Optimal Investment-consumption for Partially Observed Jump-diffusions

Claudia Ceci

Abstract

We deal with an optimal consumption-investment problem under restricted information in a financial market where the risky asset price follows a non-Markovian geometric jump-diffusion process. We assume that agents acting in the market have access only to the information flow generated by the stock price and that their individual preferences are modeled through a power utility. We solve the problem with a two steps procedure. First, by using filtering results we reduce the partial information problem to a full information one involving only observable processes. Next, by using dynamic programming, we characterize the value process and the optimal-consumption strategy in terms of solution to a backward stochastic differential equation.

Mathematics Subject Classification (2010). Primary 91B70, 93E20, 60G35; Secondary 91B16, 60G57, 60J60.
Keywords. Utility maximization, optimal stochastic control, partial information, backward stochastic differential equations, jump-diffusion processes.

1. Introduction

In this paper we study an extension of the classical Merton optimal investmentconsumption problem to a partially observable financial market in which asset prices follow geometric jump-diffusions. A single agent manages his portfolio by investing in a bond and in the stock asset S_{t} and chooses a portfolio-consumption strategy in order to maximize on a finite horizon his total expected utility from consumption and terminal wealth. The agent's information is described by the natural filtration of the stock price process, $\left\{\underline{\mathrm{F}}_{t}^{S}\right\}_{t \in[0, T]}$, hence his decisions must be adapted to $\left\{\underline{\mathrm{F}}_{t}^{S}\right\}_{t \in[0, T]}$ and this leads to a utility maximization problem under restricted information.

[^0]Utility maximization problems in a full information setting have been largely studied in the literature by using different approaches, such as convex duality methods, stochastic control techniques based on the Hamilton-Jacobi-Bellman equation or backward stochastic differential equations (see for example $[2,8,11$, $14,17,20,21,25]$ and references therein). Portfolio selection problems with partial information have been studied among others in [16, 23, 24] in a continuous setting, in $[1,18]$ for jump-diffusions and in [6] in the case where the risky asset follows a Markov pure jump process. In [1] it is assumed that investors are only able to observe the stock price process and not the Markov chain which drives the jump intensity. In [18] a default model is studied where investors only observe asset prices and default times, while the drift of the asset price dynamics and the default intensities are not directly observable.

The contribution of this note consists in solving the utility maximization problem with intermediate consumption under partial information in a general jump-diffusion setting. More precisely, we do not assume Markovianity of the asset price dynamics and we work with a jump component described by a general integervalued measure.

The outline of the paper is as follows. In Section 2, we describe the market model and the optimal investment-consumption problem under restricted information. In Section 3, by projection on the information flow we reduce the partial observable problem to a full information one and we give a representation theorem for $\underline{\mathrm{F}}_{t}^{S}$-martingales. In Section 4, we formulate the full information problem (with respect to the filtration $\left\{\underline{\mathrm{F}}_{t}^{S}\right\}_{t \in[0, T]}$) as a stochastic control problem. The special form of the power utility leads to a factorization of the associated value process into a part depending on the current wealth and the so-called opportunity process $J_{t}([21,22])$ around which our analysis is built. In Section 5, by using dynamic programming we show that J_{t} solves a backward stochastic differential equation and we provide a feedback formula for the optimal consumption in terms of J_{t}. We discuss the particular case of bounded investment strategies and finally we characterize the opportunity process in the case of non constrained strategies via a sequence of solutions of Lipschitz BSDEs. We conclude the section providing a verification result and giving as application a simplified model where the risky asset dynamics is driven by two independent point processes whose intensities are not directly observed by investors.

2. The market model and problem formulation

In this paper, we consider a complete filtered probability space $\left(\Omega,\left\{\underline{\mathrm{F}}_{t}\right\}_{t \in[0, T]}, P\right)$ endowed with a Brownian motion W_{t} with values in \mathbb{R} and a Poisson random measure $N(d t, d \zeta)$ independent of W_{t}. Here T is a fixed final time. The financial market consists of a nonrisky asset, with price process normalized to unity, and one risky asset with logreturn process Y_{t} given by the following jump-diffusion
\Longleftarrow text changed
process

$$
\begin{equation*}
d Y_{t}=b_{t} d t+\sigma_{t} d W_{t}+\int_{Z} K(t ; \zeta) N(d t, d \zeta), \quad Y_{0}=0 \tag{2.1}
\end{equation*}
$$

The mean measure of $N(d t, d \zeta)$ is denoted by $\nu(d \zeta) d t$ with $\nu(d \zeta)$ a σ-finite measure on a measurable space $(Z, \underline{\mathrm{Z}})$. The coefficients b_{t} and σ_{t} are progressive $\underline{\mathrm{F}}_{t^{-}}$ adapted processes with $\sigma_{t}>0 P$-a.s. $\forall t \in[0, T]$, and $K(t ; \zeta)$ is an \mathbb{R}-valued $\left(P, \underline{\mathrm{~F}}_{t}\right)$ predictable process joint measurable w.r.t. $(t, \zeta) \in[0, T] \times Z$. We also assume some requirements for (2.1) to be well defined

$$
\begin{equation*}
\mathbb{E} \int_{0}^{T}\left|b_{t}\right| d t<\infty \quad \mathbb{E} \int_{0}^{T} \sigma_{t}^{2} d t<\infty \quad \mathbb{E} \int_{0}^{T} \int_{Z}|K(t ; \zeta)| \nu(d \zeta) d t<\infty \tag{2.2}
\end{equation*}
$$

and which entail that Y_{t} has finite first moment. The price S_{t} of the risky asset follows a geometric jump-diffusion process given by

$$
S_{t}=S_{0} e^{Y_{t}} \quad S_{0} \in \mathbb{R}^{+}
$$

From Itô's formula we get that S_{t} solves the following differential equation

$$
d S_{t}=S_{t^{-}}\left\{\mu_{t} d t+\sigma_{t} d W_{t}+\int_{Z} \widetilde{K}(t ; \zeta) N(d t, d \zeta)\right\}
$$

where

$$
\mu_{t}=b_{t}+\frac{1}{2} \sigma_{t}^{2}, \quad \widetilde{K}(t ; \zeta)=e^{K(t ; \zeta)}-1
$$

We are interested in solving an optimal portfolio problem for an agent who has access only to the observable flow generated by asset prices

$$
\underline{\mathrm{F}}_{t}^{S}=\sigma\left\{S_{s} ; s \leq t\right\}=\underline{\mathrm{F}}_{t}^{Y}=\sigma\left\{Y_{s} ; s \leq t\right\} \subseteq \underline{\mathrm{F}}_{t} .
$$

We shall call this situation the case of partial information to distinguish it from the case of full information where investors observe the whole filtration $\left\{\underline{\mathrm{F}}_{t}\right\}_{t \in[0, T]}$. We assume that $\left\{\underline{\mathrm{F}}_{t}^{S}\right\}_{t \in[0, T]}$ satisfies the usual conditions of right-continuity and completeness.

The investor starts with initial capital $z_{0}>0$, invests at any time $t \in[0, T]$ the fraction θ_{t} of the wealth Z_{t} in stock S_{t} and also consumes at the rate $C_{t} Z_{t}$. We consider both cases of utility from terminal wealth only and with intermediate consumption. As in [21] and [22], to unify the notations we introduce the measure $\mu(d t)$ on $[0, T]$ by $\mu(d t)=0$ in the case without consumption and $\mu(d t)=d t$ in the case with consumption and assume the convention $C_{T}=1$ (which means that all the remaining wealth is consumed at time T).

Because the agent's information is described by the filtration $\left\{\underline{\mathrm{F}}_{t}^{S}\right\}_{t \in[0, T]}$ the decisions $\left(\theta_{t}, C_{t}\right)$ must be adapted to $\underline{\mathrm{F}}_{t}^{S}$. By considering $\underline{\mathrm{F}}_{t}^{S}$-predictable, selffinancing trading strategies, the dynamics of the wealth process controlled by the investment-consumption process $\left(\theta_{t}, C_{t}\right)$ evolves according with

$$
\begin{equation*}
d Z_{t}=Z_{t^{-}}\left(\theta_{t} \frac{d S_{t}}{S_{t^{-}}}-C_{t} \mu(d t)\right), \quad Z_{0}=z_{0} \tag{2.3}
\end{equation*}
$$

The solution process Z_{t} to (2.3) of course depends on the chosen strategy (θ, C). To be precise we should therefore denote the process Z_{t} by $Z_{t}^{\theta, C}$ but sometimes we will suppress θ, C.

For an agent with power utility

$$
U(x)=\frac{x^{\alpha}}{\alpha} \quad 0<\alpha<1
$$

the objective is to maximize over a suitable class of strategies $\underline{\text { A either the expected }}$ utility from terminal wealth

$$
\sup _{(\theta, C) \in \underline{\mathrm{A}}} \mathbb{E}\left[U\left(Z_{T}^{\theta, C}\right)\right]
$$

and with intermediate consumption

$$
\sup _{(\theta, C) \in \underline{\mathrm{A}}} \mathbb{E}\left[\int_{0}^{T} U\left(C_{t} Z_{t}^{\theta, C}\right) d t+U\left(Z_{T}^{\theta, C}\right)\right]
$$

Defining $\mu^{0}(d t)=\mu(d t)+\delta_{\{T\}}(d t)$, where δ_{a} denotes the Dirac measure at the point a, both the cases can be written as

$$
\begin{equation*}
\sup _{(\theta, C) \in \underline{\mathrm{A}}} \mathbb{E}\left[\int_{0}^{T} U\left(C_{t} Z_{t}^{\theta, C}\right) \mu^{0}(d t)\right] . \tag{2.4}
\end{equation*}
$$

Let us come back to the market model. We introduce the discrete random measure ([4],[13]) associated to the jump component of Y_{t}

$$
\begin{equation*}
m(d t, d x)=\sum_{s: \Delta Y_{s} \neq 0} \delta_{\left\{s, \Delta Y_{s}\right\}}(d t, d x) \tag{2.5}
\end{equation*}
$$

and observe that for any real-valued function $f(x)$ the following equality holds

$$
\begin{equation*}
\int_{0}^{t} \int_{Z} f(K(s ; \zeta)) \mathbb{I}_{\{K(s ; \zeta) \neq 0\}}(s, \zeta) N(d s, d \zeta)=\int_{0}^{t} \int_{\mathbb{R}} f(x) m(d s, d x) \tag{2.6}
\end{equation*}
$$

We recall Proposition 2.2 in [5] which provides the $\left(P, \underline{\mathrm{~F}}_{t}\right)$-local characteristics of $m(d t, d x)$ in terms of the measure $\nu(d \zeta)$.

Proposition 2.1. Let $\forall t \in[0, T], \forall A \in \underline{B}(\mathbb{R})$ (where $\underline{B}(\mathbb{R})$ denotes the family of Borel sets of \mathbb{R})

$$
D_{t}^{A}(\omega)=\{\zeta \in Z: K(t, \omega ; \zeta) \in A \backslash\{0\}\} \subseteq D_{t}(\omega)=\{\zeta \in Z: K(t, \omega ; \zeta) \neq 0\}
$$

Under the assumption

$$
\begin{equation*}
\mathbb{E} \int_{0}^{T} \nu\left(D_{s}\right) d s<\infty \tag{2.7}
\end{equation*}
$$

the $\left(P, \underline{F}_{t}\right)$-predictable projection of m is given by

$$
m^{p}(d t, d x)=\lambda_{t} \Phi_{t}(d x) d t
$$

where λ_{t} is a non-negative \underline{F}_{t}-predictable process and $\Phi_{t}(d x)$ is an \underline{F}_{t}-predictable process taking values in the space of probability measures over $(\mathbb{R}, \underline{B}(\mathbb{R}))$ and they
satisfy $\forall A \in \underline{B}(\mathbb{R})$

$$
\begin{equation*}
m^{p}(d t, A)=\lambda_{t} \Phi_{t}(A) d t=\nu\left(D_{t}^{A}\right) d t \tag{2.8}
\end{equation*}
$$

In particular $\lambda_{t}=\nu\left(D_{t}\right)$ provides the $\left(P, \underline{F}_{t}\right)$-predictable intensity of the point process $N_{t}=m((0, t], \mathbb{R})$ which counts the total number of jumps of Y until time t.

Remark 2.2. Equation (2.8) can be also written as

$$
m^{p}(d t, d x)=\lambda_{t} \Phi_{t}(d x) d t=\int_{D_{t}} \delta_{K(t ; \zeta)}(d x) \nu(d \zeta) d t
$$

Let us observe that the local characteristics $\left(\lambda_{t}, \Phi_{t}(d x)\right)$ of $m(d t, d x)$ are not observable by investors since the process $K(t ; \zeta)$ is not $\underline{\mathrm{F}}_{t}^{S}$-adapted.

The $\left(P, \underline{\mathrm{~F}}_{t}\right)$-semimartingale structure of the risky asset S_{t} is described in the following proposition.

