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Abstract: Understanding radio propagation characteristics and developing channel models is fun-
damental to building and operating wireless communication systems. Among others uses, channel
characterization and modeling can be used for coverage and performance analysis and prediction.
Within this context, this paper describes a comprehensive dataset of channel measurements per-
formed to analyze outdoor-to-indoor propagation characteristics in the mid-band spectrum identified
for the operation of 5th Generation (5G) cellular systems. Previous efforts to analyze outdoor-to-
indoor propagation characteristics in this band were made by using measurements collected on
dedicated, mostly single-link setups. Hence, measurements performed on deployed and operational
5G networks still lack in the literature. To fill this gap, this paper presents a dataset of measurements
performed over commercial 5G networks. In particular, the dataset includes measurements of channel
power delay profiles from two 5G networks in Band n78, i.e., 3.3–3.8 GHz. Such measurements
were collected at multiple locations in a large office building in the city of Rome, Italy by using
the Rohde & Schwarz (R&S) TSMA6 network scanner during several weeks in 2020 and 2021. A
primary goal of the dataset is to provide an opportunity for researchers to investigate a large set of 5G
channel measurements, aiming at analyzing the corresponding propagation characteristics toward
the definition and refinement of empirical channel propagation models.

Dataset: 10.5281/zenodo.6322868

Dataset License: Creative Commons Attribution 4.0 International

Keywords: radio channel measurements; outdoor-to-indoor propagation; 5G mid-band; dataset

1. Introduction

The New Radio (NR) standard of 5G cellular networks promises to connect a massive
number of heterogeneous devices, accommodate high data rates, and support low latency
applications [1,2]. The 5G NR supports a large variety of use cases with diverse require-
ments and in particular enhanced Mobile Broadband (eMBB), Ultra-Reliable Low Latency
Communications (URLLC), and massive Machine-Type Communications (mMTC) [3]. In
addition to traditional broadband services, novel applications that can benefit from 5G
include logistics and shipping, smart grids, smart factories, agriculture, extended reality,
healthcare, mission-critical services, and autonomous driving [4–6].
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The 5G NR operates over two different frequency ranges. Frequency Range 1 (FR1)
includes sub-6 GHz frequency bands, which are also referred to as low-band (up to 2 GHz)
and mid-band (up to 6 GHz) [7]. Frequency Range 2 (FR2) includes the millimeter-wave
(mm-wave) band, from 24.25 to 52.6 GHz.

A significant number of commercial 5G networks are currently under deployment in
the mid-band, and in particular in the 3.3–3.8 GHz spectrum portion, called Band n78, which
offers a good trade-off between coverage and capacity [8–12]. Therefore, understanding
signal propagation characteristics in the mid-band is particularly important especially in
the urban scenario where most of the 5G deployments are taking place.

Various 5G use cases target indoor scenarios, such as smart buildings with different
types of sensors, factory automation, object tracking in a factory, remote control of robotic
machinery, and automated vehicles in logistic applications, to mention a few [13–16].
Currently, these scenarios are likely to be addressed via outdoor deployments of 5G Base
Stations (BS). This emphasizes the need for understanding propagation characteristics in
outdoor-to-indoor scenarios.

There are a few works performing outdoor-to-indoor measurements to characterize the
communication channel at around 3.5 GHz in different scenarios such as urban microcell [17],
urban macrocell [18], non-line of sight [19], residential buildings [20], multiple-input-multiple-
output (MIMO) in an office building [21], dense urban [22], and university buildings [23,24].

A few investigations of 5G channel characterization in the mid-band were also carried
out for channel modeling purposes in both outdoor-to-indoor [22,25–27] and indoor-to-
indoor [4,8–10,28–36] scenarios. However, none of the above investigations makes use
of measurements collected in the wild, i.e., on commercially deployed 5G networks. Fur-
thermore, there is currently no available dataset including measurements collected on
commercial 5G networks. Additionally, the datasets used in the aforementioned studies
are not publicly available.

This paper fills the above gap by making open-source a dataset of outdoor-to-indoor
measurements collected on commercial 5G mid-band systems deployed in an urban sce-
nario. To the best of our knowledge, this is the first work to provide a large-scale dataset
of measurements performed over commercially deployed 5G mid-band networks in an
outdoor-to-indoor scenario.

The paper is organized as follows. The experimental setup and data collection method-
ology are discussed in Section 2. Section 3 describes the collected data, including an
explanation of the dataset structure, while Section 4 draws conclusions and identifies future
work made possible by the use of the provided dataset.

