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Abstract
The present work offers a comprehensive overview of methods related to condition assess-
ment of bridges through Structural Health Monitoring (SHM) procedures, with a particular 
interest on aspects of seismic assessment. Established techniques pertaining to different 
levels of the SHM hierarchy, reflecting increasing detail and complexity, are first outlined. 
A significant portion of this review work is then devoted to the overview of computational 
intelligence schemes across various aspects of bridge condition assessment, including sen-
sor placement and health tracking. The paper concludes with illustrative examples of two 
long-span suspension bridges, in which several instrumentation aspects and assessments of 
seismic response issues are discussed.
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MSC  Mode shape curvature
NAFZ  North Anatolian fault zone
NDE  Non-destructive evaluation
OMA  Operational modal analysis
OSP  Optimal sensor placement
PCA  Principal component analysis
PSD  Power spectral density
PSO  Particle swarm optimization
SHM  Structural health monitoring
TEM  Trans-European Motorway

1 Introduction

Bridges form critical infrastructure components of high financial and societal relevance. 
As evidenced by recent catastrophic events (Morgese et al. 2020), in many, predominantly 
developed countries a number of these systems are reaching their end of life, or are faced 
with severe deterioration, rendering them more prone to damage from extreme actions, 
such as seismic loading. For ensuring the safety and efficient operation of these systems, 
a regular procedure for inspection and maintenance is mandated by current codes and 
standards, relying primarily on use of visual inspections as a tool for condition assessment. 
While valuable, this type of assessment is typically periodic (taking place every 3–5 years) 
and relies on detection of flaws that have visually manifested, often expressing an advanced 
state of damage (cracking, spalling, loss of joint capacity, corrosion). If such an advanced 
damage state is suspected, reassessment of the system capacity is necessary, and could be 
supplemented with information acquired through destructive (e.g., extraction of specimens 
for lab testing) or non-destructive testing (e.g., ultrasonic, acoustic emission, impact-echo, 
ground penetrating radar, etc.). Such non-destructive evaluation (NDE) procedures can 
be extremely efficient in obtaining information that can more reliably be used to set up 
informed models of structural conditions, but remain more or less sporadic in the manner 
in which they may be applied.

As an alternative to the sporadic approach to information extraction on structural health, 
long-term continuous Structural Health Monitoring (SHM) systems can be deployed, 
which provide a supervision of the system throughout its complete operational spectrum. 
Continuous monitoring often relies on vibration-based monitoring, which track dynamic 
response quantities, such as displacements, accelerations, tilts and strains, as well as opera-
tional (e.g., traffic) and environmental variables (e.g., wind, temperature and humidity). 
Despite this separation, sporadic/periodic and continuous implementations of monitoring, 
including classical (e.g., visual) inspection systems, fall under the broad umbrella of moni-
toring of structural health, as summarized in Fig. 1. An up-to-date state of the art on sev-
eral aspects of seismic SHM is contained in (Limongelli and Celebi 2019). In this work, we 
will be focusing on continuous monitoring approaches for seismic assessment of bridges, 
organized across the four main objectives of SHM, as identified by Rytter (1993), namely 
damage detection, localization, quantification, and residual life prediction.

SHM leverages on continual developments in sensing, data acquisition and transmis-
sion systems, as well as processing and analysis modalities to assess structural condition 
for the purposes of structural characterization, design verification, operation and mainte-
nance decision-support, and post-event management (Brownjohn 2007; Farrar and Worden 
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2012). The increasing availability of low-cost (typically MEMS-based) and easily deploy-
able sensing solutions promotes the development of so-called self-aware structures, which 
are equipped with dense sensing deployments and feature supervisory systems which sup-
port partly autonomous supervision (Adam and Smith 2006; O’Connor et  al. 2014; Yao 
and Glisic 2015; Laflamme et al. 2016). In the context of SHM for seismic monitoring of 
bridges, dynamic response measurements, acquired through suitable sensor networks, are 
used to localize and quantify local damage and degradation of structural elements or anti-
seismic devices (Graham and Campbell 2013). Seismic monitoring of structures (Fujino 
et  al. 2019; Martakis et  al. 2019; Zhang et  al. 2023) in particular aims to (i) assess the 
seismic performance of bridge systems, (ii) identify bridge properties and compare these 
against design assumptions, and (iii) capitalize on gained knowledge to improve future 
designs and practices (An et al. 2019; Rizzo and Enshaeian 2021).

Key to the SHM procedure is the post-processing step pertaining to interpretation of 
the acquired information into identification of the structural/dynamic properties of the 
monitored system, as well as inference of indicators of its performance. The information, 
which remains latent in the data, is often coupled with physics-based models, to update our 
knowledge of the as-is system, leading to updated numerical representations; also referred 
to as digital twins (Martakis et al. 2022). Alternatively, a purely data-driven approach may 
be followed for the extraction of condition/performance indicators (Noh et al. 2011).

A number of review works have been delivered over the past decades reporting on the 
evolution of SHM approaches for damage detection, which comprises one of the primary 
tasks of SHM, including the works by Doebling et al. (1996); Salawu (1997); Chang et al. 
(2003); Sohn et al. (2003); Fan and Qiao (2011); Seo et al. (2016). To what bridge systems 
in particular are concerned, the interested reader is referred to the review works of Sun 
et al. (2017); Casas and Moughty (2017), and more recently An et al. (2019), which how-
ever do not focus on seismic actions. Seismic monitoring, at large, is discussed in (Limon-
gelli and Çelebi 2019), with one of the sections dedicated to bridge studies in British 
Columbia (Kaya and Ventura 2019). In Limongelli et al. (2018), the link to performance 
indicators is made, while Prendergast et al. (2018) describe monitoring under multiple nat-
ural hazard effects, namely for the case of flooding and seismic actions.

In this paper, we offer a review of works relating to monitoring schemes, which have 
been applied, or bear application potential, for use in seismic health monitoring of bridges. 
Since latent phenomena can influence the seismic behavior of the bridges, short notes are 

Fig. 1  The variants of monitor-
ing of structural health in terms 
of sporadically and continuously 
deployed regimes, adapted from 
(Ou 2020)
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also included about the structural monitoring of the effects due to aging, deterioration and 
fatigue. Sections  2–4 give a comprehensive review on available methodologies for vari-
ous levels of damage detection with increasing detail of in-depth information i.e. simply 
detecting the appearance of damage in a bridge (Level 1—Damage detection), addition-
ally detecting the location(s) of damage (Level 2—Localization), assessing the degree of 
damage (Level 3—Quantification) and finally evaluating the residual life of a damaged 
bridge (Level 4—Residual damage prediction). A significant contribution of the present 
work is the comprehensive presentation in Sect. 5 of the use of Computational Intelligence 
in all aspects of structural monitoring i.e. optimal sensors locations, system identification, 
model updating and all levels of damage detection issues. Although, as mentioned above, 
the presented methodologies primarily focus on seismic health monitoring issues, the role 
of other environmental and operational factors affecting the dynamic behaviour of a bridge 
are also partially mentioned. Finally, in Sect.  6, illustrative examples of the monitoring 
aspects of two long suspension bridges over the Bosporus channel are presented in detail. 
Some basic analyses based on recorded data are also performed, mainly in order to present 
some important aspects of the procedure for the assessment of the structural health of one 
of the bridges due to a low-intensity seismic event. In order to facilitate the reader, a list of 
acronyms used throughout the text is presented in Appendix.

2  Damage detection (level 1)

When concerned with the 1st level of SHM assessment, i.e., the task of detection, the 
majority of methods available in the literature may be classified into data-driven or model-
based approaches (Moallemi et  al. 2021). Data-driven methods rely on the inference of 
damage-sensitive features without exploiting availability of a physics-based system model 
(Azimi et al. 2020). Model-based methods, on the other hand, assume availability of a sys-
tem model, most typically numerical (e.g., finite-element-based), which is often updated to 
match the acquired measurements (Ghahari et al. 2022). For the task of detection, purely 
data-driven methods prove highly efficient. However, lack of physical connotation hinders 
the more advanced tasks of the SHM hierarchy, such as quantification and localization. 
Model-based methods are better suited for such tasks, albeit coming with significantly 
higher computational costs, which hinders their implementation in real-time applications 
(e.g., real-time diagnostics and control). Hybrid approaches also exist, where finite element 
(FE) information is injected into data-driven methods in order to yield damage indicators 
that can exploit model-based features, without the need for model updating (Mendler et al. 
2021). Below follows an overview of utilization of the aforementioned methodologies for 
damage detection.

2.1  Data‑driven methods

In the typical implementation of data-driven approaches, we seek to identify distinctive 
features, with the extent of the discrepancy between the reference (healthy), and inspected 
configuration revealing damage. This discrepancy is typically quantified in terms of sta-
tistical metrics, with a relevant threshold also prescribed. As reported by Limongelli et al. 
(2016), data-driven methods may be further categorized on the basis of their featured sig-
nal processing tools. In the SHM context, we distinguish frequency-based methods, time 
series method and time-variant methods.
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2.1.1  Frequency‑based methods

In time-invariant frequency-based methods, some form of spectral analysis (e.g., Fourier 
transform, frequency domain decomposition method, complex mode indicator function) 
is employed as the signal-processing tool for extraction of quantities that primarily relate 
to the modal characteristics of the system (i.e., frequencies, mode-shapes and damping), 
which are typically extracted through the process of operational modal analysis (OMA) 
(Reynders 2012; Cabboi et al. 2017), under ambient excitation conditions. When it comes 
to seismic assessment, the features identified prior to and after a seismic event may be con-
trasted for the purpose of damage detection. This is reported as early as 1991 in the work of 
Hearn and Testa (1991) in laboratory structures, and was later extensively demonstrated on 
operating systems, most notably on the Z24 bridge benchmark (De Roeck and Maeck 1999; 
Maeck and De Roeck 2003; Reynders and Roeck 2009). The Z24 bridge was an operating 
field structure in Switzerland, which was monitored under a 9-month period under ambient 
conditions, and subsequently controllably damaged. A number of works have been pub-
lished in recent years demonstrating successful damage detection on the basis of track-
ing of modal properties of a bridge, but also underlining that natural frequencies are not 
always sensitive to local damage (Farrar and Doebling 1999), and stressing the importance 
of including information on strain, which is better linked to local damage effects (Der-
aemaeker 2010; Pakrashi et al. 2010, 2013). The need of reducing the data transmission 
payloads in wireless monitoring networks also originated some compressive sensing based 
approaches relevant for time-invariant frequency-based SHM methods (Bao et  al. 2011; 
Gkoktsi et al. 2019). For instance, Gkoktsi and Giaralis (2020) proposed a novel compres-
sive sensing approach able to detect seismic-induced structural damage associated with 
changes to natural frequencies as minor as 1% by sampling up to 78% below the Nyquist 
rate.