Proposition 2.3. Under (2.2), (2.7) and in addition

$$
\begin{equation*}
\mathbb{E} \int_{0}^{T} \int_{Z}|\widetilde{K}(t ; \zeta)| \nu(d \zeta)<\infty \tag{2.9}
\end{equation*}
$$

S_{t} is a $\left(P, \underline{F}_{t}\right)$-semimartingale with the decomposition

$$
S_{t}=S_{0}+M_{t}^{S}+A_{t}^{S}
$$

where

$$
A_{t}^{S}=\int_{0}^{t} S_{r} \mu_{r} d r+\int_{0}^{t} \int_{\mathbb{R}} S_{r^{-}}\left(e^{x}-1\right) \lambda_{r} \Phi_{r}(d x) d r
$$

is a process with finite variation paths, and

$$
M_{t}^{S}=\int_{0}^{t} S_{r} \sigma_{r} d W_{r}+\int_{0}^{t} \int_{\mathbb{R}} S_{r^{-}}\left(e^{x}-1\right)\left(m(d r, d x)-\lambda_{r} \Phi_{r}(d x) d r\right)
$$

is a $\left(P, \underline{F}_{t}\right)$-local martingale.
Proof. Under (2.2), (2.7) and (2.9), the process

$$
\begin{aligned}
& \int_{0}^{t} \mu_{s} d s+\int_{0}^{t} \sigma_{s} d W_{s}+\int_{0}^{t} \int_{Z} \widetilde{K}(s ; \zeta) N(d s, d \zeta) \\
& =\int_{0}^{t}\left\{\mu_{s}+\int_{Z} \widetilde{K}(s ; \zeta) \nu(d \zeta)\right\} d s+\int_{0}^{t} \sigma_{s} d W_{s}+\int_{0}^{t} \int_{Z} \widetilde{K}(s ; \zeta)(N(d s, d \zeta)-\nu(d \zeta) d s)
\end{aligned}
$$

is a $\left(P, \underline{\mathrm{~F}}_{t}\right)$-semimartingale, hence S_{t} is a semimartingale being the Doléans-Dade exponential of a semimartingale. The expressions of the processes A_{t}^{S} and M_{t}^{S} follow by Equation (2.6).

3. Reduction to an optimization problem with complete information

To solve the utility maximization problem under partial information we first reduce it to a full information one involving only $\underline{\mathrm{F}}_{t}^{S}$-adapted processes. To this aim we need to compute the $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-predictable projection of the integer-valued measure $m(d t, d x)$.

From now on we will denote by \widehat{R}_{t} the $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-optional projection of a generic process R_{t}, satisfying $\mathbb{E}\left|R_{t}\right|<\infty \forall t \in[0, T]$, defined as the unique optional process (in a P-indistinguishable sense) such that for each $\underline{\mathrm{F}}_{t}^{S}$-stopping time $\tau, \widehat{R}_{\tau}=$ $\mathbb{E}\left[R_{\tau} \mid \underline{\mathrm{F}}_{\tau}^{S}\right] P$-a.s. on $\{\tau<\infty\}$.

Remark 3.1. We recall two well-known facts: for every $\left(P, \underline{\mathrm{~F}}_{t}\right)$-martingale m_{t}, the projection \widehat{m}_{t} is a $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-martingale and that for any progressively measurable process Ψ_{t} with $\mathbb{E} \int_{0}^{T}\left|\Psi_{t}\right| d t<\infty$

$$
\widehat{\int_{0}^{t} \Psi_{s}} d s-\int_{0}^{t} \widehat{\Psi}_{s} d s
$$

is a $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-martingale. Note that this implies that $E \int_{0}^{T} \Psi_{t} d t=\mathbb{E} \int_{0}^{T} \widehat{\Psi}_{t} d t$.
Let us denote by $\underline{\mathrm{P}}\left(\underline{\mathrm{F}}_{t}^{S}\right)$ the $\underline{\mathrm{F}}_{t}^{S}$-predictable σ-field on $(0, T] \times \Omega$.
Proposition 3.2. Let us assume (2.7). The $\left(P, \underline{F}_{t}^{S}\right)$-predictable projection, $\nu^{p}(d t$, $d x)$, of $m(d t, d x)$ is given by $\nu^{p}(d t, d x)=\nu_{t}^{p}(d x) d t$, where $\nu_{t}^{p}(d x)$ is a measurevalued \underline{F}_{t}^{S}-predictable process satisfying $\nu_{t}^{p}(d x)=\widehat{\left(\lambda_{t} \Phi_{t}\right)}(d x), d P \times d t$-a.e. More precisely, for each $H(t, x), \underline{P}\left(\underline{F}_{t}^{S}\right)$-measurable

$$
\begin{aligned}
\mathbb{E}\left[\int_{0}^{T} \int_{\mathbb{R}} H(t, x) \nu_{t}^{p}(d x) d t\right] & =\mathbb{E}\left[\int_{0}^{T} \int_{\mathbb{R}} H(t, x) \widehat{\left(\lambda_{t} \Phi_{t}\right)}(d x) d t\right] \\
& =\mathbb{E}\left[\int_{0}^{T} \int_{\mathbb{R}} H(t, x) m(d t, d x)\right]
\end{aligned}
$$

Proof. By definition of $\left(P, \underline{\mathrm{~F}}_{t}\right)$-predictable projection of the integer-valued measure $m(d t, d x)$ it follows that, for each $H(t, x)\left(P, \underline{\underline{F}}_{t}\right)$-predictable process jointly measurable w.r.t. $(t, x) \in[0, T] \times \mathbb{R}$, verifying the condition
$\Longleftarrow \operatorname{disp}$

$$
\mathbb{E} \int_{0}^{T} \int_{\mathbb{R}}|H(r, x)| \lambda_{r} \Phi_{r}(d x) d r<\infty
$$

the process

$$
\begin{equation*}
m_{t}=\int_{0}^{t} \int_{\mathbb{R}} H(r, x)\left(m(d r, d x)-\lambda_{r} \Phi_{r}(d x) d r\right) \tag{3.1}
\end{equation*}
$$

is a $\left(P, \underline{\mathrm{~F}}_{t}\right)$-martingale. Let us now consider in (3.1) a process $H(t, x)$ which is $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-predictable. By Remark 3.1 we get that

$$
\int_{0}^{t} \int_{\mathbb{R}} H(r, x) m(d r, d x)-\mathbb{E}\left[\int_{0}^{t} \int_{\mathbb{R}} H(r, x) \lambda_{r} \Phi_{r}(d x) d r \mid \underline{\underline{E}}_{t}^{S}\right]
$$

is a $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-martingale, and

$$
\int_{0}^{t} \int_{\mathbb{R}} H(r, x) m(d r, d x)-\int_{0}^{t} \int_{\mathbb{R}} H(r, x) \widehat{\lambda_{r} \Phi_{r}}(d x) d r
$$

is a $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-martingale. In particular, for any $A \in \underline{\mathrm{~B}}(\mathbb{R})$

$$
m((0, t], A)-\int_{0}^{t} \widehat{\nu\left(D_{s}^{A}\right)} d s=m((0, t], A)-\int_{0}^{t} \int_{A} \widehat{\lambda_{s} \Phi_{s}}(d x) d s
$$

is a $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-martingale. Hence, since $\widehat{\nu\left(D_{t}^{A}\right)}$ is a progressively measurable process, it provides the $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-intensity of $N_{t}(A)=m((0, t], A)$ and as in [4, Theorem T13] one can find a $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-intensity, λ_{t}^{A}, that is predictable. It suffices define λ_{t}^{A}, for any $A \in \underline{\mathrm{~B}}(\mathbb{R})$, as the Radon-Nikodym derivatives of $P(d \omega) \widehat{\nu\left(D_{t}^{A}\right)}(\omega) d t$ w.r.t. $P(d \omega) d t$ on $\underline{\mathrm{P}}\left(\underline{\mathrm{F}}_{t}^{S}\right)$.

Throughout the paper we denote by $m^{S}(d t, d x)$ the $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-compensated martingale random measure

$$
m^{S}(d t, d x)=m(d t, d x)-\nu_{t}^{p}(d x) d t
$$

and we recall that, for any $H(t, x)$, jointly measurable process, $\underline{\mathrm{F}}_{t}^{S}$-predictable such that

$$
\mathbb{E} \int_{0}^{T} \int_{Z}|H(t, x)| \nu_{t}^{p}(d x) d t<\infty \quad\left(\text { resp. } \int_{0}^{T} \int_{Z}|H(t, x)| \nu_{t}^{p}(d x) d t<\infty \quad P \text {-a.s. }\right)
$$

the process $\int_{0}^{T} \int_{Z} H(t, x) m^{S}(d t, d x)$ is a $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-martingale (resp. local-martingale).

Next, assuming

$$
\begin{equation*}
\mathbb{E} \int_{0}^{T} \frac{\left|b_{t}\right|}{\sigma_{t}} d t<\infty \tag{3.2}
\end{equation*}
$$

and the volatility σ_{t} to be $\underline{\mathrm{F}}_{t}^{S}$-adapted, we introduce the innovation process

$$
I_{t}:=W_{t}+\int_{0}^{t} \frac{1}{\sigma_{s}}\left(b_{s}-\widehat{b}_{s}\right) d s
$$

By extending classical results in filtering theory ([19]) to our frame we have the following

Proposition 3.3. Let σ_{t} to be \underline{F}_{t}^{S}-adapted. The random process $\left\{I_{t}\right\}_{t \in[0, T]}$ is a $\left(P, \underline{F}_{t}^{S}\right)$-Wiener process.

Proof. By Equation (2.6) we get that $\int_{Z} K(t ; \zeta) N(d t, d \zeta)=\int_{\mathbb{R}} x m(d t, d x)$. Hence, taking into account Equation (2.1), we have

$$
d I_{t}=\frac{1}{\sigma_{t}}\left\{d Y_{t}-\widehat{b}_{t}-\int_{\mathbb{R}} x m(d t, d x)\right\}
$$

which implies that I_{t} is an $\underline{\mathrm{F}}_{t}^{S}$-adapted process. We now compute the following conditional expectation, $\forall s \leq t$

$$
\mathbb{E}\left[I_{t}-I_{s} \mid \underline{\mathrm{F}}_{s}^{S}\right]=\mathbb{E}\left[\left.\int_{s}^{t}\left\{\frac{b_{u}}{\sigma_{u}}-\frac{\widehat{b}_{u}}{\sigma_{u}}\right\} d u \right\rvert\, \underline{\mathrm{E}}_{s}^{S}\right]+E\left[W_{t}-W_{s} \mid \underline{\mathrm{E}}_{s}^{S}\right] .
$$

Since, the first term of the right-hand side vanishes because of the properties of the conditional expectation and the second one vanishes because W_{t} is an $\underline{\mathrm{F}}_{t^{-}}$ Brownian motion and $\underline{\mathrm{F}}_{t}^{S} \subseteq \underline{\mathrm{~F}}_{t}$ we get that I_{t} is a $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-martingale. Finally, the thesis follows by the Lévy Theorem.

Taking into account (2.6), Propositions 3.2 and 3.3 , we are able to give the $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-decompositions of the semimartingales Y_{t} and S_{t}

$$
\begin{align*}
Y_{t}=Y_{0} & +\int_{0}^{t}\left\{\widehat{b}_{s}+\int_{\mathbb{R}} x \nu^{p}(d x)\right\} d s+\int_{0}^{t} \sigma_{s} d I_{s}+\int_{0}^{t} \int_{\mathbb{R}} x m^{S}(d s, d x) \tag{3.3}\\
S_{t}=S_{0} & +\int_{0}^{t} S_{s}\left\{\widehat{\mu}_{s}+\int_{\mathbb{R}}\left(e^{x}-1\right) \nu_{s}^{p}(d x)\right\} d s \\
& +\int_{0}^{t} S_{s} \sigma_{s} d I_{s}+\int_{0}^{t} \int_{\mathbb{R}} S_{s^{-}}\left(e^{x}-1\right) m^{S}(d s, d x) \tag{3.4}
\end{align*}
$$

Remark 3.4. Let us observe that by Proposition 3.2 and assumptions (2.9) we get that

$$
\begin{aligned}
& \mathbb{E}\left[\int_{0}^{T} \int_{\mathbb{R}}\left|e^{x}-1\right| \nu_{t}^{p}(d x) d s\right]=\mathbb{E}\left[\int_{0}^{T} \int_{\mathbb{R}}\left|e^{x}-1\right| \widehat{\left(\lambda_{t} \Phi_{t}\right)}(d x) d t\right] \\
& \quad=\mathbb{E}\left[\int_{0}^{T} \int_{\mathbb{R}}\left|e^{x}-1\right| \lambda_{t} \Phi_{t}(d x) d t\right]=\mathbb{E} \int_{0}^{T} \int_{Z}|\widetilde{K}(t ; \zeta)| \nu(d \zeta)<\infty
\end{aligned}
$$

By virtue of (3.4) the wealth process Z_{t} induced by the investmentconsumption strategy $\left(\theta_{t}, C_{t}\right)$, satisfies

$$
d Z_{t}=Z_{t^{-}}\left(\theta_{t} \widehat{\mu}_{t} d t-C_{t} \mu(d t)+\theta_{t} \sigma_{t} d I_{t}+\theta_{t} \int_{\mathbb{R}}\left(e^{x}-1\right) m(d t, d x)\right)
$$

Then the utility maximization problem defined in (2.4) can be now treated as a full information problem since all the processes involved are adapted to the observable flow $\left\{\underline{\mathrm{F}}_{t}^{S}\right\}_{t \in[0, T]}$.

