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Direct numerical simulation of the Navier-Stokes equations is carried out to investigate
the interaction of a conical shock wave with a turbulent boundary layer developing over
a flat plate at free-stream Mach number M∞ = 2.05 and Reynolds number Reθ ≈ 630,
based on the upstream boundary layer momentum thickness. The shock is generated
by a circular cone with half opening angle θc = 25◦. As found in experiments, the
wall pressure exhibits a distinctive N-wave signature, with a sharp peak right past the
precursor shock generated at the cone apex, followed by an extended zone with favourable
pressure gradient, and terminated by the trailing shock associated with recompression in
the wake of the cone. The boundary layer behavior is strongly affected by the imposed
pressure gradient. Streaks are suppressed in adverse pressure (APG) zones, but reform
rapidly in downstream favorable pressure gradient (FPG) zones. Three-dimensional mean
flow separation is only observed in the first APG region associated with formation of a
horseshoe vortex, whereas the second APG region features an incipient detachment state,
with scattered spots of instantaneous reversed flow. As found in canonical geometrically
two-dimensional wedge-generated shock/boundary layer interactions, different amplifica-
tion of the turbulent stress components is observed through the interacting shock system,
with approach to isotropic state in APG regions, and to a two-component anisotropic
state in FPG. General adequacy of Boussinesq hypothesis is found to predict the spatial
organization of the turbulent shear stresses, although different eddy viscosities should be
used for each component, as in tensor eddy-viscosity models, or in full Reynolds stress
closures.
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1. Introduction

Shock wave/turbulent boundary layer interactions (SBLI) occur whenever a shock
sweeps across the boundary layer developing on a wall surface, and as a consequence
they have great interest in aeronautics and aerospace engineering. SBLIs are found
in several situations of practical importance, such as wing-fuselage and tail-fuselage
junctions of an aircraft, helicopter blades, supersonic intakes, over-expanded nozzles,
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(a) (b)

Figure 1. Conical SBLI in launch vehicle during the ascent phase (a) and in the air intake of
the hypersonic SR-72 vehicle (b).

launch vehicles during the ascent phase, etc. Typically, these phenomena have a signif-
icant drawback on aerodynamic performance, yielding loss of efficiency of aerodynamic
surfaces, unwanted wall pressure fluctuations possibly leading to vibration and fatigue of
structural components, and to localized heat transfer loads, especially in presence of flow
separation (Dolling 2001; Smits & Dussauge 2006; Babinsky & Harvey 2011). A large
number of experimental and numerical studies, along with the concurrent development
of flow control techniques, have been carried out in past decades, but nevertheless the
unsteady features and the turbulence amplification mechanisms conveyed by SBLI are
not fully understood, remaining a challenging state-of-the-art research problem.
Most studies of SBLI have been carried out in idealized settings involving

geometrically two-dimensional configurations, and/or using simplified modeling
approaches (Délery. & Dussauge 2009; DeBonis et al. 2012; Morgan et al. 2013). As
a common conclusion, these investigations have proved that turbulence models have the
ability to capture the mean flow features such as the pressure loads and the interaction
length scales, but obviously they cannot capture the unsteady features and correctly
predict flow separation. The most relevant studies on SBLI in geometrically two-
dimensional configurations have been carried out experimentally or numerically through
high-fidelity simulations (Adams 2000; Pirozzoli & Grasso 2006; Smits & Dussauge
2006; Dupont et al. 2006; Pirozzoli & Bernardini 2011a; Touber & Sandham 2011;
Hadjadj 2012). The overall picture involves a boundary layer which develops under APG
conditions, with the effects of the shock that are felt upstream of the impingement as a
result of propagation of information in the subsonic part of the boundary layer. In case
the shock is strong enough, separation takes place and pressure shows a plateau in the
separation region, with a typical low-frequency motion of the shock system and of the
separation bubble. Turbulence experiences amplification while traversing the shock, and
it undergoes a relaxation process as is proceeds past the interaction region. However,
SBLI occurring in flow conditions of practical relevance are almost invariably three-
dimensional in nature. Most often, shock waves are generated by finite-sized bodies, and
interact with turbulent boundary layers developing on solid surfaces. Conical shocks
in particular are frequently found in high-speed vehicles, both in external and internal
flows, for which examples are provided in figure 1. In the supersonic ascent phase,
multi-body launch vehicles feature conical shock boundary layer interactions (CSBLI)
associated with reflection of the boosters-generated shocks with the main body of the
launcher (see panel a, from (Sziroczak & Smith 2016)). CSBLI also occur in internal
flows as in the hypersonic wave-catcher (inward-turning) intake adopted on the SR-72
vehicle (Zuo et al. 2016; Zuo & Huang 2018), sketched in panel (b). As shown in figure 2,
the initially conical shock wave covers the intake edge, and it reflects as another conical
shock impinging on the upper surface.
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Figure 2. Sketch of flow structure in wave-catcher inward-turning intake (Zuo & Huang 2018).
Red and green surfaces are conical shocks, the purple surface is the separation region, red lines
are a sketch of vortices caused by CSBLI.

Figure 3. Flow-field structure of strong CSBLI under separation condition (Panov 1968).
Numbered solid lines are conical shock traces; numbered dashed lines are rarefaction waves;
5 is the separation region, delimited in the wall plane by S (separation) and e (reattachment).

The analysis of CSBLI is inherently more difficult than for planar SBLI, in that the flow
field past a conical shock is not uniform, and the wall pressure rise is not uniform along
the boundary-layer transverse direction, hence the resulting limiting wall streamlines are
not parallel. Moreover, non-uniformity of the imposed shear yields a variety of complex
vortical structures which interact and merge while becoming entrained in the main flow.
Greater challenge is also encountered in the numerical simulation of CSBLI, mainly
because of slow convergence of the flow statistics in the absence of directions with spatial
homogeneity. The leading features of CSBLI are sketched in figure 3, taken from Panov
(1968). The shock generator K generates the incident conical shock 1, and 2 is the three-
dimensional separation shock associated with separation of the boundary layer. The
approaching flow that passes through shock 2 is deflected upward, and after passing
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through shock 3 and rarefaction wave 4, the separated boundary layer is directed at
some angle toward the plate surface. Shock 7 then arises to realign the outer flow to
the wall-parallel direction. The boundary layer, which separates along line S (coalescence
line), reattaches along line e (divergence line). As in the case of the later analysis, the
rarefaction wave 6 emanating from the trailing edge of the shock-generating device can
also enter into play thus further complicating the analysis of the flow in the interaction
region. The overall phenomenon, with special reference to the separation region 5 is
inherently three-dimensional in nature.
A mathematical analysis of CSBLI was carried out by Migotsky & Morkovin (1951).

