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Abstract
The goal of this paper is to extend the quiver Grassmannian description of certain degener-
ations of Grassmann varieties to the symplectic case. We introduce a symplectic version of
quiver Grassmannians studied in our previous papers and prove a number of results on these
projective algebraic varieties. First, we construct a cellular decomposition of the symplec-
tic quiver Grassmannians in question and develop combinatorics needed to compute Euler
characteristics and Poincaré polynomials. Second, we show that the number of irreducible
components of our varieties coincides with the Euler characteristic of the classical symplectic
Grassmannians. Third, we describe the automorphism groups of the underlying symplectic
quiver representations and show that the cells are the orbits of this group. Lastly, we provide
an embedding into the affine flag varieties for the affine symplectic group.
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1 Introduction

The classical Grassmann varieties Gr(k, n) admit a flat degeneration into certain reducible
algebraic varieties X(k, n). The construction emerged from arithmetics as local models of
Shimura varieties [1–3], but is also very natural from the point of view of complex algebraic
geometry [4, 5]. In [6–8] the quiver Grassmannians approach describing these degenerations
was developed. More precisely, the authors considered certain modules U[n] over the cyclic
quivers�n such that X(k, n) is isomorphic to the quiver Grassmannian of subrepresentations
ofU[n] of dimension k at each vertex. This paper is the first step towards the extension of the
quiver approach to the symplectic case (see [9–12] for the non cyclic type A case).

The varieties X(k, n) admit many nice properties. Having a quiver Grassmannians real-
ization at hand, one is able to use various techniques from the algebraic, combinatorial and
geometric theories of quivers in order to study various structures related to X(k, n). In par-
ticular, one can use the automorphism groups of the underlying representations in order to
describe cellular decompositions and to establish a link with the positroid decomposition of
totally nonnegative Grassmannians. Looking at the side of local models of Shimura varieties,
one gets generalizations for other classical groups [13–15] (we note that only the Lagrangian
case was considered). Hence it is natural to ask for the quiver realization with a bilinear form
added as an extra piece of data. Our goal is to initiate the study of the corresponding quiver
Grassmannians.

In this paper we deal only with the symplectic form on a 2n dimensional complex vec-
tor space. The symplectic Grassmannians Gr(k, 2n)sp have been extensively studied in the
literature (see e.g. [16, 17]). For each k = 1, . . . , n we define a degeneration X(k, 2n)sp

of the corresponding symplectic Grassmannian as follows. The symplectic form on the 2n
dimensional complex vector space as above induces a non degenerate skew-symmetric form
on the representation space U[2n]. Note that this is a symplectic representation in the sense
of Derksen–Weyman [18]. Then X(k, 2n)sp is defined as a subvariety of X(k, 2n) consisting
of self-orthogonal subrepresentations. Our first theorem is as follows.

Theorem A (Theorem4.14) The intersection of a cell of X(k, 2n) with X(k, 2n)sp is either
empty or an affine cell. The top dimensional cells of X(k, 2n)sp are obtained from top
dimensional cells of X(k, 2n). The dimension of X(k, 2n)sp is equal to the dimension of
the classical symplectic Grassmannian Gr(k, 2n)sp and the number of irreducible compo-
nents of X(k, 2n)sp is equal to the Euler characteristic of Gr(k, 2n)sp.

Let G be the automorphism group of U[2n] and let Gsp be its subgroup preserving the
symplectic form. It was shown in [6–8] that G is a degeneration of the general linear group
GL2n and the action ofG can be used to describe various properties of the varieties X(k, 2n).
We show that similar properties hold true in the symplectic case as well.

Theorem B (Theorem3.12) The group Gsp is a degeneration of the classical group Sp2n; in
particular, dimGsp = 2n2 + n. The group Gsp acts on X(k, 2n)sp with a finite number of
orbits, the orbits are affine cells and are naturally labeled by certain combinatorial gadgets
that we call symplectic juggling patterns.

Recall that the varieties X(k, 2n) admit embeddings into the affine flag varieties of type
A [5, 19, 20]. These embeddings have simple and transparent descriptions in terms of quiver
representations via the lattice realization of affine Grassmannians and affine flag varieties (
[7, 21, 22]). We show that one can extend the type A picture to the symplectic case. More
precisely, we prove the following theorem (it is known for k = n from the arithmetic side by
[3]).
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Theorem C (Theorem5.4) The varieties X(k, 2n)sp admit an embedding into the flag variety
for the affine symplectic group Sp2n. The image of the embedding is a union of Schubert
varieties.

We put forward two conjectures:

• The degeneration from the symplectic Grassmannian Gr(k, 2n)sp to
X(k, 2n)sp is flat (see Sect. 2.4 for more detail);

• The poset structure on the set of cells of X(k, 2n)sp is induced from the corresponding
poset of cells of X(k, 2n) (see Conjecture4.9).

Finally, let us mention several possible further directions. First, it would be interesting to
study the projections XS(k, 2n)sp of the varieties X(k, 2n)sp to the product of Grassmannians
corresponding to a subset S of vertices of the quiver�2n . Second, the varieties X(k, 2n) admit
certain ω-generalizations X(k, 2n, ω) [7], it would be interesting to develop the correspond-
ing symplectic story. Third, one is interested in the projections XS(k, 2n, ω)sp . In all these
cases one expects a link to a flat degeneration fromSchubert varieties in affineGrassmannians
to unions of Schubert varieties in affine flag varieties (see [2, 5, 8]). Fourth, the quiver Grass-
mannian realization allows one to use quiver techniques for the construction of resolutions
of singularities [23–25]. It is natural to ask for a similar construction in the symplectic case
(see [26] for a special case of such construction). Fifth, it is natural to expect a link between
the topology of the varieties X(k, 2n)sp and the symplectic version of the totally nonnega-
tive Grassmannians (in the spirit of [6], see also [27–29]). Lastly, it is natural to study the
orthogonal case (both even and odd) and the case of odd symplectic Grassmannians [30, 31].

Our paper is organized as follows. In Sect. 2 we provide the needed background; in par-
ticular, we introduce here the poset J P(k, n) of (k, n)-juggling patterns and the juggling
variety X(k, n), as well as their symplectic analogues J P(k, 2n)sp and X(k, 2n)sp . Sec-
tion3 is about reductive group actions: we recall the action of an appropriate degeneration
of GL2n on X(k, 2n), we define an involution on such a group and look at both its fixed
point subgroupGsp (the symplectic automorphism group) and at the corresponding Lie alge-
bra. The symplectic automorphism group acts on X(k, 2n)sp and we devote the rest of this
section to the investigation of its orbits. More precisely, we show that they are parameter-
ized by symplectic juggling patterns and that they are all affine spaces. In Sect. 4 we deepen
the study of the Gsp-orbits on X(k, 2n)sp . More specifically, we connect the orbit closure
inclusion relation to certain combinatorial moves on juggling patterns called mutations, and
exploit them to determine the cell dimension. Moreover, we provide an explicit counting
of the top dimensional cells, and hence determine the dimension of our variety of interest.
Section5 deals with the affine Grassmannians and flag variety: after recalling the embedding
of X(k, 2n) into the GL2n affine flag variety, we show that X(k, 2n)sp can be embedded
into the Sp2n-affine flag variety. In Appendix A we exhibit Poincaré polynomials and Euler
characteristics of X(k, 2n) and its symplectic analogue for n = 1, 2, 3, 4 and k ≤ n.