The last part of this section is devoted to derive a martingale representation theorem for $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-martingales. Let us observe that from Proposition 3.3 it follows that

$$
\underline{\mathrm{F}}_{t}^{I} \vee \underline{\mathrm{~F}}_{t}^{m} \subseteq \underline{\mathrm{~F}}_{t}^{S}
$$

where $\underline{\mathrm{F}}_{t}^{m}=\sigma\{m((0, s] \times A) ; s \leq t, A \in \underline{\mathrm{~B}}(\mathbb{R})\}$, and in general this inclusion holds in a strict sense. From now on we will assume a stronger condition than (3.2), that is

$$
\begin{equation*}
\mathbb{E} \int_{0}^{T}\left(\frac{b_{s}}{\sigma_{s}}\right)^{2} d s<\infty \quad P \text {-a.s. } \tag{3.5}
\end{equation*}
$$

and we consider the positive local martingale defined as the Doléans-Dade exponential of the $\left(P, \underline{\mathrm{~F}}_{t}\right)$-martingale $-\int_{0}^{t} \frac{b_{s}}{\sigma_{s}} d W_{s}$,

$$
L_{t}=\operatorname{Exp}\left(-\int_{0}^{t} \frac{b_{s}}{\sigma_{s}} d W_{s}\right)=\exp \left\{-\int_{0}^{t} \frac{b_{s}}{\sigma_{s}} d W_{s}-\frac{1}{2} \int_{0}^{t}\left(\frac{b_{s}}{\sigma_{s}}\right)^{2} d s\right\} .
$$

We shall make the usual standing assumption
Assumption A: L_{t} is a $\left(P, \underline{\mathrm{~F}}_{t}\right)$-martingale, that is $\mathbb{E}\left[L_{T}\right]=1$.
Under this last assumption we can define on $\underline{\mathrm{F}}_{T}$ a probability measure Q equivalent to P such that

$$
\begin{equation*}
\left.\frac{d Q}{d P}\right|_{\underline{\mathrm{F}}_{T}}=L_{T} \tag{3.6}
\end{equation*}
$$

By Girsanov theorem the process

$$
\widetilde{W}_{t}:=W_{t}+\int_{0}^{t} \frac{b_{s}}{\sigma_{s}} d s
$$

is a $\left(Q, \underline{\mathrm{~F}}_{t}\right)$-Wiener process, moreover since by the definition of I_{t} the following equality is fulfilled

$$
\begin{equation*}
\widetilde{W}_{t}=I_{t}+\int_{0}^{t} \frac{\widehat{b}_{s}}{\sigma_{s}} d s \tag{3.7}
\end{equation*}
$$

it turns out that the process \widetilde{W}_{t} is $\underline{\mathrm{F}}_{t}^{S}$-adapted, and as a consequence

$$
\begin{equation*}
\widehat{L}_{t}=\mathbb{E}\left[L_{t} \mid \underline{\mathrm{F}}_{t}^{S}\right]=\left.\frac{d Q}{d P}\right|_{\underline{\mathrm{E}}_{t}^{s}}=\operatorname{Exp}\left(-\int_{0}^{t} \frac{\widehat{b}_{s}}{\sigma_{s}} d I_{s}\right) \tag{3.8}
\end{equation*}
$$

Let us notice that, by Jensen's inequality and (3.5)

$$
\mathbb{E} \int_{0}^{T} \frac{\left(\widehat{b}_{t}\right)^{2}}{\sigma_{t}^{2}} d t \leq \mathbb{E} \int_{0}^{T} \frac{\widehat{b_{t}^{2}}}{\sigma_{t}^{2}} d t=\mathbb{E} \int_{0}^{T}\left(\frac{b_{t}}{\sigma_{t}}\right)^{2} d t<\infty
$$

In order to derive a representation theorem for $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-martingales we need an additional assumption on σ_{t}. Since σ_{t} is $\underline{\mathrm{F}}_{t}^{S}$-adapted and $\underline{\mathrm{F}}_{t}^{S}=\underline{\mathrm{F}}_{t}^{Y}$ there exists for each $t \in[0, T]$ a Borel measurable $H_{t}: D_{\mathbb{R}}[0, T] \rightarrow(0,+\infty)$ such that $\sigma_{t}=$ $H_{t}\left(Y_{. \wedge t}\right) P$-a.s. Here $D_{\mathbb{R}}[0, T]$ denotes the space of càdlàg \mathbb{R}-valued paths endowed with the Skorokhod metric, and we assume that H_{t} satisfies a global Lipschitz condition on $D_{\mathbb{R}}[0, T]$.

We summarize below all the conditions introduced in this section that we shall use from now on
Assumptions B: Assumption A, (2.2), (2.7), (2.9), (3.5) and assume σ_{t} to be $\underline{\mathrm{F}}_{t}^{S}{ }^{-}$ adapted and such that H_{t} satisfies a global Lipschitz condition on $D_{\mathbb{R}}[0, T]$.

Lemma 3.5. Under Assumptions B, the filtration \underline{F}_{t}^{S} coincides with the filtration generated by \widetilde{W}_{t} and the jump measure $m(d t, d x)$, that is

$$
\underline{F}_{t}^{S}=\underline{F}_{t}^{\widetilde{W}} \vee \underline{F}_{t}^{m}
$$

Proof. Since \widetilde{W}_{t} and $m(d t, d x)$ are $\underline{\mathrm{F}}_{t}^{S}$-adapted we have that $\underline{\mathrm{F}}_{t}^{\widetilde{W}} \vee \underline{\mathrm{~F}}_{t}^{m} \subseteq \underline{\mathrm{~F}}_{t}^{S}$. To prove the converse, let us observe that, taking into account (3.3) and (3.7), the process Y_{t} solves under the probability Q, defined by (3.6), the following equation driven by \widetilde{W}_{t} and $m(d t, d x)$

$$
\begin{equation*}
d Y_{t}=\sigma_{t} d \widetilde{W}_{t}+\int_{\mathbb{R}} x m(d t, d x) \tag{3.9}
\end{equation*}
$$

Finally, since $\sigma_{t}=H_{t}\left(Y_{. \wedge t}\right) P$-a.s. and $H_{t}: D_{\mathbb{R}}[0, T] \rightarrow(0,+\infty)$ satisfies a global Lipschitz condition on $D_{\mathbb{R}}[0, T]$, the stochastic functional differential equation (3.9) has a unique strong solution $\underline{\mathrm{F}}_{t}^{\widetilde{W}} \vee \underline{\mathrm{~F}}_{t}^{m}$-adapted, hence $\underline{\mathrm{F}}_{t}^{S}=\underline{\mathrm{F}}_{t}^{Y} \subseteq \underline{\mathrm{~F}}_{t}^{\widetilde{W}} \vee \underline{\mathrm{~F}}_{t}^{m}$, and this concludes the proof.

Finally we are able to prove the announced martingale representation theorem, which extend to a non-Markovian case Proposition 2.6 in [7].

Proposition 3.6. Under Assumptions B, every $\left(P, \underline{F}_{t}^{S}\right)$-local-martingale M_{t} admits the decomposition

$$
M_{t}=M_{0}+\int_{0}^{t} \int_{\mathbb{R}} \eta(t, x) m^{S}(d s, d x)+\int_{0}^{t} \psi_{s} d I_{s}
$$

where $\eta(t, x)$ a \underline{F}_{t}^{S}-predictable process and $\psi_{t} a \underline{F}_{t}^{S}$-adapted process such that

$$
\int_{0}^{T} \int_{\mathbb{R}}|\eta(t, x)| \nu_{t}^{p}(d x) d t<\infty, \quad \int_{0}^{T} \psi_{t}^{2} d t<\infty \quad P \text {-a.s. }
$$

Proof. Let Q be the probability measure defined on $\underline{\mathrm{F}}_{T}$ by (3.6). Notice that $\int_{0}^{T} \nu_{t}^{p}(\mathbb{R}) d t<\infty P$-a.s. since $\int_{0}^{T} \nu_{t}^{p}(\mathbb{R}) d t=\int_{0}^{T} \widehat{\lambda}_{t} d t P$-a.s. and, by (2.7), $\mathbb{E} \int_{0}^{T} \hat{\lambda}_{t} d t=\mathbb{E} \int_{0}^{T} \lambda_{t} d t<\infty$. Hence, recalling that $\underline{\mathrm{F}}_{t}^{S}=\underline{\mathrm{F}}_{t}^{\widetilde{W}} \vee \underline{\mathrm{~F}}_{t}^{m}$ we can apply Remark 3.2 in [3] which states that for any $\widetilde{M}_{t},\left(Q, \underline{\mathrm{~F}}_{t}^{S}\right)$ - local-martingale, there exist two $\underline{\mathrm{F}}_{t}^{S}$-adapted processes $\widetilde{\phi}(t, x)$ predictable and $\widetilde{\psi}_{t}$ such that

$$
\widetilde{M}_{t}=\widetilde{M}_{0}+\int_{0}^{t} \int_{\mathbb{R}} \widetilde{\eta}(s, x) m^{S}(d s, d x)+\int_{0}^{t} \widetilde{\psi}_{s} d \widetilde{W}_{s}
$$

with

$$
\int_{0}^{T} \int_{\mathbb{R}}|\widetilde{\eta}(t, x)| \nu_{t}^{p}(d x)<\infty, \quad \int_{0}^{T} \widetilde{\psi}_{t}^{2} d t<\infty \quad Q \text {-a.s. }
$$

Let M_{t} be a $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-local martingale, by Kallianpur-Striebel formula $\widetilde{M}_{t}=M_{t} \widehat{L}_{t}^{-1}$ is a $\left(Q, \underline{\mathrm{~F}}_{t}^{S}\right)$-local martingale, where \widehat{L}_{t} is defined in (3.8). We can write $M_{t}=\widetilde{M}_{t} \widehat{L}_{t}$
and by the product rule we deduce

$$
\begin{aligned}
d M_{t} & =\widetilde{M}_{t^{-}} d \widehat{L}_{t}+\widehat{L}_{t^{-}} d \widetilde{M}_{t}+d\left\langle\widetilde{M}^{c}, \widehat{L^{c}}\right\rangle_{t}+d\left(\sum_{s \leq t} \Delta \widetilde{M}_{s} \Delta \widehat{L}_{s}\right) \\
& =\widehat{L}_{t}\left(\widetilde{\psi}_{t}-\frac{\widehat{b}_{t}}{\sigma_{t}} \widetilde{M}_{t}\right) d I_{t}+\int_{\mathbb{R}} \widehat{L}_{t^{-}} \widetilde{\eta}(t, x) m^{S}(d t, d x)
\end{aligned}
$$

which gives the martingale representation for M_{t} with $\psi_{t}=\widehat{L}_{t} \widetilde{\psi}_{t}-\frac{\widehat{b}_{t}}{\sigma_{t}} M_{t}$ and $\eta(t, x)=\widehat{L}_{t^{-}} \widetilde{\eta}(t, x)$.

