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Abstract
Let RN+ = [0,∞)N . We here make new contributions concerning a class of ran-
dom fields (Xt )t∈RN+ which are known as multiparameter Lévy processes. Related
multiparameter semigroups of operators and their generators are represented as
pseudo-differential operators. We also provide a Phillips formula concerning the com-
positionof (Xt )t∈RN+ bymeans of subordinator fields.Wefinally define the composition
of (Xt )t∈RN+ by means of the so-called inverse random fields, which gives rise to inter-
esting long-range dependence properties. As a byproduct of our analysis, we present a
model of anomalous diffusion in an anisotropic mediumwhich extends the one treated
in Beghin et al. (Stoch Proc Appl 130:6364–6387, 2020), by improving some of its
shortcomings.
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1 Introduction

In this paper, we consider multiparameter Lévy processes (Xt )t∈RN+ in the sense of
[5, 38–40]. The reason they are called in this way is that they enjoy, in some sense,
independence and stationarity of increments. Independence of increments is meant in
the following way. First, a partial ordering on R

N+ is established, such that a � b in
R

N+ if ai ≤ bi for each i = 1, . . . N . Then, it is assumed that for any choice of ordered
points t (1), t (2), . . . , t (k) inRN+ , we have that Xt ( j+1) − Xt ( j) , j = 1, . . . , k −1, is a set
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of independent random variables. On the other hand, stationarity of increments means
that Xt+τ − Xt has the same distribution of Xτ for all t, τ ∈ R

N+ .
Such processes are not to be confused with other extensions of Lévy processes

where the parameter is multidimensional. Among them, we recall a class of processes,
including the Brownian sheet and the Poisson sheet, which have a different definition
from ours, because in that case independence of increments is understood in another
way (consult e.g., [1, 10, 18]).

Multiparameter Lévy processes are of interest in Analysis since they furnish a
stochastic solution to some systems of differential equations, as will be recalled in
Sect. 2. Roughly speaking, if the vector G = (G1,G2, . . . ,GN ) is the generator of
a multiparameter Lévy process (Xt )t∈RN+ , then provided that u belongs to suitable
function spaces, the function Eu(x + Xt ) (E denoting the expectation) solves the
system

∂

∂tk
h(x, t) = Gk h(x, t) h(x, 0) = u(x), k = 1, . . . , N (1.1)

where t = (t1, . . . , tN ). Of course, for one-parameter Lévy processes, we have a
single differential equation, as stated by thewell-knownFeller theory of one-parameter
Markov processes and semigroups.

The idea of subordination for multiparameter Lévy processes is presented in [5, 38–
40] (for the classical theory of subordination of one-parameter Lévy processes, see e.g.,
[43, chapter 6]). The construction is as follows. Let (Xt )t∈RN+ be amultiparameter Lévy
process and let (Ht )t∈RM+ be a subordinator field, i.e., a multiparameter Lévy process

with values in R
N+ , such that it has non-decreasing paths in the sense of the partial

ordering (i.e., t1 � t2 in R
M+ implies Ht1 � Ht2 in R

N+ ). The subordinated field is
defined by (XHt )t∈RM+ , and it is again a multiparameter Lévy process.

One of the main results of this paper is to provide a formula for the generator of the
subordinated field. Indeed, we find an extension of the Phillips theorem to the multi-
parameter case, by involving the so-called multidimensional Bernstein functions. This
gives rise to interesting systems of type (1.1). In those systems, the operator on the
right side may possibly be pseudo-differential. For example, when the subordinator
field is stable, such a system could be interesting for those studying fractional equa-
tions, since the operator on the right side involves the fractional Laplacian and the
so-called fractional gradient; we recall that the fractional gradient is a generalization
of the fractional Laplacian to the case where the jumps are not isotropically distributed
(see e.g., [8, Example 2.2] and the references therein). Thus, while the existing the-
ory provides a stochastic solution to single differential equations (where the operator
on the right can be pseudo-differential or fractional), here we are able to provide a
stochastic solution to systems of differential equations, which can be interesting in
Analysis and in the study of fractional calculus (see e.g., the examples in Sect. 3.3).

The basic case of subordinator field is the one with M = 1. In this case, we
have a one-parameter process Ht = (H1(t), . . . , HN (t)) which the authors in [5] call
multivariate subordinator. This is nothing more than a one-parameter Lévy process
with values in RN+ , where all the components t → Hj (t) are non-decreasing (namely,
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each Hj is a subordinator). Using a multivariate subordinator, subordination of a
multiparameter Lévy process gives a one-parameter Lévy process.

In the second part of the paper, by considering a multivariate subordinator
(H1(t), . . . HN (t)), we will construct a new random field

Lt = (
L1(t1), . . . , LN (tN )

)
, t = (t1, . . . , tN ) (1.2)

where L j is the inverse, also said the hitting time, of the subordinator Hj , i.e.,

L j (t j ) = inf{x > 0 : Hj (x) > t j }.

We will call (1.2) inverse random field. Now, let (Xt )t∈RN+ be a multiparameter Lévy

process with values in R
d , which is assumed to be independent of ((1.2)). We are

interested in the subordinated random field (Zt )t∈RN+ defined by

Zt = XLt (1.3)

Of course, (1.2) and (1.3) are not multiparameter Lévy processes because they enjoy
neither independence nor stationarity of increments with respect to the partial order-
ing on R

N+ . However, they may be useful in applications in order to model spatial
data exhibiting various correlation structures which cannot fall in the framework of
multiparameter Lévy or Markov processes.

Our topic has been inspired by some existing literature. First of all, there are many
papers (see e.g., [6, 22, 29–34, 48]) concerning semi-Markov processes of the form

Z(t) = X(L(t)), t ≥ 0 (1.4)

where X is a (one-parameter) Lévy process inRd and L is the inverse of a subordinator
H independent of X , i.e.,

L(t) = inf{x > 0 : H(x) > t}.

Processes of type (1.4) have an important role in statistical physics, since they model
continuous time random walk scaling limits and anomalous diffusions. Moreover, it is
known that (1.4) is not Markovian, and its density p(x, t) is governed by an equation
which is non-local in the time variable:

Dt p(x, t) − ν(t)p(x, 0) = G∗ p(x, t). (1.5)

In the above equation, G∗ is the dual to the generator of X and the operator Dt is the
so-called generalized fractional derivative (in the sense of Marchaud), defined by

Dt h(t) :=
∫ ∞

0

(
h(t) − h(t − τ)

)
ν(dτ), t > 0, (1.6)
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where ν is the Lévy measure of H and ν(t) := ∫ ∞
t ν(dx) is the tail of the Lévy

measure.
The main results regarding the random fields of type (1.3) are presented in Sect. 4;

we will show that they have interesting correlation structures and that they are gov-
erned by particular integro-differential equations. Such equations are non-local in the
t1, . . . , tN variables and generalize equation (1.5) holding in the one-parameter case.
Thus, while the existing theory of semi-Markov processes furnishes a stochastic solu-
tion to single equations that are non-local in time, we here furnish a stochastic solution
to systems of equations which are non-local in the “time” variables t1, t2, . . . , tN .

We also recall that the first idea of inverse random field appeared in [8, sect. 3],
where the authors proposed a model of multivariate time change.

Another source of inspiration is the paper [24], even if it does not exactly fit into
our context. Here, the authors considered a Poisson sheet N (t1, t2), which is not a
multiparameter Lévy process in the sense of this paper, and studied the composition

Z(t1, t2) = N (L1(t1), L2(t2)),

where L1 and L2 are two independent inverse stable subordinators, of index α1 and
α2, respectively; the resulting random field showed interesting long-range dependence
properties.

2 Basic Notions and Some Preliminary Results

We introduce the partial ordering on the set R
N+ = [0,∞)N : the point a =

(a1, . . . , aN ) precedes the point b = (b1, . . . , bN ), say a � b, if and only if a j ≤ b j

for each j = 1, . . . , N .
A sequence {xi }∞i=1 in R

N+ is said to be increasing if xi � xi+1 for each i ; it is said
to be decreasing if xi+1 � xi for each i .

Consider a function f : RN+ → R
d . We say that f is right continuous at x ∈ R

N+
if, for any decreasing sequence xi → x we have f (xi ) → f (x).

We say that f : RN+ → R
d has left limits at x ∈ R

N+/{0} if, for any increasing
sequence xi → x , the limit of f (xi ) exists; such a limit may depend on the choice of
the sequence xi .

Moreover, f is said to be càdlàg if it is right continuous at each x ∈ R
N+ and has

left limits at each x ∈ R
N+/{0}.

2.1 Multiparameter Lévy Processes

We here recall the notion of multiparameter Lévy process in the sense of [5, 38–40].
We also refer to [17] as a standard reference on Multiparameter Markov processes.