One of the main conclusions was that, even when regular reflection is possible at the
leading edge of the interaction zone, transition to Mach reflection shall occur somewhere
along the spanwise direction. Gai & Teh (2000) experimentally investigated the interac-
tion of the shock wave produced by a conical shock with a planar turbulent boundary
layer, at free-stream Mach number 2. By varying the cone opening angles from 14◦ to
30◦, both attached and separated conditions were achieved. The results showed that
the incident shock imposes a significant pressure gradient in the spanwise direction
yielding strong cross flow and formation of a horseshoe vortex whose signature was
evident in surface oil-flow visualizations, and whose size and strength gradually reduce
away from the symmetry plane. Notably, the pressure rise for incipient separation was
found to be less than for the geometrically two-dimensional case. Hale (2015) studied
the impingement of a conical shock wave on a plane turbulent boundary layer at Mach
number 2.05, and gathered informations by means of surface oil flow, pressure-sensitive
paint and particle image velocimetry techniques. The experimental data suggested that
the interaction causes locally two-dimensional separation near the centerline, and three-
dimensional separation away from this region, with fluid propagating away from the
centerline. Significant spanwise and streamwise expansion was observed right downstream
of the interaction leading edge, unlike in equivalent geometrically two-dimensional wedge-
generated SBLI. The results further gave hints for instantaneous boundary layer separa-
tion, and showed that the interaction tends to suppress large-scale vortical structures in
the incoming boundary layer.
Based on the survey of the state-of-the-art in CSBLI we believe that further study

is appropriate. In particular, we find that limited information about the detailed three-
dimensional structure of the interaction has been gained through experiments, and no
high-fidelity computation (i.e. LES and/or DNS) has been reported so far. Hence, we
believe that a DNS-based analysis of CSBLI can help the research community in achieving
improved physical understanding of the phenomenon, and to developed better turbulence
models for simplified predictions. To make our analysis sufficiently general, we consider a
relatively simple geometrical set-up, whereby a fully developed turbulent boundary layer
progresses on a flat solid surface, and the shock wave generated by a circular cone with
axis parallel to the wall is made to interact with it, mimicking the experimental flow
conditions of Hale (2015). The paper is organized as follows. The numerical methodology
is described in §2; the results are presented in §3, covering a quantitative analysis of the
mean and statistical properties of the flow field. Concluding remarks are given in §4.

2. Computational strategy

We solve the three-dimensional Navier-Stokes equations for a perfect Newtonian gas.
The molecular viscosity µ is assumed to obey Sutherland’s law, and the thermal con-
ductivity k is related to µ through k = cpµ/Pr, where the molecular Prandtl number
Pr is assumed to be 0.72. The Cartesian solver used for the present analysis was
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Figure 4. Sketch of computational domain for CSBLI analysis. δin is the inflow boundary layer
thickness, xrec is the boundary layer recycling station, xc is the x coordinate of the cone leading
edge. The green surface depicts the conical shock, whose wall trace is highlighted in red.

extensively tested for compressible wall-bounded flows, also in presence of impinging
shocks (Pirozzoli et al. 2010; Pirozzoli & Bernardini 2011a). The main feature of the
solver is the use of a conservative discretization of the convective fluxes which combines
sixth-order central non-dissipative discretization in smooth parts of the flow field and
seventh-order weighted-essentially non-oscillatory (WENO) discretization in shocked
regions, the switch between the two being controlled by a shock sensor based on the ratio
of local dilatation to vorticity modulus (Pirozzoli 2011). For the purpose of hybridization,
critical grid nodes are first marked and then padded with four nodes on both sides to
ensure that the stencil of the underlying non-dissipative scheme does not cross shocked
zones. Improved numerical stability for the central discretization in smooth parts of the
flow is achieved by splitting the convective derivatives as (Pirozzoli 2010)
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where ϕ stands for a generic transported fluid property. The continuous derivative
operators are then replaced with central finite difference approximations using a locally
conservative formulation (Pirozzoli 2010), which guarantees global conservation of mass,
momentum, and total energy through the telescopic property and simplifies hybridization
with the WENO algorithm. An important property of the convective split form (2.1) is
that it leads to kinetic energy preservation for inviscid, incompressible flow, guaranteeing
strong numerical stability without reverting to upwinding or filtering. The diffusive terms
in the Navier-Stokes equations are also approximated with sixth-order central differences
after being expanded to Laplacian form to guarantee finite molecular dissipation at all
resolved wavelengths. Time advancement is performed by means of a standard three-stage
third-order explicit Runge-Kutta algorithm.

2.1. Computational domain

The computational domain employed for the simulation is sketched in figure 4. The
choice of the streamwise extent (Lx = 150δin, with δin the inflow boundary layer thick-
ness) is dictated by the requirement of having a sufficient boundary layer development
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Figure 5. Sketch of the immersed-boundary treatment. I is the interface node, and W and R
are the corresponding wall-normal foot and reflected control point.

region past the inflow and to analyze the recovery region past the interacting shock.
The spanwise length (Lz = 60δin) guarantees that no spurious coherence develops in
the upstream boundary layer, and allows to minimize numerical blocking from the side
boundaries. The domain height (Ly = 30δin) is such that numerical wave reflections
from the upper boundary are also minimized. Based on previous experience with DNS
of SBLI and of a set of preliminary simulations, the domain has been discretized with
a grid including 1536 × 384 × 1280 nodes. Uniform spacing is used in the streamwise
and spanwise directions, whereas nodes are clustered in the wall-normal (y) direction
according to a hyperbolic sine stretching function up to y/δin = 6.5. In terms of wall
units evaluated in the undisturbed boundary layer upstream of the interaction zone, the
streamwise and spanwise spacings are ∆x+ ≈ 10, ∆z+ ≈ 5, respectively, whereas the
spacing in the wall-normal direction ranges between 0.7 at the wall and 12. Here and
elsewhere, the + subscript is used to denote normalization with respect to the friction
velocity uτ =

√
τw/ρw (where τw and ρw are the wall shear stress and density), and the

viscous length scale δv = νw/uτ (where νw is the wall kinematic viscosity). As a further
a-posteriori check, we have computed the local Kolmogorov length scale according to
η = (ν3/ε)1/4, with the isotropic dissipation rate estimated from

ε = 2ν
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We have found that the effective grid spacing ∆ = (∆x∆y∆z)1/3 is nowhere larger
than about three local Kolmogorov length scales, which is more than sufficient for DNS.
Velocity and pressure spectra were also analyzed, and shown to yield no spurious energy
pile-up at the smallest resolved wavenumbers.