2. Measurement System and Data Collection Methodology

This section provides information regarding the adopted measurement system and
the methodology for data collection as well as a description of the locations where mea-
surements were performed.

2.1. Measurement System

The measurement campaigns were performed using the Rohde & Schwarz (R&S)
TSMA6 toolkit [37], which includes the R&S TSMA6 network scanner and a laptop running
the ROMES software. ROMES was used for visual inspection of the ongoing measurement
campaigns and for exporting the corresponding collected data. The R&S TSMA6 network
scanner is an integrated system comprising a Radio Frequency (RF) omnidirectional antenna
and a Global Positioning System (GPS) antenna. The RF antenna was used for passive
monitoring of downlink control signals transmitted by 3rd Generation Partnership Project
(3GPP) access technologies, i.e., 5G NR, Long-Term Evolution (LTE), and Narrowband
Internet of Things (NB-IoT), working at different licensed frequency bands. The GPS
antenna was used to identify the geographic information of the measurements being
collected. As shown in Figure 1, the used measurement system included an R&S TSMA6
toolkit, RF and GPS antennas, ROMES software, and also a 5G-capable device running
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performance measurements. Note that performance-related data collected via the 5G-
capable device are not included in the present dataset, which instead contains coverage-
related data collected via TSMA6 scanner, as further detailed in Section 3.

Figure 1. The system adopted for the measurement campaign: R&S TSMA6 toolkit (a), GPS antenna
(b), 5G-capable device (c), RF antenna (d), and ROMES software (e). Note that ROMES runs in the
laptop within the TSMA6 toolkit (a); the tablet in (e) was only used as a remote monitor, connected
via Wireless Local Area Network (WLAN) to TSMA6.

More in detail, the R&S TSMA6 scanner was used to measure 5G NR Synchronization
Signal Blocks (SSBs) transmitted by the 5G BSs active in the area covered by the measurement
campaigns. In particular, TSMA6 was used to (a) provide Automatic Channel Detection
(ACD), in order to detect downlink signals by cellular systems operating at different channel
frequencies, and (b) decode Physical Cell Identifiers (PCIs)/SSBs information, ultimately
providing quantitative coverage measures for all the detected signals. TSMA6 was also
used to provide estimated positions of the detected 5G BSs, which were identified by the
corresponding PCIs.

2.2. Data Collection Methodology

A set of measurement campaigns was performed at the second floor of the Department
of Information Engineering, Electronics, and Telecommunications (DIET) of Sapienza Uni-
versity of Rome, Italy. All measurement campaigns were conducted statically in different
indoor locations. Figure 2 shows the map of the second floor of the DIET Department,
along with the eight specific locations where measurement campaigns were performed.
Location 1 and Location 4 are laboratories, Location 8 is a study hall, and all other locations
are offices. Green, blue, and red lines represent walls, windows, and doors, respectively.

Figure 2. Measurement locations at DIET Department. Green, blue, and red lines represent walls,
windows, and doors, respectively.
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In total, 18 measurement campaigns were performed at the eight locations. During
these measurement campaigns, multiple 5G PCIs from four different operators were de-
tected in Band n78. However, the present dataset focuses on the two 5G operators resulting
in the highest number of data samples. We refer to these two operators as Op1 and Op2,
operating at carrier frequencies of 3649 MHz and 3725 MHz, respectively. Figure 3 shows
the PCIs detected at each location for both operators and included in the dataset.

(a)

(b)

Figure 3. PCIs included in the dataset at each location for Op1 (a) and Op2 (b).
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Once the measurement campaigns were executed, the corresponding data were ex-
ported using ROMES [38]. It was observed that both operators deploy a 5G NR system
with a sub-carrier spacing of 30 kHz. It was also noticed that Op1 adopts a beam-based
transmission scheme where each PCI transmits multiple SSBs (up to eight SSBs). On the
contrary, each PCI of Op2 transmitted a single SSB. A detailed discussion on beam-based
transmission is given in [39]. However, it can be observed that due to different propagation
conditions, a different number of SSBs was detected at different locations, with a maximum
of eight SSBs detected. Moreover, the received power of each SSB also differs due to the
direction of the beams associated to the SSBs. Figure 4 shows an example of the received
power measured at Location 1 for all the SSBs of the same PCI of Op1 and the unique
PCI/SSB pair of Op2. For Op1, the average and median of the received power of SSB 6 are
higher than all the other SSBs of Op1. For this reason, SSB 6 is defined as the strongest SSB
of Op1 at Location 1.

