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Optimal Investment-consumption
for Partially Observed Jump-diffusions

Claudia Ceci

Abstract. We deal with an optimal consumption-investment problem under
restricted information in a financial market where the risky asset price follows
a non-Markovian geometric jump-diffusion process. We assume that agents
acting in the market have access only to the information flow generated by
the stock price and that their individual preferences are modeled through a
power utility. We solve the problem with a two steps procedure. First, by
using filtering results we reduce the partial information problem to a full
information one involving only observable processes. Next, by using dynamic
programming, we characterize the value process and the optimal-consumption
strategy in terms of solution to a backward stochastic differential equation.
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1. Introduction

In this paper we study an extension of the classical Merton optimal investment-
consumption problem to a partially observable financial market in which asset
prices follow geometric jump-diffusions. A single agent manages his portfolio by
investing in a bond and in the stock asset !! and chooses a portfolio-consumption
strategy in order to maximize on a finite horizon his total expected utility from
consumption and terminal wealth. The agent’s information is described by the
natural filtration of the stock price process,{F"! }!∈[0,$ ], hence his decisions must

be adapted to {F"! }!∈[0,$ ] and this leads to a utility maximization problem under
restricted information.

This work was partially supported by PRIN 2008 “Probabilitá e Finanza”.
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Utility maximization problems in a full information setting have been largely
studied in the literature by using different approaches, such as convex duality
methods, stochastic control techniques based on the Hamilton–Jacobi–Bellman
equation or backward stochastic differential equations (see for example [2, 8, 11,
14, 17, 20, 21, 25] and references therein). Portfolio selection problems with partial
information have been studied among others in [16, 23, 24] in a continuous setting,
in [1, 18] for jump-diffusions and in [6] in the case where the risky asset follows
a Markov pure jump process. In [1] it is assumed that investors are only able
to observe the stock price process and not the Markov chain which drives the
jump intensity. In [18] a default model is studied where investors only observe
asset prices and default times, while the drift of the asset price dynamics and the
default intensities are not directly observable.

The contribution of this note consists in solving the utility maximization
problem with intermediate consumption under partial information in a general
jump-diffusion setting. More precisely, we do not assume Markovianity of the asset
price dynamics and we work with a jump component described by a general integer-
valued measure.

The outline of the paper is as follows. In Section 2, we describe the market
model and the optimal investment-consumption problem under restricted infor-
mation. In Section 3, by projection on the information flow we reduce the partial
observable problem to a full information one and we give a representation theorem
for F"! -martingales. In Section 4, we formulate the full information problem (with
respect to the filtration {F"! }!∈[0,$ ]) as a stochastic control problem. The special
form of the power utility leads to a factorization of the associated value process
into a part depending on the current wealth and the so-called opportunity process
"! ([21, 22]) around which our analysis is built. In Section 5, by using dynamic
programming we show that "! solves a backward stochastic differential equation
and we provide a feedback formula for the optimal consumption in terms of "!.
We discuss the particular case of bounded investment strategies and finally we
characterize the opportunity process in the case of non constrained strategies via
a sequence of solutions of Lipschitz BSDEs. We conclude the section providing
a verification result and giving as application a simplified model where the risky
asset dynamics is driven by two independent point processes whose intensities are
not directly observed by investors.

2. The market model and problem formulation

In this paper, we consider a complete filtered probability space (Ω, {F!}!∈[0,$ ], $ ) ⇐= text changed
endowed with a Brownian motion %! with values in ℝ and a Poisson random
measure &('(, ')) independent of %!. Here * is a fixed final time. The financial
market consists of a nonrisky asset, with price process normalized to unity, and
one risky asset with logreturn process +! given by the following jump-diffusion
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process

'+! = ,!'(+ -!'%! +

∫

%
.((; ))&('(, ')), +0 = 0. (2.1)

The mean measure of &('(, ')) is denoted by 0(')) '( with 0(')) a --finite mea-
sure on a measurable space (1,Z). The coefficients ,! and -! are progressive F!-
adapted processes with -! > 0 $ -a.s. ∀( ∈ [0, * ], and.((; )) is an ℝ-valued ($,F!)-
predictable process joint measurable w.r.t. ((, )) ∈ [0, * ]×1. We also assume some
requirements for (2.1) to be well defined

"
∫ $

0
∣,!∣'( <∞ "

∫ $

0
-2
! '( <∞ "

∫ $

0

∫

%
∣.((; ))∣0('))'( <∞ (2.2)

and which entail that +! has finite first moment. The price !! of the risky asset
follows a geometric jump-diffusion process given by

!! = !04
&! !0 ∈ ℝ+.