The parameter set is here assumed to be R
N+ . An analogous (but more general)

definition holds if the parameter set is any cone contained inRN , but this generalization
is not essential for the aim of this paper.
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Definition 2.1 A random field (Xt )t∈RN+ , with values in R
d , is said to be a multipa-

rameter Lévy process if

1. X0 = 0 a.s.
2. It has independent increments with respect to the partial ordering on R

N+ , i.e., for
any choice of 0 = t (0) � t (1) � t (2) · · · � t (k), the randomvariables Xt ( j) −Xt ( j−1) ,
j = 1, . . . , k, are independent.

3. It has stationary increments, i.e., Xt+τ − Xt
d= Xτ for each t, τ ∈ R

N+
4. It is càdlàg a.s.
5. It is continuous in probability, namely for any sequence t (i) ∈ R

N+ such that
t (i) → t , it holds that Xt (i) converges to Xt in probability.

If (1), (2), (3), (5) hold, then (Xt )t∈RN+ is said to be a multiparameter Lévy process in
law.

We present some examples of multiparameter Lévy processes, which are con-
structed from one-parameter ones. Such examples are taken from [5].

Example 2.2 If (X (1)
t1 )t1∈R+ , . . . , (X (N )

tN )tN∈R+ are N independent Lévy processes on

R
d , with laws ν

(1)
t1 , . . . , ν

(N )
tN , then

Xt := X (1)
t1 + X (2)

t2 + · · · + X (N )
tN , t = (t1, t2, . . . , tN )

is an N -parameter Lévy process on Rd , which is usually called additive Lévy process
(see e.g., [19] and [17, p. 405]).

Here, Xt has law

μt = ν
(1)
t1 ∗ · · · ∗ ν

(N )
tN

where ∗ denotes the convolution. Examples of the sample paths are shown in Figs. 1
and 2.

Example 2.3 Let (X (1)
t1 )t1∈R+ , . . . (X (N )

tN )tN∈R+ be independent R-valued Lévy pro-

cesses with laws ν
(1)
t1 , . . . , ν

(N )
tN . Then,

Xt = (
X (1)
t1 , X (2)

t2 , . . . , X (N )
tN

)
, t = (t1, t2, . . . , tN )

is aRN valuedLévyprocess,which can be called product Lévyprocess (in the language
of [17, p. 407]). Clearly, this is a particular case of Example 2.2 because

Xt = X (1)
t1 e1 + X (2)

t2 e2 + · · · + X (N )
tN eN ,

where {e1, . . . , eN } denotes the canonical basis of RN .
Here, Xt has law

μt = ν
(1)
t1 ⊗ ν

(2)
t2 · · · ⊗ ν

(N )
tN ,
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Fig. 1 Sample paths of additive Lévy fields, as in Example 2.2
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Fig. 2 Sample path of a R2-valued biparameter additive field (i.e., d = N = 2)

where ⊗ denotes the product of measures.

Example 2.4 Let (Vt )t∈R+ be a Lévy process in R
d . Then, Vc1t1+···+cN tN is a

multiparameter Lévy process for any choice of (c1, . . . , cN ) ∈ R
N+ .

Remark 2.5 What we have presented is not the only way to extend the notion of
independence of increments to the multiparameter case. A very common approach is
to define independence of increments over disjoint rectangles (see [1] and [10]). This
gives rise to a class of random fields, known as Lévy sheets (e.g., the Poisson sheet or
the Brownian sheet).

In the following, δ0 will denote the probability measure concentrated at the origin.
Moreover, {e1, . . . , eN } will denote the canonical basis of RN .
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Definition 2.6 A family (μt )t∈RN+ of probability measures on R
d is said to be a RN+ -

parameter convolution semigroup if
i) μt+τ = μt ∗ μτ , for all t, τ ∈ R

N+
ii) μt → δ0 as t → 0

By Definition 2.6, it follows that μt is infinitely divisible for each t .
The above notion of multiparameter convolution semigroup is related to multi-

parameter Lévy processes, as shown in Proposition 2.7, which is a special case of
Theorem 4.5 of [5]. We underline that such Proposition will be crucial in the rest of
our article.

We preliminarily observe that since Xt is a multiparameter Lévy process, where
t = (t1, . . . , tN ), it immediately follows that for each j = 1, . . . , N , the process
(Xt j e j )t j∈R+ is a classical one-parameter Lévy process. In other words, if (μt )t∈RN+
is a multiparameter convolution semigroup, then (μt j e j )t j∈R+ is a one-parameter
convolution semigroup which is the law of Xt j e j .

Proposition 2.7 Let (Xt )t∈RN+ be a multiparameter Lévy process on R
d and let μt be

the law of the random variable Xt . Then,
i) the family (μt )t∈RN+ is a R

N+ -parameter convolution semigroup of probability
measures.

ii) There exist independent random vectors Y ( j)
t j , j = 1, . . . , N, with Y ( j)

t j
d= Xt j e j ,

such that

Xt
d= Y (1)

t1 + · · · + Y (N )
tN , t = (t1, . . . , tN ).

Proof By writing

Xt+τ = (Xt+τ − Xτ ) + Xτ for all t, τ ∈ R
N+

we observe that Xt+τ −Xτ and Xτ are independent by the assumption of independence
of increments along those sequences that are increasing with respect to the partial
ordering. Moreover, Xt+τ − Xτ has the same distribution of Xt by stationarity. Hence,
μt+τ = μt ∗μτ .Moreover, stochastic continuity of (Xt )t∈RN+ givesμt → δ0 as t → 0,
and thus i) is proved. To prove ii), it is sufficient to write t = t1e1 + · · · + tN eN and
apply the semigroup property just proved in point i), to have

μt = μt1e1 ∗ · · · ∗ μtN eN

and the proof is complete since μt j e j is the law of Xt j e j . 
�
We stress that Proposition 2.7 is a statement about equality in law of random

variables (t is fixed) and not equality of processes.
We further observe that Proposition 2.7 says that to each multiparameter Lévy pro-

cess in law there corresponds a unique convolution semigroup of probabilitymeasures.
But, unlike what happens for classical Lévy processes (i.e., when N = 1), the converse
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is not true in general: a multiparameter convolution semigroup (μt )t∈RN+ can be asso-
ciated to different multiparameter Lévy processes in law, because (μt )t∈RN+ does not

completely determine all the finite-dimensional distributions. Indeed, only along RN+ -
increasing sequences 0 � τ (1) � · · · � τ (k), the joint distribution of (Xτ (1) , . . . , Xτ (k) )

can be uniquely determined in terms of μt by using independence and stationarity of
increments, but this is not possible if the points τ (1), . . . , τ (k) ∈ R

N+ are not ordered
(in the sense of the partial ordering). As an example, consider two biparameter pro-
cesses defined in the following way. The first one is Z(t1, t2) = B1(t1) + B2(t2),
where B1 and B2 are independent standard Brownian motions. The second one is
W (t1, t2) = B(t1 + t2) where B(t) is a standard Brownian motion. Both Z(t1, t2) and
W (t1, t2) have law N (0, t1 + t2). However, this law does not identify all the finite-
dimensional distributions. Indeed, observe the processes at (t1, 0) and (0, t2), which
are not ordered points (in the sense of the partial ordering). It is clear that Z(t1, 0) and
Z(0, t2) are independent, unlike what happens for W (t1, 0) and W (0, t2).

2.1.1 Characteristic Function of Multiparameter Lévy Processes

Consider the Y ( j)
t j involved in Proposition 2.7. By the Lévy Khintchine formula, we

have

Ee
iξ ·Y ( j)

t j =
∫

Rd
eiξ ·yμt j e j (dy) = et jψ j (ξ), ξ ∈ R

d , (2.1)

the Lévy exponent ψ j having the form

ψ j (ξ) = iγ j · ξ − 1

2
A jξ · ξ +

∫

Rd/{0}
(eiξ ·z − 1 − iξ · z I[−1,1](z))ν j (dz), (2.2)

where γ j ∈ R
d , A j is the Gaussian covariance matrix, ν j denotes the Lévy measure

and · denotes the scalar product. By the above considerations, we thus get the following
statement.

Proposition 2.8 Let (Xt )t∈RN+ be a multiparameter Lévy process with values in R
d .