2 Background

2.1 Juggling patterns and juggling variety

First we lay down some notation:

• for n ≤ m ∈ N
+, we will write [n] for the set {1, 2, . . . , n}, [n,m] for {n, n + 1, . . . ,m}

and
([m]
n

)
for the set of subsets of [m] with cardinality n;
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• e1, e2, . . . , en denote the elements of the standard basis for C
n . Given a subset I of [n],

the coordinate subspace VI is defined as Span{ei | i ∈ I };
• if g is an invertible matrix, g−t will be notation for (g−1)t ;
• the ring of integers modulo m will be denoted by Zm .

We denote with �n the equioriented quiver of type Ã on n vertices.

The quiver �6.

We label its vertices with the integers modulo n, so that the arrows are of the form
i −→ i + 1.

Definition 2.1 Let k ≤ n be natural numbers; we define the projective variety

X(k, n) :=
{
V = (Vi )i∈Zn ∈

∏

i∈Zn

Gr(k, C
n) | τ1(Vi ) ⊆ Vi+1 ∀ i ∈ Zn

}

where the endomorphism τ1 of C
n is given by τ1(ei ) = ei+1 for i < n and τ1(en) = 0.

Notice that X(k, n) is a quiver Grassmannian for �n (see [6] for more detail): consider the
nilpotent �n-representation U[n] which has C

n over each vertex and τ1 over each arrow. If
we denote by ¯k ∈ N

n the dimension vector whose entries are all equal to k ∈ N, we have
that X(k, n) is the locus of subrepresentations of U[n] of dimension vector ¯k, i.e.

X(k, n) = Gr(¯k,U[n]) .

C
6

C
6

C
6

C
6

C
6

C
6

τ1

τ1

τ1τ1

τ1

τ1

The representation U[6].
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Definition 2.2 Let k ≤ n be natural numbers. A (k, n)-juggling pattern is a collection J =
(Ji )i∈Zn of cardinality k subsets of [n], such that j ∈ Ji implies j + 1 ∈ Ji+1, for all i ∈ Zn

and all j ∈ [n − 1]. The set of (k, n)-juggling patterns is denoted by J P(k, n).

Remark 2.3 Observe that for each (k, n)-juggling pattern J = (Ji )i , the collection of coor-
dinate vector spaces pJ := (VJi )i is a point in X(k, n).

In [6] a different, but isomorphic, �n-representation is chosen: the map on the arrow
i −→ i + 1 is the projection along the i-th standard basis vector. The corresponding quiver
Grassmannians are again isomorphic to ours, and the combinatorial gadgets resulting from
this representation are called (k, n)-Grassmann necklaces.One can produce a juggling pattern
from aGrassmann necklace and viceversa [6, 2.2], and all results we recall that use one family
of objects still hold for the other. The (k, n)-juggling patterns admit certainω-generalizations
( [7]) which do not naturally exist for Grassmann necklaces. With this generalization of the
symplectic setting in mind we decided to work with juggling patterns instead of Grassmann
necklaces.

For all k ∈ [0, n], the set J P(k, n) can be equipped with the following partial order:
J ≤ J ′ if and only if Ji ≥ J ′

i for all i ∈ Z/nZ, where two sets A, B ∈ ([n]
k

)
satisfy A ≤ B

if, when written in increasing order A = {a1 < a2 < · · · < ak}, B = {b1 < b2 < · · · < bk},
one has ai ≤ bi for all i ∈ [k].
Let G := Aut�n (U[n]) be the automorphism group of the �n-representation U[n]. Then G
acts on all quiver Grassmannians for U[n], in particular on X(k, n). Each G-orbit in X(k, n)

contains exactly one point pJ labeled by a juggling pattern J as in Remark2.3. Such an
orbit is an affine cell by [6, Theorem 1] and we denote it by CJ . Thus the closure inclusion
order on the set of G-orbits induces a partial order on J P(k, n), which coincides with the
combinatorial order described above [7, Corollary 4.7].

2.2 Symplectic conditions on the juggling variety

To introduce symplectic conditions on such varieties we need the dimension of the vector
spaces to be even, so we work in X(k, 2n). We equip C

2n with the symplectic form

(v,w) =
n∑

i=1

(−1)i+1 · vi · w2n−i+1 ,

where v = ∑n
i=1 vi ei andw = ∑n

i=1 wi ei . In other words, this is the symplectic formwhose
Gram matrix � in the standard basis has zeros everywhere except on the antidiagonal, where
it has alternating 1s and −1s, with a 1 on the upper right corner.

� =

⎛

⎜⎜⎜⎜⎜
⎝

0 0 · · · 0 1
0 0 · · · −1 0
...

...
. . .

...
...

0 1 · · · 0 0
−1 0 · · · 0 0

⎞

⎟⎟⎟⎟⎟
⎠

When n is fixed, we write ĩ for 2n− i +1 for brevity. This way we have (ei , e j ) = (−1)ĩδĩ j .

Proposition 2.4 Given k, n natural numbers with 0 ≤ k ≤ 2n, the map
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σ : X(k, 2n) −→ X(2n − k, 2n)

(Vi )i 	−→ (V⊥−i )i

is well defined.

For V ∈ X(k, n) and W ∈ X(�, n) with k ≤ �, we write V ⊆ W whenever Vi ⊆ Wi for all
i ∈ Zn .

Proof of Proposition 2.4 To start with, observe that −� = �t = �−1. Moreover, notice that,
as matrices in the standard basis,−�·τ t1 ·�−1 = �τ t1� = τ1. From linear algebra we obtain:
given W ⊆ C

2n a subspace and M a 2n × 2n matrix, one has �Mt�
(
(M · W )⊥

) ⊆ W⊥.
Now if V = (Vi )i is a point in X(k, 2n), its vector spaces satisfy τ1 · Vi ⊆ Vi+1 for all i .
Taking the orthogonal subspaces we get V⊥

i+1 ⊆ (τ1 · Vi )⊥, then applying τ1 to both sides
we find

τ1(V
⊥
i+1) ⊆ τ1

(
(τ1 · Vi )⊥

) = �τ t1�
(
(τ1 · Vi )⊥

) ⊆ V⊥
i .

That is, τ1(σV )−i−1 ⊆ (σV )−i for any i ∈ Z2n and hence we obtain σV ∈ X(2n − k, 2n).
��

Remark 2.5 The composition

X(k, 2n)
σ−→ X(2n − k, 2n)

σ−→ X(k, 2n)

is the identity map.

2.3 Themain object

Now we introduce the main object of this paper:

Definition 2.6 Let k ≤ n. Then

X(k, 2n)sp := {V = (Vi )i ∈ X(k, 2n) | V ⊆ σV } .

This is the subvariety of isotropic, or symplectic, points in X(k, 2n).

Remark 2.7 If instead n ≤ k ≤ 2n, we can define coisotropic points in X(k, 2n) as those that
satisfy V ⊇ σV . Then the corresponding subvariety is isomorphic to X(2n− k, 2n)sp via σ .