4. The optimal investment-consumption problem

In this section we focus on formulating the \underline{E}_{t}^{S}-optimal investment-consumption problem as a stochastic control problem. We begin by recalling that the wealth process Z_{t} satisfies

$$
\begin{align*}
d Z_{t} & =Z_{t^{-}}\left(\theta_{t} \frac{d S_{t}}{S_{t^{-}}}-C_{t} \mu(d t)\right) \tag{4.1}\\
& =Z_{t^{-}}\left\{\theta_{t} \widehat{\mu}_{t} d t-C_{t} \mu(d t)+\theta_{t} \sigma_{t} d I_{t}+\theta_{t} \int_{\mathbb{R}}\left(e^{x}-1\right) m(d t, d x)\right\}
\end{align*}
$$

The set of admissible strategies $\underline{\mathrm{A}}$ consists of all the pairs $\left(\theta_{t}, C_{t}\right)$, where θ_{t} is an \mathbb{R}-valued, $\underline{\mathrm{F}}_{t}^{S}$-predictable process and C_{t} a non-negative $\underline{\mathrm{F}}_{t}^{S}$-adapted process such that $C_{T}=1$ and

$$
\begin{gather*}
\int_{0}^{T}\left\{\left|\theta_{t} \widehat{\mu}_{t}-C_{t}\right|+\theta_{t}^{2} \sigma_{t}^{2}+\left|\theta_{t}\right| \int_{\mathbb{R}}\left|e^{x}-1\right| \nu_{t}^{p}(d x)\right\} d t<\infty \quad P \text {-a.s. } \tag{4.2}\\
\forall x \in \mathbb{R} \quad 1+\theta_{t}\left(e^{x}-1\right)>0 \quad d P \times d t \text {-a.e. } \tag{4.3}
\end{gather*}
$$

Proposition 4.1. Let $\left\{\theta_{t}, C_{t}\right\}_{t \in[0, T]}$ be an admissible strategy. Then the wealth equation has a unique positive solution $Z_{t}^{\theta, C}$ given by

$$
\begin{equation*}
Z_{t}^{\theta, C}=z_{0} e^{\int_{0}^{t} \int_{\mathbb{R}} \log \left(1+\theta_{s}\left(e^{x}-1\right)\right) m(d s, d x)+\int_{0}^{t} \theta_{s} \sigma_{s} d I_{s}+\int_{0}^{t}\left(\theta_{s} \widehat{\mu}_{s}-\frac{1}{2} \theta_{s}^{2} \sigma_{s}^{2}\right) d s-\int_{0}^{t} C_{s} \mu(d s)} \tag{4.4}
\end{equation*}
$$

Proof. Equation (4.1) can be written as $d Z_{t}=Z_{t^{-}} d M_{t}^{\theta, C}$, where from (4.2)

$$
\begin{aligned}
M_{t}^{\theta, C}:= & \int_{0}^{t}\left\{\theta_{s} \widehat{\mu}_{s}+\theta_{s} \int_{\mathbb{R}}\left(e^{x}-1\right) \nu_{s}^{p}(d x)\right\} d s-\int_{0}^{t} C_{s} \mu(d s) \\
& +\int_{0}^{t} \theta_{s} \sigma_{s} d I_{s}+\int_{0}^{t} \theta_{s} \int_{\mathbb{R}}\left(e^{x}-1\right) m^{S}(d s, d x)
\end{aligned}
$$

is a $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-semimartingale. By the Doléans-Dade Theorem we get that there exists a unique semimartingale $Z_{t}^{\theta, C}$ given by

$$
Z_{t}^{\theta, C}=z_{0} e^{M_{t}^{\theta, C}-\frac{1}{2}<\left(M^{\theta, C}\right)^{c}>_{t}} \Pi_{s \leq t}\left(1+\Delta M_{s}^{\theta, C}\right) e^{-\Delta M_{s}^{\theta, C}}
$$

C. Ceci

Moreover, $Z_{t}^{\theta, C}>0$ if and only if $1+\Delta M_{s}^{\theta, C}=1+\int_{\mathbb{R}} \theta_{s}\left(e^{x}-1\right) m(\{s\}, d x)>0$ $\forall s \leq t$, and this condition is implied by (4.3). Finally, by standard computation we derive expression (4.4).

Remark 4.2. Let us observe that the pair $\left(\theta_{t}, C_{t}\right)=(0,0), \forall t \in[0, T)$, is an admissible strategy whose associated wealth is given by $Z_{t}^{0,0}=z_{0}$.

Remark 4.3. For any $(\theta, C) \in \underline{\mathrm{A}}$, the following inequality is fulfilled

$$
\begin{equation*}
\int_{\mathbb{R}}\left|\left(1+\theta_{t}\left(e^{x}-1\right)\right)^{\alpha}-1\right| \nu_{t}^{p}(d x) \leq \int_{\mathbb{R}}\left|\theta_{t}\right|\left|e^{x}-1\right| \nu_{t}^{p}(d x)<\infty \quad P \text {-a.s. } \tag{4.5}
\end{equation*}
$$

As a consequence

$$
\begin{aligned}
M_{t}(\alpha):= & \int_{0}^{t} \int_{\mathbb{R}}\left\{\left[1+\theta_{s}\left(e^{x}-1\right)\right]^{\alpha}-1\right\} m^{S}(d s, d x)+\int_{0}^{t} \alpha \theta_{s} \sigma_{s} d I_{s} \\
& +\int_{0}^{t} \alpha\left(\theta_{s} \widehat{\mu}_{s} d s-C_{s} \mu(d s)\right)+\int_{0}^{t} \int_{\mathbb{R}}\left\{\left[1+\theta_{s}\left(e^{x}-1\right)\right]^{\alpha}-1\right\} \nu_{s}^{p}(d x) d s
\end{aligned}
$$

is a $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-semimartingale and by (4.4), using standard computations, we have

$$
\begin{equation*}
Z_{t}^{\alpha}=z_{0}^{\alpha} e^{\frac{1}{2} \alpha(\alpha-1) \int_{0}^{t} \theta_{s}^{2} \sigma_{s}^{2} d s} \operatorname{Exp}\left(M_{t}(\alpha)\right) \tag{4.6}
\end{equation*}
$$

where we recall Exp denotes the Doléans-Dade exponential.
From now on we shall furthermore assume that

$$
\sup _{(\theta, C) \in \underline{\mathrm{A}}} \mathbb{E}\left[\int_{0}^{T}\left(C_{t} Z_{t}\right)^{\alpha} \mu^{0}(d t)\right]<\infty
$$

As usual in stochastic control frame we introduce the associated value process which gives a dynamic extension of the optimization problem (2.4) to each initial time $t \in[0, T]$. For any $t \in[0, T],(\bar{\theta}, \bar{C}) \in \underline{A}$, let us consider the set of strategies coinciding with $(\bar{\theta}, \bar{C})$ until time t

$$
\underline{\mathrm{A}}_{t}(\bar{\theta}, \bar{C}):=\left\{(\theta, C) \in \underline{\mathrm{A}}:\left(\theta_{s}, C_{s}\right)=\left(\bar{\theta}_{s}, \bar{C}_{s}\right), s \leq t\right\}
$$

and define the value process as

$$
V_{t}(\bar{\theta}, \bar{C})=\operatorname{ess} \sup _{(\theta, C) \in \underline{\mathrm{A}}_{t}(\bar{\theta}, \bar{C})} \mathbb{E}\left[\left.\int_{t}^{T} \frac{\left(C_{s} Z_{s}\right)^{\alpha}}{\alpha} \mu^{0}(d s) \right\rvert\, \underline{\mathrm{F}}_{t}^{S}\right]
$$

From the dynamic programming principle $([10]) \forall(\bar{\theta}, \bar{C}) \in \underline{\mathrm{A}}$

$$
V_{t}(\bar{\theta}, \bar{C})+\int_{0}^{t} \frac{\left(\bar{C}_{s} Z_{s}^{\bar{\theta}} \overline{\bar{C}}\right)^{\alpha}}{\alpha} \mu(d s)
$$

is a $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-supermartingale and $\left(\theta^{*}, C^{*}\right) \in \underline{\mathrm{A}}$ is optimal for problem (2.4) if and only if

$$
V_{t}\left(\theta^{*}, C^{*}\right)+\int_{0}^{t} \frac{\left(C_{s}^{*} Z_{s}^{\theta^{*}, C^{*}}\right)^{\alpha}}{\alpha} \mu(d s)
$$

is a $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-martingale. By Equation (4.4) we get that, for any $(\bar{\theta}, \bar{C}) \in \underline{\mathrm{A}}$

$$
V_{t}(\bar{\theta}, \bar{C})=\frac{\left(Z_{t}^{\bar{\theta}}, \bar{C}\right)^{\alpha}}{\alpha} J_{t}
$$

where the càdlàg process J_{t} does not depend on $(\bar{\theta}, \bar{C})$ and is defined as

$$
\begin{equation*}
J_{t}=\operatorname{ess} \sup _{(\theta, C) \in \underline{\mathrm{A}}_{t}} \mathbb{E}\left[\left.\int_{t}^{T} \frac{\left(C_{s} Z_{s}\right)^{\alpha}}{Z_{t}^{\alpha}} \mu^{0}(d s) \right\rvert\, \underline{\mathrm{F}}_{t}^{S}\right] \tag{4.7}
\end{equation*}
$$

here $\underline{\mathrm{A}}_{t}$ denotes the set of admissible strategies over $[t, T]$. The process J_{t} is the so-called opportunity process and it is a suitable tool to derive results about the optimal investment-consumption strategy. In particular, the Bellman optimality principle can be stated as follows.

Proposition 4.4. The following properties hold true:
(i) $\left\{J_{t}\right\}_{t \in[0, T]}$ is the smallest càdlàg \underline{F}_{t}^{S}-adapted process s.t. $J_{T}=1$ and $\forall(\theta, C) \in$ $\underline{A},\left(Z_{t}^{\theta, C}\right)^{\alpha} J_{t}+\int_{0}^{t}\left(C_{s} Z_{s}^{\theta, C}\right)^{\alpha} \mu(d s)$ is a $\left(P, \underline{F}_{t}^{S}\right)$-supermartingale.
(ii) $\left(\theta^{*}, C^{*}\right) \in \underline{A}$ is an optimal investment-consumption strategy if and only if $\left(Z_{t}^{\theta^{*}, C^{*}}\right)^{\alpha} J_{t}+\int_{0}^{t}\left(C_{s}^{*} Z_{s}^{\theta^{*}, C^{*}}\right)^{\alpha} \mu(d s)$ is a $\left(P, \underline{F}_{t}^{S}\right)$-martingale.
We give now some other properties of the process J_{t}.
Proposition 4.5. $\forall t \in[0, T], J_{t} \geq 1$, P-a.s. and $\sup _{t \in[0, T]} \mathbb{E}\left[J_{t}\right] \leq J_{0}<\infty$.
Proof. Since $\left(\theta_{t}, C_{t}\right)=(0,0) \forall t \in[0, T)$ is an admissible strategy, by (4.7) we get that $J_{t} \geq 1$ and, from Proposition $4.4, J_{t}$ is a $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-supermartingale. Then $\mathbb{E}\left(J_{t}\right) \leq J_{0}$, where $J_{0}=\frac{\alpha}{z_{0}^{\alpha}} \sup _{(\theta, C) \in \underline{\mathrm{A}}} \mathbb{E}\left[\int_{0}^{T} U\left(C_{t} Z_{t}\right) \mu^{0}(d t)\right]<\infty$.

5. A BSDE approach

In this section, we address the problem of characterizing dynamically the opportunity process J_{t}. In all this section we make the class of hypotheses summarized in Assumptions B. First, let us fix some notations

- $\underline{\mathrm{S}}^{p}, 1 \leq p \leq+\infty$, denotes the space of \mathbb{R}-valued $\underline{\mathrm{F}}_{t}^{S}$-adapted stochastic processes $\left\{H_{t}\right\}_{t \in[0, T]}$ with $\|H\|_{\underline{S}^{p}}=\left\|\sup _{t \in[0, T]}\left|H_{t}\right|\right\|_{L^{p}}<\infty$.
- $\underline{\mathrm{L}}_{\nu^{p}}^{2}\left(\underline{\mathrm{~L}}_{\nu^{p}, \text { loc }}^{1}\right)$ denotes the space of \mathbb{R}-valued $\underline{\mathrm{F}}_{t}^{S}$-predictable processes $\{U(t, x)\}_{t \in[0, T]}$ indexed by x with

$$
\begin{aligned}
& \mathbb{E} \int_{0}^{T} \int_{\mathbb{R}}|U(t, x)|^{2} \nu_{t}^{p}(d x) d t<\infty \\
&\left(\text { resp. } \int_{0}^{T} \int_{\mathbb{R}}|U(t, x)|^{2} \nu_{t}^{p}(d x) d t<\infty, P \text {-a.s. }\right) .
\end{aligned}
$$

- $\underline{\mathrm{L}}^{2}\left(\underline{\mathrm{~L}}_{\text {loc }}^{2}\right)$ denotes the space of \mathbb{R}-valued $\underline{\mathrm{F}}_{t}^{S}$-adapted processes $\left\{R_{t}\right\}_{t \in[0, T]}$ with

$$
\mathbb{E} \int_{0}^{T}\left|R_{t}\right|^{2} d t<\infty \quad\left(\text { resp. } \int_{0}^{T}\left|R_{t}\right|^{2} d t<\infty \quad P \text {-a.s. }\right)
$$

From Proposition 4.4, since $\left(\theta_{t}, C_{t}\right)=(0,0) \in \underline{\mathrm{A}}$, the process $\left\{J_{t}\right\}_{t \in[0, T]}$, is a $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-supermartingale and it admits a unique Doob-Meyer decomposition

$$
J_{t}=m_{t}^{J}-A_{t}
$$

with m_{t}^{J} a $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-local martingale and A_{t} a nondecreasing $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-predictable process with $A_{0}=0$. By the martingale representation result (Proposition 3.6) there exist $\Gamma(t, x) \in \underline{\mathrm{L}}_{\nu^{p}, \text { loc }}^{1}$ and $R_{t} \in \underline{\mathrm{~L}}_{\text {loc }}^{2}$ such that

$$
\begin{equation*}
m_{t}^{J}=\int_{0}^{t} \int_{\mathbb{R}} \Gamma(s, x) m^{S}(d s, d x)+\int_{0}^{t} R_{s} d I_{s} \tag{5.1}
\end{equation*}
$$

Theorem 5.1. If there exists an optimal strategy $\left(\theta^{*}, C^{*}\right) \in \underline{A}$ for the utility maximization problem (2.4), the process $\left\{J_{t}, \Gamma(t, x), R_{t}\right\}_{t \in[0, T]}$ solves the following BSDE

$$
\begin{align*}
J_{t}=1 & -\int_{t}^{T} \int_{\mathbb{R}} \Gamma(s, x) m^{S}(d s, d x)-\int_{t}^{T} R_{s} d I_{s} \tag{5.2}\\
& +\int_{t}^{T} \operatorname{ess} \sup _{(\theta, C) \in \underline{A}}\left\{f(s, J, \Gamma, R, \theta) d s+\left(C_{s}^{\alpha}-\alpha C_{s} J_{s}\right) \mu(d s)\right\}
\end{align*}
$$

where

$$
\begin{align*}
f(t, y, u, r, \theta)= & \int_{\mathbb{R}}(y+u(t, x))\left[\left\{1+\theta_{t}\left(e^{x}-1\right)\right\}^{\alpha}-1\right] \nu_{t}^{p}(d x) \tag{5.3}\\
& +\alpha \theta_{t} \sigma_{t} r+\left\{\alpha \theta_{t} \widehat{\mu}_{t}+\frac{\alpha(\alpha-1)}{2} \sigma_{t}^{2} \theta_{t}^{2}\right\} y
\end{align*}
$$

Moreover, the optimal strategy $\left(\theta^{*}, C^{*}\right)$ realizes the essential supremum in (5.2) and $C_{t}^{*}=\left(J_{t}\right)^{\frac{1}{\alpha-1}}, P$-a.s..