Then, Xt has characteristic function

Eeiξ ·Xt = et1ψ1(ξ)+···+tNψN (ξ) = et ·
(ξ), ξ ∈ R
d , (2.3)

where t = (t1, . . . , tN ), the functions ψ j have been defined in (2.2), and


(ξ) = (ψ1(ξ), . . . , ψN (ξ)). (2.4)

We will call (2.4) the multidimensional Lévy exponent.
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2.2 Autocorrelation Function of Multiparameter Lévy Processes

Consider a multiparameter Lévy process {Xt }t∈RN+ with values in R. In the following
proposition, we will explicitly compute the autocorrelation function between two
ordered points in the parameter space, i.e.,

ρ(Xs, Xt ) := Cov(Xs, Xt )√
Var Xs

√
Var Xt

, s � t . (2.5)

Of course, (2.5) exists finite only in some cases,whichwill be specified in the following
(e.g., the process must be non-deterministic). What we will find is the N -parameter
extension of the well-known formula holding in the case N = 1, i.e., for classical
Lévy processes (consult e.g., Remark 2.1 in [23]):

ρ(Xs, Xt ) =
√
s

t
, s ≤ t .

Proposition 2.9 Let {Xt }t∈RN+ be an N-parameter Lévy process with values in R,
having multidimensional Lévy exponent 
(ξ) defined in (2.3) and (2.4). For each
j = 1, . . . , N, let ξ → ψ j (ξ) be twice differentiable in a neighborhood of ξ = 0,
and such that ψ ′′

j (0) �= 0. Then, the autocorrelation function defined in (2.5) reads

ρ(Xs, Xt ) =
√
s · σ 2

t · σ 2 , s � t, (2.6)

where · denotes the scalar product and σ 2 := −
 ′′(0).

Proof Consider the decomposition of Xt given in Proposition 2.7. Since ψ ′′
j (0) exists,

then Y ( j)
t j has finite mean and variance:

EY ( j)
t j = −i t jψ

′
j (0) = t j EY

( j)
1

E

(
Y ( j)
t j

)2

= −t jψ
′′
j (0) − t2j ψ

′
j (0)

2

VarY ( j)
t j = −t jψ

′′
j (0) = t jVarY

( j)
1

Letting μ :=
(
EY (1)

1 , . . . ,EY (N )
1

)
and σ 2 := −
 ′′(0) =

(
VarY (1)

1 , . . . ,VarY (N )
1

)
,

we get

EXt = −i t · 
 ′(0) = t · μ

VarXt = −t · 
 ′′(0) = t · σ 2
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Moreover, for s � t , we have

EXt Xs = E(Xt − Xs)Xs + E(Xs)
2

= E(Xt − Xs)EXs + E(Xs)
2

= EXt−sEXs + E(Xs)
2

= (
(t − s) · μ

)(
s · μ

) + s · σ 2 + (s · μ)2,

where we used independence and stationarity of the increments along R
N+ increasing

sequences. We thus have

Cov(Xt , Xs) := EXt Xs − EXtEXs = s · σ 2

and the desired result immediately follows. 
�
Remark 2.10 Let |v| denote theEuclidean normof v. In the limit |t | → ∞, we have that
ρ(Xs, Xt ) behaves like |t |−1/2. Indeed, consider the scalar product in the denominator
of (2.6), i.e., t ·σ 2 = |t | |σ 2| cos θ , where θ is the angle between t and σ 2. Now, observe
that σ 2 is a fixed vector of RN+ , with strictly positive components by the assumption
ψ ′′

j (0) �= 0. Since t is in R
N+ also, by simple geometric arguments, it follows that

there exist two constants c1 > 0 and c2 > 0, which do not depend on t , such that
c1 ≤ cos θ ≤ c2. Then, k1|t |−1/2 ≤ ρ(Xs, Xt ) ≤ k2|t |−1/2 for two suitable constants
k1 > 0 and k2 > 0 both independent of t .

2.3 Multiparameter Semigroups of Operators and their Generators

Let B be a Banach space equipped with the norm || · ||B. An N -parameter family
(Tt )t∈RN+ of bounded linear operators on B is said to be an N -parameter semigroup of
operators if T0 is the identity operator and the following property holds:

Ts+t = Ts ◦ Tt ∀s, t ∈ R
N+ . (2.7)

We say that (Tt )t∈RN+ is strongly continuous if

lim
t→0

||Ttu − u||B = 0 ∀u ∈ B.

Moreover, we say that (Tt )t∈RN+ is a contraction semigroup if, for any t ∈ R
N+ , we

have ||Ttu||B ≤ ||u||B.
Example 2.11 Let G1,G2, . . . ,GN be bounded operators on B, such that [Gi ,Gk] :=
GiGk − GkGi = 0 for all i �= k. Consider the vector

G = (G1, . . . ,GN ).
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Then, for all t = (t1, . . . , tN ), the family

Tt = et1G1 ◦ · · · ◦ etNGN = eG·t

defines a strongly continuous semigroup on B. In light of the following Definition
2.13, we will call the vector G the generator of the multiparameter semigroup.

Example 2.12 Let (μt )t∈RN+ be a multiparameter convolution semigroup of probabil-

ity measures on R
d (in the sense of Definition 2.6) and let C0(Rd) be the space of

continuous functions vanishing at infinity, equipped with the sup-norm. Then,

Ttq(x) =
∫

Rd
q(x − y)μt (dy) = μt ∗ q(x), q ∈ C0(Rd), t ∈ R

N+

defines a strongly continuous contraction multiparameter semigroup.

Let t = (t1, . . . , tN ) ∈ R
N+ and let {e1, . . . , eN } be the canonical basis of RN . For

each j = 1, . . . , N , we refer to the one-parameter semigroups Tt j e j as the marginal
semigroups. By the property (2.7), it follows that the marginal semigroups commute,
i.e., [Tti ei , Tt j e j ] = 0 for i �= j and the following relation holds:

Tt = Tt1e1 ◦ Tt2e2 ◦ · · · ◦ TtN eN

Now, let Gi be the generator of Tti ei , defined on Dom(Gi ). It is well-known that if
u ∈ Dom(Gi ), then Tti ei u ∈ Dom(Gi ) and the following differential equation

d

dti
w(ti ) = Giw(ti ), w(0) = u

is solved byw(ti ) = Tti ei u. We here recall the notion of generator of a multiparameter
semigroup (see [9, chapter 1]).

Definition 2.13 Let (Tt )t∈RN+ be a strongly continuous N -parameter semigroup on B

and let Gi , i = 1, . . . , N , be the generators of the marginal semigroups, each defined
on Dom(Gi ). We say that the vector

G = (G1, . . . ,GN )

is the generator of (Tt )t∈RN+ , defined on Dom(G) = ⋂N
j=1 Dom(G j ).

The above definition is intuitively motivated by the following result.

Proposition 2.14 Let (Tt )t∈RN+ be a strongly continuous N-parameter semigroup with

generator G according to Definition 2.13. Then, for u ∈ ⋂N
j=1 Dom(G j ), the function

w(t) = Ttu solves the following system of differential equations

∇tw(t) = Gw(t), w(0) = u, (2.8)

123



Journal of Theoretical Probability

where ∇t denotes the gradient with respect to t = (t1, . . . , tN ). Namely, we have

∂

∂ti
w(t) = Giw(t), i = 1 . . . N (2.9)

subject to w(0) = u.

Proof Let us introduce a compact notation to denote the composition of operators,
namely

©N
k=1Ak := A1 ◦ A2 ◦ · · · AN

Let us fix i = 1, . . . , N . For q ∈ Dom(Gi ), it is true that Tti ei q ∈ Dom(Gi ) and

d

dti
Tti ei q = GiTti ei q (2.10)

By using Propositions 1.1.8 and 1.1.9 in [9], we know that if u ∈ Dom(Gi ), then
Ttu ∈ Dom(Gi ) for any t ∈ R

N+ . In particular, we have ©N
k=1,k �=i Ttkek u ∈ Dom(Gi ).

Hence, Eq. (2.10) holds for q = ©N
k=1,k �=i Ttkek u:

d

dti
Tti ei ©N

k=1,k �=i Ttkek u = GiTti ei ©N
k=1,k �=i Ttkek u (2.11)

and Eq. (2.9) for a fixed i is found by using property (2.7). By choosing u ∈⋂N
j=1 Dom(G j ), it is possible to repeat the same argument for all i = 1, . . . , N ,

and the system of differential equations is obtained. 
�
By putting t = 0 in Eq. (2.8), it follows that the generator G can also be found by

Gu = ∇t Ttu
∣∣
t=0, u ∈

N⋂

j=1

Dom(G j ). (2.12)

For other results concerningmultiparameter semigroups and generators consult [9].
Moreover, for a general discussion on operator semigroups related to multiparameter
Markov processes, we refer to [17].

Remark 2.15 A different definition of generator for multiparameter semigroups is
given in [14] and [47]. Here, the authors defined the generator as the composition
of the marginal generators, i.e.,

G = G1 ◦ G2 ◦ · · · ◦ GN .

The motivation for such definition is that for u ∈ Dom(G1 ◦ · · · ◦ GN ), the authors
prove that w(t) = Ttu solves the partial differential equation

∂N

∂t1 . . . ∂tN
w(t) = Gw(t), w(0) = u, (2.13)
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where t = (t1, . . . tN ). Also this approach seems to be very interesting, especially in
the field of partial differential equations as it allows to find probabilistic solutions to
equations of type (2.13), containing a mixed derivative.