2.2. Treatment of shock generator

In order to accommodate the conical shock generator in the Cartesian mesh used for
the DNS we rely on the immersed boundary method, using the direct forcing approach
of Fadlun et al. (2000), in which the Navier-Stokes equations are replaced by suitable
interpolation formulas at the interface nodes between solid and fluid. A geometrical
preprocessor based on the ray tracing algorithm (O’Rourke 1998) is applied to tag
solid and fluid nodes. Once the fluid nodes are located, we identify the subset of nodes
for which discretization of the Navier-Stokes equations involves the use of solid nodes,
which are tagged as interface nodes and used to indirectly prescribe desired values to
the conservative variables conditions at the fluid/body interface. For that purpose (see



DNS of conical shock/boundary layer interaction 7

figure 5), for each interface node (I) a wall-normal line is considered, along which a
control point (R) is considered, at fixed distance from the wall foot (W), where the flow
variables are interpolated from neighboring grid nodes. An equilibrium wall function is
then used to define the flow variables at I based on those at R (Tessicini et al. 2002).
Implementation details are provided in Bernardini et al. (2016). The cone is resolved with
approximately 72, 56 and 138 grid intervals in the streamwise, wall-normal and spanwise
directions, respectively, and the distance of the reflected control points from the nearest
wall expressed in local wall units along the cone ranges between 3 and 70. We believe
that, although the boundary layer on the cone is certainly not well resolved, this is not a
major shortcoming, as the cone simply serves as a disturbing element to force a spatially
varying pressure gradient onto the underlying boundary layer. Validity of the approach
is confirmed by later comparison with experiments.

2.3. Flow conditions

The flow conditions are selected to be as close as possible to the reference experiment
of Hale (2015). The shock is generated by a circular cone with height L/δin = 6.835 and
half opening angle is θc = 25◦. The apex of the cone is at xc = 30δin, and its axis is parallel
to the wall at a distance h/δin = 13.67 (see figure 4). The upstream flow has Mach number
M∞ = 2.05, and the Reynolds number based on the inflow boundary layer thickness is
Reδin = 5000. The latter is about a factor of fifty less than the reference experiment, but
as will be shown later this is not the cause of major quantitative differences.
A critical issue in the numerical simulations of spatially developing flows is the

prescription of suitable inflow conditions to achieve a fully developed boundary layer state
within the shortest possible fetch. In the present DNS this is achieved through a rescaling-
recycling procedure (Xu & Martin 2004), whereby a cross-stream slice of the flow field is
extracted at every Runge-Kutta sub-step at the recycling station xrec, and fed back to the
inflow upon suitable rescaling. This approach generates a realistic turbulent boundary
layer within a short distance from the inflow, and it allows to control skin friction and
thickness of the simulated boundary layer. To minimize spurious time periodicity that
may result from application of quasi-periodic boundary conditions in the streamwise
direction, the recycling station is set at xrec = 25δin, also sufficiently upstream of the cone
apex. Non-reflecting characteristic boundary conditions are applied to the outflow, at the
top boundary, and in the spanwise direction for x > xrec, whereas spanwise periodicity is
assumed for x 6 xrec. Unsteady characteristic boundary conditions are specified at the
bottom no-slip wall (Poinsot & Lele 1992), with temperature set to its adiabatic value.
Flow statistics have been collected from time t0u∞/δin ≈ 216 to time tfu∞/δin ≈ 1572,
at intervals of ∆tu∞/δin ≈ 0.1. The long sampling time is needed to achieve convergence
of point-wise statistics in time in the absence of homogeneous directions, and it makes
the present calculation quite time-consuming. The statistical analysis is carried out by
splitting the instantaneous quantities into their mean and fluctuating components, using
either the standard Reynolds decomposition (f = f+f ′) or the density-weighted (Favre)

decomposition (f = f̃ + f ′′), where f̃ = ρf/ρ.

3. Results

3.1. Characterization of the incoming boundary layer

A necessary check is that the incoming boundary layer is properly developed prior to
interaction with the conical shock. For that purpose, we consider a reference station at
xref = 27.5δin, located upstream of the cone leading edge. The global boundary-layer
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Me Reθ Reδ2 Reτ Cf δ∗/δ θ/δ H Hi

DNS 2.05 630 410 160 3.63 × 10−3 0.326 0.082 3.97 1.60

Hale (2015) 2.05 31900 20810 4490 1.53 × 10−3 − − − 1.33

Table 1. Properties of incoming turbulent boundary layer at the reference station
xref = 27.5δin . Me = ue/ce; Reθ = ρeueθ/µe; Reδ2 = ρeueθ/µw ; Reτ = ρwuτ δ/µw;
Cf = 2τw/(ρeu

2
e); H = δ∗/θ; Hi = δ∗i /θi. The subscript e denotes properties evaluated at

the edge of the boundary layer.

(a)

y+

u
+ v
d

(b)

y+

τ
∗ ij

Figure 6. Van Driest transformed mean streamwise velocity (a), and density-scaled turbulent
stresses (b) at the reference station (xref = 27.5δin). Lines refer to the present DNS data, and
symbols to reference data (Pirozzoli & Bernardini 2011b) at M∞ = 2. In panel (a) the dashed
line denotes a compound of u+ = y+ and u+ = 5.0 + 1/0.41 log y+. In panel (b) we show τ∗

11

(solid), τ∗

22 (dashed); τ∗

33 (dash-dot); τ∗

12 (dash-dot-dot).

properties at this station are listed in table 1, where δ is the 99% thickness, δ∗ is the
displacement thickness,

δ∗ =

∫ δe

0

(
1−

ρ̄

ρe

ū

ue

)
dy, (3.1)

and θ is the momentum thickness,
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0
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ρe

ū

ue

(
1−

ū

ue

)
dy, (3.2)

the upper integration limit δe denoting the edge of the rotational part of the bound-
ary layer, defined as the point where the mean spanwise vorticity becomes less than
0.005u∞/δin (Pirozzoli et al. 2010). The subscript e is used to denote the corresponding
external flow properties. The table also reports equivalent incompressible boundary layer
properties evaluated by setting to unity the density ratios in equations (3.1), (3.2), and
referred to with the subscript i. Table 1 also shows the same parameters for the reference
experiment of Hale (2015), which has much higher Reynolds number.
The van Driest effective velocity,

uvd =

∫ ū

0

(
ρ̄

ρ̄w

)1/2

dū, (3.3)
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is used in figure 6a to compare with boundary layer data at very similar flow condi-
tions (Pirozzoli & Bernardini 2011b), with minor difference in Mach number. The same
solver was used, and the only relevant difference in the computational setup was the
location of the recycling station, which was set at xrec = 50δin. Comparison with the
reference data is quite good, and in particular the velocity profiles show linear behavior
up to y+ ≃ 5, as expected for adiabatic boundary layers (Smits & Dussauge 2006), and a
narrow range with near logarithmic variation. Comparison of the density-scaled velocity
correlations

τ∗ij =
ρũ′′

i u
′′

j

τw
, (3.4)

is also shown in figure 6b. The agreement with the reference data is again quite good,
which leads us to conclude that the upstream boundary layer well corresponds to a
healthy state of equilibrium wall turbulence.

