI and air pollution, typical problems in urban envi-
ronments, have increased with the development of rapid urbanization
(Xiang et al., 2022). Importantly, more than 50 % of the Earth popula-
tion and 80 % of its economic activity is located in built-up areas, where
urban heat is even more pronounced (Guo et al., 2023). Therefore, the
mitigation of UHIs as well as their consequent effects on urban residents
has become an important topic in the domain of urban climatology,
landscape ecology, and planning (Samson Udama Eneche et al., 2024).

5. Conclusions

The time series of LST images obtained from satellites are used in
various fields and used as the main input data in manymodels. However,
these images have missing data due to the presence of clouds, dust,
sensor defects, and others. Obtaining the complete time series of LST and
reconstructing the missing data in these images is very important and
challenging. In this research, MSSA is utilized to fill the missing data in
MODIS–LST imagery. The results show that MSSA had a good accuracy
in reconstructing MODIS–LST with the sequence of day and night when
a window size 60 is chosen. The average RMSE of MSSA is estimated to
be approximately 2.6 ◦C for the entire study region and 1.4 ◦C for the
selected pixel, indicating a very good capability for reconstructing LST
images and creating a complete time series of surface temperature
without missing data and gaps. It is also shown that MSSA outperformed
HANTS by about 2.7 ◦C (RMSE) for reconstructing MODIS–LST images.
It is found that mountainous regions had the lowest daily LST, and the
highest nightly LST is in residential areas. In addition, rangelands, sand
dune, and bare lands had the highest day and night LST variation
compared to other land covers. Considering that the presence of clouds
and the creation of missing data can make time series images of LST
unusable, studies concerned with reconstruction of LST and improving
the existing methods to improve their accuracy are very useful. The
results presented in this research indicate that MSSA is a powerful
approach to the study of time-dependent phenomena. It combines ele-
ments of classical time series analysis, multivariate statistics, dynamical
systems and signal processing. It is well suited for the analysis of time
series with quasi-periodic behavior, where the amplitude or phase of
oscillatory modes is modulated in time; both types of modulation are
typical in the geosciences in general, and in space physics in particular.
In future, other advanced machine learning and deep learning tech-
niques can be utilized for LST image reconstruction and comparison
with MSSA results.

CRediT authorship contribution statement

Fahime Arabi Aliabad: Writing – original draft, Visualization,
Validation, Software, Methodology, Formal analysis, Data curation,
Conceptualization. Mohammad Zare: Writing – review & editing, Su-
pervision, Conceptualization. Hamidreza Ghafarian Malamiri:
Writing – review & editing, Supervision, Conceptualization. Amane-
halsadat Pouriyeh: Writing – review & editing, Data curation,
Conceptualization. Himan Shahabi: Writing – review & editing, Su-
pervision, Conceptualization. Ebrahim Ghaderpour:Writing – original
draft, Visualization, Validation, Supervision, Funding acquisition,
Conceptualization. Paolo Mazzanti: Writing – review & editing, Su-
pervision, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Fig. 15. Comparison of the reconstructed MODIS–LST with air temperature
and ground-based surface temperature in a summer day for a pixel around the
weather station. The hours on the x-axis start from 5:00 AM, the first hour after
the sunrise.

F.A. Aliabad et al. Ecological Informatics 83 (2024) 102830 

14 



Data availability

The code, input and output datasets, including the guideline on how
to run the code can be found online at the following link:
https://github.com/Fahimearabi/Reconstruction

-of-LST-images-using-MSSA.

Acknowledgment

This work was supported by CERI Research Centre at Sapienza
University of Rome. The authors thank the NASA scientists and
personnel for providing MODIS–LST imagery used in this work and
thank the reviewers for their constructive suggestions.

References

Adeniran, I.A., Nazeer, M., Wong, M.S., Zhu, R., Yang, J., Chan, P.W., 2024. Improved
fusion model for generating hourly fine scale land surface temperature data under
all-weather condition. Int. J. Appl. Earth Obs. Geoinf. 131, 103981.