Perhaps the most challenging aspect in purely data-driven damage detection lies in 
the influence of environmental and operational parameters (EOPs). Farrar et  al. (1996) 
observed a 5% variation in the natural frequencies of the Alamosa Canyon Bridge within a 
24-hour period due to spatial temperature gradients. Alampalli (2000) reports a 50% varia-
bility for a bridge in Claverack (NY) due to freezing of the supports. A 14–18% variability 
is also reported for the case of the Z24 bridge benchmark (Reynders and Roeck 2009). For 
decoupling such operational (and therefore benign) effects from structural damage, statisti-
cal methods are commonly exploited. These may be distinguished in two main classes, 
namely output-only methods, which assume no direct measurement of the environmental 
inputs (e.g., temperature) (Kullaa 2011), and input–output methods where a relationship 
is inferred between measured EOPs and monitored response features (e.g., frequencies) 
(Peeters and De Roeck 2001). As an example of the first method, Reynders et al. (2014) 
applied kernel Principal Component Analysis (k-PCA), for extracting a condition indicator 
by eliminating environmental and operational influences on natural frequencies. In recent 
work, cointegration techniques have been utilized to remove EOP effects on the modal fre-
quency set (Cross and Worden 2012; Worden et  al. 2014). In following the second path 
(input–output), Spiridonakos and Chatzi (2014) employ Polynomial Chaos Expansion 
(PCE) to derive a functional representation between inputs and outputs, delivering a robust 
performance indicator, verified on damage detection for the Z24 bridge. A detailed assess-
ment of feature extraction and assessment of Z24 and S101 bridge in terms of time and 
frequency aspects has recently been carried out Buckley et  al. (2022). As an alternative 
to modal information, flexibility-based methods may also be used, as demonstrated in the 
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works by Schommer et  al. (2017a) and Nobahari and Seyedpoor (2013). The flexibility 
matrix may be easily extracted from dynamic response measurements, however, when 
compared against stiffness information, it is less straightforwardly linked to damage quanti-
fication and localization.

The condition/damage indicators are typically constructed on the basis of discrepancies 
between measured and estimated quantities. However, the task of detection is not finalized 
upon mere extraction of a performance indicator. In addition to this, robust outlier analysis 
has to be implemented as demonstrated in the work of Dervilis et al. (2015). Tools such as 
robust regression analysis, relying on least trimmed square and minimum covariance deter-
minant estimators, can assist in further clustering the outlier space, so as to deem those 
outliers which may reliably serve as warnings, against possible false alarms. This work 
was validated on monitoring data from the Z24 and Tamar Bridges, and would be suitable 
for detection also in the case of damage inflected from seismic events. Further options for 
statistical analysis for robust damage detection are overviewed in the work by Comanducci 
et al. (2016), where detection based on novelty, multiple linear regression and a linear Prin-
cipal Component Analysis (PCA) is discussed.

2.1.2  Time‑domain methods

Time domain information can be exploited in raw form for the purpose of damage detec-
tion. Condition indicators that are inferred on the basis of field measurements have long 
been adopted by Caltrans to characterize post-earthquake bridge response. This includes 
markers at expansion joints to track bridge movements or tension indicators on cable 
restrainers to indicate yielding of the cables (Chen and Duan 2014). Particularly to what 
concerns bridges involving cable elements (cable-stayed, suspension), the monitoring of 
tension forces in the stay cables, by direct (e.g., load cell) or indirect (e.g., vibration-based 
tension estimation) methods, translates to a direct indicator for relaxation losses, strength 
reduction and triggering of remedial action (Mazzeo et al. 2023; Scarella et al. 2017).

Beyond exploitation of signals as is, generic dynamic monitoring data may be fed into 
indirect estimation methods for the purposes of identification and detection. Time-domain 
methods typically pertain to the use of time-series analysis tools, in the form of state-
space [e.g., subspace system identification-based (Döhler et  al. 2014; Greś et  al. 2021)] 
or autoregressive-type models, for describing the monitored response in an input–output 
or output-only setting, with single or multiple inputs/outputs. Such parametric methods 
may be further classified into model parameter-based methods, residual-based methods, 
and functional model-based methods. The classification depends on whether fault detec-
tion and identification rely on (i) direct use of the parameter vector of a time series model, 
or (ii) functions of residual sequences obtained by driving the current signal(s) through 
suitable pre-determined models estimated in a baseline phase, or (iii) a combination of the 
two. The interested reader is referred to the work by Fassois and Sakellariou (2007) for a 
detailed overview of these methods. The application of statistical damage detection with 
the subspace-based residual, as well as frequency and mode shape-based detection to the 
case study of an extensive progressive damage test of a prestressed concrete bridge, namely 
the S101 Bridge, is reported in Döhler et al. (2014); Greś et al. (2021b). Monitoring of an 
impact damaged bridge throughout repair has been carried out via a dynamic harmonic 
approach Buckley et  al. (2021b). Changes in estimated extreme value fits to earthquake 
responses have also been linked to detection of damage (Pakrashi et al. 2018).
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2.1.3  Time‑variant methods

While the former tools are most commonly adopted in the context of stationary loads, time-
variant methods are particularly relevant when dealing with non-stationary loads, such as 
seismic loading. These include time-series models featuring time-dependent coefficients, 
such as linear parameters varying time series models (Avendaño-Valencia et al. 2017), time 
varying autoregressive models (Bogoevska et al. 2017), or functionally pooled time series 
models (Kopsaftopoulos et al. 2018), time-frequency methods that analyse time variations 
of the spectral quantities using, for example, the Wigner–Ville distribution and time-scale 
methods that decompose the signal based on a priori chosen functions, e.g. wavelets. A 
review of these methods can be found in (Staszewski and Robertson 2007).

Wavelet-based approaches also fall in this class of methods (Spiridonakos and Chatzi 
2013; Hera and Hou 2004; Nair and Kiremidjian 2009; Pakrashi et al. 2007). In this con-
text, Noh et al. (2011) proposed engineering demand parameter indicators for non-model-
based seismic vulnerability assessment of steel frame structures, while Hwang and Lignos 
(2017) demonstrated that wavelet-based damage-sensitive features can facilitate seismic 
vulnerability assessment. These rely on tracking of damage sensitive features inferred from 
wavelet analysis. As an example of such an analysis, Golmohamadi et al. (2012) calculate 
statistical moments of the energy density function of monitored signals and detect dam-
age on the basis of discrepancies of the wavelet coefficients prior to and after damage. 
This work is verified on a numerical model of a full-scale railway bridge. The interested 
reader is pointed to (Kankanamge et al. 2020) for a review on applications of the continu-
ous wavelet transform in SHM.

2.2  Model‑based methods

In model-based methods, damage is typically identified through the updating of a FE 
model (Simoen et al. 2015; Jia et al. 2022; Argyris et al. 2020). The basic premise is that 
structural damage results in a reduction of stiffness, which synchronously leads to the fur-
ther tasks of localization and quantification, as elaborated upon in Sect.  3. Model-based 
schemes are particularly useful for moving beyond the task of diagnosis of new or estab-
lished damage to the prognostic tasks of reliability and remaining useful life assessment.

3  Damage localization and quantification (levels 2 and 3)

The more advanced tasks of damage localization and quantification may be succeeded, as 
in Level 1, by means of purely data-driven or model-based schemes, however, we here 
additionally refer to the so-called hybrid methods which rely on—usually online–interac-
tion of data and models.

3.1  Data‑driven methods

Purely data-driven methods come with the handicap of ignoring the physical configuration 
of the system, with damage localization thus largely dependent upon the spatial arrange-
ment of the network of sensors that is deployed.
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3.1.1  Mode shape‑based methods

Based on the chosen sensor placement, data-related quantities that may indicate location 
and severity of damage largely rely on utilization of mode shapes, or their derivatives 
such as mode shape curvatures (MSCs) (Lacarbonara et al. 2016), and associated quan-
tities such as modal strain energy (Zhao et al. 2020; Tatsis et al. 2018) or interpolation 
error (Limongelli 2010). Khan et  al. (2022) proposed a novel approach for estimating 
modal parameters of bridges, including damage-induced changes of boundary condi-
tions, by using progressively redeploying sensors along the axis of a monitored bridge. 
Numerical and experimental results demonstrated that mode shape and its gradient can 
successfully detect a change in support conditions.

In general, lower modes are often less sensitive to local damage and are affected by 
variation in the EOPs, and their effects onto boundary conditions in particular. On the 
other hand, higher modes are non-trivial to extract from ambient information, and come 
with high variance at the cost of reliability. In alleviating dependence on EOPs, Shok-
rani et  al. (2018) extended the PCA-based approach, previously applied onto natural 
frequencies, for use with MSCs. This led to derivation of EOP-neutral indicators of per-
formance with a spatial identity, and the framework is demonstrated to work on bridge-
like structural systems. As an alternative to using modal-shapes, operational deflection 
shapes may also be employed. In (Giordano and Limongelli 2020), a comparison of 
damage indices computed with modal and operational shapes is reported for the case of 
a real bridge. Operational shapes correspond to the deflection of a structure at a particu-
lar frequency, and are often easier to experimentally derive (Sampaio et al. 1999; Dilena 
et al. 2015) even if they might be more affected by noise due to the lower signal to noise 
ratio with respect to modal shapes.

3.1.2  Time‑domain methods

Time-domain-based methods pertain to either direct processing of raw measurement 
time histories, or on time-domain identification methods applied onto monitored sig-
nals. As an example of the first, Tondreau and Deraemaeker (2014) introduced an 
unsupervised technique for damage localization relying on use of dynamic strain meas-
urements, which are passed through so-called “modal filters”. Due to strong linkage 
between strains and local damage, this method proves more robust than attempts relying 
on use of accelerations. Similarly, the shift in the position of the neutral axis, obtained 
via static or dynamic strain measurements can serve as a means for localizing dam-
age. An and Ou (2012) utilize the curvature of the waveforms of the logarithm of mean 
squares of measured acceleration signals, and employ the discrepancy prior to and after 
damage as for damage localization.

Particularly to what concerns seismic assessment, quantities which may be estimated 
via measurements, such as seismic displacements, reinforced concrete pier/column drift 
ratios and residual displacements (Tesfamariam and Goda 2015; Yazgan and Dazio 
2011), plastic rotations (for ductile members), or shear forces at the members/joints (for 
non-ductile members) can serve as direct indicators of performance (Kolias et al. 2012). 
Residual drifts form an established indicator of performance in the Japanese seismic 
design specifications for highway bridges (Kawashima and Unjoh 1997).
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Beyond quantities that are readily extracted from measurements, quantities derived 
as part of time-domain system identification procedures may also serve for the purpose 
of localization. Subspace identification methods, and the resulting data Hankel matrix, 
may be used to define a null-space damage index (Loh et al. 2015). The reference data 
(undamaged data) is utilized as a baseline for calculating the discrepancies driving the 
formulation of the damage indices. Deviations in the components of the respective indi-
ces serve for localization. Such a Hankel matrix based approach has led to the develop-
ment of near real-time implementation of data detection through an eigenperturbative 
approach and utilising extreme value estimates to identify significant changes (Bhow-
mik et al. 2019; Pakrashi et al. 2018).

3.2  Model‑based methods

In model-based methods, damage is typically identified through coupling with a FE model, 
which is updated to reflect the monitored structure (Teughels and De Roeck 2005; Simoen 
et al. 2015; Martakis et al. 2021). For the purpose of damage localization, a damage index 
needs to be formulated on the basis of some measure of discrepancy (fitness function). 
Under availability of a FE model, structural damage is tied to reduction of stiffness, or 
local change of the modulus of elasticity. Therefore, the variable to be updated typically 
includes structural parameter information, such as the Young’s modulus of elasticity, or if 
data from nonlinear tests or seismic response are available, then strength parameters may 
also enter the set of variables to be identified. In its most basic form, model parameteriza-
tion pertains to parameterization of the stiffness matrix:

 where each Kj is the contribution of a single substructure to the global stiffness matrix and 
�j is a scaling representative of its effective stiffness.