Following the above definition of strongest SSB, the dataset in this paper provides
data on the strongest SSBs for each PCI of Op1 at each location, i.e., those SSBs having the
highest average Reference Signal Received Power (RSRP) at each measurement location.
For Op2, since each PCI transmits only one SSB, the dataset provides data on a single
PCI/SSB pair.

Op1-SSB1
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Figure 4. Boxplots of the received power of the detected SSBs for Op1 (multiple SSBs) and Op2
(single SSB) at Location 1. The boxplots named Op1_SSBn (n = 0, 1, 2, . . . , 7) show the Received Power
of the SSBs of the Op1, while Op2_SSB shows the Received Power of transmitted SSB of operator 2.
For Op1, SSB 6 is considered the strongest SSB, with the average and median of the Received Power
higher than all other SSBs of Op1. In contrast, Op2 operates on a single SSB.

Ultimately, the dataset is composed of so-called channel power delay profiles (PDPs).
Each PDP represents a channel measurement at a given location and time. Since the PDP
is measured over SSB signals, each PDP sample in the dataset corresponds to a detected
PCI/SSB pair. Moreover, since the propagation channel is composed by several propagation
paths, each PDP includes its paths with their absolute propagation time in microseconds
(µs) and received power (in dBm) values. The total PDP in-band power level is also
provided in the dataset (in dBm). From the PDP, various propagation parameters can be
calculated, such as the number of paths, inter-arrival times, root mean square delay spread,
and mean excess delay. A comprehensive discussion and analysis on such propagation
parameters, also including a correlation analysis for them, can be found in [39].

Table 1 summarizes the performed measurement campaigns for each operator and
location in terms of number of measurement campaigns and corresponding number of
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collected PDPs for each location. Note that the dataset includes measurements of PCIs/SSBs
for which the number of PDPs, collected at a given location during an entire measurement
campaign, was more than 50. We set this threshold empirically after observing that a
reasonable estimate of the propagation parameters mentioned above can be obtained when
the number of PDPs is at least equal to 50. Therefore, PCI/SSB pairs with less than 50 PDPs
are not provided in the dataset.

Table 1. Summary of performed measurement campaigns. N/A stands for Not Available and
indicates that no PCI/SSB pair was detected in that location for that operator.

Location ID No. of
Campaigns PCI No. of PDPs for

Op1
No. of PDPs for

Op2

1 8 174 4143 N/A
8 175 3809 N/A
8 176 4156 N/A
8 177 2675 N/A
8 179 4329 N/A
8 302 2133 N/A
8 261 N/A 4194
8 362 N/A 2441

2 1 148 175 N/A
1 174 230 N/A
1 176 241 N/A
1 179 244 N/A
1 282 236 N/A
1 156 N/A 239
1 261 N/A 259
1 362 N/A 246

3 1 176 115 N/A
4 1 176 89 N/A

1 282 189 N/A
1 261 N/A 191

5 1 261 N/A 294
6 4 261 N/A 3158
7 1 261 N/A 291
8 1 176 259 N/A

1 282 267 N/A
1 261 N/A 266

3. Data Description

Figure 5 shows the file structure of the folders containing the dataset. The main
folder “Dataset” includes three subfolders: “(1) Figures for DIET Map with locations”, “(2)
Detected Operators”, and “(3) Additional Information”.

Subfolder “(1) Figures for DIET Map with locations” contains the Joint Photographic
Experts Group (JPEG) files of the Google Map of the DIET Department and the locations
where all measurements were performed. Subfolder “(2) Detected Operators” has two
further subfolders named “Op1_PDP” and “Op2_PDP” for PDP measurement data of Op1
and Op2, respectively. Furthermore, subfolder “Op1_PDP” contains five separate sub-
folders for each measurement location named as “Location_1”, “Location_2”, “Location_3”,
“Location_4”, and “Location_5”. Each of these folders has comma-separated values (CSV)
files of PDP measurements. Similarly, subfolder “Op2_PDP” contains seven separate sub-
folders for each measurement location named as “Location_1”, “Location_2”, “Location_4”,
“Location_5”, “Location_6”, “Location_7”, and “Location_8”. Each of these folders has CSV
files of the measurement data for each conducted campaign and detected PCI. The structure
of CSV file format explained in Figure 6. Finally, subfolder “(3) Additional Information”
contains a text file with the information of transmit power and estimated position of each
PCI. Additionally, the estimated Signal to Interference plus Noise Ratio (SINR) values for
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each PCI and measurement location are also given in the text file. A description of the
variables in the CSV files in subfolders “Op1_PDP” and “Op2_PDP” is given below:

• ID represents the sequence number of PDPs.
• Longitude and Latitude shows the GPS coordinates of the current measurement location.
• PCI refers to the Physical Cell Identity. PCI is a cell identifier used to distinguish the

different cells of a 5G system. Cellular BSs are most often referred to in terms of their
PCI for their identification.

• SSB index (SSB Idx) stands for the synchronization signal block (SSB) index to indicate
which SSB was transmitted from the BS. The 5G NR cells may transmit up to 8 SSBs.

• SS-Ref-MHz represents the synchronization signal’s reference frequency in MHz, which
is also called the channel frequency.

• Power-dBm represents the power of each multipath component in a PDP, which is
calculated based on the synchronization signals (SS). Its unit is dBm.

• P-total-dBm is the average in-band power corresponding to a PDP in dBm, which is
calculated based on the SS.

• Delay-us denotes the absolute propagation time of each multipath component within a
PDP. The Delay-us column contains the absolute propagation time values in microseconds
(µs). The relative delay of each multipath component corresponding to a PDP sample can
be calculated by considering the delay of the first multipath component equal to zero.

Figure 5. File structure of the dataset folders.

Figure 6. Format of the CSV files included in the dataset.
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As a reference example, an excerpt of the dataset containing two collected PDPs is
shown in Table 2. Note that each PDP is identified by a unique ID. It follows that in the
excerpt reported in Table 2, the first PDP (ID = 1) is composed by three paths, while the
second PDP (ID = 2) is composed by seven paths.

Table 2. An example of two PDPs collected at the same location and frequency carrier of 3649 MHz.
The first PDP (ID = 1) includes three paths, while the second PDP (ID = 2) includes seven paths.

ID Timestamp Longitude Latitude PCI SSB_Idx Power__dBm P_total__dBm Delay__us

1 12:00:25 AM 12.494398 41.893274 174 0 −119.55 −112.37 8494.06
1 12:00:25 AM 12.494398 41.893274 174 0 −136.19 −112.37 8494.33
1 12:00:25 AM 12.494398 41.893274 174 0 −126.01 −112.37 8495.49
2 12:00:33 AM 12.49442 41.893248 174 0 −118.83 −114.26 8494.03
2 12:00:33 AM 12.49442 41.893248 174 0 −125.31 −114.26 8494.08
2 12:00:33 AM 12.49442 41.893248 174 0 −134.59 −114.26 8494.33
2 12:00:33 AM 12.49442 41.893248 174 0 −133.27 −114.26 8494.37
2 12:00:33 AM 12.49442 41.893248 174 0 −144.66 −114.26 8494.51
2 12:00:33 AM 12.49442 41.893248 174 0 −139.42 −114.26 8495.03
2 12:00:33 AM 12.49442 41.893248 174 0 −127.19 −114.26 8495.47

4. Conclusions

This paper presents a dataset of measurements performed over commercial 5G net-
works operating in the mid-band. To the best of our knowledge, this is the first 5G dataset
collected and made available for operational 5G mid-band networks. The provided dataset
contains power delay profiles, and related information, for measurements in outdoor-to-
indoor scenarios, such as the number of paths, delay and power of each path, and total
received power. Measurements originate from multiple campaigns and were collected at
different locations. The dataset can serve as the basis for multiple analyses, including com-
prehensive channel propagation characterizations and modeling, based on real-deployed
networks and standardized signals. The presented dataset can also be used for coverage
evaluation of 5G communication systems deployed in urban environments. In general,
measurements performed in dedicated laboratory setups do not always ensure a proper
characterization and modeling of the channel propagation experienced in real-world sce-
narios. On the other hand, measurements performed on real deployed networks, such as
the ones made available in the present dataset, can lead to channel characterization and
modeling that better represent real-world scenarios. As a future work, we plan to adopt
the same measurement setup to perform novel measurement campaigns on 5G networks,
focusing on outdoor scenarios under mobility (e.g., user walking and driving). Hence, we
also plan to make the corresponding dataset available in order to trigger further analysis of
the propagation characteristics of mid-band 5G systems.
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