3.2. General flow organization

Having established the properties of the incoming boundary layer, we proceed to
describe the main features of the flow upon interaction with the conical shock. For that
purpose time-averaged and instantaneous fields of density, pressure and streamwise veloc-
ity are shown in the symmetry plane in figure 7. The flow exhibits an overall organization
similar to experimental observations (Hale 2015), with the shock wave generated by the
cone which impinges on the bottom wall surface, thus leading to CSBLI. This is clearly
seen in density field, which well highlights the overall wave pattern. The main interacting
shock is generated as straight at the cone surface, and subsequently it bends backward
upon merging with the expansion fan which arises at the cone trailing edge. A continuous
compression may be inferred from the pressure contours along the cone surface, which
may be justified recalling that the flow is not uniform past conical shocks, unlike for planar
shocks. The shock impinges on the bottom wall at x/δin ≈ 45. The streamwise velocity
contours in figure 7e well highlights the thickening of the boundary layer in this region. As
also in canonical planar interactions (Pirozzoli & Grasso 2006), the reflected wave system
consists of a precursor wave associated with the upstream influence mechanism, and a
trailing wave associated with boundary layer reattachment. The figures also bring out the
presence of an extended low-speed region in the wake of the cone with turbulent flow,
which is closed by a conical recompression shock (Herrin & Dutton 1994), originating
at x/δin ≈ 50, and interacting with the developing boundary layer at x/δin ≈ 75. An
additional weak compression wave is also seen to be generated at the upper boundary of
the computational domain owing to imperfect radiation of numerical disturbances, and
hitting the wall at x/δin ≈ 100. The dynamical character of the reflected shock system,
which oscillates back and forth may be clearly appreciated in an attached supplementary
movie.
To understand the three-dimensional character of the flow field, wall-normal/streamwise

sections at two additional spanwise locations are reported in figure 8, where instantaneous
density contours are plotted using the same style as in figure 7. The figure shows that the
conical shock traces are not straight lines as in the symmetry plane, but rather they have
hyperbolic shape, as should be the case. Additional features should be also noted. In
particular, we find that reflection of the primary interaction shock changes from regular
to Mach type (Migotsky & Morkovin 1951). Second, the density jump across the shock
decreases gradually owing to flow three-dimensionality and interaction of the expansion
fan originating at the cone trailing edge. Third, the wake recompression shock has a
similar structure as the primary conical shock, and its in-wall trace is also hyperbolic.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 7. Visualization of time-averaged (a, c, e) and instantaneous (b, d, f) flow field in the
symmetry plane (z = 0). The blank region corresponds to the conical shock generator. Panels
(a, b): density, 0.2 6 ρ̄/ρ∞ 6 2.0; panels (c, d): pressure, 0.1 6 p̄/p∞ 6 2.9; panels (e, f):
streamwise velocity, −0.2 6 ū/u∞ 6 1.4. Color scale from blue to red.
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(a)

(b)

Figure 8. Instantaneous density contours at z/δin = −15 (a), z/δin = −30 (b). Contours are
shown for 0.2 6 ρ/ρ∞ 6 2.0, from blue to red. The cone trace in the symmetry plane is shown
for reference purposes.

Migotsky & Morkovin (1951) theoretically analyzed the reflection of a conical shock
from a planar surface in the limit of strictly inviscid flow. They predicted that transition
from regular to Mach reflection should occur at a critical value of the angle formed
by the normal to the shock trace in the wall plane with the streamwise direction (ϕ,
see figure 9b). At the flow conditions under scrutiny here, transition should occur for
ϕ ≈ 9◦. In order to visualize the shock structure in the present DNS, in figure 9 we
show contours of the shock sensor. Information is also provided in figure 9 in a series of
planes normal to the shock wall trace. To clarify the occurrence of different types of shock
reflection, in panels (d-f) we show contours of the thermodynamic entropy (s = p/ργ),
with superimposed the estimated boundary layer edge (solid blue line) and the mean
sonic line (black dashed line), as a lower boundary for shock existence. The analysis
is here complicated by the presence of the boundary layer, which is itself the cause of
substantial increase of entropy from the free stream toward the wall, and which causes
refraction of the shock wave as it penetrates layers with lower speed, masking the possible
occurrence of triple points inside the boundary layer. Outside the boundary layer, the
reflection type is easily classified upon inspection of the thermodynamic entropy in the
neighbourhood of the candidate triple point, which is higher for fluid crossing the normal
shock foot as compared to fluid crossing the two oblique shocks. Based on the available
data, we may conclude that reflection is likely to be of regular type for control planes
1 and 2, whereas it is certainly of Mach type starting at control plane 3, for which a
distinct triple point emerges outside the boundary layer. Accordingly, higher entropy is
observed for fluid particles traveling underneath the triple point than above.
A three-dimensional rendering of the flow structures is provided in figure 10, which

includes iso-surfaces of pressure, streamwise velocity contours in a near-wall plane,
and pressure contours in a side plane. This figure qualitatively brings out the strong
relationship between the shock system and the boundary layer evolution, also observed
in planar shock interactions (Aubard et al. 2013; Pirozzoli & Bernardini 2011a). Specifi-
cally, figure 10 shows the presence of elongated streaks of high- and low-speed momentum
in the ZPG region. As the boundary layer penetrates the first APG region it experiences
strong retardation, and a region of low momentum forms past the upstream branch of the
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(a) (b) (c)

(d) (e) (f)

Figure 9. Analysis of shock structure: iso-surface of shock sensor (a); nomenclature for analysis
in wall-normal planes (b); shock sensor in control planes (c); entropy contours in: symmetry
plane (d), plane 2 (e), plane 3 (f). The blue solid line and the black dashed line in panels
(d-f) represent, respectively, the boundary layer edge and the sonic line. Entropy levels are
logarithmically spaced in the range 10−5

6 s 6 1.0.