In case of availability of ambient data, the fitness function expressing the discrepancy 
between monitored and estimated quantities, typically relies on matching of modal prop-
erties, which are extracted from measured response time histories using modal analysis 
techniques (Reynders 2012). In its most fundamental form, the fitness function may be for-
mulated on the basis of natural frequencies or eigenvalues, although it is further possible 
to include modal assurance criterion (MAC) values for mode shape, or modal curvature 
discrepancies (Meruane and Heylen 2012; Quaranta et  al. 2016). In presence of diverse 
components in the fitness function, appropriate weighting may be employed to scale the 
individual contributions. Many alternative formulations are possible, but most often this is 
expressed as a weighted least squares fit between predictions and data:

 where � is the vector containing the residuals between predicted and measured data (natu-
ral frequencies, mode shapes, etc.) and W is a weighting matrix. In most practical applica-
tions, a diagonal weighting matrix is chosen, so that the cost function becomes a sum of 
squared residuals. The optimal value �∗ of the parameter vector � is determined through the 
solution of a non-linear least-squares problem:

(1)K(�) = K0 +

N
∑

j=1

�jKj,

(2)F(�) =
1

2
�(�)⊤W�(�),
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Local gradient-based optimization methods are most often used to solve the optimization 
problem. For modal data such as natural frequencies and mode shapes, the gradient can be 
efficiently calculated analytically, avoiding the use of finite differences. Alternatives relying 
on adoption of machine learning approaches, such as neural networks (Alavi et al. 2016) or 
statistical pattern recognition approaches have also been proposed for detection and locali-
zation (Betti et al. 2013). Model updating comprises an inverse problem and is often prone 
to ill-posedness and ill-conditioning. Accounting for uncertainties due to measurement and 
modeling errors is therefore essential (Simoen et al. 2015), with a Bayesian approach often 
used to this end (Ntotsios et  al. 2009; Figueiredo et  al. 2014; Behmanesh and Moaveni 
2015).

In particular, the ill-conditioning in the inverse problem of damage identification arises 
from the potentially large number of model parameters introduced to monitor potential 
structural changes due to damage in a large number of substructures of the entire struc-
ture. However, damage in a structure is expected to occur at a limited number of locations. 
The prior information that the spatial distribution of damage is sparse can be exploited to 
reduce ill-conditioning. In deterministic approaches, l1 regularization techniques are used 
to enforce sparsity. Applications include load identification of bridges (Bao et al. 2016) and 
damage identification of structures using measured model properties (Hou et al. 2018). In 
probabilistic approaches, sparse Bayesian learning techniques (Tipping 2001), introduced 
originally to obtain sparse solutions to regression and classification problems (Bishop 
2006), use automatic relevance determination prior to promote sparsity. They have been 
successfully applied to damage identification using linear systems with measured modal 
properties (Huang and Beck 2015, 2018; Hou et al. 2019) and for parameter estimation for 
sparse spatial distribution of damage in nonlinear structures using measured response time 
histories (Filippitzis et al. 2022).

As reported in (An et  al. 2019), instances of model updating procedures applied for 
bridge systems include multi-resolution analysis (Zhang et al. 2015b), use of 3D simula-
tion models (Saidou Sanda et  al. 2017), exploitation of in-situ tests for prestressed con-
crete bridges (Schommer et al. 2017b) and fusion of static with dynamic strains, obtained 
from fiber optical sensors (Wu et al. 2017). In order to reduce the computational cost of 
the localization problem, Teughels et al. (2002) employ a limited set of damage functions, 
where the updating parameters are the factors by which each of the damage functions has 
to be multiplied prior to recombination. The damage functions are determined by means of 
shape functions, known from FE theory. In an alternate approach to reduction, Papadimi-
triou and Papadioti (2013) use component mode synthesis, to extract a reduced order rep-
resentation of the full FE model, and a Bayesian approach for updating parameters in a 
reduced space of generalized coordinates. The method is demonstrated on simulated data 
from Metsovo Highway Bridge.

3.3  Hybrid methods

A third group of methods for damage localization and quantification exploit online interac-
tion of data and physics-based models (differently to the offline concept of model updat-
ing), within a hybrid scheme.

(3)�∗ = argmin
�

F(�).
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A representative method of this class is the damage locating vector approach proposed 
by Bernal (2002). This scheme relies on detection of changes in the structural flexibility 
in order to localize damage. The method has been extended to output-only data (Ber-
nal 2010), where a vector is estimated in the null space of the transfer matrix difference 
between reference and damaged states, as these are defined purely on the basis of data. 
Application of this vector as a virtual load to the FE model of the structure, results in zero 
stress over the damaged elements. Based on this, a damage indicator may be defined for 
each structural element, whose value for damage equals zero. To formalize localization, 
Döhler et al. (2013) employ a statistical test.

Statistical fault isolation methods define a theoretical framework for localization of 
damage, seeking to specify which parameters of an available numerical (e.g., FE) model 
have changed under availability of measurements from a baseline and damaged state. For-
mally, this is different to a model updating procedure, since in a first step only change in 
the involved parameters is sought by means of statistical hypothesis testing (Allahdadian 
et al. 2019). Once damage is detected, it can be more precisely linked to localization and 
even quantified by more carefully examining damaged elements (Döhler et al. 2016; Greś 
et al. 2021a).

Another class of hybrid methods, exploits availability of a model of the structure, and 
couples this model with data in order to predict damage in real-time. Bayesian filters 
(Chatzi and Smyth 2009) are a prominent representative of this class, offering the possibil-
ity for real-time identification of the damaged system parameters. This typically boils down 
to a joint state and parameter estimation problem, which may be solved by use of Bayesian 
filters, such as the extended Kalman filter, the unscented Kalman filter, sequential Monte 
Carlo (or particle filter) methods (Tatsis et al. 2022) or state-space observers such as the 
eigensystem realization algorithm and the observer/Kalman filter identification approach 
(Vicario et  al. 2015). These methods are confronted with problems in the case of high-
dimensional structures, i.e., systems of several degrees-of-freedom (DOFs). This issue may 
be alleviated via use of sub-structuring approaches for reduced order modelling. Bayesian 
filter approaches are particularly attractive for real-time implementation in the context of 
diagnostics and early warning systems.

4  Residual life assessment (level 4)

Much research has been conducted in the area of damage identification, but linking damage 
to residual life prediction and decision support tools for the monitored structure is non-
trivial, and remains challenging as the instances of permanent SHM deployments are still 
scarce.

One approach to quantifying the value of information stemming from monitoring data 
relies on use of Bayesian pre-posterior decision analysis. Omenzetter (2017) presents such 
a framework for detecting and classifying damage to infrastructure subjected to strong 
ground motion events for post-event decisions relating to safe operation and maintenance. 
This requires a priori modelling of the life cycle of an infrastructure that may be subjected 
to multiple seismic events. The infrastructure exposed to the main-shock or earlier after-
shocks may suffer successive damage with resulting increase in vulnerability. SHM could 
be used to detect damage and accordingly inform decisions. This task is typically facili-
tated via use of decision trees for the visualization of root-cause analysis.
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Indeed, perhaps the primary contribution of SHM in this respect lies in the evidence 
offered with respect to post-event condition. Upon updating of a relevant model (e.g., 
FE-based), seismic assessment for bridges may be achieved via computation of fragility 
functions. These define the probability of exceeding a specific damage state under a given 
earthquake intensity (Moschonas et al. 2009; Ramanathan 2012; Tecchio et al. 2016). In 
constructing these curves, different demand parameters in relation to a bridge component 
and typical damage types are defined (column deformation, abutment displacement, etc.). 
Nonlinear static or dynamic analyses are employed to derive such fragility functions, with 
a statistical analysis subsequently executed to define the exceedance of damage thresholds 
for each of the demand parameters. Fragility functions (Ozer et al. 2015) can be used for 
both pre-event and post-event decision making. As an actionable instance of the latter, the 
Shakecast system by Caltrans and USGS (Wald et  al. 2008) couples vibration response 
data logged during and immediately after an earthquake with fragility functions to map the 
most likely impacted bridges from the specific event in the region of California.

Beyond assessment of events relating to extreme loads, monitoring may be used for 
calculating accumulation of deterioration due to fatigue or other slow evolving damage 
processes (e.g., corrosion). This is explored in the work of Chen and Wang (2013), who 
developed a probabilistic cumulative fatigue damage model for long-term monitoring of 
long-span suspension bridges under wind excitation. The method draws from using Bayes-
ian learning and was validated on monitoring data from the Tsing Ma Bridge in Hong 
Kong. Alduse et  al. (2015) also exploit a Bayesian scheme for assessment of the wind-
induced fatigue damage of long-span bridges, while considering uncertainties related to 
available information on wind speed and direction. Remaining in the Bayesian context, 
Cho et al. (2017) propose a Bayesian correlation prediction model, relying on crack inspec-
tion data for analyzing the relativity of hydrogen-induced cracking in the cable wires of a 
steel suspension bridge.

5  Computational intelligence in SHM

According to Engelbrecht (2007), computational intelligence is the branch of artificial 
intelligence dealing with “the study of adaptive mechanisms to enable or facilitate intel-
ligent behavior in complex and changing environments". The interested reader can refer 
to (Russell and Norvig 2002) for a general overview on artificial intelligence. Techniques 
belonging to the area of computational intelligence have been largely employed for bridge 
monitoring applications in the last decades. In the following, we briefly review established 
applications of computational intelligence techniques for bridge structural monitoring 
applications (i.e., optimal sensor placement, damage detection, system identification, and 
model updating). Differently to the first sections of this work, which explained the essential 
levels of the SHM hierarchy, we devote this section to works dealing with evolutionary 
computing, swarm intelligence, and neural network architectures.

Evolutionary computation is grounded on the simulation of natural evolution processes, 
where the governing concept is the survival of the fittest individuals. On the other hand, 
swarm intelligence exploits the collective behavior of decentralized, self-organized natu-
ral systems of agents in problem solving. The swarm consists of a population of simple 
agents whose global behavior is not ruled by a centralized control structure that dictates 
how individual agents should behave. Conversely, the interactions among the agents lead to 



Bulletin of Earthquake Engineering 

1 3

the emergence of an intelligent global behavior. Finally, neural network architectures, also 
referred to as neurocomputing, are based on a parallel and distributed information process-
ing system that attempts to mimic how the human brain works.

Within the framework of bridge structural monitoring, evolutionary computing-based 
applications are mainly concerned with the use of the genetic algorithms (GA) (Holland 
1992), while awarm intelligence- and neurocomputing-driven applications are linked 
to particle swarm optimization (PSO) (Kennedy and Eberhart 1995) and artificial neural 
network architectures (ANN) (McCulloch and Pitts 1943; Pitts and McCulloch 1947), 
respectively. Swarm intelligence includes applications of further, less popular algorithms, 
including the artificial bee colony (ABC) (Karaboga and Basturk 2007), the firefly algo-
rithm (FA) (Yang 2009), and the monkey search algorithm (MA) (Mucherino and Seref 
2007). On the other hand, most existing implementations of the ANN are based on the 
well-known feed-forward neural network (FNN). For a comprehensive, yet concise, review 
of GA, PSO and ANN (including their variants and relevant programming aspects), the 
interested reader can refer, for instance, to (Quaranta et al. 2020), where an extensive and 
up-to-date references list is also provided.