Proof. For any $(\theta, C) \in \underline{A}$ we apply the product rule to compute $\left(Z_{t}^{\theta, C}\right)^{\alpha} J_{t}$

$$
\begin{align*}
\left(Z_{t}^{\theta, C}\right)^{\alpha} J_{t}=z_{0}^{\alpha} J_{0} & +\int_{0}^{t} J_{s^{-}} d\left(Z_{s}^{\theta, C}\right)^{\alpha}+\int_{0}^{t}\left(Z_{s^{-}}^{\theta, C}\right)^{\alpha} d J_{s} \tag{5.4}\\
& +\sum_{s \leq t} \Delta\left(Z_{s}^{\theta, C}\right)^{\alpha} \Delta J_{s}+d\left\langle Z^{\theta, C}, J\right\rangle_{t}
\end{align*}
$$

Since by (5.1) and (4.6)

$$
\begin{aligned}
\Delta J_{s} & =\int_{\mathbb{R}} \Gamma(s, x) m(\{s\}, d x), \\
\Delta\left(Z_{s}^{\theta, C}\right)^{\alpha} & =\left(Z_{s^{-}}^{\theta, C}\right)^{\alpha} \int_{\mathbb{R}}\left[\left\{1+\theta_{s}\left(e^{x}-1\right)\right\}^{\alpha}-1\right] m(\{s\}, d x),
\end{aligned}
$$

we get that (5.4) becomes

$$
\begin{aligned}
d\left(\left(Z_{t}^{\theta, C}\right)^{\alpha} J_{t}\right)= & \left(Z_{t^{-}}^{\theta, C}\right)^{\alpha} d m_{t}^{J} \\
& +\left(Z_{t^{-}}^{\theta, C}\right)^{\alpha} J_{t^{-}}\left\{\frac{\alpha(\alpha-1)}{2} \sigma_{t}^{2} \theta_{t}^{2} d t+d M_{t}(\alpha)\right\}-\left(Z_{t^{-}}^{\theta, C}\right)^{\alpha} d A_{t} \\
& +\int_{\mathbb{R}}\left(J_{t^{-}}+\Gamma(t, x)\right)\left(Z_{t^{-}}^{\theta, C}\right)^{\alpha}\left[\left\{1+\theta_{t}\left(e^{x}-1\right)\right\}^{\alpha}-1\right] m(d t, d x) \\
& +\alpha \theta_{t} \sigma_{t} R_{t}\left(Z_{t}^{\theta, C}\right)^{\alpha} d t
\end{aligned}
$$

Then, taking into account Equation (4.6)

$$
\begin{aligned}
& d\left(\left(Z_{t}^{\theta, C}\right)^{\alpha} J_{t}\right) \\
& =d M_{t}^{J}-\left(Z_{t^{-}}^{\theta, C}\right)^{\alpha}\left[d A_{t}-\int_{\mathbb{R}}\left(J_{t}+\Gamma(t, x)\right)\left[\left\{1+\theta_{t}\left(e^{x}-1\right)\right\}^{\alpha}-1\right] \nu_{t}^{p}(d x) d t\right. \\
& \\
& \left.\quad-\frac{\alpha(\alpha-1)}{2} \sigma_{t}^{2} \theta_{t}^{2} J_{t} d t-\alpha J_{t}\left(\theta_{t} \widehat{\mu}_{t} d t-C_{t} \mu(d t)\right)-\alpha \theta_{t} \sigma_{t} R_{t} d t\right]
\end{aligned}
$$

with

$$
\begin{align*}
M_{t}^{J}=M_{0}^{J} & +\int_{0}^{t} \int_{\mathbb{R}}\left(Z_{s^{-}}^{\theta, C}\right)^{\alpha} \Gamma(s, x)\left\{1+\theta_{s}\left(e^{x}-1\right)\right\}^{\alpha} m^{S}(d s, d x) \tag{5.5}\\
& +\int_{0}^{t} \int_{\mathbb{R}}\left(Z_{s^{-}}^{\theta, C}\right)^{\alpha} J_{s^{-}}\left[\left\{1+\theta_{s}\left(e^{x}-1\right)\right\}^{\alpha}-1\right] m^{S}(d s, d x) \\
& +\alpha \int_{0}^{t} \theta_{s} \sigma_{s}\left(Z_{s}^{\theta, C}\right)^{\alpha} J_{s} d I_{s} .
\end{align*}
$$

Based on the above derivations, we obtain

$$
\begin{align*}
& d\left(\left(Z_{t}^{\theta, C}\right)^{\alpha} J_{t}\right)+C_{t}^{\alpha}\left(Z_{t}^{\theta, C}\right)^{\alpha} \mu(d t) \tag{5.6}\\
& \quad=d M_{t}^{J}-\left(Z_{t^{-}}^{\theta, C}\right)^{\alpha}\left[d A_{t}-f(t, J, \Gamma, R, \theta) d t-\left(C_{t}^{\alpha}-\alpha C_{t} J_{t}\right) \mu(d t)\right]
\end{align*}
$$

with $f(t, y, u, r, \theta)$ given by (5.3). Since, by the Bellman optimality principle (Proposition 4.4), $\forall(\theta, C) \in \underline{\mathrm{A}}$

$$
\begin{equation*}
\left(Z_{t}^{\theta, C}\right)^{\alpha} J_{t}+\int_{0}^{t} C_{r}^{\alpha}\left(Z_{r}^{\theta, C}\right)^{\alpha} \mu(d r) \tag{5.7}
\end{equation*}
$$

is a $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-supermartingale it follows that (5.5) is a $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$ - local martingale and $d A_{t}-f(t, J, \Gamma, R, \theta) d t-\left(C_{t}^{\alpha}-\alpha C_{t} J_{t}\right) \mu(d t) \geq 0$, which in turn implies

$$
d A_{t} \geq \operatorname{ess} \sup _{(\theta, C) \in \underline{\mathrm{A}}}\left[f(t, J, \Gamma, R, \theta) d t+\left(C_{t}^{\alpha}-\alpha C_{t} J_{t}\right) \mu(d t)\right] .
$$

On the other hand, again by the Bellman optimality principle, $\left(\theta^{*}, C^{*}\right) \in \underline{\mathrm{A}}$ is an optimal strategy if and only if the associated process given in (5.7) by replacing
(θ, C) by $\left(\theta^{*}, C^{*}\right)$ is a $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-martingale. Thus if and only if

$$
\begin{aligned}
d A_{t} & =f\left(t, J, \Gamma, R, \theta^{*}\right) d t+\left\{\left(C_{t}^{*}\right)^{\alpha}-\alpha C_{t}^{*} J_{t}\right\} \mu(d t) \\
& =\operatorname{ess} \sup _{(\theta, C) \in \underline{\mathrm{A}}}\left[f(t, J, \Gamma, R, \theta)+\left(C_{t}^{\alpha}-\alpha C_{t} J_{t}\right) \mu(d t)\right] .
\end{aligned}
$$

To conclude the proof, let us notice that since the essential supremum of $C_{t}^{\alpha}-\alpha C_{t} J_{t}$ is attained in $\left(J_{t}\right)^{\frac{1}{\alpha-1}}$ this implies that $C_{t}^{*}=\left(J_{t}\right)^{\frac{1}{\alpha-1}}, P$-a.s.

Remark 5.2. Conditions for existence of optimal strategies can be found in [14] for the case of terminal wealth and [15] for the case with consumption.

Remark 5.3. By Proposition 4.5, $\forall t \in[0, T] J_{t} \geq 1 P$-a.s., thus if $\left(\theta^{*}, C^{*}\right)$ is an optimal investment-consumption strategy then $C_{t}^{*}=\left(J_{t}\right)^{\frac{1}{\alpha-1}}$, which in turn implies that $\forall t \in[0, T], 0 \leq C_{t}^{*} \leq 1, P$-a.s.

We now study the utility maximization problem defined in (2.4) over the subset $\underline{\mathrm{A}}^{k} \subset \underline{\mathrm{~A}}$ of admissible strategies, $(\theta, C) \in \underline{\mathrm{A}}$, such that θ is uniformly bounded by k, with $k \geq 1$. In this frame the process J_{t} is replaced by

$$
\begin{equation*}
J_{t}^{k}=\operatorname{ess} \sup _{(\theta, C) \in \underline{\mathrm{A}}_{t}^{k}} \mathbb{E}\left[\left.\int_{t}^{T} \frac{\left(C_{s} Z_{s}\right)^{\alpha}}{Z_{t}^{\alpha}} d s+\frac{Z_{T}^{\alpha}}{Z_{t}^{\alpha}} \right\rvert\, \underline{\mathrm{F}}_{t}^{S}\right] \tag{5.8}
\end{equation*}
$$

here $\underline{\mathrm{A}}_{t}^{k}$ denotes the set of admissible strategies $\underline{\mathrm{A}}^{k}$ over $[t, T]$. We introduce for any $(\theta, C) \in \underline{\mathrm{A}}$ the process

$$
\xi_{t}^{\theta, C}:=\mathbb{E}\left[\left.\int_{t}^{T} \frac{\left(C_{s} Z_{s}\right)^{\alpha}}{Z_{t}^{\alpha}} d s+\frac{Z_{T}^{\alpha}}{Z_{t}^{\alpha}} \right\rvert\, \underline{\mathrm{F}}_{t}^{S}\right]
$$

Proposition 5.4. Let us assume $\forall t \in[0, T]$

$$
\begin{equation*}
|\widetilde{K}(t ; \zeta)| \leq c, \quad \lambda_{t}=\nu\left(D_{t}\right) \leq c, \quad\left|b_{t}\right| \leq c, \quad \sigma_{t} \leq c \quad P-a . s \tag{5.9}
\end{equation*}
$$

with c positive constant. Then, for any $(\theta, C) \in \underline{A}^{k}, \xi_{t}^{\theta, C}$ is uniformly bounded on t by a constant independent of (θ, C).
Proof. Firstly, we observe that assumptions (5.9) imply

$$
\widehat{\lambda_{t} \Phi_{t}}(\mathbb{R})=\mathbb{E}\left[\lambda_{t} \mid \underline{\underline{\underline{F}}}_{t}^{S}\right] \leq c \quad P \text {-a.s. }
$$

and since $\nu_{t}^{p}(d x)=\widehat{\lambda_{t} \Phi_{t}}(d x), d P \times d t$-a.e.

$$
\begin{equation*}
\int_{\mathbb{R}}\left|e^{x}-1\right| \nu_{t}^{p}(d x)=\int_{\mathbb{R}}\left|e^{x}-1\right| \widehat{\lambda_{t} \Phi_{t}}(d x)=\mathbb{E}\left[\int_{Z} \widetilde{K}(t ; \zeta) \nu(d \zeta) \mid \underline{\mathrm{F}}_{t}^{S}\right] \leq c^{2} \quad P \text {-a.s. } \tag{5.10}
\end{equation*}
$$

$\forall(\theta, C) \in \underline{\mathrm{A}}^{k}$ let us consider the probability measure $P^{\theta, \alpha}$ defined on $\underline{\mathrm{F}}_{T}^{S}$ as

$$
\left.\frac{d P^{\theta, \alpha}}{d P}\right|_{\underline{E}_{T}^{S}}=L_{T}^{\theta}=\operatorname{Exp}\left(M^{\theta, \alpha}\right)_{T}
$$

with

$$
M_{t}^{\theta, \alpha}:=\int_{0}^{t} \alpha \theta_{s} \sigma_{s} d I_{s}+\int_{0}^{t} \int_{\mathbb{R}}\left[\left(1+\theta_{s}\left(e^{x}-1\right)\right)^{\alpha}-1\right] m^{S}(d s, d x)
$$