For a subset I ∈ ([2n]
k

)
, let RI := [2n] \{ĩ | i ∈ I } ∈ ( [2n]

2n−k

)
. Notice that VRI , the coordinate

subspace corresponding to RI , coincides with V⊥
I . If I ⊆ RI we say that I is isotropic, or

coisotropic if I ⊇ RI ; in either case we say that I is symplectic.
Next, we extend R : ([2n]

k

) −→ ( [2n]
2n−k

)
to the poset of juggling patterns: for J = (Ji ) ∈

J P(k, 2n), we define RJ as the tuple of sets (RJ )i = R(J−i ); this is a (2n−k, 2n)-juggling
pattern, since σ(pJ ) ∈ X(2n−k, 2n) and it has a coordinate vector space VR(J−i ) = V(RJ )i

on vertex i . Once again, R is a bijection and R(RJ ) = J . Given two juggling patterns
J ∈ J P(k, n) and J ′ ∈ J P(�, n) with k ≤ �, we write J ⊆ J ′ if pJ ⊆ pJ ′ , that is, if
Ji ⊆ J ′

i for all i .

Definition 2.8 Let k ≤ n; a (k, 2n)-juggling pattern J is isotropic, or symplectic, if pJ ∈
X(k, 2n)sp or, equivalently, if J ⊆ RJ . By J P(k, 2n)sp we denote the set of (k, 2n)-
symplectic juggling patterns.

123



Symplectic Grassmannians and cyclic quivers

Example 2.9 Let k = n = 2.
Then J = (J0 = {3, 4}, J1 = {2, 4}, J2 = {2, 3}, J3 = {3, 4}) is a (2, 4)-juggling pattern,
but it is not symplectic, as J2 � RJ2 = {1, 4}. Instead,J ′ = (J ′

0 = {3, 4}, J ′
1 = {2, 4}, J ′

2 =
{3, 4}, J ′

3 = {2, 4}) ∈ J P(2, 4)sp .

Remark 2.10 A (k, 2n)-juggling pattern J is maximal in the partial order if for all i , 2n ∈ Ji
implies 1 ∈ Ji+1 [6, Remark 4.12]. Then a maximal J is symplectic if and only if J0 is
symplectic, or equivalently if and only if Jn is symplectic.

Proposition 2.11 For any n ≥ 1, X(1, 2n)sp = X(1, 2n).

Proof First we prove that any (1, 2n)-juggling pattern is isotropic: assume there exists a
non-symplectic (1, 2n)-juggling pattern J , with Ji = {x} and J−i = {x̃} = {2n − x + 1}
for some x ∈ [2n] and i ∈ Z2n . Let m be the number of arrows on the minimal path from −i
to i , which is equivalent to 2i modulo 2n and therefore even. Since x and x̃ have different
parity, we see that both between i and −i − 1 and between −i and i − 1 there must be a
vertex a such that Ja = {2n}; this means x + m > 2n and x̃ + 2n − m > 2n. These two
inequalities are incompatible, thus we have found a contradiction.

Next we show that if J is a maximal (1, 2n)-juggling pattern, then the whole orbit CJ =
G · pJ consists of symplectic points: let i be the vertex with Ji = {1}, so we have Ji+m =
{i + m} for m ∈ [0, 2n − 1]. Given a point V in the orbit CJ , there exist coefficients
g1, . . . , g2n such that

Vi+m = SpanC(0, . . . , 0︸ ︷︷ ︸
m

, g1, g2, . . . , g2n−m)

with g1 �= 0 (see [6, Theorem 3.10] and [32, Theorem 4.13]). Now let m′ be the number in
[0, 2n−1] such that i +m ≡2n −(i +m′); observe that ifm+m′ ≥ 2n, the symplectic form
between the generators of Vi+m and Vi+m′ trivially vanishes, so we can assume m′ + 1 ≤
2n − m. We compute the product and find

2n−m∑

s=m′+1

(−1)s+1gs−m′ · g2n−m+1−s .

There is an even number of summands sincem andm′ have the same parity, and hencem′ +1
and 2n − m have different parity. Moreover, every summand appears twice with opposite
signs, so that the sum is zero. We conclude the proof by observing that the union of all
maximal cells is dense in X(1, 2n) and that X(1, 2n)sp is a closed subvariety of X(1, 2n). ��

2.4 Interpretation as degeneration of the isotropic Grassmannian

The construction of X(k, 2n)sp mimics the definition of the classical isotropic Grassmannian
Gr(k, 2n)sp , that is, the projective variety of isotropic subspaces of C

2n . Recall from [6] that
X(k, n) is a degeneration ofGr(k, n): for z ∈ C defineU[n](z) as the�n-representation with
C
n on every vertex and τ1,z on every map, where the matrix of τ1,z in the standard basis is
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τ1,z =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 · · · 0 z
1 0 · · · 0 0
...

. . .
. . .

...
...

0 0
. . . 0 0

0 0 · · · 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then Gr(k, n) is isomorphic to Gr(k,U[n](z)) for all z �= 0 (for example by taking the
vector space on vertex 0). Since τ1,0 = τ1, we get U[n](0) = U[n], so these varieties form a
family Y equipped with a morphism π : Y −→ C. The fibers over nonzero numbers are all
isomorphic to the classical Grassmannian, and the fiber over 0 is X(k, n). Now, we replace
n by 2n and take k ≤ n, in order to realize X(k, 2n)sp as a degeneration of Gr(k, 2n)sp .
Observe that �τ t1,z� = τ1,z , so we can define a map

σz : Gr(k,U[2n](z)) −→ Gr(2n − k,U[2n](z))

as in Proposition2.4. For every fiber π−1(z), we consider points that satisfy V ⊆ σz(V ).
This condition is linear with z ∈ C and the fibers over nonzero numbers are isomorphic to
the isotropic Grassmannian. Thus we have a subvariety Y sp of Y such that X(k, 2n)sp is the
desired degeneration. Lastly we observe that G = Aut�n (U[n]) is a degeneration of GLn if
we see it as the special fiber of the family over C whose fiber over z ∈ C is the algebraic
group Aut�n (U[n](z)).

Example 2.12 We compute the poset of symplectic (2, 4)-juggling patterns, with the combi-
natorial order inherited by J P(2, 4). We write i j for the set {i, j}, and we describe a juggling
pattern J in the following way:

J0
J3 J1

J2

Out of the 33 juggling patterns from J P(2, 4), only these 13 are symplectic:
∣∣∣∣∣∣

12
14 23

34

∣∣∣∣∣∣

∣∣∣∣∣∣

24
13 13

24

∣∣∣∣∣∣

∣∣∣∣∣∣

13
24 24

13

∣∣∣∣∣∣

∣∣∣∣∣∣

34
23 14

12

∣∣∣∣∣∣
∣∣∣∣∣∣

24
14 23

34

∣∣∣∣∣∣

∣∣∣∣∣∣

13
24 24

34

∣∣∣∣∣∣

∣∣∣∣∣∣

24
34 34

24

∣∣∣∣∣∣

∣∣∣∣∣∣

34
24 24

13

∣∣∣∣∣∣

∣∣∣∣∣∣

34
23 14

24

∣∣∣∣∣∣
∣∣∣∣∣∣

24
34 34

34

∣∣∣∣∣∣

∣∣∣∣∣∣

34
24 24

34

∣∣∣∣∣∣

∣∣∣∣∣∣

34
34 34

24

∣∣∣∣∣∣
∣∣∣∣∣∣

34
34 34

34

∣∣∣∣∣∣

The Hasse diagram of J P(2, 4)sp is the following (the minimal vertex is on the bottom):
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3 Symplectic automorphisms

Let us now discuss the largest subgroup of G = Aut�2n (U[2n]) which preserves the sym-
plectic form.

Definition 3.1 An automorphism A = (Ai )i∈Z2n ∈ G is symplectic if

(Ai (v), A−i (w)) = (v,w) (3.1)

for all i ∈ Z2n , v ∈ U (i)
[2n] and w ∈ U (−i)

[2n] . The subgroup of such elements is denoted by Gsp .