5.1  Optimal sensor placement

The definition of the most appropriate sensor network layout is an important task when 
designing the structural monitoring campaigns. Formally, this is known as the optimal 
sensors placement (OSP) problem (Papadimitriou and Lombaert 2012). This consists in 
defining the optimal set of positions, among permissible locations, where a certain number 
of sensing units should be installed. Note that the type of sensors is typically defined in 
advance, whereas the number of sensors can be either an assigned design variable or can 
be itself an unknown. The design of the sensor network layout can thus be formulated as an 
optimization problem, in which the definition of the objective function plays an important 
role. Naturally, the sensors must be placed in such a way that the data they collect can pro-
vide adequate information about the structure (Limongelli 2003). As regards the analysis 
of bridges subjected to earthquakes, it means that the analysis of collected data from a sen-
sor network must support as best as possible the tasks of identification, model updating and 
current condition assessment in view of the seismic reliability estimation, or the detection 
of damage that might occur after a seismic event. In several practical applications, it might 
be opportune to consider additional goals to define suitable sensor configurations. For 
instance, the OSP problem can also take into account direct and indirect monitoring costs, 
including development, purchase and maintenance costs for the sensors as well as resource 
and communication costs. Considering information gain in the search of good sensor con-
figurations can also be useful to control over-instrumentation-related issues, i.e. when there 
is the need of taking into proper account the fact that too much information does not neces-
sarily lead to significant benefits in terms of improved knowledge of the structure, since 
this can hinder a proper data interpretation. Moreover, robustness-based design criteria can 
be introduced to cope with potential malfunctions in the sensor network during its lifetime. 
Considering multiple goals in sensor network design might require accounting for conflict-
ing optimum criteria. In such case, the OSP is most properly formulated as a multi-objec-
tive optimization problem, whose final solution will no longer be a unique set of optimal 
measurement points, but several alternative layouts that represent a compromise between 
the selected design criteria (so-called non-dominated optimal solutions). The OSP problem 
can be eventually completed by suitable constraints.
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Although bridges generally comprise simpler geometries than more complex structures 
(such as large buildings), their dimensions and the significant contribution of many higher-
order eigenmodes to their response typically demand a large number of sensors for struc-
tural identification and health monitoring. This renders task of defining an optimal sensor 
network layout challenging through use of empirically-based technical judgment or trial-
and-error approaches. Owing to the growing complexity of the OSP problems to be solved 
in bridge monitoring, computational intelligence algorithms are increasingly employed to 
this end. We offer a short review of recent related works in this field. For a more extended 
discussion on the OSP problem and suited solution strategies, the interested reader can fur-
ther refer to (Yi and Li 2012) and (Ostachowicz et al. 2019).

Rao and Anandakumar (2007) apply a hybrid swarm intelligence-based technique for 
the optimum positioning of sensors. The authors propose a modified version of the stand-
ard PSO algorithm, where the main novelty lies in introduction of a new user-defined 
control parameter from which the acceleration constants are determined. This parameter 
is then adjusted during the iterative search in such a way to privilege the exploitation of 
the best current solution or the exploration of the whole search space, depending on the 
distance between each particle and the best performer of the swarm. The PSO algorithm 
is also hybridized by applying periodically the Kelley’s variant of the Nelder-Mead algo-
rithm (Kelley 1999) to the best 10% candidate solutions. A single-objective optimization 
problem is solved, with four alternative design criteria considered, namely maximization of 
the Fisher information matrix determinant, maximization of the strain energy matrix deter-
minant, maximization of the kinetic energy matrix determinant, and minimization of the 
total mean square error of the mode shapes. The latter is estimated by comparing the mode 
shapes calculated from a FE model of the structure and those obtained through a cubic 
spline interpolation where a sensor is not positioned. The study concludes that network 
layouts optimized by means of the proposed computational intelligence-based approach are 
superior to those attained using classical deterministic procedures, with the possible excep-
tion of cases where the number of sensors is low.

You et  al. (2013) address OSP design for a wireless sensor network for targeted to 
bridge SHM from two perspectives. On one hand, the optimal layout is intended to provide 
a reliable characterization of the dynamic behavior of the infrastructure and, to achieve 
this goal, the maximization of the Fisher information matrix determinant is considered. 
On the other hand, the design further aims at minimizing the total energy consumed by 
the wireless network. By resorting to the classical weighted sum method, these conflicting 
design criteria are combined into a single-objective function, whose optimal value is found 
through a modified PSO algorithm. Quaranta et al. (2014) compare GA and classical deter-
ministic procedures for the design of the sensor network for a swing bridge. In this work, 
the optimal positions of the sensors are found by assuming in advance the number of meas-
urement points. Hence, the MAC is employed to measure the difference between mode 
shapes estimated via FE analysis and those calculated by means of a cubic spline interpola-
tion at the locations where a sensor is missing. So doing, network sizes corresponding to 
a value of the MAC less than 0.85 are discarded and the maximum number of sensors is 
selected among the remaining network sizes upon a cost-benefit evaluation.

Soman et al. (2014) address relevant practical issues in the design of complex sensor 
networks for bridge monitoring, that is the need of handling different types of sensors as 
well as the one of considering modal identification and damage detection tasks simulta-
neously. The ability of the network to ensure a reliable modal identification is quantified 
through the modal clarity index. The aptitude of the network in detecting existence and 
location of the damage is evaluated by using the mean relative error between the reference 
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dynamics obtained from FE analysis and the one calculated after mode shape expansion via 
System Equivalent Reduction Expansion Process. These two goals are weighted to obtain a 
single objective function, and the final unconstrained optimization problem is solved using 
a discrete GA. The results carried out by Soman et al. (2014) suggest that, if properly opti-
mized, the use of a network consisting of multiple types of sensors is beneficial. They also 
demonstrate that a global search strategy such as a GA can improve the overall quality of 
the sensor network layout compared to other conventional deterministic approaches.

The search for the optimal layout of a wireless network of sensors for bridge monitor-
ing applications has been addressed in a series of articles by Zhou and co-workers. The 
strain energy is employed in (Zhou et al. 2014b, a) to define the objective function, and a 
constraint is included in such a way that the distance between two adjacent wireless accel-
erometers within a data transmission route is less than the assigned threshold transmission 
range. The resulting single-objective constrained optimization problem is then converted 
into an unconstrained one through a dynamic penalty approach. A GA and the FA are 
adopted to solve the resulting optimization problem in (Zhou et al. 2014b) and (Zhou et al. 
2014a), respectively. The optimal placement of wireless sensors taking into account, both, 
the demands for a reliable bridge identification and the lifetime performance of the network 
was later considered also in (Zhou et al. 2015, 2017a). Such approaches are in line with the 
recent edge solutions Buckley et al. (2021a) that are being developed for monitoring.

A novel variant of the PSO and a chaotic MA have been implemented in (Li et al. 2015) 
and (Zhang et al. 2015a), respectively, to optimize the layout of a sensor network targeted 
at the modal identification of bridges. In both studies, the objective function aims to mini-
mize the off-diagonal terms of the MAC matrix. Conversely, Zhou and Wu (2017) address 
the design of networks made of strain gauges essentially targeted at damage detection 
applications. In doing so, they introduce two indices to measure the capability of the strain 
gauges network in damage detection. One index corresponds to strain difference coverage; 
it directly takes into account the strain response changes due to a number of relevant dam-
age scenarios, and aims at identifying the positions that maximize both damage coverage 
and detectability. The second index is the strain contribution coverage; it is based on the 
maximization of the Fisher information matrix determinant associated with the damage 
sensitivity matrix, which correlates strain response change and stiffness reduction under 
the assumption of a linear relationship between them. These indexes are then employed 
to select the best positions of the strain gauges from a discrete set of available alternatives 
by means of a GA. The results reported in Zhou and Wu (2017) highlight that the optimal 
layout is highly dependent on the load case (8 load cases are considered in this work, which 
are defined on the basis of truck numbers and moving paths). They also propose a means to 
derive a cost-effective number of strain gauges.

Recently, a modified version of the ABC algorithm is applied in (Yang and Peng 2018) 
aimed at determining the optimal location of sensors on bridges by minimizing the off-
diagonal terms of the MAC matrix. The optimal placement of accelerometers and strain 
sensors is considered in (Wu et al. 2019), which is an extension of the previous work done 
by Zhou and Wu (2017). Notably, by selecting the strain gauge positions in order to opti-
mize the strain difference coverage index for an existing bridge, the authors demonstrate 
that the damage detection capability of the resulting optimal network is much better than 
the one corresponding to the network of strain sensors already installed and designed on 
the basis of technical judgment only. As regards the optimal positioning of accelerometers, 
the final computer-aided design leads to monitor a larger number of in-plane DOFs of the 
deck with respect to the existing network already installed on the bridge. This seems coun-
terintuitive, but the authors motivate such result by pointing out that the larger amplitude 
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of the vertical deck response makes it more sensitive to changes due the damage. Hence, a 
smaller number of monitored DOFs is required in the vertical direction as compared to the 
in-plane direction. The authors also claim that too many sensors intended to monitor the 
vertical deck motion might be redundant due to the structural symmetry. Such a motiva-
tion, however, does not seem fully appropriate when the goal is damage detection since the 
faults, in general, can change the symmetry conditions.

5.2  Computational intelligence for identification and model updating tasks

We previously referred to the value of model-based approaches for accurate prediction of 
the response and performance of bridge structures under seismic loads; a task which often 
involves the calibration/updating of structural models of existing bridges on the basis of 
experimental data collected from monitoring campaigns. In fact, large uncertainties might 
usually affect deteriorated and aging bridges, whereas reliable information about their 
boundary conditions are often unavailable. In view of this, computational intelligence 
methods have been successfully employed in (parametric or nonparametric) systems iden-
tification and model updating of bridges, with a short review of recent works presented in 
what follows. For a more extended review on the use of computational intelligence meth-
ods for system identification and model updating, the interested reader can refer to (Quar-
anta et al. 2020) and (Marwala 2010), respectively.

Huang and Loh (2001) apply a FNN trained by means of the Levenberg-Marquardt 
algorithm for the identification of a prestressed box-girder bridge under earthquake. The 
network is therein designed to produce a nonparametric model able to provide the seismic 
response of the infrastructure at the midspan of one girder and on the top of one pier, after 
a suitable training phase based on the experimental response available at nearby points. 
The correctness of the nonparametric modelling is then discussed through comparisons 
with available recordings. The authors conclude that the accuracy of the nonparametric 
model is not satisfactory for comprehensive damage detection, but that such a tool can be 
useful for recognizing unexpected changes in the structural response after an earthquake. 
Feng et  al. (2004) also implement a FNN, which is differently purposed to what is pre-
sented by Huang and Loh (2001). The network designed by Feng et al. (2004) admits iden-
tified modal parameters as input, while the output consists in the structural parameters of 
the FE model of the bridge (such as the mass and stiffness elements). After extensive train-
ing and testing through FE analysis, the network is proven capable of identifying the struc-
tural parameter values based on the measured modal parameters.

Ataei et al. (2005) illustrate two further applications of the FNN. In the first reported 
application, a FNN is implemented to develop a nonparametric model able to predict 
bridge displacements under the passage of trains given measured strain time histories as 
input. The ability of the FNN to deal with such application has been demonstrated by com-
paring the experimental displacements with those obtained numerically by means of the 
trained network for train arrangements and velocity different from the ones considered in 
the training phase. Another application discussed in Ataei et al. (2005) comes up from the 
evidence that, if properly designed, the weights matrix of a linear ANN represents the flex-
ibility matrix of the FE model at trained DOFs. This makes it possible to directly us on the 
use of ANNs for nonlinear identification and model updating of bridges are the weights 
matrix of the trained ANN for updating the FE model. A further confirmation of the ability 
of the FNN in identifying the dynamics of bridge structures from ambient vibrations can 
be found in (Chen 2005). Differently from these applications, the study by Li et al. (2010) 
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is devoted to the identification, in a nonparametric way, of the relationship between modal 
parameters and environmental factors. In detail, the overall numerical procedure proposed 
in (Li et al. 2010) consists of two steps. First, a nonlinear PCA is performed to distinguish 
temperature and wind effects on structural modal parameters from other environmental 
factors. This enables the estimation of their contribution to the variation of the measured 
modal parameters, which are designated as output of a standard FNN. By assuming tem-
perature and/or wind velocity as input of the FNN, nonlinear and nonparametric relation-
ships between targeted environmental parameters and modal features are established.