By the Doléans-Dade exponential formula for all $t \leq s \leq T$

$$
\begin{aligned}
\frac{Z_{s}^{\alpha}}{Z_{t}^{\alpha}}=\frac{L_{s}^{\theta}}{L_{t}^{\theta}} \exp \left\{\alpha \int_{t}^{s}\left[\left(\theta_{r} \widehat{\mu}_{r}+\frac{\alpha-1}{2} \theta_{r}^{2} \sigma_{r}^{2}\right) d r-C_{r} \mu(d r)\right]\right. \\
\left.+\alpha \int_{t}^{s} \int_{Z}\left[\left(1+\theta_{r}\left(e^{x}-1\right)\right)^{\alpha}-1\right] \nu_{r}^{p}(d x) d r\right\}
\end{aligned}
$$

and, taking into account (4.5), we get

$$
\mathbb{E}\left[\left.\frac{Z_{s}^{\alpha}}{Z_{t}^{\alpha}} \right\rvert\, \underline{\mathrm{F}}_{t}^{S}\right] \leq \mathbb{E}^{\theta, \alpha}\left[\exp \left\{\alpha \int_{t}^{s}\left|\theta_{r} \widehat{\mu}_{r}\right| d r+\alpha \int_{t}^{s} \int_{Z}\left|\theta_{r}\right|\left|e^{x}-1\right| \nu_{r}^{p}(d x) d r\right\} \mid \underline{\mathrm{F}}_{t}^{S}\right]
$$

where $\mathbb{E}^{\theta, \alpha}$ denotes the expectation w.r.t. $P^{\theta, \alpha}$. Finally, by (5.9) and (5.10),

$$
\mathbb{E}\left[\left.\frac{Z_{s}^{\alpha}}{Z_{t}^{\alpha}} \right\rvert\, \underline{\mathrm{F}}_{t}^{S}\right] \leq e^{c(k)(s-t)} \quad P \text {-a.s. }
$$

with $c(k)$ a suitable positive constant independent of (θ, C), which in turn implies that $\forall t \in[0, T]$

$$
\xi_{t}^{\theta, C}=\mathbb{E}\left[\left.\int_{t}^{T} \frac{\left(C_{s} Z_{s}\right)^{\alpha}}{Z_{t}^{\alpha}} \mu^{0}(d s) \right\rvert\, \underline{\mathrm{F}}_{t}^{S}\right] \leq(k+1) e^{c(k) T} \quad P \text {-a.s. }
$$

Lemma 5.5. Under (5.9), $\forall(\theta, C) \in \underline{A}^{k}$, the process $\left\{\xi_{t}^{\theta, C}, \Gamma^{\theta, C}(t, x), R_{t}^{\theta, C}\right\}_{t \in[0, T]}$ is the unique solution in $\underline{S}^{2} \times \underline{L}_{\nu^{p}}^{2} \times \underline{L}^{2}$ to the BSDE

$$
\begin{align*}
\xi_{t}^{\theta, C}=1 & -\int_{t}^{T} \int_{\mathbb{R}} \Gamma^{\theta, C}(s, x) m^{S}(d s, d x)-\int_{t}^{T} R_{s}^{\theta, C} d I_{s} \tag{5.11}\\
& +\int_{t}^{T}\left[f\left(s, \xi^{\theta, C}, \Gamma^{\theta, C}, R^{\theta, C}, \theta\right) d s+\left(C_{s}^{\alpha}-\alpha C_{s} \xi_{s}^{\theta, C}\right) \mu(d s)\right]
\end{align*}
$$

with $f(s, y, u, r, \theta)$ given in (5.3).
Proof. As in [2] we consider the space $L\left(\mathbb{R}, \nu^{p}\right)$ of measurable functions $u(x)$ with the topology of convergence in measure and define for $u, \widetilde{u} \in L\left(\mathbb{R}, \nu^{p}\right)$,

$$
\begin{equation*}
\|u-\widetilde{u}\|_{t}=\left(\int_{\mathbb{R}}|u(x)-\widetilde{u}(x)|^{2} \nu_{t}^{p}(d x)\right)^{\frac{1}{2}} \tag{5.12}
\end{equation*}
$$

By (5.9), $\forall(\theta, C) \in \underline{\mathrm{A}}^{k}, u(x) \in L\left(\mathbb{R}, \nu^{p}\right)$ and $y \in \mathbb{R}$ there exists a positive constant $d(k)$, independent of (θ, C), such that

$$
\begin{align*}
& \int_{\mathbb{R}}(y+u(x))\left[\left\{1+\theta_{t}\left(e^{x}-1\right)\right\}^{\alpha}-1\right] \nu_{t}^{p}(d x) \tag{5.13}\\
& \quad \leq\left|\theta_{t}\right| \int_{\mathbb{R}}\{|y|+|u(x)|\}\left|e^{x}-1\right| \nu_{t}^{p}(d x) \leq d(k)\left\{|y|+\|u\|_{t}\right\} \quad P \text {-a.s. }
\end{align*}
$$

Observing that the generator of BSDE (5.11) is given by

$$
\begin{align*}
g(t, y, u, r, \theta, C)= & \int_{\mathbb{R}}(y+u(x))\left[\left\{1+\theta_{t}\left(e^{x}-1\right)\right\}^{\alpha}-1\right] \nu_{t}^{p}(d x) \tag{5.14}\\
& +\alpha \theta_{t} \sigma_{t} r+C_{t}^{\alpha}+\left\{\alpha\left(\theta_{t} \widehat{\mu}_{t}-C_{t}\right)+\frac{\alpha(\alpha-1)}{2} \sigma_{t}^{2} \theta_{t}^{2}\right\} y
\end{align*}
$$

in the case with intermediate consumption (by (5.14) without the part in C_{t} if there is no intermediate consumption), it follows that it is uniformly Lipschitz in (y, u, r). By classical results (see for instance Proposition 3.2 in [2]) there exists a unique solution $(\widetilde{\xi}, \widetilde{\Gamma}, \widetilde{\mathbb{R}}) \in \underline{\mathrm{S}}^{2} \times \underline{\mathrm{L}}^{2}{ }^{2} \times \underline{\mathrm{L}}^{2}$ to BSDE (5.11) and following the same computations as in the proof of Theorem 5.1 we get that

$$
d\left(\left(Z_{t}^{\theta, C}\right)^{\alpha} \widetilde{\xi}_{t}\right)+C_{t}^{\alpha}\left(Z_{t}^{\theta, C}\right)^{\alpha} \mu(d t)=d M_{t}^{\widetilde{\xi}}
$$

where

$$
\begin{aligned}
d M_{t}^{\widetilde{\xi}}= & \int_{\mathbb{R}}\left(Z_{t^{-}}^{\theta, C}\right)^{\alpha} \widetilde{\Gamma}(t, x)\left\{1+\theta_{t}\left(e^{x}-1\right)\right\}^{\alpha} m^{S}(d t, d x) \\
& +\int_{\mathbb{R}}\left(Z_{t^{-}}^{\theta, C}\right)^{\alpha} \widetilde{\xi}_{t^{-}}\left[\left\{1+\theta_{t}\left(e^{x}-1\right)\right\}^{\alpha}-1\right] m^{S}(d t, d x)+\alpha \theta_{t} \sigma_{t}\left(Z_{t}^{\theta, C}\right)^{\alpha} \widetilde{\xi}_{t} d I_{t} .
\end{aligned}
$$

Equation (4.6) and conditions (5.9) imply that $\forall(\theta, C) \in \underline{\mathrm{A}}^{k}$

$$
\sup _{t \in[0, T]}\left(Z_{t}^{\theta, C}\right)^{\alpha} \leq e^{d\left(N_{T}+\left|I_{T}\right|+T\right)} \quad P \text {-a.s. }
$$

where $N_{t}=m((0, t], \mathbb{R})$ and d is a suitable positive constant. Now, the intensity λ_{t} of the point process N_{t} is bounded by c, hence for any constant $b, \mathbb{E}\left[e^{b N_{T}}\right] \leq$ $e^{\left(e^{b}-1\right) c}$. This entails that $\forall(\theta, C) \in \underline{\mathrm{A}}^{k},\left(Z_{t}^{\theta, C}\right)^{\alpha}$ belongs to $\underline{\mathrm{S}}^{p}$, for any $p \geq 1$. Therefore $M_{t}^{\widetilde{\xi}}$ is a $\left(P, \underline{\mathrm{E}}_{t}^{S}\right)$-uniformly integrable martingale, whose t-time value is the $\underline{\mathrm{F}}_{t}^{S}$-conditional expectation of its terminal value, which implies that $\widetilde{\xi}_{t}=\xi_{t}^{\theta, C}$.

Now we are in a position to solve the investment-consumption problem in the case of bounded strategies.
Proposition 5.6. Under (5.9), the following hold:

- $\left(J_{t}^{k}, \Gamma^{k}(t, x), R_{t}^{k}\right) \in \underline{S}^{2} \times \underline{L}_{\nu^{p}}^{2} \times \underline{L}^{2}$ is the unique solution to BSDE

$$
\begin{align*}
J_{t}^{k}=1 & -\int_{t}^{T} \int_{\mathbb{R}} \Gamma^{k}(s, x) m^{S}(d s, d x)-\int_{t}^{T} R_{s}^{k} d I_{s} \tag{5.15}\\
& +\int_{t}^{T} \operatorname{ess} \sup _{(\theta, C) \in \underline{A}^{k}}\left[f\left(s, J^{k}, \Gamma^{k}, R^{k}, \theta\right) d s+\left(C_{s}^{\alpha}-\alpha C_{s} J_{s}^{k}\right) \mu(d s)\right]
\end{align*}
$$

with $f(s, y, u, r, \theta)$ given in (5.3).

- There exists an optimal strategy $\left(\theta^{k}, C^{k}\right) \in \underline{A}^{k}$ for (5.8).
- A strategy $\left(\theta^{k}, C^{k}\right) \in \underline{A}^{k}$ is optimal if and only if it attains the essential supremum in (5.15).

Proof. To prove that J^{k} is a solution to BSDE (5.15) we follow the same lines of the proof of Theorem 5.1. From Proposition 4.4, since $\left(\theta_{t}, C_{t}\right)=(0,0) \in \underline{\mathrm{A}}^{k}$, the process $\left\{J_{t}^{k}\right\}_{t \in[0, T]}$ is a $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-supermartingale and it admits a unique DoobMeyer decomposition

$$
J_{t}^{k}=m_{t}^{J^{k}}-A_{t}^{J^{k}}
$$

with $m_{t}^{J^{k}}$ a $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-local martingale and $A_{t}^{J^{k}}$ a nondecreasing $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-predictable process with $A_{0}^{J^{k}}=0$. By the martingale representation result there exist $\Gamma^{k}(t, x) \in \underline{\mathrm{L}}_{\nu^{p}, \text { loc }}^{1}$ and $R_{t}^{k} \in \underline{\mathrm{~L}}_{\mathrm{loc}}^{2}$ such that

$$
m_{t}^{J^{k}}=\int_{0}^{t} \int_{\mathbb{R}} \Gamma^{k}(s, x) m^{S}(d s, d x)+\int_{0}^{t} R_{s}^{k} d I_{s}
$$

Again by the Bellman optimality principle (Proposition 4.4)

$$
\begin{equation*}
\forall(\theta, C) \in \underline{\mathrm{A}}^{k}, \quad\left(Z_{t}^{\theta, C}\right)^{\alpha} J_{t}^{k}+\int_{0}^{t} C_{s}^{\alpha}\left(Z_{s}^{\theta, C}\right)^{\alpha} \mu(d s) \tag{5.16}
\end{equation*}
$$

is a $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-supermartingale. By applying the product rule and following the same computations as in the proof of Theorem 5.1 (see Equation (5.6)), we get that $\forall(\theta, C) \in \underline{\mathrm{A}}^{k}$
$d\left(\left(Z_{t}^{\theta, C}\right)^{\alpha} J_{t}^{k}\right)+C_{t}^{\alpha}\left(Z_{t}^{\theta, C}\right)^{\alpha} \mu(d t)=d M_{t}^{J^{k}}-\left(Z_{t^{-}}^{\theta, C}\right)^{\alpha}\left\{d A_{t}^{J^{k}}-d F(t, J, \Gamma, R, \theta, C)\right\}$
where $d F(t, y, u, r, \theta, C)=f(t, y, u, r, \theta) d t+\left(C^{\alpha}-\alpha C y\right) \mu(d t)$ and $M^{J^{k}}$ is a $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$ local martingale. As a consequence

$$
d A_{t}^{J^{k}} \geq \operatorname{ess} \sup _{(\widetilde{\theta}, \widetilde{C}) \in \underline{\mathrm{A}}^{k}} d F\left(t, J^{k}, \Gamma^{k}, R^{k}, \widetilde{\theta}, \widetilde{C}\right)
$$

and $\left(\theta^{k}, C^{k}\right) \in \underline{\mathrm{A}}^{k}$ is an optimal strategy for the problem (5.8) if and only if

$$
d A_{t}^{J^{k}} \geq \operatorname{ess} \sup _{(\widetilde{\theta}, \widetilde{C}) \in \underline{\mathrm{A}}^{k}} d F\left(t, J^{k}, \Gamma^{k}, R^{k}, \widetilde{\theta}, \widetilde{C}\right)=d F\left(t, J^{k}, \Gamma^{k}, R^{k}, \theta^{k}, C^{k}\right)
$$

Notice that for any fixed $\left(t, \omega, J^{k}, \Gamma^{k}, R^{k}\right), F\left(t, J^{k}, \Gamma^{k}, R^{k}, w_{1}, w_{2}\right)$ is continuous with respect to the pair $\left(w_{1}, w_{2}\right) \in[-k, k] \times[0,1]$, since the following inequality holds

$$
\left|\Gamma^{k}(t, x)\right|\left|\left\{1+w_{1}\left(e^{x}-1\right)\right\}^{\alpha}-1\right| \leq\left|\Gamma^{k}(t, x)\left\|w_{1}\right\| e^{x}-1\right|
$$

and, taking into account that $\Gamma^{k}(t, x)$ and $\left|e^{x}-1\right| \in \underline{L}_{\nu^{p}}^{2}$, we can apply Lebesgue's Theorem on dominated convergence. Therefore, by a predictable selection theorem we have that there exists $\left(\theta^{k}, C^{k}\right) \in \underline{A}^{k}$ which realizes the essential supremum of $F\left(t, J^{k}, \Gamma^{k}, R^{k}, \theta, C\right)$ over $\underline{\mathrm{A}}^{k}$. Hence $\left(\theta^{k}, C^{k}\right) \in \underline{\mathrm{A}}^{k}$ is an optimal strategy for the problem (5.8) and (J^{k}, Γ^{k}, R^{k}) solves BSDE (5.15).