Recall that the choice of � corresponds to the choice of an involutive (non trivial) auto-
morphism of GL2n , given by:

g 	−→ −� · g−t · �,

whose fixed-point subgroup is Sp2n . We provide G with a similar automorphism σG : G →
G: for any A = (Ai )i∈Z2n ∈ G we define

σG(A) := (−� · (A−t
−i ) · �

)
i . (3.2)

Observe that two matrices A and B in GL2n with (A(v), B(w)) = (v,w) for all v,w ∈ C
2n

must satisfy

B = −� · (A−t ) · �.

Hence the σG -fixed subgroup of G is precisely Gsp .
Recall the morphism σ : X(k, 2n) → X(2n − k, 2n) defined in Proposition2.4.

Lemma 3.2 The equality

σG(A) · V = σ
(
A · (σV )

)

holds for all V ∈ X(k, 2n) and A ∈ G.
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Proof Since
(
A · (σV )

)
i = Ai · (V⊥−i ) we have

(
σ
(
A · (σV )

))

i
=

(
A−i · (V⊥

i )
)⊥

.

As in the proof of Proposition2.4, we use the fact that given a matrix M and a subspace W ,
there is an inclusion�Mt�

(
(M ·W )⊥

) ⊆ W⊥ which is an equality wheneverM is invertible.
In this case the identity can be rewritten as (M ·W )⊥ = �M−t�(W⊥). We obtain the claim
by plugging in M = A−i and W = V⊥

i since A consists of invertible matrices. ��
Corollary 3.3 The map R : J P(k, 2n) −→ J P(2n − k, 2n) is order preserving.

Proof Firstly, notice that R sends the minimal (k, 2n)-juggling pattern, whose sets are all
equal to {2n−k+1, . . . , 2n} to theminimal (2n−k, 2n)-juggling pattern, which is constantly
equal to {k+1, . . . , 2n}. Now let V = A · pJ ′ for some A ∈ G andJ ′ some (k, 2n)-juggling
pattern. By Lemma3.2 we obtain,

σV = σ(A · pJ ′) = σ(A · σ(pRJ ′)) = σG(A) · pRJ ′ .

Hence σ sends isomorphically the cellCJ ′ into the cellCRJ ′ , since they areG-orbits. Recall
that, for another juggling pattern J , the condition J ≤ J ′, is equivalent to pJ ∈ CJ ′ . Since
σ is an isomorphism of varieties, we get pRJ ∈ CRJ ′ ��

3.1 Explicit description of the symplectic automorphisms

Let A = (Ai )i∈Z2n ∈ G. For any i ∈ Z2n , we denote by {e(i)
1 , . . . , e(i)

2n } the standard basis of
U (i)

[2n] = C
2n . With respect to such a basis, each Ai is a lower triangular matrix with nonzero

diagonal entries and A is completely determined by the the entries of the first column of each
of the Ai ’s [6, Proposition 4.5]. Let us denote the entries of the first column of Ai by a

(i)
j for

i ∈ Z2n and j ∈ [2n].
Lemma 3.4 We have that A ∈ Gsp if and only if the following conditions hold true

a(i)
1 a( j)

1 = 1, i, j ∈ Z2n, i + j = 1, (3.3)
r−1∑

�=0

(−1)�a(i)
1+� a

(r−i)
r−� = 0 i ∈ Z2n, r = 2, . . . , 2n. (3.4)

Remark 3.5 The relation (3.4) is trivial for r = 2i .

Proof of Lemma 3.4 By Definition3.1, A ∈ Gsp if and only if

(Aie
(i)
j1

, A−i e
(−i)
j2

) = (e(i)
j1

, e(−i)
j2

)

holds for any i ∈ Z2n , any j1, j2 ∈ [2n]. Now the desired equations come from the explicit
form of the matrices Ai as in [6, Proposition 4.5]. ��

3.2 Lie algebra of the symplectic automorphism group

Now we compute the dimensions of Gsp and of X(k, 2n)sp . Let g := Lie(G) = End(U[2n]).
These endomorphisms are explicitly described in [6, Proposition 4.5].
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Let
(
x(a, b) | a ∈ [2n], b ∈ Z2n

)
be the C-basis of g acting as

x(a, b)
(
e(b+ j)
1+ j

) = e(b+ j)
a+ j for j = 0, . . . , 2n − a

and as zero when applied to any other basis vector. With respect to the basis{
e(i)
j | j ∈ [2n]

}

i∈Z2n
, the operator x(a, b) is the matrix tuple (x(a, b)i )i∈Z2n whose b+ j-th

block ( j ∈ [0, 2n − 1]) has (s, t)-entry equals to

x(a, b)b+ j,(s,t) =
{
1 if s − j = a and t − j = 1,

0 otherwise.

by [6, Proposition 4.5]. Notice that in particular the block x(a, b)b+ j is the null matrix as
soon as a + j > 2n.

Recall that the group G is equipped with the automorphism σG from (3.2). This induces
a Lie algebra automorphism of g of order 2:

σg(xi ) := (�xt−i�)i .

Proposition 3.6 The automorphism σg acts on the basis of g via:

σg
(
x(a, b)

) = (−1)a · x(a, a − b).

Proof Fix a ∈ [2n], b ∈ Z2n and let −i = b + j for j ∈ [0, 2n − 1]. If j ≤ 2n − a then
all entries of x(a, b)−i are zero except for a 1 in position (a + j, 1+ j), hence its transpose
has only a 1 in position (1 + j, a + j). Because �st = (−1)s+1δs+t,2n+1, for any matrix
A = (Ast )st we obtain

(�A�)st = (−1)s+t+1 · A2n−s+1,2n−t+1.

Thus �xt−i� has zeros everywhere except a (−1)(1+ j)+(a+ j)+1 = (−1)a in position (2n −
j, 2n − a − j + 1). If we let � = 2n − a − j ∈ [0, 2n − a], then i = a − b + � and
σg

(
x(a, b)

)
i = (−1)a · x(a, a − b)i . If j ≥ 2n − a + 1 then x(a, b)−i = 0 and � + 2n ≥

2n − a + 1, so σg
(
x(a, b)

)
i = 0 = x(a, a − b)i . ��

Definition 3.7 Let y(a, b) := 1
2

[
x(a, b) + (−1)a · x(a, a − b)

]
.

Proposition 3.8 The dimension of Gsp is 2n2 + n.

Proof The elements from Definition3.7 span gσg , and since y(a, b) = (−1)a · y(a, a−b), a
basis of gσg made of such elements has cardinality 2n2 + n. We end the proof by remarking
that gσg is the Lie algebra of Gsp , which therefore has the same dimension. ��

3.3 Orbits of symplectic juggling patterns

Proposition 3.9 If pJ ∈ X(k, 2n)sp, then

CJ ∩ X(k, 2n)sp = Gsp.pJ .

Proof Let V = (Vi )i be a point in CJ ∩ X(k, 2n)sp . We want to show that there exists
A = (Ai )i ∈ Gsp such that V = A.pJ . Observe that this A is not unique since
dimGsp > dim X(k, 2n)sp . Let e(i)

j denote the j-th standard basis vector of the i-th copy of

C
2n as vector space of the �2n-representation U[2n]. The point pJ , seen as a �2n-module,
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is a direct sum of several indecomposables pJ ,1 ⊕ · · · ⊕ pJ ,s (see [6, Example 3.3] and
[7, Proposition 3.2]). For c ∈ [s], let e(ic)

jc
denote the basis vector corresponding to the start-

ing point of the indecomposable pJ ,c viewed as a subrepresentation of U[2n]. Then V is
completely determined by vectors vic ∈ Vic , for c = 1, . . . , s such that

vic =
2n∑

j= jc

b j,ic e
(ic)
j , with b jc,ic �= 0.