2.4 Semigroups Associated with Multiparameter Lévy Processes

Let (Xt )t∈RN+ be a multiparameter Lévy process onRd and let (μt )t∈RN+ be the associ-
ated convolution semigroup of probability measures, i.e., μt is the law of Xt for each
t . Consider the operator

Tth(x) := E h(x + Xt ) =
∫

Rd
h(x + y)μt (dy), h ∈ C0(Rd), t ∈ R

N+ ,

(2.14)

where C0(Rd) denotes the space of continuous functions vanishing at infinity. By
using the properties of {μt }t∈RN+ , it immediately follows that the family (Tt )t∈RN+ is a

strongly continuous contraction semigroup on C0(Rd); it is also positivity preserving,
hence it is a Feller semigroup. We now give a representation of this semigroup and
its generator by means of pseudo-differential operators. We restrict to the Schwartz
space of functions S(Rd).

We define the Fourier transform by

ĥ(ξ) = 1

(2π)d/2

∫

Rd
e−iξ ·xh(x)dx, ξ ∈ R

d .

Since h ∈ S(Rd), the following Fourier inversion formula holds:

h(x) = 1

(2π)d/2

∫

Rd
eiξ ·x ĥ(ξ)dξ, x ∈ R

d .

Theorem 2.16 Let (Xt )t∈RN+ be a multiparameter Lévy process with Lévy exponent 

defined in (2.3) and (2.4). Let (Tt )t∈RN+ be the associated semigroup defined in (2.14)
and let G = (G1, . . . ,GN ) be its generator. Then,

1. For any t ∈ R
N+ , Tt is a pseudo-differential operator with symbol et ·
 , i.e.,

Tt h(x) = 1

(2π)d/2

∫

Rd
eiξ ·x et ·
(ξ)ĥ(ξ)dξ, h ∈ S(Rd). (2.15)

2. G is a pseudo-differential operator with symbol 
, i.e., for each i = 1, . . . , N we
have

Gih(x) = 1

(2π)d/2

∫

Rd
eiξ ·xψi (ξ)ĥ(ξ)dξ, h ∈ S(Rd).
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Proof 1. Since (2.14) is a convolution integral, its Fourier transform can be computed
as

1

(2π)d/2

∫

Rd
e−iξ ·x Tth(x)dx = ĥ(ξ)Eeiξ ·Xt ,

where Eeiξ ·Xt = et ·
(ξ) by using (2.3). Then, Fourier inversion gives the result.
2. By applying formula (2.12), we have that

Gih(x) = ∂

∂ti
Ttu(x)

∣∣∣
∣
t=0

=
[
lim
ti→0

1

(2π)d/2

∫

Rd
eiξ ·x etiψi (ξ) − 1

ti

N∏

k=1,k �=i

etkψk (ξ)ĥ(ξ)dξ

]

t=0
.

The limit can be taken inside the integral due to dominated convergence theorem.
Indeed, |etkψk (ξ)| ≤ 1 for each k because etkψk (ξ) is the characteristic function of
μtk ek (see (2.1)); moreover,

∣
∣∣∣
etiψi (ξ) − 1

ti

∣
∣∣∣ ≤ |ψi (ξ)| ≤ Ci (1 + |ξ |2),

where for the last inequality we used [4, p. 31]. Thus, the absolute value of the
integrand is dominated by (1 + |ξ |2)ĥ(ξ). But the last function is independent of
ti and is integrable on R

d because ĥ is a Schwartz function. Then, by exchanging
the limit and the integral, the result immediately follows.


�

3 Composition of Random Fields

3.1 Subordinator Fields

In order to treat the composition of random fields, the main object is provided by the
following definition.

Definition 3.1 A multiparameter Lévy process (Ht )t∈RM+ is said to be a subordinator

field if, for some positive integer N , it takes values in RN+ almost surely.

The above definitionmeans that almost surely, t → Ht is a non-decreasing function
with respect to the partial ordering, i.e., t1 � t2 on R

M+ implies Ht1 � Ht2 on R
N+ .

Example 3.2 (Classical subordinators) If N = M = 1, then (Ht )t∈R+ is a classical
subordinator, i.e., a non-decreasing Lévy process with values in R+. Hence, it is such
that

Ee−λHt = e−t f (λ), λ ≥ 0,
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where the Laplace exponent f is a so-called Bernstein function. Thus, it is defined by

f (λ) = bλ +
∫

R+
(1 − e−λx )φ(dx),

where b ≥ 0 is the drift coefficient and φ is the Lévy measure, which is supported on
R+ and satisfies

∫
R+ min(x, 1)φ(dx) < ∞. For more details on this subject, consult

[45].

Example 3.3 (Multivariate subordinators) If M = 1 and N ≥ 1, then (Ht )t∈R+ is a
multivariate subordinator in the sense of [5]. Thus, it is a one-parameter Lévy process
with values inRN+ , i.e., it is non-decreasing in each marginal component. Here, Ht has
Laplace transform

Ee−λ·Ht = e−t S(λ), λ ∈ R
N+ ,

where the Laplace exponent S is a multivariate Bernstein function. Hence, it is defined
by

S(λ) = b · λ +
∫

R
N+
(1 − e−λ·x )φ(dx), λ ∈ R

N+

where b ∈ R
N+ , and the Lévy measure φ is supported on R

N+ and satisfies

∫

R
N+
min(|x |, 1)φ(dx) < ∞.

It is known (see e.g., Sect. 2 in [8]) that if Ht has a density p(x, t), then it solves

∂t p(x, t) = b · ∇x p(x, t) − Dx p(x, t), x ∈ R
N+ , t > 0,

where Dx denotes the N -dimensional version of the generalized fractional derivative
defined in (1.6), i.e.,

Dxh(x) =
∫

R
N+

(
h(x) − h(x − y)

)
φ(dy), x ∈ R

N+ . (3.1)

Example 3.4 (Multivariate stable subordinators) We here consider a special sub-
case of Example 3.3, in which the multivariate subordinator is stable. In order to define
this process by means of its Lévy measure, we need to use the spherical coordinates
r and θ̂ , which respectively denote the length and the direction of jumps. Clearly, θ̂

takes values in the set CN−1 = {θ̂ ∈ R
N+ : |θ̂ | = 1} because, by definition, all the

marginal components make positive jumps. So, a multivariate subordinator (Ht )t∈R+
is said to be α-stable if its Lévy measure can be written in spherical coordinates as

φ(dr , dθ̂ ) = dr

rα+1 σ(dθ̂ ), r > 0, θ̂ ∈ CN−1,
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where α ∈ (0, 1) denotes the stability index and σ is the so-called spectral measure,
which is proportional to the probability distribution of the jump direction θ̂ . By simple
calculations, it is easy to see that in this case, the Laplace exponent takes the form

Sα,σ (λ) = k
∫

CN−1
(λ · θ̂ )ασ (dθ̂ ), λ ∈ R

N+ (3.2)

for a suitable k > 0. It is known that Ht has a density p(x, t) solving the following
equation:

∂t p(x, t) = −Dα,σ
x p(x, t), (3.3)

where Dα,σ
x is the so-called fractional gradient, i.e., a pseudo-differential operator

defined by

Dα,σ
x h(x) = k

∫

CN−1
(∇ · θ̂ )αh(x)σ (dθ̂ ). (3.4)

Note that (3.4) represents the average under σ(dθ̂ ) of the fractional power of the
directional derivative along the direction θ̂ . For some theory and applications about
this operator, consult Example 2.2 in [8], chapter 6 in [33] and also [13, 28].