Figure 10. Three-dimensional view of CSBLI. The shock structure is educed through the
pressure iso-surface p = 1.1p∞. Streamwise velocity contours are shown for −0.3 < u/u∞ < 2.3
(color scale from blue to red) in a near-wall plane at y+ = 10.5. Pressure contours are shown
in a side plane for 0.8 < p/p∞ < 1.2 (color scale from blue to red). Supplementary movie 2 is
available for this figure.

interacting shock. Streaks are found to reform quickly past the reflected shock, and they
undergo a second suppression/reformation cycle across the second APG zone associated
with wall impingement of the recompression shock.
Interaction of the boundary layer with a conical shock has a strong impact on the
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Figure 11. Vortical structures in CSBLI. Vortices are educed through the iso-surface
of the swirling strength (λci = 1.24u∞/δin), and colored with the wall-normal velocity
(−0.37 < v/u∞ < 0.37, color scale from blue to red). Supplementary movie 3 is available
for this figure.

structure and number of vortical eddies populating the near-wall region. In figure 11 we
report a three-dimensional rendering of vortical structures detected as iso-surfaces of the
swirling strength, defined as the imaginary part of the complex conjugate eigenvalue of
the velocity gradient tensor (Zhou et al. 1999). Visual inspection of many flow samples
(supplementary movie 3) shows a vortex population in the ZPG region which is similar
to what found in incompressible boundary layers (Wu & Moin 2009), including some
hairpin-shaped vortices as well as more asymmetric, cane-shaped vortices. The vortices
tend to disappear in the FPG region, and to reform past the recompression shock, but
setting a lower threshold would still show weaker eddies in the expansion zone. Many
hairpin-shaped vortices are also observed in the wake region past the shock generator,
which propagate downstream evolving into ring-shaped eddies.

3.3. Wall pressure

An important feature in shock/boundary layer interactions is the steady and unsteady
wall pressure load, which may have important impact on the behavior of the under-
lying structural components. The mean wall pressure p̄w across the interaction zone
is compared in figure 12 with the experimental data of Hale (2015), obtained with
pressure-sensitive paint. Good agreement is observed in the fore part of the pressure
map, whereas differences are observed in the aft part, where the experiment exhibits a
change of curvature of the iso-lines, which was attributed to side walls effects. In order
to verify this speculation, two RANS simulations have been carried out at the same flow
conditions as the experiment, one with the same spanwise domain as the experiment,
and one with the same spanwise domain as the DNS (figures are omitted for brevity).
Similar behavior of wall pressure as in the experiment was in fact observed in the small
domain, whereas the same behavior as DNS was observed in the wider domain, which
supports spanwise confinement as responsible for the observed differences.
Despite the described differences and the previously cited Reynolds number disparity,

figure 12 shows nevertheless favourable comparison, at least limited to the experimental
measurement window. This is better seen in figure 13, where we show mean pressure
profiles at two spanwise locations. The figure well brings out the N-wave wall signature
of the conical shock, with pressure rising sharply at the nominal shock impingement
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Figure 12. Mean wall pressure as obtained from experiments (Hale 2015, flooded contours)
and from DNS (black lines). Contour levels are shown for 0.09 < p/p0 < 0.23, where p0 is the
free-stream total pressure.
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x/δin
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/
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x/δin

p
/
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Figure 13. Mean wall pressure profiles at different spanwise positions: z/δin = 0 (a);
z/δin = 4.35 (b). Lines, DNS; symbols, experiment (Hale 2015).

location, then decreasing almost linearly to a value which is lower than the free-stream,
and increasing again upon impingement of the recompression shock. The peak value
along the symmetry line is attained at approximately x/δin ≈ 46, whereas the peak is
slightly shifted downstream at the other spanwise station, owing to the hyperbolic shape
of the shock foot. After passing through the shock, pressure decreases upon passage of
the expansion waves generated at the cone trailing edge. As flow develops downstream,
pressure rises again in the second APG region (x/δin ≈ 66). Finally, the flow returns
to a nearly ZPG condition. It should be noted that the same wall pressure pattern was
observed in the experiments of Gai & Teh (2000).

Further comparison with experimental data are shown in figure 14, where the stream-
wise velocity component and its root-mean-square are considered. The comparison of the
mean velocity is quite favourable for y/δin > 0.2, although largely different Reynolds
numbers yield visibly different upstream influence, whereas PIV data for y/δin 6 0.2
is probably not reliable. Similar considerations also apply to urms, although differences
are enhanced in the region of maximum turbulence intensity. Based on the comparison
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(a) (b)

Figure 14. Mean streamwise velocity (a) and streamwise velocity r.m.s. (b): comparison
between DNS (lines) and experiment (Hale 2015, flooded contours) Contours are shown for
0.2 < u/u∞ < 1.1, 0 < urms/u∞ < 0.2.

Figure 15. Contours of root-mean-square pressure fluctuations (prms) in the wall plane, in dB
scale, pdB = 20 log10(p/2 · 10−5Pa), assuming p∞ = 1atm. Contour levels are shown from 150
to 180, from blue to red.

reported in the previous figures we can confidently conclude that the DNS results
adequately reproduce the flow physics.
The root-mean-square pressure fluctuations contours are shown in figure 15. Strong

spatial connection of this distribution is found with that of the vortical structures
shown in figure 11. In particular, the largest values of prms are found at the interacting
shock foot, especially around the symmetry axis where the shock is stronger. Consistent
decrease of the fluctuating pressure loads is observed past the incident shock in the FPG
region, which is depleted with eddies. A secondary peak is observed further downstream,
corresponding to re-formation of the vortical structures. Numerical artifacts should be
noted on the side boundaries, which are due to the imperfect nature of the numerical
radiating boundary conditions, especially in the presence of waves not propagating
orthogonally to the computational boundary. These effects are however confined to a
narrow layer adjacent to the boundaries.