Interesting contributions on the use of ANNs for nonlinear identification and model 
updating of bridges are reported in (Hasançebi and Dumlupınar 2013) and (Derkevorkian 
et al. 2014). Particularly, Hasançebi and Dumlupınar (2013) investigate the role of the non-
linearities on the reliability of the bridge model updating via standard FNN. In their work, 
the authors consider a small-span and deteriorated bridge for which a few experimental 
data were collected, namely three static displacement values and three natural frequencies. 
They then observe that the error rates obtained by means of a FE bridge model calibrated 
using nonlinear analyses data can be effectively reduced up to three times as compared 
when the model is calibrated using linear analyses data. Additionally, they highlight the 
fact that model updating is more accurate when both static and dynamic measurements 
are considered. On the other hand, Joseph and Pakrashi (2022) have recently demonstrated 
with simulations and experiments, how neuromorphic computing can be of particular rel-
evance for detection of damage. Derkevorkian et al. (2014) also stress on the role of non-
linear response in developing nonparametric models for bridges. However, while Hasan-
çebi and Dumlupınar (2013) have focused on the effects related to static displacements and 
natural frequencies measured under serviceability loading conditions, Derkevorkian et al. 
(2014) pay special attention on the energy dissipation assessment under seismic actions. 
To this end, a hybrid modelling approach is proposed in (Derkevorkian et al. 2014), where 
the equivalent linear part is modelled by means of a standard parametric least-square iden-
tification approach whereas the identified nonlinear forces are modelled using a nonpara-
metric FNN-based methodology. The discussion in (Derkevorkian et al. 2014) supports the 
need of using nonlinear mathematical models for bridge identification to account for the 
contribution of energy dissipation sources other than the linear viscous one. Their results 
based on the experimental seismic response of a cable-stayed bridge demonstrate that non-
linear mathematical models are robust and stable when used for response prediction, while 
linear models are not sufficient for the estimation of the energy dissipation of complex 
structural systems like bridges, especially under high levels of dynamic excitation due to 
earthquakes.

Besides the use of ANN, GA and PSO are also common for system identification and 
model updating of bridges. In particular, the feasibility of GA for updating FE models 
based on the results of OMA is confirmed by many studies, see for instance (Lin et  al. 
2009; Ribeiro et al. 2012; Liu et al. 2016; Zhou et al. 2017b; Whelan et al. 2018). In all 
these studies, the objective function to be minimized through a GA aims at reducing the 
discrepancy between estimated and calculated natural frequencies and mode shapes simul-
taneously. Particularly, in the work done by Zhou et al. (2017b), a GA is also applied to 
minimize the difference between numerical and experimental data related to the static 
response of the bridge. Useful insights about the application of a GA for model updating 
based on static or dynamic tests are reported by Chisari et al. (2015), who consider a post-
tensioned concrete bridge equipped with elastomeric bearing isolators. For both types of 
test, transversal and longitudinal stiffnesses of the isolators as well as pier and deck elastic 
modulus are updated by using a standard GA. As regards the model updating based on 
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dynamic tests, the GA is employed to minimize two types of objective functions. In the 
first case, the objective function reflects the discrepancy in terms of bridge natural periods 
only. In the second case, bridge natural periods and mode shapes are taken into account 
simultaneously; the corresponding discrepancy measures are then considered altogether 
into a single aggregated objective function through the standard weighted sum approach, 
whereby different weights are employed in an attempt to estimate the whole Pareto front. 
By comparing the obtained results, the authors conclude that the discrepancy in terms 
of bridge natural periods only perform well in such case study, without significant loss 
of accuracy with respect to the case in which both natural periods and mode shapes are 
employed altogether for model updating. This result, however, is not very common and 
should not be considered to infer a general recommendation. A further outcome carried 
out by Chisari et  al. (2015)—which maybe did not deserve the proper consideration—is 
the possible lack of convexity in certain regions of the final Pareto front estimated by tak-
ing into account bridge natural periods and mode shapes as concurrent model updating 
criteria via standard weighted sum approach. This seems to suggest that the weighted sum 
approach might be not the best technique for such application (while computational intelli-
gence-based multi-objective optimizers would be more appropriate). Finally, Chisari et al. 
(2015) also point out that it is not possible to assess isolator stiffnesses by means of static 
tests only. Shabbir and Omenzetter (2015, 2016) also put together the discrepancy between 
estimated and calculated natural frequencies and that related to the mode shapes into a 
single objective function, but they also include a regularization term. By analyzing the sen-
sitivity of a subset of relevant structural parameters for a cable-stayed footbridge, in fact, 
they observe that bearing stiffness and deck torsional stiffness have small influence on the 
experimentally identified mode shapes, with the only exception of the first torsional mode 
of the bridge. Without constraining these two model parameters, therefore, the problem 
can result ill-posed. They thus add a regularization (penalizing) term, in such a way as to 
keep the ratio between deck torsional stiffness and bearing stiffness almost constant during 
the model updating procedure. The final optimization problem governing the model updat-
ing is then solved by means of PSO (Shabbir and Omenzetter 2015) and GA (Shabbir and 
Omenzetter 2016). It is interesting to highlight that in all these studies, GA and PSO are 
applied to identify or update relevant macroscale parameters in bridge structures. In this 
sense, the work by Castro-Triguero et al. (2017) is somewhat different since it aims at cali-
brating the micromechanical parameters of a multi-scale model. In detail, Castro-Triguero 
et  al. (2017) elaborate a multi-scale model for a timber footbridge and employ a GA to 
update the numerical values of degree of cellulose crystallinity, volume fraction of cellu-
lose, volume fraction of hemicellulose, length of cellulose crystallites, radial dimension of 
wood cell, tangential dimension of wood cell, cell wall thickness, cell angle and microfibril 
angle. Throughout an iterative GA-based procedure, a homogenization technique is per-
formed to obtain the macroscopic data for the global FE model of the bridge starting from 
these micromechanical parameters. The FE model, in turn, provides the estimated natural 
frequencies, which are compared with the experimental data during the iterative GA-based 
procedure to determine the optimal values of the micromechanical parameters. Further 
recent applications of ANN, GA and PSO in system identification and model updating of 
bridges from ambient vibrations have been presented by Qin et al. (2018); Sabamehr et al. 
(2018); Tran-Ngoc et al. (2018).

The state-of-art on use of computational intelligence techniques also includes success-
ful applications pertaining to system identification and model updating of critical bridge 
elements, such as cables and hangers. For instance, Xie and Li (2014) address the iden-
tification of the tension force of bridge hangers. Specifically, a FE model of the hanger is 
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developed, whereas its parameters (tension force, bending stiffness and boundary condi-
tions) are identified simultaneously through a GA, which looks for the best match between 
numerical predictions of the hanger frequencies and the corresponding experimental val-
ues. The approach developed by Xie and Li (2014) is applied to hangers without and with 
dampers, by using laboratory test data as well as experimental data from field tests con-
ducted on one hanger of a tied-arch bridge. The PSO is employed in (Dan et al. 2018) and 
(Xu et al. 2019a) for bridge cable systems identification.

5.3  Health monitoring

The installation of a growing number of large sensor networks for continuous bridge mon-
itoring has originated many studies towards the development of effective computational 
intelligence-based strategies for damage detection and health assessment (Sun et al. 2020). 
The availability of suitable sensing technologies at increasingly lower costs as well as the 
easy access to powerful computational resources has opened unprecedented opportunities 
in big data management for bridge health monitoring.

A multi-stage procedure has been implemented by Ko et  al. (2002) to cope with the 
identification of damage occurrence, localization, and magnitude. The proposed novelty 
detection technique adopts an ANN architecture, in a first stage, to deliver alarms on the 
possible occurrence of damage. The framework operates on the basis of tracking the natu-
ral frequencies of the structure. In a second stage, damaged members are identified on the 
basis of normalized index vectors derived via exploitation of the well-established concepts 
of modal curvature and modal flexibility. In a third stage, an ANN is used to detect dam-
aged member(s) and to further quantify the extent of damage. In a similar context, Lee 
et al. (2005) feed the differences or the ratios of the mode shapes evaluated prior to and 
post damage to an ANN-based architecture; these features are considered less sensitive to 
modelling errors than the mode shapes themselves. The designed ANN outputs the ele-
ment stiffness ratios prior to and after damage. Koh and Dyke (2007) adopt a GA scheme 
in combination with a multiple damage localizing assurance criterion in order to locate the 
damage on a real cable-stayed bridge structure. The robustness of the approach is verified 
through numerical simulations. The results further reveal the challenges stemming from 
availability of only a few mode shapes in quantifying the damage extent in complex infra-
structures comprising multiple potentially damaged structural elements. Li et  al. (2008) 
apply several ANNs with different inputs to gain an initial estimation of the damage. Then, 
optimal weighting coefficients obtained by means of a GA are assigned to the ANNs. In 
this context, the Dempster-Shafer evidence theory and the Shannon entropy are employed 
for information fusion and to reduce the impact of uncertainties on damage identification, 
respectively.

Perera and Ruiz (2008) put forth a framework that is specifically aimed at bridge health 
monitoring, which draws from the work of (Ko et  al. 2002), in that it employs a multi-
stage procedure for damage detection, localization and quantification. A main driver of this 
work lies in the adoption of a multi-criteria context for damage identification, with modal 
flexibilities and a damage localization criterion, relying on modal properties, considered 
as conflicting objective functions. Park et  al. (2009) address the problem of identifying 
the distribution of stiffness reduction in damaged bridges under moving loads. A modified 
bivariate Gaussian distribution function is herein proposed to simulate the stiffness reduc-
tion due to cracks, whose parameters are identified through a GA that employs a reduced 
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population size (i.e., a micro-GA). On the other hand, further applications of the ANNs for 
health monitoring of bridges are presented in (Bagchi et al. 2010) and (Min et al. 2012).

The need for removing the disturbance due to environmental factors in order to reduce 
false positives and false negatives in bridge damage detection is tackled in (Zhou et  al. 
2011) and (Meruane and Heylen 2012). Specifically, Zhou et al. (2011) employ two differ-
ent ANNs to cope with the removal of environmental effects and damage detection. Like 
(Ko et al. 2002), Zhou et  al. (2011) adopt a special kind of ANN for damage detection, 
namely an autoassociative ANN. Relevant features from the monitored structure in healthy 
conditions (e.g., modal features of the healthy structure normalized with respect to chang-
ing environmental conditions) are used during the training stage. Once the training process 
is completed, the same set of structural features is passed again to the autoassociative ANN 
in order to generate its reproduction, and the reconstruction error is evaluated. Once a new 
set of structural features pertaining to an unknown state of the structure is identified, it 
is fed into the trained autoassociative ANN to yield its prediction and, consequently, the 
reconstruction error. If the structure is undamaged, then no significant variations in the 
reconstruction error will be observed, whereas the opposite will imply the possible occur-
rence of damage if the variation is larger than a suitably selected threshold.