Since V ∈ X(k, 2n)sp , we know that (Vi , V−i ) = 0. The equality A.pJ = V means that s
(out of 2n) first columns start with the numbers b•,•. More precisely, the following equalities
hold for all c ∈ [s]:

a(ic− jc+1)
1 = b jc,ic , a(ic− jc+1)

2 = b jc+1,ic , . . . a(ic− jc+1)
2n− jc+1 = b2n,ic . (3.5)

We are left with the following problem: given several first entries of first columns of
several matrices Ai satisfying the orthogonality conditions, we have to complete this data to
an element A ∈ Gsp . We proceed by inductive application of Lemma3.4 to prove this claim:

The equations from Lemma3.4 satisfy the following properties:

• a•
1 is either fixed by (3.5) and (3.3) or free;

• for any pair i1 �= i2 ∈ Z2n there is a single relation involving a(i1)• and a(i2)• ;
• the relation

a(i)
1 a(r−i)

r = a(i)
2 a(r−i)

r−1 − · · · + (−1)r a(i)
r a(r−i)

1

allows one to reconstruct a(r−i)
r starting from a(•)

r ′ with r ′ ≤ r .

Observe that the number of free parameters depends on dim StabGsp pJ . The procedure of
recovering A ∈ Gsp is as follows. Start with a•

1: some of them are known from V and all the
others are free or recovered via relation (3.3). We proceed with a•

2 and so on. At each step
some coefficients are known from the data given by V as in (3.5). All the others are either
free or recovered by using the relations from Lemma3.4. ��
Example 3.10 Let k = n = 2 and let J = (J0, J1, J2, J3) be given by ({1, 2}, {2, 3}, {3, 4},
{1, 4}). Then pJ = pJ ,1 ⊕ pJ ,2, where both indecomposables pJ ,1 and pJ ,2 are four-
dimensional, pJ ,1 starts at vertex 0 and pJ ,1 starts at vertex 3 (hence s = 2, i1 = 0, i2 = 3).
A point V = (Vi )i ∈ CJ ∩ X(k, 2n)sp is completely determined by two vectors:

v0 = b1,0e
(0)
1 + b2,0e

(0)
2 + b3,0e

(0)
3 + b4,0e

(0)
4 ∈ V0, b1,0 �= 0,

v3 = b1,3e
(3)
1 + b2,3e

(3)
2 + b3,3e

(3)
3 + b4,3e

(3)
4 ∈ V3, b1,3 �= 0.

Hence one gets a(0)
j = b j,0, a

(3)
j = b j,3 for 1 ≤ j ≤ 4. The elements a(1)

j and a(2)
j are

subject to the following relations:

a(2)
1 = b−1

1,3, a(1)
1 = b−1

1,0, a(2)
2 b1,0 = b2,0b

−1
1,3,

a(2)
1 a(1)

3 − a(2)
2 a(1)

2 + a(2)
3 a(1)

1 = 0, a(1)
1 b4,3 − a(1)

2 b3,3 + a(1)
3 b2,3 − a(1)

4 b1,3 = 0.

One easily sees that this system does have solutions.

Remark 3.11 Lemma3.4 togetherwithProposition3.9 allows to compute the dimensionof the
cellsCsp

J := CJ ∩X(k, 2n)sp . In Lemma4.10 andProposition4.12we provide combinatorial
formulas.
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3.4 Orbit structure of themain object

Theorem 3.12 The group Gsp is a degeneration of the classical group Sp2n; in particular,
dimGsp = 2n2 + n. The group Gsp acts on X(k, 2n)sp with a finite number of orbits, the
orbits are affine cells and are naturally labeled by the symplectic juggling patterns.

Proof Thedegenerationprocedure is analogous to X(k, 2n)sp as degenerationofGr(k, 2n)sp ,
as described in Sect. 2.4. The dimension of Gsp is computed in Proposition3.8. In Proposi-
tion3.9, the symplectic subsets of cells are obtained asGsp-orbits of the points corresponding
to juggling patterns as defined in Remark2.3. This explicit description of the symplectic sub-
sets of the G-orbits, together with the equations from Lemma3.4, imply that they are affine
cells, since this holds for the G-orbits by [6, Theorem 1]. ��

4 Properties of the symplectic orbits

In this section we examine the poset structures on J P(k, 2n)sp and the dimension of the cells
Csp
J ⊂ X(k, 2n)sp for J ∈ J P(k, 2n)sp . The computations are based on the combinatorics

of the so called coefficient quivers associated to the juggling patterns.

4.1 Mutations of coefficient quivers

Let B = {e(i)
j : j ∈ [2n]}i∈Z2n , where e

(i)
j is as usual the j-th standard basis vector in the i-th

copy of C
2n as vector space of the �2n-representation U[2n].

Definition 4.1 Let Q(U[2n], B) denote the coefficient quiver ofU[2n] with respect to the basis
B. Thus Q has B as vertex set and arrows e(i)

j → e(i+1)
j+1 for any i ∈ Z2n and any j ∈ [2n−1]

(see [6, Definition 2.2, Definition 3.3] for more detail).

Note that every (k, 2n)-juggling patternJ ∈ J P(k, 2n) can be identified with an appropriate
successor-closed subquiver SJ in Q(U[2n], B) as follows: the subquiver SJ contains a vertex

e(i)
j if j ∈ Ji ; moreover, it contains an arrow of Q(U[2n], B) if its source and target are

contained in the vertex set of SJ . Then SJ is successor-closed in Q(U[2n], B) ( we write
SJ ⊆sc Q(U[2n], B) for short), i.e. if a vertex v ∈ SJ is a source of an arrow α : v → w

of Q(U[2n], B) then SJ also contains w (and hence α). The above identification defines an
isomorphism between J P(k, 2n) and the set

SC(k, 2n) := {
S ⊆sc Q(U[2n], B) #S ∩ {e(i)

j j ∈ [2n]} = k for all i ∈ Zn
}
.

Definition 4.2 Two elements S, S′ ∈ SC(k, 2n) are connected by a mutation μ : S′ → S if
they differ by the position of a (predecessor closed) segment, i.e.:

S′ \ S = e(i)
j → e(i+1)

j+1 → · · · → e(i+�)
j+� ,

S \ S′ = e(i)
j+s → e(i+1)

j+1+s → · · · → e(i+�)
j+�+s .

We write S′ ≥μ S if there is a sequence of mutations μ1, . . . , μr such that

S = μr ◦ · · · ◦ μ1(S
′).

By [33, Corollary 2.22] this defines a partial order on SC(k, 2n). In [7, Theorem 4.6] we
prove the following statement.
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Proposition 4.3 There is an order preserving poset isomorphism between J P(k, 2n)with the
order induced by cell closures in X(k, 2n) and SC(k, 2n)with the order induced by mutation
sequences.

4.2 Maximal symplectic juggling patterns

The above poset isomorphism allows us to apply the combinatorics of mutations to examine
the structure of cell closures in X(k, 2n) and its subvariety X(k, 2n)sp . We say S′ ≥μ S are
adjacent if there is no sequence of mutations from S′ to S with r > 1. Analogously we define
adjacent juggling patterns.