3.4. Boundary layer development

In order to characterize the spatial development of the wall boundary layer, we analyze
the distributions of the displacement and momentum thicknesses, defined in equations
(3.1), (3.2). The streamwise distributions of the displacement thickness (δ∗), of the
momentum thickness (θ) and of the incompressible shape factor (Hi = δ∗i /θi) along
the symmetry plane are shown in figure 16(a). Upstream of the cone leading edge Hi

varies between 1.55 and 1.75, as appropriate for canonical ZPG boundary layers at
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Figure 16. Streamwise evolution of boundary layer properties in the symmetry plane: (a)
displacement thickness (solid), momentum thickness (dashed), shape factor (dash-dot); (b)
Clauser pressure gradient parameter.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.85

0.90

0.95

1.00

1.05

1.10

u
e
/
u
∞

δ∗/δin

Λ = −1.92
FPG

APG2

Λ = 0.22

APG1 Λ = 0.22

Figure 17. External velocity as a function of boundary layer displacement thickness along the
symmetry plane. Dashed lines denote the power-law scalings given in equation (3.7).

low Reynolds number (Wu & Moin 2009). Corresponding to the leading edge of the
interaction zone, the displacement thickness increases sharply, whereas the momentum
thickness is relatively unaffected. Hence, the shape factor attains a maximum value
Hi ≈ 2.0, indicating a less full velocity profile. The displacement thickness undergoes
a sudden drop in the FPG region followed by gradual recovery, and a new peak is
observed in the second APG region, also corresponding to a peak of Hi. Past x/δin ≈ 90,
the boundary layer recovers an equilibrium state which is an ideal continuation of the
undisturbed upstream state.
Non-equilibrium states of boundary layers upon imposed pressure gradient are tradi-

tionally analyzed in terms of Clauser pressure gradient parameter, defined as (Clauser
1954)

β =
δ∗

ρwu2
τ

dp̄w
dx

, (3.5)

whose distribution along the symmetry axis is shown in figure 16(b). According to the
DNS data, the flow field may be divided into five parts: ZPG1, the upstream ZPG region,
with β ≈ 0; APG1, the first APG region, where β exhibits a sharp positive peak; FPG
, where β is negative as the flow accelerates; APG2, the second APG region, where β
attains a second positive peak; ZPG2, the downstream ZPG region where equilibrium
conditions are recovered.
Castillo & George (2001) proposed that the proper velocity scale for the outer part
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Figure 18. Mean velocity defect profiles at different streamwise stations in region ZPG1+ZPG2
(a), APG1 (b), FPG (c), APG2 (d). Reference data from Song & Eaton (2004) and
Aubertine & Eaton (2005) are shown in panels (c) and (b, d), respectively.

of the boundary layer is the external velocity ue rather than the friction velocity, and
accordingly they introduced a modified pressure gradient parameter defined as

Λ =
δ

ρeu2
edδ/dx

dp̄w
dx

= −
δ

uedδ/dx

due

dx
, (3.6)

where δ is any measure of the boundary layer thickness. They suggested that, at least in
the absence of mean flow separation, the admissible equilibrium states corresponding to
self-similar velocity distributions must have constant value of Λ, which in turn implies
power-law dependence of the boundary-layer thickness on the external velocity, namely

δ ∼ u−1/Λ
e . (3.7)

It was found that most experimental data for boundary layers in adverse and favourable
pressure gradient are in fact in equilibrium according to this definition, and three values
of Λ were found to be possible: Λ = 0.22 in APG, Λ = −1.92 in FPG and Λ = 0
in ZPG. This is scrutinized in figure 17, where we show the boundary layer external
velocity ue (evaluated at y = δe, as explained in §3.1) as a function of the boundary layer
displacement thickness. The figure suggests very partial success of theoretical predictions,
mainly limited to the APG regions, where scaling not far from the predicted Λ = 0.22
is observed, whereas the FPG region seems to have a behavior very different from the
theoretical equilibrium state.
Self-similarity of the velocity profiles in the various zones is checked in figure 18,

where we show the van Driest transformed velocity multiplied by δ/δ∗ to remove ef-
fects of upstream conditions and local Reynolds number on the outer velocity pro-
file (Zagarola & Smits 1998). In the ZPG1 and ZPG2 regions the velocity profiles do in
fact collapse on a single curve, with the obvious exception of the near-wall region which
suffers Reynolds number dependence. Similar considerations can be made for the FPG
and the APG2 regions, which show a good degree of universality, and in which the defect



18 F.Y. Zuo, A. Memmolo, G.P. Huang and S. Pirozzoli

x/δin

C
f

Figure 19. Mean friction coefficient in the symmetry plane. The dash-dotted line refers to
equation (3.8).

velocity profiles well match reference experimental data for FPG flows (Song & Eaton
2004) and for APG flows (Aubertine & Eaton 2005). Not surprisingly, large deviations
from a common distribution are observed in APG1 region, which experiences strong APG
conditions and in which the flow even undergoes mean separation.

3.5. Analysis of flow reversal

The imposed adverse pressure gradient causes flow retardation along with locally
reversed flow. The distribution of the mean friction coefficient Cf = 2τw/ρ∞u2

∞
, with

τw = µw(∂ũ/∂y)w is shown in the symmetry plane in figure 19. Upstream of the
interaction zone and in the downstream ZPG2 region the friction coefficient well follows
the power-law behavior predicted by simple theory (Smits & Dussauge 2006), namely

Cf = kRe−1/7
x , (3.8)

with k = 0.0192, with the obvious exception of the inflow region where the boundary
layer is not properly developed yet. Mean flow reversal in the symmetry plane is observed
in the APG1 region, whereas Cf overshoots its upstream value in the FPG region right
past the reattachment point. A secondary minimum of Cf is found in the APG2 region,
where however the flow is not detached in mean sense.
Additional insight into the nature of wall flow reversal may be gained from figure 20,

where we show the instantaneous wall friction and the statistical frequency of events
with wall flow reversal (say γ). Figure 20(a) shows that both the APG1 and APG2
regions feature a substantial fraction of flow reversal events, which are however scattered
and interspersed with regions of attached flow. On the other hand, the FPG region
is depleted with reverse flow events, and it features friction excess over the upstream
value. The intermittency data are shown in panel (b). The data can be interpreted
in light of the classification proposed by Simpson (1989), according to which incipient
detachment occurs with instantaneous backflow 1% of the time; intermittent transitory
detachment occurs with instantaneous backflow 20% of the time; transitory detachment
(amounting to mean flow reversal) happens with 50% probability of instantaneous
backflow. According to figure 20(b), mean flow reversal is found to occur only in the
APG1 region around the symmetry line, whereas the flow becomes unidirectional in
the mean away from the symmetry axis where pressure gradient is milder. Hence, the
reversed flow region tends to become narrower along the z direction, eventually vanishing
at z ≈ ±7.7δin. Transitory detachment is observed both in the APG1 and APG2 regions,
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(a)