Agam, N., Kustas, W.P., Anderson, M.C., Li, F., Colaizzi, P.D., 2008. Utility of thermal
image sharpening for monitoring field-scale evapotranspiration over rainfed and
irrigated agricultural regions. Geophys. Res. Lett. 35, L02402.

Ahmed, M.R., Ghaderpour, E., Gupta, A., Dewan, A., Hassan, Q.K., 2023. Opportunities
and challenges of spaceborne sensors in delineating land surface temperature trends:
a review. IEEE Sensors J. 23, 6460–6472.

Alfieri, S.M., De Lorenzi, F., Menenti, M., 2013. Mapping air temperature using time
series analysis of LST: the SINTESI approach. Nonlin. Processes Geophys. 20,
513–527.

Aliabad, F.A., Shojaei, S., Mortaz, M., Ferreira, C.S.S., Kalantari, Z., 2022. Use of Landsat
8 and UAV images to assess changes in temperature and evapotranspiration by
economic trees following foliar spraying with light-reflecting compounds. Remote
Sens. 14, 6153.

Allen, M.R., 1992. Interactions between the Atmosphere and Oceans on Time Scales of
Weeks to Years. Ph.D. thesis. University of Oxford.

Almeida, C., Teodoro, A., Gonçalves, A., 2021. Study of the urban heat island (UHI) using
remote sensing data/techniques: a systematic review. Environments 8, 105.

Almeida, C., Furst, L., Gonçalves, A., Teodoro, A., 2022. Remote sensing image-based
analysis of the urban heat island effect in Braganca, Portugal. Environments 9, 98.

Arabi Aliabad, F., Ghafarian Malamiri, H., Sarsangi, A., Sekertekin, A., Ghaderpour, E.,
2023a. Identifying and monitoring gardens in urban areas using aerial and satellite
imagery. Remote Sens. 15, 4053.

Arabi Aliabad, F., Zare, M., Ghafarian Malamiri, H., Ghaderpour, E., 2023b. Improving
the accuracy of landsat 8 land surface temperature in arid regions by MODIS water
vapor imagery. Atmosphere 14, 1589.

Arabi Aliabad, F., Shojaei, S., Zare, M., Ghafarian Malamiri, H., 2024. Investigating the
Capability of the Harmonic Analysis of Time Series (HANTS) Algorithm in
Reconstructing Time Series Images of Daytime and Nighttime Land Surface
Temperature from the MODIS Sensor. Spat. Inf. Res.

Broomhead, D.S., King, G.P., 1986. On the Qualitative Analysis of Experimental
Dynamical Systems. Adam Hilger Bristol.

Buo, I., Sagris, V., Jaagus, J., 2021. Gap-filling satellite land surface temperature over
heatwave periods with machine learning. IEEE Geosci. Remote Sens. Lett. 19, 1–5.

Chander, G., Markham, B.L., Helder, D.L., 2009. Summary of current radiometric
calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote
Sens. Environ. 113, 893–903.

Cho, D., Yoo, C., Im, J., Lee, Y., Lee, J., 2020. Improvement of spatial interpolation
accuracy of daily maximum air temperature in urban areas using a stacking
ensemble technique. GISci. Remote Sens. 57, 633–649.

Cho, D., Bae, D., Yoo, C., Im, J., Lee, Y., Lee, S., 2022. All-sky 1 km MODIS land surface
temperature reconstruction considering cloud effects based on machine learning.
Remote Sens. 14, 1815.

Dousset, B., Gourmelon, F., 2003. Satellite multi-sensor data analysis of urban surface
temperatures and landcover. ISPRS J. Photogramm. Remote Sens. 58, 43–54.

Duan, S., Li, Z., Leng, P., 2017. A framework for the retrieval of all-weather land surface
temperature at a high spatial resolution from polar-orbiting thermal infrared and
passive microwave data. Remote Sens. Environ. 195, 107–117.
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