Lemma 4.4 Let J be a non-maximal (k, 2n)-juggling pattern such that J ⊆ RJ . Now let
J ′ ≥ J be another (k, 2n)-juggling pattern, adjacent to J . Suppose J ′

� RJ ′. Then there
exists J ′′ ≥ J ′, adjacent to J ′, such that J ′′ ⊆ RJ ′′.

Proof First we set some notation: given J a juggling pattern, x ∈ [2n] and a ∈ Z2n , we
write x (a) ∈ J to indicate x ∈ Ja .

We consider the inverse simple mutation in the coefficient quiver that links the successor-
closed subquivers associated to J and J ′: let

x (a) → (x + 1)(a+1) → · · · → (x + �)(a+�)

be the elements of the sets of J that mutate into different ones. There exists an integer s ≥ 1
such that these numbers are substituted with

(x − s)(a) → (x + 1 − s)(a+1) → · · · → (x + � − s)(a+�) (4.1)

and J ′ differs from J only by this change, since they are adjacent. Since this is a mutation,
we have the following:

• x ≥ 1 + s ≥ 2;
• (x − 1)(a−1) /∈ J ;
• (x − s − 1)(a−1) /∈ J ′;
• x + � ≤ 2n, and therefore � ≤ 2n − 2;
• x + � − s + 1 ∈ Ja+�+1 ∩ J ′

a+�+1.

Recall now that J is symplectic, so we know that for all a ∈ Z2n and all y ∈ Ja , the element
2n + 1 − y is not in J−a . By our assumption, J ′ does not have this property, that is, there
exist one vertex b and one element y ∈ J ′

b such that 2n + 1 − b ∈ J ′−b, and it must be one
that appears in segment (4.1). We consider the elements paired to the elements of (4.1) by the
symplectic form. They again form a segment (not necessarily contained completely in J ′):

(2n − x − � + s + 1)(−a−�) → · · · → (2n − x + s)(−a−1) → (2n − x + s + 1)(−a).

(4.2)

We will call the elements of this segment which are in J ′ problems, and we know there is
at least one, say (2n − x − j + s + 1)(−a− j) for some j ∈ [0, �]. Then for all 0 ≤ i ≤ j ,
2n − x − i + s + 1 is in J ′−a−i , because J ′ is a juggling pattern. So the problems make up a
successor closed subsegment of (4.2). We assume now that (2n− x − j + s+1)(−a− j) is the
leftmost problem, so that it starts a segment in the successor-closed subquiver representingJ ′.
To obtain a new symplectic juggling pattern from J ′, we want to apply a mutation to remove
this exact segment, again by subtracting the integer s. We can do so since 2n−x− j+s+1 ≥
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s + 1 (recall that s ≥ 1, j ≤ � and x + � ≤ 2n), and it creates a juggling pattern J ′′ which is
symplectic, because any problem with it would be of the form (2n − x + 1 + i)(−a+i), with
i ≥ 2n − j , and it is not possible since the element paired to it is neither in J ′ nor J ′′, since
they were removed with the first mutation (4.1). ��

4.3 Symplectic mutations and closures of symplectic cells

Corollary 4.5 If J ′′ > J are symplectic and adjacent in J P(k, 2n), or they are as in the
previous lemma, then pJ is in the closure of the Gsp-orbit of pJ ′′ in X(k, 2n)sp.

Proof We define the path V (t), t ∈ C, as follows: for a ∈ Z2n we set

V (t)a := Span
(
{e(a)

j | j ∈ Ja ∩ J ′′
a } ∪ {e(a)

j−s + t · e(a)
j | j ∈ Ja\J ′′

a }
)

,

where s is as in Definition4.2 if J and J ′′ are adjacent, or as in the proof of the previ-
ous Lemma if they are not. It follows from the explicit description of the mutations as in
Lemma4.4 that V (t) is a point in the cell CJ ′′ of X(k, 2n) for all t ∈ C, since it satisfies the
equations describing the cells as computed in the proof of [32, Theorem 4.13].

Now, we show that V (t) is contained in X(k, 2n)sp . For any j ∈ Ja ∩ J ′′
a , the vector e

(a)
j

pairs trivially with any other element in V (t)−a , so we can take j ∈ Ja \J ′′
a and y ∈ J−a \J ′′−a .

Then

(t · e(a)
j + e(a)

j−s, t · e(−a)
y + e(−a)

y−s ) = (t · e(a)
j , e(−a)

y−s ) + (e(a)
j−s, t · e(−a)

y ) = 0 .

The expression is zero because the two summands are opposites of each other, since j − s
and y − s are respectively in J ′′

a \Ja and in J ′′−a \J−a .
Finally, we observe that V (0) = pJ ′′ and the boundary point is pJ . ��

This motivates the following definition:

Definition 4.6 A symplectic mutation is either a mutation μ : S′ → S such that both S and
S′ are symplectic or a pair of two mutations μ2 : S′ → S and μ1 : S′′ → S′ where S and S′′
are symplectic and μ1, μ2 are as described in Lemma4.4.

Remark 4.7 Sequences of symplectic mutations define a partial order on SC(k, 2n)sp (i.e.
the subset of SC(k, 2n) corresponding to the juggling patterns in J P(k, 2n)sp). Hence it is
a natural question to ask if this partial order is induced by the mutation order on SC(k, 2n).

Example 4.8 In Example2.12, we represented the Hasse diagram of J P(2, 4)sp equipped
with the combinatorial order. We grouped the elements horizontally in tiers by the dimension
of their Gsp-orbit, from 3 to 0, top to bottom. In this case, the closure of a cell Csp

J coincides
with the union of symplectic cells for lower (symplectic) juggling patterns That is, the com-
binatorial order of symplectic (2, 4)-juggling patterns coincides with the closure inclusion
order on the set of Gsp-orbits in X(2, 4)sp . Otherwise stated, closure inclusion order on the
set of Gsp-orbits in X(2, 4)sp is induced by the closure inclusion order on the set of G-orbits
in X(2, 4). We conjecture that this is the case in general.

Conjecture 4.9 Let J ,J ′ ∈ J P(k, 2n)sp such that pJ ∈ CJ ′ ⊂ X(k, 2n). Then pJ ∈
Csp
J ′ ⊂ Xsp(k, 2n).

In other words: If S, S′ ∈ SC(k, 2n)sp are connected by a sequence of mutations, does a
sequence of symplectic mutations connecting S to S′ exist?
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Lemma 4.10 For J ∈ J P(k, 2n)sp the dimension of Csp
J equals the number of symplectic

mutations starting at SJ ∈ SC(k, 2n).

Proof In [34, Corollary 6.5, Theorem 6.15], we prove that dimC CJ equals the number
of mutations starting at SJ , that is, mutations of the form μ : S → SJ . Every mutation is
linked to one so-called terminal parameter in the equations describing the cells (see [34, (5.9),
(5.10)]). Now, Lemma4.4 implies that these parameters are only independent if they belong
to different symplectic mutations. Clearly, every symplectic mutation allows to choose one
independent parameter. This implies the desired dimension formula. ��
Remark 4.11 In particular, every mutation starting at SJ is either symplectic or part of a
symplectic pair as described in Lemma4.4.

4.4 Top dimensional cells

Proposition 4.12 The dimension of any top dimensional cell in X(k, 2n)sp is k(2n − k) −
k(k−1)

2 .