(b)

Figure 20. Instantaneous contours of wall friction (a) and of flow reversal probability γ (b) at
the wall surface. The contour levels γ = 0.5 (solid), 0.2 (dashed), 0.01 (dotted) are shown in
panel (b).
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Figure 21. Limit wall streamlines of mean flow field (a), and streamtraces in the symmetry
plane (b), highlighting critical points: N, nodes; S, saddle points; F, foci. Note that axes in panel
(b) are not to scale.

to a much lesser extent in the latter case. Interestingly, an extended region with incipient
detachment is observed in both APG zones, with no significant size difference.
The flow topology is further brought out from the analysis of the limit streamtraces

in the wall plane and of the streamtraces in the symmetry plane, reported in figure 21.
The wall limiting streamlines exhibit a pattern similar to that resulting from separation
induced by an obstacle (Délery 2001), and the flow features a saddle point associated
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with three-dimensional flow separation, which emanates from a line of coalescence (sepa-
ration), and spirals into the vortical center (Dallmann 1983; Knight et al. 1987). Three-
dimensionality of the flow also reflects in the streamlines shown in panel (b) being open,
whereas the streamlines should be closed in two-dimensional steady flow. The flow past
the line of coalescence is characterized by the presence of a node at x/δin ≈ 45 in the
symmetry plane associated with a divergence line (attachment). The wall streamtraces
are issued from the nodal point and partly converge into the coalescence line and partly
are deflected downstream. This wall pattern is classically associated with the formation
of a horseshoe vortex bending in the downstream direction, as is clarified in figure 21(b).
A very similar organization was also recovered in the experiments of Gai & Teh (2000).
Visualization in the symmetry plane highlights the presence of two saddle points at the
wall (S1 and S2), being respectively the signature of the separation and reattachment
point, and, according to the classification of Chong et al. (1990), two foci of stable type
(F1 and F2), separated by a third saddle point (S3). This is to indicate that the horseshoe
vortex is in fact split into two branches, which merge together moving away from the
symmetry plane (not shown). It should be noted that the region of reversed flow, which
may be defined as the region between the wall and the streamtrace entering saddle
point S2, is quite shallow, extending up to yR/δin ≈ 0.11. Hence the aspect ratio of the
separation bubble is very small, being A = yR/(xS2

− xS1
) ≈ 0.057, which is a typical

value for turbulent separation bubbles, but much less than laminar ones (Kiya & Sasaki
1983).

3.6. Turbulence statistics

The structural modifications of boundary layer turbulence upon interaction with the
conical shock are analyzed in this section. For that purpose, contours of the density-

scaled velocity correlations ρ/ρwũ′′

i u
′′

j in the symmetry plane are shown in figure 22,
upon normalization by the friction velocity at the upstream reference station, uτ ref . The
figure supports general amplification of all turbulence intensities across the APG zones,
however to a different extent. Specifically, the longitudinal velocity variance is amplified
(with respect to its upstream value) by factor of about 2 through the APG1 zone, and by
1.6 in APG2. Similar amplifications are found for the wall-normal velocity correlation,
whereas the spanwise velocity variance increases by a factor of 1.8 across APG1, and
by a factor 1.1 in APG2. As expected, peaks of the normal turbulent stresses in the
ZPG zones are found to lie closer to the wall for the streamwise component, and further
away for the other components. To better highlight modifications of the turbulent stress
tensor, in figure 22 we show the map of the Reynolds stress anisotropy function (Lumley
1978), defined as

F = 1 + 9II + 27III, (3.9)

where II and III are the invariants of the anisotropy stress tensor, bij = τ∗ij/τ
∗

ii −

1/3δij, and which is a measure of the approach to either two-component turbulence
(corresponding to F = 0) or a three-component isotropic state (corresponding to F = 1).
Consistent with previous DNS data, figure 22 shows that in ZPG regions F is increasing
from a nearly zero value at the wall where the flow is dominated by streaks, to a nearly
uniform value of about 0.6 in the outer part of the boundary layer. As the flow crosses
the interacting shock in the APG1 region the anisotropy indicator increases at any given
y, indicating approach of turbulence to an isotropic state. The opposite effect is observed
in the FPG region which shows consistent decrease of this indicator, accompanied by
the previously noted re-formation of the streaks, and again increase is observed in APG2
region, prior to relaxation to an equilibrium state.
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Figure 22. Maps of density-scaled turbulence intensities (ρ/ρwũ′′

i
2) in the symmetry plane,

normalized by friction velocity at the upstream reference station (a, i = 1; b, i = 2; c, i = 3)
and anisotropy indicator (d), as defined in equation (3.9).

The DNS database herein developed can be profitably exploited for testing hypotheses
and checking predictions of turbulence closures. In the following, we explore predictive
power and limitations of Boussinesq hypothesis, which postulates linear relationship
between anisotropic turbulent stress tensor and mean strain tensor through a scalar
eddy viscosity µT ,

− ρu′′

i u
′′

j = 2µT S̃
∗

ij −
2

3
ρκδij , S̃∗

ij =
1

2

(
∂ũi

∂xj
+

∂ũj

∂xi

)
−

1

3

∂ũk

∂xk
δij . (3.10)

with κ = 1/2ũ′′

ku
′′

k the turbulence kinetic energy. An effective eddy viscosity can be
extracted from DNS through contraction

µT = −

(
ρu′′

i u
′′

j − 2

3
ρκδij

)
S̃∗

ij

2S̃∗

ijS̃
∗

ij

. (3.11)

This is compared in figure 23 with the the eddy viscosity obtained with RANS based on
the Spalart-Allmaras one-equation model (Spalart & Allmaras 1992) in its classical form,
without use of any compressibility correction. Good qualitative agreement is observed
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(a)

(b)

Figure 23. Eddy viscosity normalized by free-stream molecular viscosity (µT /µ∞) in the
symmetry plane (a) and in the plane y = 0.25δin, as obtained from DNS (lines) and from
RANS with Spalart-Allmaras model (flooded contours).