When N = 2, the Lévy measure has the form

φ(dr , dθ) = dr

rα+1 σ(dθ), r > 0, 0 ≤ θ ≤ π

2

and, by denoting λ = (λ1, λ2), the Laplace exponent can be written as

Sα,σ (λ1, λ2) = k
∫ π/2

0
(λ1 cos θ + λ2 sin θ)α σ (dθ),

whence the fractional gradient, acting of a function (x, y) → h(x, y), has the form

Dα,σ
x,y h(x, y) = k

∫ π/2

0

(
cos θ

∂

∂x
+ sin θ

∂

∂ y

)α

h(x, y)σ (dθ), (3.5)

3.1.1 The General Case

In the general case where N and M are any positive integers, the Laplace transform of
Ht can be computed as follows. Let t = (t1, . . . , tM ) ∈ R

M+ and let {e1, . . . , eM } be the
canonical basis of RM . We can use Proposition 2.7 to say that there exist independent

random vectors Z (k)
tk , k = 1, . . . , M , with Z (k)

tk
d= Htkek , such that

Ht
d= Z (1)

t1 + . . . Z (M)
tM .
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Fig. 3 Sample path of a stable
subordinator field

But, by the construction of (Ht )t∈RM+ , it follows that for each k = 1, . . . , M , the process
(Htkek )tk∈R+ is a multivariate subordinator in the sense explained in the previous
Example 3.3. Hence, there exist bk ∈ R

N+ and a Lévy measure φk on R
N+ (satisfying∫

R
N+ min(|x |, 1)φk(dx) < ∞) such that Htkek has Laplace transform

Ee−λ·Htkek = e−tk Sk (λ), λ ∈ R
N+ ,

where Sk is a multivariate Bernstein functions, defined by

Sk(λ) = bk · λ +
∫

R
N+
(1 − e−λ·x )φk(dx). (3.6)

Hence, the Laplace transform of Ht can be compactly written as

Ee−λ·Ht = e−t1S1(λ)···−tM SM (λ) = e−t ·S(λ), (3.7)

where t = (t1, . . . , tM ) and

S(λ) = (
S1(λ), . . . , SM (λ)

)
. (3.8)

We call (3.8) the multidimensional Laplace exponent of the subordinator field.
The above decomposition of a subordinator field into the sum (in distribution) of
independent multivariate subordinators will play a decisive role in the following.

A sample path of a stable subordinator field is shown in Fig. 3.

3.2 Subordinated Fields

Let (Xs)s∈RN+ be an N -parameter Lévy process with values in R
d and let (Ht )t∈RM+

be a subordinator field (in the sense of Sect. 3.1) with values in RN+ . In the following,
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(Xs)s∈RN+ and (Ht )t∈RM+ are assumed to be independent. We consider the subordinated
random field

Zt := XHt , t ∈ R
M+ . (3.9)

It is known that (3.9) is also a multiparameter Lévy process (see [39, Thm. 3.12]).
Let μs , ρt and νt , respectively, denote the probability laws of Xs , Ht and Zt . Then,
by conditioning, for any Borel set B ⊂ R

d , we have

νt (B) =
∫

R
N+

μs(B) ρt (ds). (3.10)

Processes of type (3.9) have also been studied in the literature.
In [5], the authors study the case M = 1 and prove that (Zt )t∈R+ is again a Lévy

process and find the characteristic triplet.
In [38–40], the authors consider the general case M ≥ 1; actually their study is

more general, since they consider cone-parameter Lévy processes subordinated by
cone-valued Lévy processes.

Now, let (Tt )t∈RN+ be the Feller semigroup associated with Xt , defined in (2.14),

with generator G = (G1, . . . ,GN ). Moreover, let (T Z
t )t∈RM+ be the Feller semigroup

associated with Zt , i.e.,

T Z
t h(x) := E h(x + Zt ) =

∫

Rd
h(x + y)νt (dy), h ∈ C0(Rd), t ∈ R

M+ ,

(3.11)

where νt is the law of Zt defined in (3.10), whence we can rewrite (3.11) as a
subordinated semigroup:

T Z
t h(x) =

∫

R
N+
Tsh(x)ρt (ds), t ∈ R

M+ . (3.12)

In the following theorem, we determine the form of the generator GZ =
(GZ

1 , . . . ,GZ
M ) for the subordinated semigroup, by restricting to the Schwartz space

S(Rd). We obtain a multiparameter generalization of the well-known Phillips formula
(see e.g., [43, p. 212]) holding for one-parameter subordinated semigroups.

Theorem 3.5 For each k = 1, . . . , M, we have

GZ
k h(x) = bk · G h(x) +

∫

R
N+

(
Tzh(x) − h(x)

)
φk(dz), h ∈ S(Rd). (3.13)

where bk and φk have been defined in (3.6).
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Proof We first compute the characteristic function of Zt = XHt , following the lines
of [5]. By conditioning, and using (2.3) and (3.7), we have

Eeiξ ·XHt =
∫

R
N+
Eeiξ ·Xu P(Ht ∈ du)

=
∫

R
N+
eu·
(ξ)P(Ht ∈ du)

= Ee−(−
(ξ))·Ht

= e−t ·S(−
(ξ)), ξ ∈ R
d ,

where t = (t1, . . . , tM ) and

−S(−
(ξ)) :=

⎛

⎜⎜
⎝

−S1
(−ψ1(ξ), . . . ,−ψN (ξ)

)

:
:

−SM
(−ψ1(ξ), . . . ,−ψN (ξ)

)

⎞

⎟⎟
⎠ .

Thus, by using Theorem 2.16, it follows that T Z
t is a pseudo-differential operator

with symbol e−t ·S(−
), i.e.,

T Z
t h(x) = 1

(2π)d/2

∫

Rd
eiξ ·x e−t ·S(−
(ξ))ĥ(ξ)dξ, h ∈ S(Rd) (3.14)

while for each k = 1, . . . , M , GZ
k is a pseudo-differential operator with symbol

−Sk(−
(ξ)) = −Sk(−ψ1(ξ), . . . ,−ψN (ξ)).

This means that

GZ
k h(x) = − 1

(2π)d/2

∫

Rd
eiξ ·x Sk(−ψ1(ξ), . . . ,−ψN (ξ)) ĥ(ξ)dξ, h ∈ S(Rd).

(3.15)

But, using (3.6), we have that

−Sk(−
(ξ)) = bk · 
(ξ) +
∫

R
N+
(ez·
(ξ) − 1)φk(dz). (3.16)

Then, after substituting (3.16) in (3.15), we can solve the inverse Fourier transform,
and taking into account the representation of Tt given in (2.15), we obtain the result.


�
Remark 3.6 In the spirit of operational functional calculus, the well-known Phillips
Theorem (see e.g., [43, p. 212]) can be informally stated as follows. Let a Markov
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process (Xt )t∈R+ have generator G and let a subordinator (Ht )t∈R+ have Bernstein
function f . Then, the subordinated process (XHt )t∈R+ has generator − f (−G).

In a similar way, our Theorem 3.5 can be stated as follows.
Let (Xt )t∈RN+ be amultiparameter Lévy process with generatorG = (G1, . . . ,GN )

and let (Ht )t∈RM+ be a subordinator field associated with the multivariate Bernstein
functions S1, S2, . . . , SM , namely its Laplace exponent is S = (S1, S2, . . . , SM ).
Then, the subordinated field (XHt )t∈RM+ has generator

−S(−G) :=

⎛

⎜
⎜⎜⎜
⎝

−S1(−G1,−G2, . . . ,−GN )

−S2(−G1,−G2, . . . ,−GN )

·
·

−SM (−G1,−G2, . . . ,−GN )

⎞

⎟
⎟⎟⎟
⎠

.

3.3 Stochastic Solution to Systems of Integro-Differential Equations

Our extension of the Phillips theorem, given in Theorem 3.5, provides a stochastic
solution to some systems of differential equations.

Indeed, let (Xt )t∈RN+ be aMultiparameterLévyprocesswith values inRd .Moreover,

let (Ht )t∈RM+ be a subordinator field with values inRN+ and let (Zt )t∈RM+ = (XHt )t∈RM+
be the subordinated field. Then, by virtue of Proposition 2.14, and using the symbolic
notation of Remark 3.6, we have that, for any u ∈ S(Rd), the function Eu(x + Zt )

solves the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂t1

h(x, t) = −S1(−G1,−G2, . . . ,−GN )h(x, t)
∂

∂t2
h(x, t) = −S2(−G1,−G2, . . . ,−GN )h(x, t)

·
·

∂
∂tM

h(x, t) = −SM (−G1,−G2, . . . ,−GN )h(x, t)

h(x, 0) = u(x)

x ∈ R
d , t ∈ R

M+ , (3.17)

where t = (t1, . . . , tM ), G = (G1, . . . ,GN ) denotes the generator of (Xt )t∈RN+
and S1, . . . , SM are the multivariate Bernstein functions, i.e., the components of the
Laplace exponent of (Ht )t∈RM+ defined in (3.8).

Example 3.7 Let {e1, . . . , eM } be the canonical basis of RM . Assume that the subor-
dinator field (Ht )t∈RM+ is such that, for each i = 1, . . . , M , the component Hti ei is a
multivariate stable subordinator in the sense of Example 3.4, with index αi ∈ (0, 1),
whose multivariate Bernstein function reads

Sαi ,σi
i (λ) = ki

∫

CN−1
(λ · θ̂ )αi σi (dθ̂ ). (3.18)
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Then, the system (3.17) takes the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂
∂t1

h(x, t) = −k1
∫
CN−1(−G · θ̂ )α1h(x, t)σ1(dθ̂ )

∂
∂t2

h(x, t) = −k2
∫
CN−1(−G · θ̂ )α2h(x, t)σ2(dθ̂ )

. . .
∂

∂tM
h(x, t) = −kM

∫
CN−1(−G · θ̂ )αM h(x, t)σM (dθ̂ )

x ∈ R
d , t ∈ R

M+ ,

(3.19)

where, on the right side, the fractional powers (−G · θ̂ )αi are well-defined because
−G · θ̂ is the generator of a contraction semigroup.