It remains to prove uniqueness of the solutions to BSDE (5.15). It is sufficient to consider the case with intermediate consumption. Notice that the generator of

BSDE (5.15) in such a case can be written as

$$
\widetilde{g}(t, y, u, r)=\operatorname{ess} \sup _{(\theta, C) \in \underline{\mathrm{A}}^{k}} g(t, y, u, r, \theta, C),
$$

where $g(t, y, u, r, \theta, C)$ is given in (5.14).
Since we have, $\forall(y, u, r),(\widetilde{y}, \widetilde{u}, \widetilde{r}) \in \mathbb{R} \times L\left(\mathbb{R}, \nu^{p}\right) \times \mathbb{R}$

$$
\widetilde{g}(t, y, u, r) \leq \operatorname{ess} \sup _{(\theta, C) \in \underline{\mathrm{A}}^{k}}|g(t, y, u, r, \theta, C)-g(t, \widetilde{y}, \widetilde{u}, \widetilde{r}, \theta, C)|+g(t, \widetilde{y}, \widetilde{u}, \widetilde{r})
$$

by (5.9) and (5.13) we obtain

$$
\widetilde{g}(t, y, u, r)-\widetilde{g}(t, \widetilde{y}, \widetilde{u}, \widetilde{r}) \leq L\left(|y-\widetilde{y}|+\|u-\widetilde{u}\|_{t}+|r-\widetilde{r}|\right)
$$

(see (5.12) for the definition of $\|u-\widetilde{u}\|_{t}$) and by symmetry $g(t, y, u, r)$ is uniformly Lipschitz in (y, u, r).

Applying classical results it follows that $\left(J^{k}, \Gamma^{k}, R^{k}\right) \in \underline{\mathrm{S}}^{2} \times \underline{\mathrm{L}}_{\nu^{p}}^{2} \times \underline{\mathrm{L}}^{2}$ is the unique solution to BSDE (5.15).

We now come back to the non constrained case and we give a characterization of the value process J_{t} as the limit of the sequence $\left\{J_{t}^{k}\right\}_{k \geq 1}$. Let us observe that this result does not require the existence of an optimal investment-strategy for the investment-consumption problem (2.4).

Proposition 5.7. For any $t \in[0, T]$, we have that

$$
J_{t}=\lim _{k \rightarrow \infty} J_{t}^{k} \quad P \text {-a.s. }
$$

Proof. We follow the same lines of the proof of Theorem 4.1 in [17]. Fix $t \in[0, T]$, since $\underline{\mathrm{A}}_{t}^{k} \subset \underline{\mathrm{~A}}_{t}^{k+1} \forall k$, we have that $\left\{J_{t}^{k}\right\}_{k \geq 1}$ is an increasing sequence and we define the random variable

$$
J^{\prime}(t)=\lim _{k \rightarrow \infty} J_{t}^{k} \quad P \text {-a.s. }
$$

Now observing that $\underline{\mathrm{A}}_{t}^{k} \subset \underline{\mathrm{~A}}_{t} \forall k$, we get that $J_{t}^{k} \leq J_{t}$ and therefore $J^{\prime}(t) \leq J_{t}$ P-a.s.

Before proving the opposite inequality we first observe that by monotone convergence theorem for conditional expectation, since J_{t}^{k} are $\underline{\mathrm{F}}_{t}^{S}$-supermartingales $\forall k, J^{\prime}(t)$ is a $\underline{\mathrm{F}}_{t}^{S}$-supermartingale, and we can consider its càdlàg version which we denote by J_{t}^{\prime}. By the Doob-Meyer decomposition we can write

$$
d J_{t}^{\prime}=\int_{\mathbb{R}} \Gamma^{\prime}(t, x) m^{S}(d t, d x)+R_{t}^{\prime} d I_{t}-d A_{t}^{\prime}
$$

with $\Gamma^{\prime}(t, x) \in L_{\nu^{p}, \mathrm{loc}}^{1}, R_{t}^{\prime} \in L_{\mathrm{loc}}^{2}$ and A_{t}^{\prime} a nondecreasing $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-predictable process. Following the same computations as in Theorem 5.1 (see Equation (5.6)) the product rules gives, $\forall(\theta, C) \in \underline{\mathrm{A}}$

$$
\begin{align*}
& d\left(\left(Z_{t}^{\theta, C}\right)^{\alpha} J_{t}^{\prime}\right)+C_{t}^{\alpha}\left(Z_{t}^{\theta, C}\right)^{\alpha} \mu(d t) \tag{5.17}\\
& \quad=d M_{t}^{J^{\prime}}-\left(Z_{t^{-}}^{\theta, C}\right)^{\alpha}\left[d A_{t}^{\prime}-f\left(t, J^{\prime}, \Gamma^{\prime}, R^{\prime}, \theta, C\right) d t-\left(C^{\alpha}-\alpha C J_{t}^{\prime}\right) \mu(d t)\right]
\end{align*}
$$

where $M_{t}^{J^{\prime}}$ is a $\left(P, \underline{\underline{F}}_{t}^{S}\right)$-local martingale defined as in (5.5). We now want to prove that $\forall(\theta, C) \in \underline{\mathrm{A}}$

$$
\left(Z_{t}^{\theta, C}\right)^{\alpha} J_{t}^{\prime}+\int_{0}^{t} C_{s}^{\alpha}\left(Z_{s}^{\theta, C}\right)^{\alpha} \mu(d s)
$$

is a $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-supermartingales. Let $\underline{\widetilde{\mathrm{A}}}$ be the set of uniformly bounded admissible strategies. Since $\forall(\theta, C) \in \underline{\widetilde{A}}$ there exists $n \geq 1$ such that $(\theta, C) \in \underline{A}^{n}$, we have that $(\theta, C) \in \underline{\mathrm{A}}^{k} \forall k \geq n$, and taking into account Equation (5.16), that

$$
\left(Z_{t}^{\theta, C}\right)^{\alpha} J_{t}^{k}+\int_{0}^{t} C_{s}^{\alpha}\left(Z_{s}^{\theta, C}\right)^{\alpha} \mu(d s)
$$

is a $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-supermartingale. By monotone convergence theorem we derive that

$$
\forall(\theta, C) \in \underline{\widetilde{\mathrm{A}}}, \quad\left(Z_{t}^{\theta, C}\right)^{\alpha} J_{t}^{\prime}+\int_{0}^{t} C_{s}^{\alpha}\left(Z_{s}^{\theta, C}\right)^{\alpha} \mu(d s)
$$

is a $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-supermartingale and by Equation (5.17) we have

$$
\forall(\theta, C) \in \underline{\widetilde{A}}, \quad d A_{t}^{\prime}-\left[f\left(t, J^{\prime}, \Gamma^{\prime}, R^{\prime}, \theta, C\right) d t+\left(C^{\alpha}-\alpha C J_{t}^{\prime}\right) \mu(d t)\right] \geq 0
$$

Thus

$$
d A_{t}^{\prime} \geq \mathrm{ess} \sup _{(\theta, C) \in \underline{\tilde{\mathrm{A}}}}\left[f\left(t, J^{\prime}, \Gamma^{\prime}, R^{\prime}, \theta, C\right) d t+\left(C^{\alpha}-\alpha C J_{t}^{\prime}\right) \mu(d t)\right]
$$

Now, since $\forall(\theta, C) \in \underline{\mathrm{A}}, \theta_{t}=\lim _{k} \theta_{t}^{k}$ with $\theta_{t}^{k}=\theta_{t} \mathbb{\Pi}_{\left|\theta_{t}\right| \leq k} \in \underline{\widetilde{\mathbb{A}}}$, we get

$$
\begin{aligned}
& \text { ess } \sup _{(\theta, C) \in \widetilde{\mathrm{A}}}\left[f\left(t, J^{\prime}, \Gamma^{\prime}, R^{\prime}, \theta, C\right) d t+\left(C^{\alpha}-\alpha C J_{t}^{\prime}\right) \mu(d t)\right] \\
& =\operatorname{ess} \sup _{(\theta, C) \in \underline{\mathrm{A}}}\left[f\left(t, J^{\prime}, \Gamma^{\prime}, R^{\prime}, \theta, C\right) d t+\left(C^{\alpha}-\alpha C J_{t}^{\prime}\right) \mu(d t)\right]
\end{aligned}
$$

hence $d A_{t}^{\prime} \geq \operatorname{esssup}_{(\theta, C) \in \underline{\mathrm{A}}}\left[f\left(t, J^{\prime}, \Gamma^{\prime}, R^{\prime}, \theta, C\right) d t+\left(C^{\alpha}-\alpha C J_{t}^{\prime}\right) \mu(d t)\right]$. Again by (5.17)

$$
\forall(\theta, C) \in \underline{\mathrm{A}} \quad M_{t}^{J^{\prime}} \geq\left(Z_{t}^{\theta, C}\right)^{\alpha} J_{t}^{\prime}+\int_{0}^{t} C_{s}^{\alpha}\left(Z_{s}^{\theta, C}\right)^{\alpha} \mu(d s) \geq 0
$$

is a $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-supermartingale, since it is a non-negative local martingale. This implies that $\left(Z_{t}^{\theta, C}\right)^{\alpha} J_{t}^{\prime}+\int_{0}^{t} C_{s}^{\alpha}\left(Z_{s}^{\theta, C}\right)^{\alpha} \mu(d s)$ is a $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-supermartingale $\forall(\theta, C) \in \underline{\mathrm{A}}$. Finally, by Bellman principle $J_{t}^{\prime} \geq J_{t} P$-a.s. $\forall t \in[0, T]$ and this concludes the proof.

We conclude this section by giving a verification result for the general case and providing an example which can be solved using this result.
Proposition 5.8. Under the assumptions:
(i) there exists a solution $\left(\widetilde{J}_{t}, \widetilde{\Gamma}(t, x), \widetilde{R}_{t}\right)$ to BSDE (5.2) such that $M_{t}^{\widetilde{J}}$ defined in (5.5) is a $\left(P, \underline{E}_{t}^{S}\right)$-local martingale
(ii) there exists $\left(\theta^{*}, C^{*}\right) \in \underline{A}$ which attains the essential supremum in Equation (5.2) with $\left(J_{t}, \Gamma(t, x), \underline{R_{t}}\right)$ replaced by $\left(\widetilde{J_{t}}, \widetilde{\Gamma}(t, x), \widetilde{R}_{t}\right)$
(iii) $\xi_{t}^{\theta^{*}, C^{*}}$ is the unique solution to BSDE (5.11) associated with $\left(\theta^{*}, C^{*}\right)$.