Proof By [6,Theorem3] every topdimensional cellCJ of X(k, 2n) is of dimension k(2n−k).
This equals the number of mutations starting at SJ by [34, Corollary 6.5, Theorem 6.15]. To
apply Lemma4.10, we count the symplectic mutations starting at SJ . At each of the k-many
segments in SJ of length 2n, there start 2n − k-many mutations. But k − 1 of them make J
non-symplectic. They have to be pairedwith their correctionmove as described inLemma4.4.
In total there start k(2n − k) − k(k − 1) single mutations at SJ which are symplectic and
k(k−1)

2 symplectic pairs as described in Lemma4.4. This sums up to the desired formula. ��
Proposition 4.13 The number of top dimensional cells in X(k, 2n)sp is

(2n)!!
k!(2n − 2k)!! .

Proof By Lemma4.4, the top dimensional cells Csp
J in X(k, 2n)2p are the intersection of

the top dimensional cells CJ ⊂ X(k, 2n) with X(k, 2n)sp , where J is symplectic. Their
number is given by the number of cardinality k subsets of [2n] that contain no pair (i, ĩ).
There are 2k · (n

k

) = (2n)!!
k!(2n−2k)!! such sets. ��

Theorem 4.14 The intersection of a cell of X(k, 2n) with X(k, 2n)sp is either empty or an
affine cell. The top dimensional cells of X(k, 2n)sp are obtained from top dimensional cells of
X(k, 2n). The dimension of X(k, 2n)sp is equal to the dimension of the classical symplectic
GrassmannianGr(k, 2n)sp and the number of irreducible components of X(k, 2n)sp is equal
to the Euler characteristic of Gr(k, 2n)sp.

Proof In Theorem3.12 the intersection of the cell CJ with the symplectic subvariety is
described as the Gsp-orbit of the point pJ corresponding to a symplectic juggling pattern J .
In particular, it is an affine cell. If J is not symplectic, then J � RJ and hence there is at
least one i ∈ Z2n and an a ∈ [2n] such that a ∈ Ji and 2n−a+1 ∈ J−i . By the description of
theG-orbits in X(k, 2n) from [6], we know that every point (Vs)s ∈ CJ is such that the space
Vi contains a vector of the form v = e(i)

a +∑2n
s=a+1 cse

(i)
s , while V−i contains a vector of the

form w = e(−i)
2n+1−a + ∑2n

s=2n+2−a dse
(−i)
s for some complex numbers cs, ds ∈ C. It is now

clear that (v,w) �= 0 and hence (Vs)s /∈ X(k, 2n)sp . For the maximal symplectic juggling
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patterns, the dimension of the corresponding cell is computed in Proposition4.12. It equals
the dimension of Gr(k, 2n)sp . The irreducible components are obtained as closure of the top
dimensional cells by Lemma4.4. Hence, their number matches the Euler characteristic of
Gr(k, 2n)sp by Proposition4.13 (see [35] where a similar property holds in a more general
setup). ��

5 Affine Grassmannians and flag varieties

5.1 The type A case

Here we briefly recall some background on type A affine Grassmannians and flag varieties
(more details can be found, for example, in [32] or in [36] in much greater generality). Let
us fix a positive integer number N . Let V be an N -dimensional complex vector space with a
basis v1, . . . , vN . We consider the set of lattices inside the space V [t, t−1] = V ⊗ C[t, t−1],
i.e t-invariant subspaces L such that for some m ∈ Z>0 and c ∈ Z one has

tmV [t] ⊂ L ⊂ t−mV [t], dim L/tmV [t] = mN + c. (5.1)

We denote by AGN ,c the set of lattices satisfying (5.1) for a fixed c ∈ Z. For example, one
has a distinguished lattice L̊c ∈ AGN ,c defined as follows. Let us write c = Nd + r , where
d ∈ Z and r = 0, . . . , N − 1. Then

L̊c = t−d (
V [t] ⊕ Span{v1t−1, . . . , vr t

−1}) . (5.2)

The affine Grassmannians AGN ,c are endowed with a structure of infinite-dimensional ind-
varieties and the multiplication by t−1 induces a natural isomorphism AGN ,c � AGN ,c+N .
These ind-varieties are equipped with a transitive action of the affine Kac-Moody Lie group
ŜLN . One hasAGN ,c � ŜLN /Pc for c = 0, . . . , N − 1, where Pc is the parahoric subgroup
corresponding to the fundamental weight �c. The disjoint union �N−1

c=0 AGN ,c is identified
with the affine Grassmannian for the affine GLN group.

The affine flag varietyAFN sits inside the product
∏

c∈Z AGN ,c and consists of collections
(Lc)c∈Z such that Lc ⊂ Lc+1 and Lc+N = t−1Lc. The ind-variety AFN is isomorphic to
the quotient ŜLN /I, where I is the Iwahori subgroup defined as the preimage of the Borel
subgroup B ⊂ SLN under the t = 0 evaluation map SLN [t] → SLN . We note that AFN

contains the distinguished point L̊ = (L̊c)c∈Z.

5.2 Symplectic version

Assume that N = 2n is even. We endow the space V with a skew-symmetric nondegenerate
bilinear form defined by (vi , v j ) = (−1)i+1δi+ j,N+1. The form induces a skew-symmetric
nondegenerate form on V [t, t−1] given by (vtr , uts) = (v, u)δr+s,−1. For example, the
lattice L̊0 is Lagrangian with respect to this form.

The symplectic affine flag varietyAFsp
2n is the subvariety of the type A affine flag variety

AF2n defined by

(Lc)c∈Z ∈ AFsp
2n if (Lc)c∈Z ∈ AF2n and L−c = L⊥

c . (5.3)

In other words, if we consider a degree two automorphism σ ofAF2n defined by σ.(Lc)c∈Z =
(L⊥−c)c∈Z, thenAF sp

2n is the set of σ -fixed points. Note that the symplectic affine flag variety
contains the distinguished point L̊ = (L̊c)c∈Z.
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Let Sp2n ⊂ SL2n be the Lie group preserving the above defined skew-symmetric form
on V . Let Bsp := B ∩ Sp2n be the Borel subgroup of Sp2n , consisting of symplectic upper
triangular matrices (or rather, one needs the intersection with a Borel subgroup closed under
the involution on SL2n given by the chosen symplectic form). We denote by Ŝp2n ⊂ ŜL2n

the symplectic affine group. As in type A, the Iwahori subgroup I
sp is the preimage of the

Borel subgroup Bsp ⊂ Sp2n under the evaluation map Sp2n[t] → Sp2n , t 	→ 0. Then
AF sp

2n � Ŝp2n/I
sp .

5.3 Embeddings of quiver Grassmannians

As usual, for j ∈ [2n], we denote by e j the j-th standard basis vector of C
2n ; moreover,

whenever we identify C
2n with with U (i)

[2n], that is the i-th space of our �2n-representation

U[2n], we will use the notation e(i)
1 , . . . , e(i)

2n for the standard basis vectors.
For k = 1, . . . , n consider the juggling variety X(k, 2n). We recall the embedding ϕ :
X(k, 2n) → AF2n from [7, Section 6.1]. Given a point U = (Ui )

2n−1
i=0 we describe the

components (ϕU )c of the point ϕU ∈ AF2n below.
Let us define a family η j,d of embeddings C

2n → V [t, t−1]. The embeddings are labeled
by d ∈ Z, j ∈ [2n]; η j,d is defined by

e2n 	→ v j t
d , e2n−1 	→ v j+1t

d , . . . , e j 	→ v2nt
d ,

e j−1 	→ v1t
d−1, e j−2 	→ v2t

d−1, . . . , e1 	→ v j−1t
d−1.