Example 3.8 Let N = M = 2. Consider the biparameter, additive Lévy process

X(t1, t2) = X1(t1) + X2(t2), (3.20)

where X1 and X2 are independent isotropic stable processes with indices α1 ∈ (0, 2]
and α2 ∈ (0, 2], respectively. Let

H(t1, t2) = (H1(t1, t2), H2(t1, t2))

be a subordinator field, such that H(t1, 0) and H(0, t2) are two bivariate stable sub-
ordinators in the sense of Example 3.4, respectively, having indices β1 ∈ (0, 1) and
β2 ∈ (0, 1) and spectral measures σ1 and σ2. Let

Z(t1, t2) = X1(H1(t1, t2)) + X2(H2(t1, t2))

be the subordinated field. Then, for any u ∈ S(Rd), the function Eu(x + Z(t1, t2))
solves the system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂
∂t1

h(x, t) = −k1
∫ π/2
0

(
(−�)α1/2 cos θ + (−�)α2/2 sin θ

)β1h(x, t)σ1(dθ)

∂
∂t2

h(x, t) = −k2
∫ π/2
0

(
(−�)α1/2 cos θ + (−�)α2/2 sin θ

)β2h(x, t)σ2(dθ)

h(x, 0) = u(x)
(3.21)

where−(−�)αi /2 denotes the fractional Laplacian. Towrite the system (3.21),weused
that for i = 1, 2, the generator of the isotropic stable process Xi is Gi = −(−�)αi /2

(see e.g., [4, p. 166]).

Example 3.9 Consider again Example 3.8. In the special case where α1 = α2 = 2, the
process (3.20) is a so-called additive Brownian motion (see e.g., [17, p. 394]) and the
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above system simplifies to

⎧
⎪⎨

⎪⎩

∂
∂t1

h(x, t) = −C1(−�)β1h(x, t)
∂

∂t2
h(x, t) = −C2(−�)β2h(x, t)

h(x, 0) = u(x)

(3.22)

for suitable constants C1,C2 > 0.

Example 3.10 Let N = 1 and M > 1 (so that subordination increases the number
of parameters). So let (Xt )t∈R+ be a one-parameter Lévy process and let (Ht )t∈RM+
be a subordinator field with values in R+. For example, assume that (Xt )t∈R+ is
a standard Brownian motion in R

d and, for each k = 1, . . . , M , Htkek is a stable
subordinator of index βk ∈ (0, 1) (ek denoting the k-th vector of the canonical basis).
Let (Zt )t∈RM+ = (XHt )t∈RM+ be the subordinated field. Then, Eu(x + Zt ) solves

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂t1

h(x, t) = −(−�)β1h(x, t)
∂

∂t2
h(x, t) = −(−�)β2h(x, t)

·
·

∂
∂tM

h(x, t) = −(−�)βM h(x, t)

h(x, 0) = u(x)

4 Subordination by the Inverse Random Field

Let (Ht )t∈R+ be a multivariate subordinator in the sense of Example 3.3, which takes
values in RN+ . Hence, it is defined by Ht = (H1(t), . . . , HN (t)), where each marginal
component Hj (t) is a classical subordinator. Consider a new random field (Lt )t∈RN+
defined by

Lt = (
L1(t1), . . . , LN (tN )

)
, t = (t1, . . . , tN ), (4.1)

where L j is the inverse hitting time of the subordinator Hj , i.e.,

L j (t j ) = inf{x > 0 : Hj (x) > t j }.

As stated in the introduction, we will call (4.1) inverse random field.
Now, let (Xt )t∈RN+ be an N -parameter Lévy process with values in R

d . We are
interested in the subordinated random field (Zt )t∈RN+ defined by

Zt = XLt , t ∈ R
N+ . (4.2)
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This topic has many sources of inspiration. Above all, there is a well-established
theory (consult e.g., [6, 7, 22, 27, 29–34, 48]) concerning semi-Markov processes of
the form

Z(t) = X(L(t)), t ≥ 0, (4.3)

where X is a Lévy process in R
d and L is the inverse hitting time of a subordinator

H , i.e.,

L(t) = inf{x > 0 : H(x) > t}.

Such processes have a great interest in statistical physics, as they arise as scaling limits
of suitable continuous time random walks.

Example 4.1 A special case (see e.g., [2, 3, 21, 25, 26]) is the process

Z(t) = B(Lα(t)), (4.4)

where B is a d-dimensional standard Brownian motion and Lα is the inverse of a
α-stable subordinator independent of B, where α ∈ (0, 1). The process (4.4) is a so-
called subdiffusion: the mean square displacement behaves as C tα , i.e., the motion
is delayed with respect to the Brownian behavior. This models the case where the
moving particle is trapped by inhomogeneities or perturbations in the medium; thus,
the particle runs on Brownian paths, but, for arbitrary time intervals, it is forced to be
at rest, which gives rise to a sub-diffusive dynamics. Diffusions in porous media and
penetration of a pollutant in the ground have this type of motion (see [35] for other
applications of anomalous diffusions). The random variable B(Lα(t)) has a density
solving the following anomalous diffusion equation

Dα
t q(x, t) − tα

�(1 − α)
δ(x) = 1

2
�q(x, t), (4.5)

where� denotes the Laplacian operator andDα
t is the Marchaud fractional derivative,

defined by

Dα
t h(t) :=

∫ ∞

0

(
h(t) − h(t − τ)

) ατ−α−1

�(1 − α)
dτ. (4.6)

See also [11, 12] for a tempered version of such operator and its connections to drifted
Brownian motions. We finally recall that recent models of anomalous diffusion in
heterogeneous media, where the fractional order α is space-dependent, have been
developed in [20, 41, 44] (see also [16] for a related model).

Equation (4.5) is a special case of a more general theory. Indeed, as anticipated in
the Introduction, if X and L are independent, the connection of the process (4.3) with

123



Journal of Theoretical Probability

integro-differential equations is given by the following facts. Let X have a density
p(x, t) solving

∂t p(x, t) = G∗ p(x, t),

where G∗ is the dual to the Markov generator. Moreover, let L be the inverse of a
subordinator with Lévy measure ν. If L has a density l(x, t), then, by conditioning,
X(L(t)) has a density

p∗(x, t) =
∫ ∞

0
p(x, u)l(u, t)du.

Such a density solves

Dt p
∗(x, t) − ν(t)p∗(x, 0) = G∗ p∗(x, t), (4.7)

where ν(t) = ∫ ∞
t ν(dx) and the operator Dt , usually called generalized Marchaud

fractional derivative, is defined by

Dt h(t) :=
∫ ∞

0

(
h(t) − h(t − τ)

)
ν(dτ). (4.8)

Concerning the link between semi-Markov processes and non-local in time equa-
tions, consult also [36, 37] for a discrete-time model and [42] for the theory of abstract
equations related to semi-Markov Random evolutions.

The rest of this section will be structured as follows. A special case of biparam-
eter Lévy processes will be treated in Sect. 4.1 and a related model of anisotropic
subdiffusion will be presented in Sect. 4.2. Finally, the special case where the L j ,
j = 1, . . . , N , are independent will be presented in Sect. 4.3 and some long-range
dependence properties will be analyzed.

4.1 Subordination of SomeTwo-Parameter Lévy Processes

Consider the following biparameter Lévy process with values in Rd :

X(t1, t2) = (X1(t1), X2(t2)), (4.9)

where X1 and X2 are (possibly dependent) Lévy processes with values in R
d1 and

R
d2 , respectively, with d1 + d2 = d.
Consider now a bivariate subordinator (H1(t), H2(t)) and the related bivariate

inverse random field (L1(t1), L2(t2)) as defined in (4.1).
We will consider the following assumptions:
A1) X1(t1) and X2(t2) have marginal densities p1(x1, t) and p2(x2, t) satisfying

the following forward equations:

∂

∂t
pi (xi , t) = G∗

i pi (xi , t), i = 1, 2,
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where G∗
1 and G∗

2 are the duals to the generators of X1 and X2.
A2) X(t1, t2) has density p(x1, x2, t1, t2) satisfying the system

∂

∂ti
p(x1, x2, t1, t2) = G∗

i p(x1, x2, t1, t2), i = 1, 2.

A3) For all t1, t2 > 0, the random vector (H1(t1), H2(t2)) has a density
q(x1, x2, t1, t2).1

We now consider the subordinated random field

Z(t1, t2) = X(L1(t1), L2(t2)) (4.10)

The following proposition gives a generalization of equation (4.7) adapted to the
random field (4.10).