Then $\widetilde{J}_{t}=J_{t} P$-a.s. for any $t \in[0, T]$, and $\left(\theta^{*}, C^{*}\right)$ is an optimal strategy.
Proof. Let $\left(\widetilde{J}_{t}, \widetilde{\Gamma}(t, x), \widetilde{R}_{t}\right)$ be a solution to $\operatorname{BSDE}(5.2)$, by applying the product rule and following the same computations as in the proof of Theorem 5.1 (see Equation (5.6)), we get that $\forall(\theta, C) \in \underline{\mathrm{A}}$

$$
\begin{aligned}
& d\left(\left(Z_{t}^{\theta, C}\right)^{\alpha} \widetilde{J}_{t}\right)+C_{t}^{\alpha}\left(Z_{t}^{\theta, C}\right)^{\alpha} \mu(d t) \\
& \quad=d M_{t}^{\widetilde{J}}-\left(Z_{t^{-}}^{\theta, C}\right)^{\alpha}\left\{\operatorname{ess} \sup _{(\widetilde{\theta}, \widetilde{C}) \in \underline{\mathrm{A}}} d F(t, \widetilde{J}, \widetilde{\Gamma}, \widetilde{R}, \widetilde{\theta}, \widetilde{C})-d F(t, \widetilde{J}, \widetilde{\Gamma}, \widetilde{R}, \theta, C)\right\}
\end{aligned}
$$

where $d F(t, y, u, r, \theta, C)=f(t, y, u, r, \theta) d t+\left(C^{\alpha}-\alpha C y\right) \mu(d t)$ and $M^{\widetilde{J}}$ is a $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$ local martingale such that $M_{0}^{\widetilde{J}}=z_{0}^{\alpha} J_{0}$. Notice now that

$$
M_{t}^{\widetilde{J}} \geq\left(Z_{t}^{\theta, C}\right)^{\alpha} \widetilde{J}_{t}+\int_{0}^{t} C_{s}^{\alpha}\left(Z_{s}^{\theta, C}\right)^{\alpha} d s \geq 0
$$

and since every non-negative local martingale is a supermartingale the process $M^{\widetilde{J}}$ is a $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-supermartingale.

Thus $\forall(\theta, C) \in \underline{\mathrm{A}},\left(Z_{t}^{\theta, C}\right)^{\alpha} \widetilde{J}_{t}+\int_{0}^{t} C_{s}^{\alpha}\left(Z_{s}^{\theta, C}\right)^{\alpha} d s$ is a $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-supermartingale, and from Bellman principle it yields that $\widetilde{J}_{t} \geq J_{t} P$-a.s. for any $t \in[0, T]$.

To prove the opposite inequality, let us observe that by (ii), \widetilde{J}_{t} solves BSDE Equation (5.11) associated to $\left(\theta^{*}, C^{*}\right) \in \underline{\mathrm{A}}$, and by (iii), $\widetilde{J}_{t}=\xi_{t}^{\theta^{*}, C^{*}} \leq$ $\operatorname{ess} \sup _{(\widetilde{\theta}, \widetilde{C}) \in \underline{\mathrm{A}}} \xi_{t}^{\theta, C}=J_{t}, P$-a.s. for any $t \in[0, T]$. Hence $\widetilde{J}_{t}=J_{t}, P$-a.s. and $\left(\theta^{*}, C^{*}\right)$ is an optimal strategy.

Example. We now present a particular model where the risky asset follows a geometric jump-diffusion driven by two independent point processes whose intensities are not directly observed by investors. Let us assume

$$
K(t ; \zeta)=\sum_{j=1}^{2} K_{j}(t) \mathbb{I}_{D_{j}(t)}(\zeta)
$$

with $K_{1}(t)>0, K_{2}(t)<0\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-predictable processes and $D_{j}(t), j=1,2$, $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-predictable processes taking values in $\underline{\mathrm{Z}}$. In this particular case the logreturn process solves

$$
d Y_{t}=b_{t} d t+\sigma_{t} d W_{t}+\sum_{j=1}^{2} K_{j}(t) N_{t}^{j}
$$

with $N_{t}^{j}=N\left((0, t), D_{j}(t)\right), j=1,2$, independent counting processes with $\left(P, \underline{\mathrm{~F}}_{t}\right)$ predictable intensities given by $\lambda_{t}^{j}=\nu\left(D_{j}(t)\right)$. In this model the agent can observe the processes $K_{j}(t)$ but not the intensities λ_{t}^{j}. As in the general case we assume σ_{t}
a strictly positive $\underline{\mathrm{F}}_{t}^{S}$-adapted process. The integer-valued random measure defined in (2.5) and its $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-predictable dual projection are given by

$$
m(d t, d x)=\sum_{j=1}^{2} \delta_{K_{j}(t)}(d x) N_{t}^{j}, \quad \nu^{p}(d t, d x)=\sum_{j=1}^{2} \delta_{K_{j}(t)}(d x) \widetilde{\lambda}_{t}^{j} d t
$$

respectively, where $\widetilde{\lambda}_{t}^{j}, j=1,2$, denote the $\left(P, \underline{\mathrm{~F}}_{t}^{S}\right)$-predictable intensities of N_{t}^{j}. From now on we assume $\forall t \in[0, T], P$-a.s.

$$
\begin{equation*}
\left|b_{t}\right| \leq A_{2},\left|\sigma_{t}\right| \leq A_{2}, A_{1} \leq \lambda_{t}^{j} \leq A_{2}, A_{1} \leq K_{j}(t) \leq A_{2}, j=1,2 \tag{5.18}
\end{equation*}
$$

with $A_{i}, i=1,2$, positive constants. We consider the case with intermediate consumption. The BSDE (5.2) adapted to this particular model is given by

$$
\begin{align*}
J_{t}=1 & -\sum_{j=1}^{2} \int_{t}^{T} \Gamma(s, j)\left(N_{t}^{j}-\widetilde{\lambda}_{t}^{j} d t\right)-\int_{t}^{T} R_{s} d I_{s} \tag{5.19}\\
& +\int_{t}^{T} \operatorname{ess} \sup _{(\theta, C) \in \underline{\mathrm{A}}} h(s, J, \Gamma(1), \Gamma(2), R, \theta, C) d s
\end{align*}
$$

where

$$
\begin{aligned}
h\left(t, y, u_{1}, u_{2}, r, \theta, C\right)= & \sum_{j=1}^{2}\left(y+u_{j}\right)\left[\left\{1+\theta_{t}\left(e^{K_{j}(t)}-1\right)\right\}^{\alpha}-1\right] \widetilde{\lambda}_{t}^{j} \\
& +\alpha \theta_{t} \sigma_{t} r+C_{t}^{\alpha}+\left\{\alpha\left(\theta_{t} \widehat{\mu}_{t}-C_{t}\right)+\frac{\alpha(\alpha-1)}{2} \sigma_{t}^{2} \theta_{t}^{2}\right\} y
\end{aligned}
$$

We begin by observing that by (4.3) any admissible trading strategy θ_{t} necessarily satisfies $\theta_{t} \in\left(-\frac{1}{e^{K_{1}(t)}-1}, \frac{1}{e^{K_{2}(t)}-1}\right)$ for a.e. t and assumption (5.18) yields that admissible investment strategies take values in a compact space. Following similar computations as those performed in the proofs of Lemma 5.5 and Proposition 5.6 we obtain that the generator of the BSDE (5.19) is uniformly Lipschitz in (y, u_{1}, u_{2}, r).

From classical results there exists a unique solution, $\left(\widetilde{J}_{t}, \widetilde{\Gamma}(t, 1), \widetilde{\Gamma}(t, 2), \widetilde{R}_{t}\right) \in$ $\underline{\mathrm{S}}^{2} \times \underline{\mathrm{L}}_{1}^{2} \times \underline{\mathrm{L}}_{2}^{2} \times \underline{\mathrm{L}}^{2}$, to the BSDE (5.19). Here $\underline{\mathrm{L}}_{i}^{2}$ denotes the space of \mathbb{R}-valued $\underline{\mathrm{F}}_{t}^{S}$-predictable processes $\{U(t)\}_{t \in[0, T]}$ such that $\mathbb{E} \int_{0}^{T}|U(t)|^{2} \widetilde{\lambda}_{t}^{i} d t<\infty$.

Finally, we have that for any fixed $\left(t, y, u_{1}, u_{2}, r\right)$ the essential supremum of $h\left(t, y, u_{1}, u_{2}, r, \theta, C\right)$ is achieved at $\left(\theta^{*}\left(t, y, u_{1}, u_{2}, r\right), C^{*}=y^{\frac{1}{\alpha-1}}\right)$ where $\theta^{*}\left(t, y, u_{1}, u_{2}, r\right)$ is such that $\left.\frac{\partial h}{\partial \theta}\right|_{\theta=\theta^{*}}=0$. Indeed, it is sufficient to observe that $\frac{\partial^{2} h}{\partial^{2} \theta}<0 P$-a.s. and that

$$
\lim _{\theta \rightarrow \frac{-1}{e^{K_{1}(t)}-1}} \frac{\partial h}{\partial \theta}=+\infty, \quad \lim _{\theta \rightarrow \frac{1}{e^{K_{2}(t)}-1}} \frac{\partial h}{\partial \theta}=-\infty \quad P \text {-a.s. }
$$

Proposition 5.8 implies that \widetilde{J}_{t} coincides with the opportunity process and the unique optimal investment-consumption strategy is given by

$$
\left(\theta_{t}^{*}, C_{t}^{*}\right)=\left(\theta^{*}\left(t, \widetilde{J}_{t}, \widetilde{\Gamma}(t, 1), \widetilde{\Gamma}(t, 2), \widetilde{R}_{t}\right),\left(\widetilde{J}_{t}\right)^{\frac{1}{\alpha-1}}\right)
$$

with $\left(\widetilde{J}_{t}, \widetilde{\Gamma}(t, 1), \widetilde{\Gamma}(t, 2), \widetilde{R}_{t}\right)$ unique solution of BSDE (5.19).

Acknowledgment

The author is grateful to an anonymous referee whose comments and suggestions allowed her to improve the paper.

References

[1] N. Bäuerle and U. Rieder, Portfolio optimization with jumps and unobservable intensity process. Math. Finance, 17 (2) (2007), 205-224.
[2] D. Becherer, Bounded solutions to backward SDE's with jumps for utility optimization, indifference hedging. Ann. Appl. Probab., 16 (4) (2006), 2027-2054.
[3] T. Bjork, Y. Kabanov, and W. Runggaldier, Bond market structure in presence of marked point processes. Math. Finance, 7 (2) (1997), 211-223.
[4] P. Brémaud, Point Processes, Queues. Springer-Verlag, 1980.
[5] C. Ceci, Risk minimizing hedging for a partially observed high frequency data model. Stochastics, 78 (1) (2006), 13-31.
[6] C. Ceci, Utility maximization with intermediate consumption under restricted information for jump market models. Int. J. Theor. Appl. Finance, 15 (6) (2012), 24-58.
[7] C. Ceci and K. Colaneri, Nonlinear filtering for jump diffusion observations. Adv. in Appl. Probab., 44 (3) (2012), 678-701.
[8] J. Cvitanic and I. Karatzas, Convex duality in constrained portfolio optimization. Ann. Appl. Probab., 2 (1992), 767-818.
[9] C. Doléans-Dade, Quelques applications de la formule de changement de variables pour le semi-martingales. Z. fur W., 16 (1970), 181-194.
[10] N. El Karoui, Les aspects probabilistes du contrôle stochastique. Lect. Notes Mathematics, 876 (1981), 74-239.
[11] Y. Hu, P. Imkeller, and M. Muller, Utility maximization in incomplete markets. Ann. Appl. Probab., 15 (3) (2005), 1691-1712.
[12] J. Jacod, Multivariate point processes: predictable projection, Radon-Nikodym derivatives, representation of martingales. Z. für W., 31 (1975), 235-253.
[13] J. Jacod and A. Shiryaev, Limit Theorems for Stochastic Processes. Springer, 2003.
[14] D. Kramkov and W. Schachermayer, The asymptotic elasticity of utility functions and optimal investment in incomplete markets. Ann. Appl. Probab., 9 (3) (1999), 904-950.
[15] I. Karatzas and G. Z̆itković, Optimal consumption from investment and random endowment in incomplete semimartingale markets. Ann. Probab., 31 (4) (2003), 18211858.
[16] P. Lakner, Utility maximization with partial information. Stoch. Process. Appl., 56 (1995), 247-273.
[17] T. Lim and N.C. Quenez, Exponential utility maximization in an incomplete market with defaults. Elec. J. Probab., 16 (2011), 1434-1464.
[18] T. Lim and N.C. Quenez, Portfolio Optimization in a Default Model under Full/Partial Information, arXiv:1003.6002v1 [q-fin.PM], 2010.
[19] R.S. Lipster and A.N. Shiryaev, Statistics of Random Processes I. Springer-Verlag, 1977.
[20] R. Merton, Optimal consumption, portfolio rules in a continuous time model. J. Econ. Theory, 3 (1971), 373-413.
[21] M. Nutz, The opportunity process for optimal consumption and investment with power utility. Math. Financ. Econ., 3 (2010), 139-159.
[22] M. Nutz, The Bellman equation for power utility maximization with semimartingales. Ann. Appl. Probab., 2 (1) (2012), 363-406.
[23] H. Pham and N.C. Quenez, Optimal portfolio in partially observed stochastic volatility models. Ann. Appl. Probab., 11 (1) (2001), 210-238.
[24] J. Sass, Utility maximization with convex constraints and partial information. Acta Appl. Math., 97 (2007), 221-238.
[25] T. Zariphopoulou, Consumption investment models with constraints. SIAM J. Control Optim., 30 (1994), 59-84.

Claudia Ceci
Dipartimento di Economia
Università di Chieti-Pescara
I-65127 Pescara, Italy
e-mail: ceci@sci.unich.it

[^0]: This work was partially supported by PRIN 2008 "Probabilitá e Finanza".