Mosquera et  al. (2012) study the feasibility of exploitation of strong motion data 
recorded on bridges subjected to earthquakes and aftershocks toward assessing structural 
integrity. In their study, an eigensystem realization algorithm with an observer Kalman fil-
ter is used to identify the modal parameters of the bridge from low level earthquake excita-
tion. Next, a FE model of the bridge is updated. To this end, a GA is tasked with updat-
ing selected model parameters so as to minimize the difference between simulated and 
experimental values of the natural frequencies. The updated FE model, in turn, is employed 
within a pushover analysis to estimate the displacement values at different performance 
levels, which are then compared against the measured displacements, under strong earth-
quake events, in order to assess potentially damaged areas. Wang et al. (2013) develop a 
multi-layer GA for damage detection in large truss bridges. In this strategy, the elements 
of the truss structure are first categorized into subgroups depending on their position (e.g., 
upper chord, lower chord, vertical webs, diagonal webs). The algorithm adopts the modal 
strain energy correlation (MSEC) as the objective function and seeks to identify damaged 
elements within the subgroups, with the converged population in each group serving as the 
initial population of a subsequent layer, where the groups are redefined through merger of 
the previous smaller subgroups. From a computational standpoint, the authors claim that 
this approach offers advantages over the standard GA, improving convergence and reduc-
ing the probability of entrapment into local optima due to the restart of the evolutionary 
search in each layer of the GA scheme.

A bridge damage detection procedure based on ANN that exploits statistical parameters 
of train-induced vibrations as input has been proposed by Shu et al. (2013). This is moti-
vated by the fact that changes in the modal features at the onset of damage are hard to 
identify in complex structures due to their inherent redundancy. Additionally, the authors 
point out that the use of the measured bridge dynamic response does not require a pre-
liminary processing of the time records to identify modal features, thereby simplifying the 
whole health monitoring procedure. Based on these premises, Shu et  al. (2013) initially 
prepared a training set by using a simplified FE model and considering different stiffness 
reduction levels. Throughout extensive numerical investigations, they thus evaluated the 
reliability of the damage detection procedure regarding damage location, noise level, train 
type and speed. As expected, the results confirm that the accuracy of the damage detection 
procedure enhances significantly at resonance loading speeds, mainly because this hides 
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the disturbance due to the noise. Results also demonstrate that this approach can detect a 
minimum element stiffness reduction of about 10%. Other pure data-driven bridge damage 
detection approaches based on ANNs are proposed, for instance, in (Neves et al. 2017) and 
(Weinstein et al. 2018).

Two recent applications of the GA in bridge damage detection are reported in (Conde 
et al. 2016) and (Silva et al. 2016). These works, however, make use of the GA in a dif-
ferent way. The application in (Conde et al. 2016) follows previous studies in which the 
GA is adopted to adjust the parameters of the mechanical model of the structure so that 
an error measure based on the differences between real and numerically predicted dam-
age pattern is minimized. Conversely, the use of GA by Silva et al. (2016) roots on the 
idea that damage detection problems can be formulated as clustering problem. On this 
basis, they advance a GA-based approach for damage detection in bridge structures that 
consists of two main steps. First, the normal state conditions are discovered automati-
cally by clustering a training dataset according to the closest centroids, which are targets 
of the optimization task performed using GA in a way that defines boundary regions 
between the clusters and reduces the number of discovered state conditions. At a second 
stage, the damage detection strategy takes place by exploiting the Euclidean distances 
between the new observations and the optimized centroids (the minimum distance to the 
centroids thus represents the damage indicator).

More recent advances and novel applications of the ANN in bridge health monitor-
ing are reported in (Tran-Ngoc et al. 2019), (Neves et al. 2021) and (Rageh et al. 2020). 
Particularly, Tran-Ngoc et  al. (2019) investigate the role of the frequency content in 
ANN-based damage detection of railway bridges under serviceability loads. Low- and 
high-frequency contents of recorded signals (e.g., accelerations) are attributed to global 
structural dynamics (from which modal features are thus derived) and train-track-
bridge interaction phenomena (mostly governed by track irregularity), respectively. In 
their study, Neves et al. (2021) recommend putting more attention on the possibility of 
using high-frequency content for damage detection on bridges. The work by Rageh et al. 
(2020) is especially worthy of mentioning because it is one of the few existing studies 
about fatigue-induced damage detection in steel bridges.

Compared to ANN and GA, there are less investigations about the use of swarm 
intelligence techniques, such as in (Li et  al. 2017), (Huang et  al. 2019) and (Cancelli 
et al. 2020). In detail, Li et al. (2017) illustrate the application of the acoustic emission 
technique to assess corrosion-induced damage in steel wires used in bridge cables and 
employ a PSO-based clustering algorithm to infer which kind of corrosion has occurred. 
Huang et al. (2019) formulate the bridge health monitoring as an optimization problem 
in which the PSO algorithm is adopted to look for a minimum of an objective function 
that combines natural frequencies, MAC and modal strain energies as damage sensitive 
features. This strategy has been tested considering the effect of temperature variations, 
but there are neither effective guidelines to weight the different damage features into a 
single objective function nor sensitivity analyses that demonstrate how the final solu-
tion depends on the numerical values of the weights. A similar approach was basically 
presented in (Cancelli et  al. 2020), but different objective function formulations to be 
minimized via PSO are considered depending on the targeted damage sensitive feature.

Among the most recent applications of neurocomputing techniques in bridge health 
monitoring, autoencoders are swiftly gaining in popularity. The autoencoders (also 
known as auto-associative ANNs) are deep neural nets (i.e., ANNs with more than three 
layers in total) that include a dimensionality reduction operation, termed the encoder 
(which reduces the dimensionality of the input data fed to the network to a latent space), 
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and a reconstruction operation, termed the decoder (which aims at reconstructing in 
the output layer the originally fed input). In this context, Lee et al. (2019) propose an 
autoencoder-based framework to detect tendon damage in prestressed concrete bridges. 
In this and similar works (Sarwar and Cantero 2021), the autoencoder is basically 
employed as a feature extractor, or novelty detector. Briefly, the autoencoder is first 
trained using data collected from the undamaged structure, and the reconstruction error 
(i.e., a measure of the difference between the output and the input of the autoencoder) is 
estimated. Next, the trained autoencoder is applied to current data: a significant varia-
tion of the reconstruction error from the settled reference range is attributable to a vari-
ation of the structural properties, such as damage. Lee et al. (2019) consider simulated 
acceleration data for a prestressed concrete bridge under traffic load, and conclude that 
the best result is obtained under the passage of a single vehicle while large damage lev-
els only can be identified accurately in case of multiple vehicles crossing the bridge. An 
experimental validation has been later presented by Lee et al. (2021) using both accel-
eration and strain data. The extraction of damage-sensitive features via autoencoders for 
damage detection in bridges is also addressed in some recent works (Silva et al. 2021; 
Shang et al. 2021).

Another class of neurocomputing techniques that is rapidly attracting consideration 
are the generative adversarial networks. They consist, on the one hand, of a first ANN 
(generator) that produces new samples from random noise. On the other hand, a second 
ANN (discriminator) discerns between real and fake data. After a successful training 
stage, the first neural model is expected to generate samples that appear very similar to 
the real ones. The underlying mechanism is thus a kind of two-people zero-sum game 
where, at the end of the training phase, the Nash trade-off equilibrium is achieved (i.e., 
the total gains are zero for both the players, and loss or gain of the utility for each player 
stalls to a balanced level). In the field of bridge monitoring, generative adversarial net-
works are mainly employed for data augmentation or reconstruction. For instance, Lul-
eci et  al. (2022) implements generative adversarial networks for generating synthetic 
labelled acceleration data in the aim to overcome data scarcity in vibration-based bridge 
damage detection. Lei et al. (2021) and Gao et al. (2022) adopted generative adversarial 
networks to reconstruct lost strain and displacement data for SHM of bridges in case 
of transmission failure or sensor fault. The combination of generative adversarial net-
works and autoencoders toward data anomaly detection for automated SHM of bridges 
has been discussed by Mao et  al. (2021). For a general review about the generative 
adversarial networks in earthquake engineering at large, the interested reader can refer 
to (Marano et al. 2023).

5.4  Vision‑based SHM

We separately here refer to the use of vision-based SHM schemes, as an emerging non-
contact assessment approach (O’Byrne et al. 2015), which particularly benefits from use 
of computational intelligence methods. These have also been extend to colour O’Byrne 
et al. (2014, 2018) and texture based methods O’Byrne et al. (2013), with further applica-
tion to bridges O’Donnell et al. (2017), creation of benchmark repositories O’Byrne et al. 
(2018c), use of virtual imagery O’Byrne et  al. (2018b, 2020) and underwater detection 
O’Byrne et al. (2018a). This approach has in recent years gained ground for assessment of 
structural damage, especially for bridge structures, where relevant data can now be made 
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available via use of unmanned aerial vehicles (Aldana-Rodríguez et al. 2021; Valença et al. 
2017). Several works that relate to vision-based monitoring data focus on the task of crack 
identification, which may be achieved via machine-learning based image processing and 
segmentation tools (Quqa et al. 2022; Xu et al. 2019b). Such information can be further 
fused with the damage criteria, overviewed in earlier sections of this paper, in order to infer 
damage. A criterion that is specific to displacement information, relates to influence lines, 
as discussed in the work of Liang et al. (2017). On the other hand, vision-based informa-
tion can also be linked to modal information (such as modal frequencies and mode shapes) 
through so-called magnification tools, which then permit the coupling with damage detec-
tion criteria developed for vibration-based SHM. Finally, the fusion of vision-based infor-
mation with conventional sensing systems, can serve as a booster for the identification task. 
In this direction, Zaurin and Necati  Catbas (2011) and Zaurin et  al. (2016) experimen-
tally pointed out the value of fusing video or image data with conventional monitoring data 
(e.g., accelerometers) for condition assessment of bridge structures; a task that is particu-
larly valuable for post-earthquake damage assessment.

6  Practical instrumentation aspects of long‑span suspension bridges

In the previous sections, a general review of existing methodologies was presented 
regarding the structural health assessment of instrumented structures through the 
recordings of their dynamic response. In the following, some practical instrumentation 
issues are also presented, through a survey of the SHM systems actually implemented 
(and planned to be further updated) on two long-span suspension bridges in Istanbul, 
at the high seismic hazard Marmara Region, Turkey. Furthermore, SHM data acquired 
at one of the bridges after a low intensity seismic event (the Mw 5.8 Silivri Earthquake 
of September 26th, 2019) are used to evaluate its dynamic characteristics, and to assess 
the possibility of damage due to the earthquake. The analyses carried out in the present 
case are to be considered as basic examples aiming to point out some general con-
cepts of the assessment procedures. For more in-depth analyses, several of the more 
advanced methodologies presented in the previous sections can be implemented here 
as well as in other actual situations with different levels of seismic intensity, struc-
tural complexity and data availability. From such incidents, it becomes evident that a 
bridge’s structural integrity can be rapidly assessed after a seismic event without need 
for disrupting its operation. The overviewed instrumentation cases exemplify the role 
of SHM systems in ensuring the functionality and safety of bridges and other critical 
infrastructures.

6.1  SHM systems for long‑span bridges

A significant number of studies on deployment of SHM systems for long-span bridges 
have been reported globally (e.g., Aktan et  al. 2002; Brownjohn 2007; Habel 2009; 
Ko and Ni 2005; Mufti 2002; Wenzel 2008; Wong 2007; Xu and Xia 2011; Xu et al. 
2000; Chen et al. 2004). Wong (2007) proposed a rational approach for designing SHM 
systems for long-span bridges. Connections between SHM systems and relevant issues 
such as bridge management, maintenance, and life-cycle performance assessment have 
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been widely studied as well (e.g., Catbas et  al. 2008; Wong and Ni 2009; Frangopol 
2011; Fujino and Siringoringo 2011; Frangopol et al. 2012; Wang et al. 2016).