Proposition 4.2 Under the assumptions A1), A2), A3), the random vector
X(L1(t1), L2(t2)) has a density h(x1, x2, t1, t2) satisfying

Dt1,t2h(x1, x2, t1, t2) = (G∗
1 + G∗

2)h(x1, x2, t1, t2), x1 �= 0, x2 �= 0, (4.11)

where Dt1,t2 is the bidimensional version of the generalized fractional derivative,
defined in (3.1), i.e.,

Dt1,t2h(t1, t2) =
∫

R
2+

(
h(t1, t2) − h(t1 − τ1, t2 − τ2)

)
φ(dτ1, dτ2).

Proof Under assumption A3), the distribution of (L1(t1), L2(t2)) is the sum of two
components (see [8, sect. 3.1]): the first one is absolutely continuous with respect to
the bidimensional Lebesgue measure, with density l, namely

P(L1(t1) ∈ dx1, L2(t2) ∈ dx2) = l(x1, x2, t1, t2)dx1dx2, x1 �= x2,

while the second one has support on the bisector line x1 = x2, with one-dimensional
Lebesgue density l∗(x, t1, t2) (i.e., P(L1(t1) = L2(t2)) = ∫ ∞

0 l∗(x, t1, t2)dx).
Then, by using a simple conditioning argument, the random vector

X(L1(t1), L2(t2)) has density

h(x1, x2, t1, t2) =
∫ ∞

0

∫ ∞

0
p(x1, x2, u, v)l(u, v, t1, t2)du dv

+
∫ ∞

0
p(x1, x2, u, u)l∗(u, t1, t2)du.

1 Observe that the random field (t1, t2) → (H1(t1), H2(t2)) is not a biparameter Lévy process even if
t → (H1(t), H2(t)) is a multivariate subordinator, unless the two marginal components are independent.
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By applying Dt1,t2 to both sides and by using [8, Thm 3.6], we have

Dt1,t2h(x1, x2, t1, t2)

= −
∫ ∞

0

∫ ∞

0
p(x1, x2, u, v)

∂

∂u
l(u, v, t1, t2)du dv

−
∫ ∞

0

∫ ∞

0
p(x1, x2, u, v)

∂

∂v
l(u, v, t1, t2)du dv

−
∫ ∞

0
p(x1, x2, u, u)

∂

∂u
l∗(u, t1, t2)du. (4.12)

Now, we integrate by parts by using assumptions A1 and A2. We also use that X1(0) =
0 and X2(0) = 0 almost surely, which implies that P(X1(0) ∈ A, X2(t2) ∈ B) =
I(0∈A)P(X2(t2) ∈ B) and P(X1(t1) ∈ A, X2(0) ∈ B) = P(X1(t1) ∈ A)I(0∈B); thus
we get

Dt1,t2h(x1, x2, t1, t2)

= G∗
1

∫ ∞

0

∫ ∞

0
p(x1, x2, u, v)l(u, v, t1, t2)du dv + δ(x1)

∫ ∞

0
p2(x2, v)l(0, v, t1t2)dv

+ G∗
2

∫ ∞

0

∫ ∞

0
p(x1, x2, u, v)l(u, v, t1, t2)du dv + δ(x2)

∫ ∞

0
p1(x1, u)l(u, 0, t1t2)du

+ (G∗
1 + G∗

2)

∫ ∞

0
p(x1, x2, u, u)l∗(u, t1, t2)du + δ(x1)δ(x2)φ(t1, t2),

where

φ(t1, t2) =
∫ ∞

t1

∫ ∞

t2
φ(dx1, dx2).

In the above calculations, we have taken into account that

∂ p(x1, x2, u, u)

∂u
= (G∗

1 + G∗
2)p(x1, x2, u, u)

since the total derivative of p(x1, x2, t1, t2), with t1 = u and t2 = u, is given by

∂ p

∂t1

∂t1
∂u

+ ∂ p

∂t2

∂t2
∂u

= G∗
1 p + G∗

2 p.

In the region x1 �= 0, x2 �= 0, we have

Dt1,t2h(x1, x2, t1, t2)

= (G∗
1 + G∗

2)

∫ ∞

0

∫ ∞

0
p(x1, x2, u, v)l(u, v, t1, t2)du dv

+ (G∗
1 + G∗

2)

∫ ∞

0
p(x1, x2, u, u)l∗(u, t1, t2)du
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Fig. 4 Sample path of a
time-changed additive Brownian
field with an inverse stable field

= (G∗
1 + G∗

2)h(x1, x2, t1, t2),

which concludes the proof. 
�

A sample path of a time-changed field is shown in Fig. 4.

4.2 Anomalous Diffusion in Anisotropic Media

As a byproduct of the results of Sect. 4.1, we here propose another model of subd-
iffusion which extends the one treated in Example (4.1), by including it as a special
case.

As explained, the process (4.4) models a subdiffusion through an isotropic medium,
i.e., the trapping effect is the same in all coordinate directions (e.g., all components
of the Brownian motion are delayed by the same random time process). Hence, the
subordinated process (4.4) is isotropic as well as the Brownian motion.

Thus, it is natural to search for amodel of subdiffusion in the casewhere the external
medium is not isotropic.

Actually, a first model of anisotropic subdiffusion has been proposed in [8, sect. 5].
Here, the authors defined a process

Z(t) = (
B1(L1(t)), B2(L2(t))

)
, t ≥ 0,

where (B1, B2) is a bidimensional standard Brownian motion with independent com-
ponents and (L1, L2) is the inverse random field of (H1, H2), the last one being a
bivariate stable subordinator of index α (in the sense of Example 3.4). The authors
in [8] prove that the law of Z(t) is not rotationally invariant; hence, the process is
anisotropic. However, the mean square displacement along the direction θ grows as
Cθ tα; hence, the spreading rate α is the same for all coordinate directions (that is,
anisotropy is given by the constant Cθ alone). Thus, from a physical point of view,
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the model presented in [8] differs little from the isotropic model, which was previ-
ously existing in the literature (where Cθ is independent of θ ). In a sense, this is
due to the fact that the subordinator H(t) = (H1(t), H2(t)) used in [8] is character-

ized by the isotropic scaling H(ct)
d= c1/αH(t). In the following, we will improve

these shortcomings, by considering a bivariate operator stable subordinator, which

is characterized by the anisotropic scaling H(ct)
d= cAH(t), where A is a linear

operator (whose eigenvalues determine the spreading rates in different directions). On
this points, see the discussion before formula (4.16), and also the Examples from 4.3
onward.

We need to recall some notions on operator stability (consult [15] and [46]). A
random vector X with values in R

d is said to be operator stable if, for any positive
integer n, there exist a vector cn ∈ R

d and a d × d matrix A such that n indipendent
copies X1, . . . , Xn of X satisfy

X1 + · · · + Xn
d= nAX + cn, (4.13)

where the matrix power nA is defined by

nA = eA ln n =
∞∑

k=0

1

k! A
k(ln n)k .

In the special case A = 1
α
I , with α ∈ (0, 2] and I denoting the identity matrix, we

have that X is α-stable. In the general case, A has eigenvalues whose real parts have the
form 1/αi , with αi ∈ (0, 2], i = 1, . . . , d. We stress that the matrix A is not unique,
i.e., there may be different n × n matrices satisfying (4.13) (unlike what happens in
the stable case, where the index α is uniquely defined).

Operator stable laws are infinite divisible, hence they correspond to some Lévy
processes. A Lévy process X(t), t ≥ 0 is said to be an operator stable Lévy motion
if X(1) is an operator stable random vector. Note that such a process is characterized

by the anisotropic scaling X(ct)
d= cAX(t). This property is a generalization of self-

similarity of α-stable processes where the scaling is the same for all coordinates, i.e.,

X(ct)
d= c1/αX(t).

We are now ready to present the model of anisotropic subdiffusion. So, let us
consider a bivariate subordinator (H1(t), H2(t)) which is constructed as an operator
stable Lévy motion with values inR2+. In this case, A has eigenvalues whose real parts
have the form 1/αi , with αi ∈ (0, 1), i = 1, 2. Now, let r > 0 and θ ∈ [0, π

2 ] be
the so-called Jurek coordinates (see e.g., [15] and [33, p.185]) which are defined by
the mapping R

2+ � x = r Aθ̂ , where θ̂ = (cos θ, sin θ). In this new coordinates, the
bidimensional Lévy measure can be expressed as

φA,M (dr , dθ) = C
dr

r2
M(dθ), r > 0, θ ∈

[
0,

π

2

]
,
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where M is a probability measure on the angular component. Then, the operator Dx ,
x ∈ R

2+, defined in formula (3.1) of Example 3.3, takes the form

DA,M
x h(x) = C

∫ π/2

0

∫ ∞

0

(
h(x) − h(x − r Aθ̂ )

)dr
r2

M(dθ). (4.14)

If (H1(t), H2(t)) is a bivariate stable subordinator (see Example 3.4), i.e., A = 1
α
I , by

a simple change of variables, one re-obtains the fractional gradient defined in formula
(3.4).