Now we define ϕ : X(k, 2n) → AF2n in the following way: (recall that L̊−n = tV [t] ⊕
Span{v1t0, . . . , vnt0}):

(ϕU )0 = L̊−n ⊕ ηn+1,0U0,

(ϕU )1 = L̊−n+1 ⊕ ηn+2,0U1,

. . . . . . . . . . . . . . . . . .

(ϕU )n−1 = L̊−1 ⊕ η2n,0Un−1,

(ϕU )n = L̊0 ⊕ η1,−1Un,

. . . . . . . . . . . . . . . . . .

(ϕU )2n−1 = L̊n−1 ⊕ ηn,−1U2n−1.

We also set (ϕU )c+2n = t−1(ϕU )c.

Remark 5.1 One easily sees (see [7, Lemmas 6.2 and 6.4]) that (ϕU )c ∈ AG2n,c and that
(Ui )i ∈ X(k, N ) implies ϕ(U ) ∈ AF2n .

Example 5.2 Let us take the point (Ui )
2n−1
i=0 ∈ X(k, 2n)given byUi =Span{e(i)

2n−k+1, . . . , e
(i)
2n }

for all i ∈ Z2n . Then ϕU = L̊ .

Now we are ready to formulate the main result of this section.

Proposition 5.3 For any k = 1, . . . , n the image ϕ(X(k, 2n)sp) belongs toAF sp
2n seen inside

AF2n.

Proof Let us take a point (Ui )i ∈ X(k, 2n)sp .We need to show that the condition (Ui ,U−i ) =
0 implies (ϕU ) j ⊂ (ϕU )⊥− j . Let us start with j = 0. By definition

(ϕU )0 = L̊−n ⊕ ηn+1,0U0.
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Since L̊−n = tV [t] ⊕ Span{v1t0, . . . , vnt0} and the image of ηn+1,0 is the subspace
Span{vn+1t0, . . . , v2nt0, v1t−1, . . . , vnt−1}, we conclude that

(L̊−n, L̊−n ⊕ ηn+1,0U0) = 0

(recall that the skew-symmetric residue pairing is given by (vi ta, v j tb) = δa+b,−1δi+ j,2n+1

(−1)i+1). We are left to show that (ηn+1,0U0, ηn+1,0U0) = 0. By definition the map

ηn+1,0 : W → Span{vn+1t
0, . . . , v2nt

0, v1t
−1, . . . , vnt

−1}
sends the form onW to the restriction of the residue form to the image). Hence the condition
(U0,U0) = 0 implies ((ϕU )0, (ϕU )0) = 0.

Now let us take i = 1, . . . , n and let us prove that ((ϕU )i , (ϕU )−i ) = 0. It suffices to
show that

(
L̊−n+i ⊕ ηn+i+1,0Ui , t(L̊n−i ⊕ ηn−i+1,−1(U2n−i ))

)
= 0

(recall (ϕU )−i = t(ϕU )2n−i ). All the pairings except for the single term (ηn+i+1,0Ui ,

tηn−i+1,−1U−i ) vanish by the definition of the residue pairing. The remaining term is zero
due to the condition (Ui ,U−i ) = 0. ��

We conclude with the following theorem, which is proved exactly as in [6, 7].

Theorem 5.4 The image of X(k, 2n)sp insideAF sp
2n is equal to a union of Schubert cells. The

embedding ϕ : X(k, 2n)sp → AF sp
2n translates the action of the symplectic automorphism

group on X(k, 2n)sp into the action of the Iwahori sugroup I
sp on AF sp

2n .

Appendix A Numerical data

In this section we provide the Euler characteristics χk,2n and χ
sp
k,2n of the varieties X(k, 2n)

and X(k, 2n)sp (the numbers of juggling patterns and of the symplectic juggling patterns)
as well as the corresponding Poincaré polynomials Pk,2n(t) and Psp

k,2n(t). For the symplectic
setting we use Lemma4.10.

Let n = 1. Then

χ1,2 = χ
sp
1,2 = 3, P1,2(t) = Psp

1,2(t) = 2t + 1.

Let n = 2. Then

χ1,4 = χ
sp
1,4 = 15,

P1,4(t) = Psp
1,4(t) = 4t3 + 6t2 + 4t + 1,

χ2,4 = 33, χ
sp
2,4 = 13,

P2,4(t) = 6t4 + 12t3 + 10t2 + 4t1 + 1,

Psp
2,4(t) = 4t3 + 5t2 + 3t1 + 1.

Let n = 3. Then

χ1,6 = χ
sp
1,6 = 63,

P1,6(t) = Psp
1,6(t) = 6t5 + 15t4 + 20t3 + 15t2 + 6t1 + 1,

χ2,6 = 473, χ
sp
2,6 = 293,
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P2,6(t) = 15t8 + 60t7 + 110t6 + 120t5 + 90t4 + 50t3 + 21t2 + 6t1 + 1,

Psp
2,6(t) = 12t7 + 47t6 + 81t5 + 77t4 + 48t3 + 21t2 + 6t1 + 1,

χ3,6 = 883, χ
sp
3,6 = 79,

P3,6(t) = 20t9 + 90t8 + 180t7 + 215t6 + 180t5 + 114t4 + 56t3 + 21t2 + 6t1 + 1,

Psp
3,6(t) = 8t6 + 18t5 + 22t4 + 17t3 + 9t2 + 4t1 + 1.

Let n = 4. Then

χ1,8 = χ
sp
1,8 = 255,

P1,8(t) = Psp
1,8(t) = 8t7 + 28t6 + 56t5 + 70t4 + 56t3 + 28t2 + 8t1 + 1,

χ2,8 = 5281, χ
sp
2,8 = 4053,

P2,8(t) = 28t12 + 168t11 + 476t10 + 840t9 + 1050t8 + 1008t7 + 784t6

+504t5 + 266t4 + 112t3 + 36t2 + 8t1 + 1,

Psp
2,8(t) = 24t11 + 166t10 + 478t9 + 798t8 + 904t7 + 759t6 + 501t5 + 266t4

+112t3 + 36t2 + 8t1 + 1,

χ3,8 = 26799, χ
sp
3,8 = 7507,

P3,8(t) = 56t15 + 420t14 + 1400t13 + 2870t12 + 4200t11 + 4788t10 + 4480t9

+3542t8 + 2408t7 + 1420t6 + 728t5 + 322t4 + 120t3 + 36t2 + 8t1 + 1,

Psp
3,8(t) = 33t12 + 251t11 + 757t10 + 1319t9 + 1588t8 + 1445t7 + 1042t6

+613t5 + 297t4 + 117t3 + 36t2 + 8t1 + 1.

χ4,8 = 44929, χ
sp
4,8 = 633,

P4,8(t) = 70t16 + 560t15 + 1960t14 + 4200t13 + 6426t12

+7672t11 + 7532t10 + 6272t9 + 4522t8 + 2856t7 + 1588t6 + 776t5

+330t4 + 120t3 + 36t2 + 8t1 + 1,

Psp
4,8(t) = 16t10 + 56t9 + 106t8 + 131t7 + 121t6 + 93t5 + 59t4

+31t3 + 14t2 + 5t1 + 1.
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