both in the symmetry plane and in a representative wall-parallel plane, with the eddy
viscosity increasing in APG zones and decreasing in FPG zones and moving away
from the symmetry plane. Quantitative differences are obviously present, and RANS
is found to generally underestimate µT , especially upstream of the interaction, whereas
the agreement improves downstream of the incident shock, owing to the previously noted
flow isotropization. Additional discrepancies are due to the different prediction of the
trailing shock position, which is further upstream in RANS owing to incorrect prediction
of the recirculation extent past the shock-generating cone. It should also be noted that
DNS tends to yield two distinct peaks in the region of maximum µT , whereas RANS
predicts a single peak.
We now proceed to compare the computed Reynolds stress distributions with those

modeled using the Boussinesq closure, with µT either determined after equation (3.11), or
as predicted from RANS. The analysis is here limited to the off-diagonal Reynolds stress
components, as the diagonal stresses are known to be poorly predicted by any linear
eddy-viscosity model (Speziale 1987), which is also the case here. As seen in figure 24,
the primary shear stress −ρu′′v′′, is recovered with excellent accuracy when the ‘exact’
µT (3.11) is used, which is not unexpected as the other off-diagonal stresses are zero at
the symmetry plane, and diagonal terms only contribute where anisotropy is significant.
Good prediction is also achieved by RANS, with the previously noted differences in
the vicinity of the trailing shock. This observation supports the generally acknowledged
effectiveness of classical RANS for unidirectionally sheared flows.
Additional information related to the multi-dimensional character of turbulence in

CSBLI may be gained by inspecting turbulent stresses in a wall-parallel plane, as shown
in figure 25. Note that, for obvious symmetry reasons, only half of the full domain span
is shown. The primary shear stress −ρu′′v′′ shows two main peaks, corresponding to
the APG zones, whose intensity decreases moving away from the symmetry plane. As
previously observed in figure 24 for the symmetry plane, Boussinesq hypothesis works
quite well for this component of the turbulent stress. Similar spatial organization is also
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Figure 24.Maps of density-scaled primary turbulent shear stress (−ρ/ρwũ′′v′′) in the symmetry
plane, normalized by friction velocity at the upstream reference station, as obtained from DNS
(a), from eddy-viscosity hypothesis (b) and from RANS (c).
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Figure 25. Maps of density-scaled turbulent shear stresses in wall-parallel plane (y = 0.25δin),
normalized by friction velocity at the upstream reference station, as obtained from DNS (a,
d, g), with µT determined from equation (3.11) (b, e, h) and from RANS (c, f, i). (a, b, c)

−ρ/ρwũ′′v′′, (d, e, f) −ρ/ρwũ′′w′′, (g, h, i) −ρ/ρwṽ′′w′′. Dashed lines denote negative values.
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observed for the secondary shear stresses −ρu′′w′′, −ρv′′w′′, which become similar in
magnitude away from the symmetry plane. However, whereas the primary shear stress is
everywhere positive, the secondary stresses exhibit a change of sign from the APG to the
FPG regions. As shown in the figure, this sign variation is well captured from the simple
Boussinesq closure (middle column), thus showing that the secondary shear stresses are
closely related to the respective mean velocity gradients. However, it should be noted
that the numerical values are underestimated by a factor of about five in the case of
−ρu′′w′′, and generally overestimated in the case of −ρv′′w′′, even when the ‘exact’ eddy
viscosity is used. Similar results are obtained with RANS (right column). Hence, we
conclude that Boussinesq hypothesis is still meaningful in this complex flow, although
different eddy viscosities should be used for each stress component to fully exploit its
potential. Possible improvements to Boussinesq approximation were applied to canonical
geometrically two-dimensional SBLI by Gerolymos et al. (2004); Emory et al. (2011),
whose predictive capabilities might be tested in this more challenging case.

4. Conclusions

The interaction of a conical shock wave with a turbulent boundary layer at free-
stream Mach number M∞ = 2.05, half-cone angle θc = 25◦ and Reynolds number
Reθ ≈ 630 has been analysed by means of DNS of the compressible Navier-Stokes
equations. Detailed flow statistics have been presented, including mean flow properties
and turbulent fluctuations. Particular effort has been made to characterize the geometry
of the shock system and the three-dimensional features of the interaction region.
Consistent with experimental observations, the mean flow pattern is found to include

a main conical shock which imposes a hyperbolic footprint on the underlying flat plate,
and which causes thickening and local separation of the developing boundary layer.
The incident shock is reflected as two conical shock waves, one arising because of the
upstream influence mechanisms, and the second past the boundary layer reattachment.
As theoretically predicted, analysis of the entropy fields obtained from DNS allows to
discern transition from regular to Mach reflection with a distinct shock stem moving
away from the symmetry plane, although the transition point is probably much farther
than suggested by the inviscid theory. The compression waves originating within the cone
wake also tend to coalesce to form a secondary weaker conical shock, which interacts with
the boundary layer further downstream. Overall, this wave pattern imparts a distinctive
N-wave signature at the wall, with a primary APG region followed by a FPG region,
which is then closed by a secondary APG region bringing the boundary layer back to an
equilibrium state. Very good agreement of the computed wall pressure signature is found
with respect to reference experimental measurements.
The imposed wall pressure gradient is responsible for strong turbulence non-equilibrium

in the boundary layer. In this respect, flow visualizations in the upstream ZPG region
show that the outer part of the boundary layer is populated by hairpin-shaped vortices
as well as more asymmetric, cane-shaped vortices. Vortices tend to disappear in the
FPG region, and to reform past the recompression shock. Correspondingly, the near-wall
streaks of high- and low-speed fluid which are present in the incoming ZPG region, are
suppressed in the APG regions, to quickly reform downstream. Statistical analysis of flow
reversal zones highlights mean flow separation in the primary APG zone accompanied
with formation of a horseshoe vortex, whereas the secondary APG zone is characterized
by intermittent detachment with scattered spots of instantaneous flow reversal.
¿From a quantitative standpoint we find that turbulence non-equilibrium is only

partially captured by existing theoretical frameworks. In particular, we find that self-
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similarity proposed by Castillo & George (2001) is partly attained in APG zones, whereas
large departures are found in the FPG zone. Different amplification of the Reynolds stress
components is observed in the APG regions, accompanied by a change in the geometry
of the Reynolds stress tensor. Specifically, isotropy is favoured in APG regions, whereas
an anisotropic two-component state is recovered in the FPG zone, associated with
reformation of the streaks. The DNS database has been exploited to verify the validity
of fundamental assumptions made in RANS turbulence closures based on Boussinesq
hypothesis. In this respect, we find that the assumed proportionality between turbulent
shear stress and related mean velocity gradient applies also when three-dimensionality
effects are important, only the primary shear stress is predicted with reasonable accuracy,
thus suggesting that tensor eddy viscosity models or full Reynolds stress closures might
provide improved prediction. Future studies will be devoted to enlarging the DNS
database by also including cases with stronger shocks and/or cone opening angles, and
to further characterize the unsteady wall signature.
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