Now, let (L1(t1), L2(t2)) be the inverse random field of (H1(t), H2(t)) and
let (B1(t), B2(t)) be a bidimensional standard Brownian motion with independent
components. Consider the time-changed process

Z(t) = (
B1(L1(t)), B2(L2(t))

)
, t ≥ 0. (4.15)

The process (4.15) is a model of anisotropic subdiffusion. Indeed consider the
random variable

Zθ (t) = Z(t) · θ̂

representing the displacement along the direction θ̂ = (cos θ, sin θ). By conditioning,
the mean square displacement can be written as

EZ2
θ (t) = EL1(t) cos

2 θ + EL2(t) sin
2 θ (4.16)

which, in general, depends on θ because of anisotropy.
In the spirit of [8, Sect. 4], a governing equation for the process (4.15) can be

obtained by considering the related random field (B1(L1(t1)), B2(L2(t2))). Indeed,
by applying Proposition 4.2 of the previous Section, it has a density h(x1, x2, t1, t2)
satisfying the anomalous diffusion equation

DA,M
t h(x1, x2, t1, t2) = 1

2
� h(x1, x2, t1, t2), x1 �= 0, x2 �= 0,

where the operator DA,M
t , defined in (4.14), now acts on t = (t1, t2).

Example 4.3 If L1(t) = L2(t) = L(t), where L(t) is the inverse of a α-stable sub-
ordinator, the process (4.15) reduces to the isotropic subdiffusion (4.4). In this case,
we have EL(t) = Ctα . Thus, EZ2

θ (t) = Ctα , which is independent of θ because of
isotropy.

Example 4.4 If A has the form 1
α
I , where I is the identity matrix, then Z(t) reduces

to the anisotropic subdiffusion considered in [8, sect. 5]. In this case, EL1(t) = C1tα

and EL2(t) = C2tα . Hence, following formula (4.16), the mean square displacement
along the direction θ has the formEZ2

θ (t) = Cθ tα , whereCθ = C1 cos2 θ +C2 sin2 θ .
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Example 4.5 If H1(t) and H2(t) are independent stable subordinators, then the matrix
A is diagonal with elements 1/α1 and 1/α2. If α1 �= α2, the process (4.15) is
anisotropic, in such a way that α1 and α2 represent the spreading rates along the two
coordinate directions. Indeed, sinceELi (t) = Ci tαi for i = 1, 2, then themean square
displacement along a direction θ̂ has the form EZ2

θ (t) = C1tα1 cos2 θ + C2tα2 sin2 θ

which depends on θ̂ (and, asymptotically, it behaves like tmax(α1,α2)).

Example 4.6 If A is a symmetric matrix with eigenvalues 1/α1 and 1/α2, where α1
and α2 are in (0, 1), then a rigid rotation of the coordinate system allows to find the
two eigenvectors, along which the spreading rates are α1 and α2, respectively, which
corresponds to the situation explained in Example 4.5.

4.3 Subordination by Independent Inverses

In the following, let X(t1, . . . , tN ) be an N -parameter Lévy process with density
p(x, t) satisfying the system

∂t j p(x, t) = G∗
j p(x, t), j = 1, . . . , N

with the usual notation t = (t1, . . . , tN ). Assume that the marginal components
L j (t j ) of the inverse random field (4.1) are mutually independent, each having density
l j (x, t j ) and Lévy measure ν j . Consider the subordinated random field

Z(t) := X(L1(t1), . . . , LN (tN )). (4.17)

Before stating the next result, we introduce the following notation: For a given
vector v = (v1, . . . , vN ), we introduce the vector v( j) defined by v( j) =
(v1, . . . , v j−1, 0, v j+1, . . . , vN ).

Proposition 4.7 Under the above assumptions, the subordinated field (4.17) has a
density p∗(x, t) satisfying the system

D(ν j )

t j p∗(x, t) − ν j (t j ) p
∗(x, t ( j)) = G∗

j p
∗(x, t), j = 1, . . . , N ,

where D(ν j )

t j denotes the generalized fractional derivative defined in (4.8) with Lévy

measure ν j , and ν j (t j ) = ∫ ∞
t j

ν j (dτ).

Proof By conditioning, (4.17) has a density

p∗(x, t) =
∫

RN+
p(x, u1, . . . , uN )

N∏

i=1

li (ui , ti )du1 · · · duN.

By applying D(ν j )

t j to both members and taking into account that such operator
commutes with the integral, we have
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D(ν j )

t j p∗(x, t) = −
∫

RN+
p(x, u1, . . . , uN )

∂

∂u j
l j (u j , t j )

N∏

i=1,i �= j

li (ui , ti ) du1 · · · duN ,

wherewe used that the density l j (x, t j ) of an inverse subordinator satisfies the equation

D(ν j )

t j l j (x, t j ) = −∂x l j (x, t j ) under the condition l j (0, t j ) = ν j (t j ) (see e.g., [22]).
Integrating by parts, we have

D(ν j )

t j p∗(x, t) = G∗
j p

∗(x, t) + ν j (t j )
∫

R
N−1+

p(x, u( j))

N∏

i=1,i �= j

li (ui , ti )dui ,

where the last integral can be written as

∫

R
N−1+

p(x, u( j))

N∏

i=1,i �= j

li (ui , ti )dui = p∗(x, t ( j))

because l j (u j , 0) = δ(u j ). This completes the proof. 
�

4.3.1 Long-Range Dependence

Consider a process of type (4.17). For each k = 1, . . . , N , let Lk(tk) be the inverse
of a α-stable subordinator. The subordinated field exhibits a power law decay of the

autocorrelation function which is slower with respect to the |t |− 1
2 decay holding for

multiparameter Lévy processes (which was discussed in Remark 2.10 ). This can be
useful in applied fields, where spatial data exhibit long-range dependence properties.

So, let s � t . By using the results of Sect. 2.2, we have

Cov(XLs , XLt )

= E
[
Cov(XLs , XLt )

∣
∣ Ls, Lt

] + Cov
(
E[XLs | Ls, Lt ],E[XLt | Ls, Lt ]

)

= E[Ls · σ 2] + Cov(Lt · μ, Ls · μ)

= E

[ N∑

k=1

σ 2
k Lk(sk)

]
+ Cov

( N∑

k=1

μk Lk(tk),
N∑

i=1

μi Li (si )

)

=
N∑

k=1

σ 2
k ELk(sk) +

N∑

k=1

N∑

i=1

μkμi Cov
(
Lk(tk), Li (si )

)

=
N∑

k=1

σ 2
k ELk(sk) +

N∑

k=1

μ2
k Cov

(
Lk(tk), Lk(sk)

)
,

where in the last step we used independence between Li and Lk when i �= k. Putting
s = t , we have
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Var XLt =
N∑

k=1

σ 2
k ELk(tk) +

N∑

k=1

μ2
k Var Lk(tk).

By self-similarity of the inverse stable subordinator (consult e.g., Proposition 3.1

in [31]), we have Lk(tk)
d= tαk Lk(1). Hence,

ELk(tk) = tαk ELk(1) VarLk(tk) = t2αk VarLk(1).

Thus, by using the notation tβ := (
tβ1 , . . . , tβN

)
, we can write

VarXLt = w · tα + v · t2α,

where we defined wk = σ 2
k ELk(1) and vk = μ2

k VarLk(1).
Moreover, by using Formula 10 in [23], we have

Cov
(
Lk(tk), Lk(sk)

) ∼ s2αk
�(2α + 1)

as tk → ∞.

In summary, for |t | → ∞, we have

ρ(XLs , XLt ) ∼
{

1
|tα |1/2 if μ = 0

1
|t2α |1/2 if μ �= 0.

(4.18)

Remark 4.8 What we found in (4.18) is the multiparameter extension of the known
formula holding in the N = 1 case, see e.g., Example 3.2 in [23]. Here, the authors
considered the subordinated process (XL(t))t∈R+ , where (Xt )t∈R+ is a Lévy process
and (L(t))t∈R+ is the inverse of a α-stable subordinator, with α ∈ (0, 1). By con-
sidering two times s and t , such that s < t , and letting t → ∞, they show that the
autocorrelation ρ(XL(t), XL(s)) behaves like t−α ifEX1 �= 0 and t− α

2 ifEX1 = 0. It is
interesting to note that the same power law behavior is observed in the corresponding
discrete-time models (see Proposition 4 in [37]).
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