The wide diffusion of continuous SHM systems for long-span bridges can be attrib-
uted to the importance of such infrastructures within the transportation network they 
belong to, which can eventually extend beyond the national borders. In this sense, 
Istanbul’s metropolitan area provides a truly emblematic case: due to its strategic loca-
tion straddling the Bosphorus Strait, long-span bridges in this area provide a critical 
link between Asia and Europe from which the mobility needs of persons and goods 
depend heavily on. Due to the seismic hazard in the Marmara region that may cre-
ate Mw > 7 earthquakes and the proximity of the most active fault zone in Turkey, 
the North Anatolian Fault Zone (NAFZ), to the inventory of long-span bridges in 
the region, periodic maintenance and health monitoring of these bridges are essen-
tial to mitigate seismic risk. Further details regarding bridges’ SHM systems and the 
local seismicity can be found in (Memisoglu Apaydin et al. 2022). A summary of the 
description, instrumentation and the existing experimental investigations for the First 
and Second Bosphorus Bridges based on SHM systems is provided along with the 
design considerations in the following.

6.2  Design considerations for the SHM systems

Strong earthquakes, winds or typhoons, extreme traffic conditions (i.e., heavy truck load-
ing), marathons (i.e., human-induced loading), and extreme thermal loading were consid-
ered relevant by the Turkish State Highways General Directorate (KGM) when designing 
the SHM systems for long-span bridges. Hanger load variation, deck expansion, bridge 
response (i.e., the response of tower, deck, cable, and hanger), deck fatigue (due to traf-
fic), environmental input (wind and thermal loading), and general geometry are the aspects 
that were recognized as relevant for the SHM systems design. Rapid issuing of reports on 
the bridges’ conditions after extreme events that provide information about their opera-
tional state in terms of fatigue, deformations, and stresses as well as about their geometry 
and performance in case of future extreme events is the main goal pursued by KGM when 
setting up the SHM systems. Additionally, the SHM system was required to track critical 
response parameters to determine whether they exceeded a threshold value corresponding 
to a certain design limit. The threshold is set for each component of the bridge. When the 
threshold is exceeded, an alert is issued. Then, SHM data are collected and processed, and 
a preliminary report is elaborated for the KGM. General objectives and recommendations 
for the SHM systems were presented by Aktan et al. (2002). Among others, the SHM sys-
tem’s durability was deemed a critical issue and required special design considerations that 
also included a periodic preventive maintenance program.

6.3  Description and instrumentation of the first Bosphorus bridge

The idea of constructing a bridge over the Bosphorus Strait is centuries old. However, the 
first decision was made in 1957. The structural model was developed in 1968 by Freeman 
Fox & Partners. The bridge was opened on the 50th anniversary of the Turkish Repub-
lic, which is about three years after its construction began in 1970. When the construction 
was completed in 1973, it was the fourth longest bridge in the world. The bridge is now 
the 40th longest suspension bridge in the world and is still an important part of Istanbul’s 
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transportation network. A general overview of the First and Second Bosphorus Bridges and 
their position in the Marmara region are shown in Fig. 2.

The First Bosphorus Bridge is an eight-lane steel suspension bridge with three regular, 
one emergency, and one pedestrian lane in each direction. The bridge is a gravity-anchored 
long-span suspension bridge with steel towers and an aerodynamic box section deck 
(Fig. 3). The aerodynamic box section maintains the deck, reduces the wind impact by 1/3, 
and requires less material than the traditional truss system. The length of the main span is 
1,074 m, and there are two approach viaducts, the Ortaköy viaduct on the European side 
and the Beylerbeyi viaduct on the Asian side.

Fig. 2  A general overview and location of long-span bridges: a the First Bosphorus Bridge (the 15 July 
Martyrs Bridge), b the Second Bosphorus Bridge (the Fatih Sultan Mehmet Bridge)
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Fig. 3  General layout and dimensions of the First Bosphorus Bridge
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These approaches have five and four spans with a length equal to 231 m and 255 m, 
respectively. The main span of the bridge is supported by hangers, whilst the viaducts are 
supported at the base by columns of varying heights. Additionally, they are simply sup-
ported on the ground. The deck has a width of 33.40 m, whereas the height is about 3 m. 
As it can be seen in Fig. 3, the towers are 165 ms high from sea level to the saddle. The 
equivalent diameter of the hanger cable with an angled pattern is 0.06 m, whereas the main 
and backstay cables have a diameter roughly equal to 0.58 and 0.60 m, respectively. Addi-
tionally, the approach span of the bridge has a rigid superstructure consisting of a continu-
ous rectangular box section supported by cross beams and a circular box of columns. The 
bridge operation remains vital nowadays, given its yearly traffic volume of more than five 
billion vehicles. Due to the fact that commercial vehicles such as trucks are routed through 
the Fatih Sultan Mehmet (FSM) bridge, the First Bosphorus Bridge is only opened to cars 
and buses. Additionally, pedestrians are no longer permitted to use the bridge, as they were 
for the first three years after it was opened to vehicles. Exceptionally, the annual Intercon-
tinental Istanbul Eurasia Marathon takes place in October, and the bridge, closed to traffic 
during the event, receives an overwhelming foot loading.

Table 1  Sensor types, specifications, and number for the SHM system of the First Bosphorus Bridge

Sensor type Specifications No. of units

Force transducer Measurement range: ±1.50 mm
Repeatability: 0.30 × 10−3 mm/m
Linearity: 0.30 × 10−3 mm/m
Operating temperature: −10 to 80 ◦C

12

Accelerometer Measurement range: ±2.00 g
Sensitivity: 2000 mV/g
−3 dB frequency cutoff: 300 Hz
Shock survival: 2000 g

19

Tiltmeter Measurement range: ±14.50◦
Resolution: 1′′
−3 dB frequency cutoff: 5 Hz
Shock survival: 1000 g

15

Strain gauge Resistance tolerance: ±0.30%
Gauge factor: ≈2
Operating temperature (static): −70 to 200 ◦C
Operating temperature (dynamic): −200 to 200 ◦C

70

Weather station Wind spped range: 0–130 mph
Threshold sensitivity: 2.40 mph
Pitch: 29.4 cm air passage/revolution
Operating temperature: −50 to 50 ◦C

6

Laser displacement Measurement range: 200-2000 mm
Resolution: 1–3 mm
Max measurable frequency: 10 Hz
Operating temperature: −20 to 70 ◦C

8

Thermocouple Thermocouple type: J
Accuracy: ±0.10%
Support type: fixed on copper or steel collar

33

GPS Precision: 0.2 mm
Operating humidity: up to 95%
Sampling rate: 10 Hz
Operating temperature: −40 to 65 ◦C

5
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A temporary SHM system was considered in some initial researches (Petrovski et  al. 
1974; Tezcan et al. 1975; Erdik and Uçkan 1989; Brownjohn et al. 1989), where the sig-
nificance of a continuous SHM system was also highlighted. Therefore, the first permanent 
SHM system was installed in 1993, and it was later upgraded to ensure smooth operations. 
The SHM system comprises accelerometers, tiltmeters, force transducers, strain gauges, 
laser displacement, global positioning system GPS, thermocouples, and weather stations. 
A total of 168 sensors and 258 channels were positioned strategically on the bridge, con-
sidering its general features (Bas et al. 2018). Using sensors and real-time data acquisition 
modules, the SHM system captures essential information about the bridge response in daily 
and extraordinary circumstances. The types of sensors, their main specifications, and their 
quantities are listed in Table 1.

The sensors’ position is illustrated schematically in Fig. 4. It is noted that the First Bos-
phorus Bridge had inclined hanger elements instead of a typical vertical hanger arrange-
ment until 2015. Hanger elements and stool plates are equipped with 14 strain gauges 
and 12 force transducers, together with 6 accelerometers for vibration monitoring (KGM 
2008a, b). Bas et al. (2018) provide further information about data acquisition components 
such as site supervisor software, backup computers, and data acquisition hardware.

6.4  A brief survey on the first Bosphorus bridge

The earliest experimental studies on the First Bosphorus Bridge were carried out once 
it was opened to service in 1973. These initial studies mainly focused on identifying the 
modal characteristics of the bridge from ambient excitation and forced vibration tests 
(Petrovski et  al. 1974; Tezcan et  al. 1975). A limited number of sensors were employed 

Fig. 4  Sensors arrangement for the SHM system of the First Bosphorus Bridge
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in those experimental studies. Three accelerometers were installed on the bridge to moni-
tor its response under wind load, and a forced vibration test was performed utilizing two 
shakers mounted in the middle and at the quarter of the bridge span. Another experimental 
investigation was carried out later by Erdik and Uçkan (1989), and its results confirmed 
the previous studies’ findings. A comprehensive experimental study of the First Bospho-
rus Bridge was performed by Brownjohn et al. (1989). Experimental and numerical results 
were compared, and a reasonable agreement was obtained in terms of the spectral density 
and transfer function under wind and traffic loads. The first permanent SHM system for 
the First Bosphorus Bridge was installed in 1993 and included three different subsystems, 
namely sensors, a data acquisition system, and data recording-monitoring systems. The 
sensor subsystem included accelerometers, seismometers, wind speed, and direction meters 
for a total of 28 channels. Another ambient vibration test was conducted by Beyen et al. 

Fig. 5  General layout, dimensions, and the SHM system of the FSM Bridge
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(1994) in order to compare new experimental data with existing results, and a satisfactory 
agreement was found.

More recent works were conducted starting in the 2000 s by Apaydin and Erdik (2001); 
Erdik and Apaydın (2007); Kosar (2003). Bas (2017) analysed SHM data collected dur-
ing a strong wind event. The First Bosphorus Bridge’s model was validated considering the 
difference between the experimental results and the numerical predictions obtained from a 
FE model. Apaydın (2010) provided free vibration analysis for the First Bosphorus Bridge. 
SHM data acquired during a storm on 18th April 2012 were considered by Apaydin et  al. 
(2013). Particularly, they compared the experimental results with those collected under usual 
weather conditions. This analysis revealed that the bridge’s natural first period increased dur-
ing the considered extreme wind event. Based on the results of NDE tests, after the extreme 
wind event in 2012, KGM decided on a hanger replacement in 2015 due to insufficient bear-
ing capacity. Bas et al. (2020) determined the hanger element replacement effect on the First 
Bosphorus Bridge’s structural response under a multi-support seismic ground motion. The FE 
model they adopted was validated using SHM data recorded earlier during the extreme wind 
event dating back to 2012. The First Bosphorus Bridge model identification during hanger 
replacement by means of ambient vibration data was performed by Soyöz et al. (2020).

6.5  Description and instrumentation of the Second Bosphorus Bridge

A second long-span bridge across the Bosphorus Strait became a necessity after the decision 
to build the Trans-European Motorway (TEM) in Istanbul. Thus, the British firm Freeman 
Fox & Partners was assigned to prepare for the second bridge project. The construction was 
completed in 1988, and it was the 5th longest suspension bridge in the world at that time. It 
is now ranked as the 36th longest suspension bridge. The Second Bosphorus Bridge is a steel 
long-span suspension bridge located on the north side of the First Bosphorus Bridge. The tow-
ers are supported at the ground level. Since the end of the deck is at the level of the tower base, 
the bridge was designed with no approach spans. The main span is 1090 m long, whereas the 
deck is 39.40 m wide and 3.00 m high. The tower is 110 m high and has a rectangular box sec-
tion. The mid-span deck is 64 m above the mean sea level. The bridge is 1510 m long, includ-
ing side spans, each having a length of 210 m. The bridge is susceptible to substantial traffic 
loads since the TEM highway is the only route available for trucks and other large vehicles. 
A permanent SHM system was first installed on the FSM Bridge in 2001. Figure 5 shows the 
general layout, dimensions, and the SHM system’s sensor position on the FSM Bridge.

Table 2  Sensor types, 
specifications, and number for 
the SHM system of the FSM 
Bridge

Sensor type Specifications No. of units

Accelerometer Measurement range: ±0.59 g
Frequency range: 0–50 Hz
Filter: 50 Hz Butterworth filter

12

Seismometer Frequency range: 0.5-−1.0 Hz
Components: lateral, vertical

2

Displacement meter Capacity: 50 cm
Resolution: 0.01 cm

4

GPS Position update: up to 10/s
Position latency: 30 ms

2

Data acquisition A/D converter: 12–24 bit
Sampling rate: 200 kHz

1
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The SHM system consists of 12 accelerometers, 4 displacement meters, 2 seismometers, 2 
GPS, 1 weather station, and 1 thermometer (Table 2). The data collection system SEISLOG is 
used, and two parallel PC systems monitor the data acquired from 64 channels with a resolu-
tion equal to 12–24 bits. Besides, the SHM system has two different AC/DC converter boards 
(KGM 2001).

Due to the FSM Bridge’ strategic position along the TEM, such an infrastructure is sub-
jected to heavy truck loading. Even though it is only allowed during a certain time period in a 
day, the traffic load is heavier than on the First Bosphorus Bridge. Since the design specifica-
tions require high expansion joint movement capacity, all displacement sensors on the bridge 
are deployed at the expansion joints. At the ground level, four seismometers are mounted on 
the support points of back-stay anchorages and tower legs. KGM conducted a preliminary 
study aiming to improve the permanently installed SHM system for the FSM Bridge. The 
schematic configuration of the new planned SHM system is shown in Fig. 6. Notably, cable 
elements, expansion joints, and anchorage points are all equipped with new sensors.

Fig. 6  The new planned SHM system for the FSM Bridge
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6.6  A brief survey on the Second Bosphorus Bridge

The Second Bosphorus Bridge has been subjected to experimental studies since the 
1990 s. The first dynamic monitoring applications for this bridge are reported in (Brown-
john et al. 1991, 1992a, b). These studies aimed to identify the modal characteristics in 
terms of natural frequencies, mode shapes, and modal damping ratios using data col-
lected from decks and towers under wind and traffic loads. Although lateral modes were 
not detected due to the low response of the bridge, vertical and torsional modes were 
identified accurately. In addition, a comparison between the experimental results and 
those from a two-dimensional FE numerical model was also presented. The FSM bridge 
was later equipped with a new SHM system by installing 32 triaxial accelerometers at 
the critical points of the bridge (Apaydin and Erdik 2001). Seismometers, displacement 
meters, GPS sensors, anemometers, and thermometers were also installed to monitor 
wind, traffic, earthquake, and thermal effects on the bridge. A three-dimensional FE 
model of the bridge was also developed by Apaydin (2002). Vertical, lateral, and tor-
sional vibrational modes and their corresponding frequencies were extracted from SHM 
data and compared with the results obtained from the modal analysis of the bridge, and 
a good agreement was found. The SHM system was subjected to major upgrades later. 
Apaydın (2010) assessed the earthquake performance of the Second Bosphorus bridge 
and its retrofit investigations. Apaydın et  al. (2012) investigated the bridge’s dynamic 
characteristics under heavy traffic and no-traffic conditions.

Apart from conventional wired systems, wireless SHM systems are becoming increas-
ingly popular in recent times. After pioneering studies by Straser and Kiremidjian (1996, 
1998), wireless SHM systems have undergone huge improvements in the last years (Lynch 
2002; Grosse et al. 2004; Krüger et al. 2005), which were followed by several experimental 

Fig. 7  The FSM Bridge’s location and 2019 Silivri earthquake epicenter
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validations (Lynch et al. 2006; Wang et al. 2006; Loh et al. 2007). The experimental results 
confirm that modern wireless SHM systems are feasible, reliable, and more cost-effective 
than traditional wired ones. These studies stimulated the investigation of a new wireless 
SHM platform instead of the traditional wired SHM system on the FSM bridge (Erdik and 
Apaydın 2007; Picozzi et al. 2010).

6.7  Assessment of the seismic behaviour of the FSM bridge due to a low‑intensity 
earthquake

On 26th September, 2019, an offshore event, the Silivri earthquake with a magnitude Mw 
5.8, occurred at a depth equal to 7  km on the Central Marmara Basin (CMB; Kumbur-
gaz section) of the NAFZ at the coordinates 40.8823 N–28.2095 E as shown in Fig.  7. 
Although the earthquake was felt in a number of cities in the Marmara region, only minor 
damage was reported in a few Istanbul counties. However, the event was one of the region’s 
most significant strong ground motions since the 1999 Kocaeli and Düzce earthquakes, 
with magnitudes of Mw 7.6 and Mw 7.1, respectively (for which no data were available 
since, as mentioned, the bridge was first instrumented in 2001).

Data collected from the SHM system on the FSM Bridge during the Silivri earthquake 
are examined here. Figure 8 shows the sensor positions on deck and tower used to infer 
the bridge response recorded under the Silivri earthquake. The four stations on the deck 
(S1–S4) are placed at respectively 42, 152, 257, and 358 m away from the bridge’s mid-
span towards the European side. The only recorded data for the towers’ stations is at the 
south tower (Asia Tower, S5), as depicted in Fig. 8. The stations on the deck recorded three 
components of the bridge response, namely the vertical, longitudinal, and transverse com-
ponents of the motion. However, the vertical component of the motion was not recorded for 

Fig. 8  Sensors configuration on the deck of the FSM Bridge and location of the station used for the analysis
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station S5 on the south tower. The data sampling rate is 100 Hz. Table 3 lists the maximum 
recorded raw acceleration values at the five stations.

Since no damage was realistically expected due to this low-intensity seismic event, 
and mainly in order to point out some aspects of the whole assessment procedure, a 
basic analysis was performed by using the peak picking method on PSD functions to 
assess the dynamic characteristics of the bridge based on post-event ambient vibra-
tions. Acceleration data collected from the aforementioned five stations (S1–S5) on 
the bridge (see Fig. 8), were used for the analyses. Raw acceleration data were pre-pro-
cessed by detrending (baseline correction, DC component subtraction) and bandpass 
filtering techniques. A standard fourth-order Butterworth bandpass filter with 0.05 
and 5.0 Hz corner frequencies was applied. The corner frequencies were determined 
according to the bridge’s modal frequencies as estimated by numerical analyses avail-
able in the literature (Apaydın et al. 2012).

The first 10 eigenfrequencies corresponding to the deck and towers were obtained 
from the recorded data and are compared with corresponding experimental results 
from previous ambient vibration studies in Table 4.

It is noted that ideally one should use for comparison the respective results from 
ambient vibration recordings just prior to the seismic event, so as to ensure that the 
various other environmental and operational factors affecting the response (e.g., wind, 

Table 3  Maximum recorded 
accelerations at the S1–S5 
stations on the FSM Bridge 
during the Silivri earthquake (see 
Fig. 8)

Channel Acceleration (cm/s2)

S1 S2 S3 S4 S5

Longitudinal 15.4837 12.5860 18.5386 21.2356 25.1690
Transverse 13.2349 11.7837 13.1889 13.8375 14.9203
Vertical 37.7262 28.8950 33.6714 39.7638 –

Table 4  Identification of the FSM Bridge: experimental results of the present work and comparison with 
ambient vibration results from the literature

TRsym transverse symmetric; Vasym vertical asymmetric; Vsym vertical symmetric; TO torsional; Tw tower; 
Long longitudinal

Mode type Mode shape Frequency (Hz)

Dumanoglu 
et al. (1992)

Brownjohn et al. 
(1992a)

Picozzi et al. 
(2010)

Present study

Deck 1st TRsym 0.076 0.077 0.076 0.080
1st Vasym Long 0.108 0.108 – 0.110
2nd Vasym Long 0.125 0.125 0.122 0.125
1st Vsym 0.145 0.155 0.152 0.155
1st TRasym 0.159 0.208 0.207 0.205

Tower 2nd TRsym 0.211 0.221 0.220 0.220
2nd TRasym Tw 0.232 0.239 0.241 0.230
3rd TRsym Tw 0.243 0.244 0.247 0.245

Deck TO 0.250 0.250 0.302 0.260
Tower 3rd TRsym Tw 0.266 0.266 0.314 0.270
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temperature, humidity, traffic conditions, aging, etc.) are essentially the same, how-
ever, such pre-event ambient data were unfortunately not available. Even with these 
limitations, it can be seen from Table  4 that the results of the current study are in 
general in good agreement with those of older analyses, and the possibility of dam-
age to the bridge due to this low-intensity event is confirmed to be, as expected, rather 

Fig. 9  Recorded time histories on the bridge during the earthquake and the flow chart of the analysis
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insignificant (a fact also confirmed by later on-site inspections). The analysis proce-
dure and the recorded time histories on the bridge during the earthquake are illustrated 
in Fig. 9.

It should once more be noted that several of the methodologies presented in the 
previous Sections could be used for more in-depth analyses, however this was beyond 
the scope of the current presentation. It should also be noted that a respective analy-
sis of the bridge based on its recorded seismic response was not carried out, since, 
among others, this would require the knowledge of the base excitations, which were 
not available.

7  Conclusions

This review work focuses on SHM methods applied for condition assessment of bridge 
systems. The overview focuses on schemes that target seismic evaluation and thus moves 
primarily within the domain of monitoring of dynamic behavior. The paper opens by over-
viewing available structural assessment schemes, making a distinction between sporadic 
(typically NDE-based) and continuous monitoring tools (usually referred to as SHM). Sec-
tions 2–4 focus on the latter category, offering a short review of the four levels of SHM, 
as identified in Rytter’s hierarchy of increasing complexity (Rytter 1993). Section 5 par-
ticularly focuses on the description of computational intelligence methods, defined as the 
pool of methods that draw from exploitation of evolutionary, swarm intelligence and neu-
rocomputing algorithms. Use of these tools is overviewed for the tasks of optimal sensor 
placement, system identification and model updating, as well as continuous and vision-
based health monitoring. Section 6 motivates the need for implementing SHM monitoring 
of large-scale bridge structures through the illustrative examples of two long-span suspen-
sion bridges in the Marmara Region in Turkey. A comprehensive overview of the SHM 
systems for these typical long-span suspension bridges is provided in detail. The general 
design considerations of the current and planned SHM systems, along with their project 
drawings of the geometrical properties of the bridges, are illustrated. Moreover, and mainly 
in order to point out some fundamental aspects of the damage assessment procedures, a 
basic analysis was performed to investigate the effects of a low-intensity seismic event at 
one of the bridges. The comparison of the ambient vibration results after the earthquake 
did not reveal significant deviations from earlier respective experimental results. Agree-
ment of the results indicated that the bridge remained undamaged (a fact independently 
confirmed by field inspections). Considering the results gathered from this seismic event, it 
is apparent that for any seismic excitation in the future, the bridge’s health can be evaluated 
in almost real-time and thus provide the basis for rapid decision-making. In this, as well 
as all other important bridges, and depending on the instrumentation layout, the available 
data, the seismic intensity and the structural complexity, a variety of methodologies, as 
those presented in detail in the previous sections, are available for more in-depth structural 
health assessments after a seismic event, depending on the particular needs of the respec-
tive stakeholders.
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