From Itô’s formula we get that !! solves the following differential equation

'!! = !!−

{
5!'(+ -!'%! +

∫

%
.̃((; ))&('(, '))

}

where

5! = ,! +
1

2
-2
! , .̃((; )) = 4'(!;() − 1.

We are interested in solving an optimal portfolio problem for an agent who has
access only to the observable flow generated by asset prices

F"! = -{!); 6 ≤ (} = F&! = -{+); 6 ≤ (} ⊆ F!.

We shall call this situation the case of partial information to distinguish it from
the case of full information where investors observe the whole filtration {F!}!∈[0,$ ].

We assume that {F"! }!∈[0,$ ] satisfies the usual conditions of right-continuity and
completeness.

The investor starts with initial capital 70 > 0, invests at any time ( ∈ [0, * ]
the fraction 8! of the wealth 1! in stock !! and also consumes at the rate 9!1!.
We consider both cases of utility from terminal wealth only and with intermediate
consumption. As in [21] and [22], to unify the notations we introduce the measure
5('() on [0, * ] by 5('() = 0 in the case without consumption and 5('() = '( in
the case with consumption and assume the convention 9$ = 1 (which means that
all the remaining wealth is consumed at time * ).

Because the agent’s information is described by the filtration {F"! }!∈[0,$ ]

the decisions (8!, 9!) must be adapted to F
"
! . By considering F

"
! -predictable, self-

financing trading strategies, the dynamics of the wealth process controlled by the
investment-consumption process (8!, 9!) evolves according with

'1! = 1!−

(
8!
'!!
!!−

− 9!5('()

)
, 10 = 70. (2.3)
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The solution process 1! to (2.3) of course depends on the chosen strategy (8, 9).
To be precise we should therefore denote the process 1! by 1

*,+
! but sometimes

we will suppress 8, 9.
For an agent with power utility

:(;) =
;,

<
0 < < < 1

the objective is to maximize over a suitable class of strategies A either the expected
utility from terminal wealth

sup
(*,+)∈A

"
[
:(1*,+

$ )
]

and with intermediate consumption

sup
(*,+)∈A

"
[ ∫ $

0
:(9!1

*,+
! ) '(+ :(1*,+

$ )

]
.

Defining 50('() = 5('() + ={$}('(), where =- denotes the Dirac measure at the
point >, both the cases can be written as

sup
(*,+)∈A

"
[ ∫ $

0
:(9!1

*,+
! )50('()

]
. (2.4)

Let us come back to the market model. We introduce the discrete random
measure ([4],[13]) associated to the jump component of +!

?('(, ';) =
∑

):Δ&" ∕=0

={),Δ&"}('(, ';) (2.5)

and observe that for any real-valued function @(;) the following equality holds
∫ !

0

∫

%
@(.(6; )))1I{'();() ∕=0}(6, ))&('6, ')) =

∫ !

0

∫

ℝ
@(;)?('6, ';). (2.6)

We recall Proposition 2.2 in [5] which provides the ($,F!)-local characteristics
of ?('(, ';) in terms of the measure 0(')).

Proposition 2.1. Let ∀( ∈ [0, * ], ∀A ∈ B(ℝ) (where B(ℝ) denotes the family of
Borel sets of ℝ)

B.
! (C) = {) ∈ 1 : .((, C; )) ∈ A ∖ {0}} ⊆ B!(C) = {) ∈ 1 : .((, C; )) ∕= 0}.

Under the assumption

"
∫ $

0
0(B)) '6 <∞ (2.7)

the ($,F!)-predictable projection of ? is given by

?/('(, ';) = D!Φ!(';)'(

where D! is a non-negative F!-predictable process and Φ!(';) is an F!-predictable
process taking values in the space of probability measures over (ℝ,B(ℝ)) and they
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satisfy ∀A ∈ B(ℝ)
?/('(, A) = D!Φ!(A)'( = 0(B.

! )'(. (2.8)

In particular D! = 0(B!) provides the ($,F!)-predictable intensity of the point
process &! = ?((0, (],ℝ) which counts the total number of jumps of + until time (.

Remark 2.2. Equation (2.8) can be also written as

?/('(, ';) = D!Φ!(';)'( =

∫

0!

='(!;()(';)0('))'(.

Let us observe that the local characteristics (D!,Φ!(';)) of ?('(, ';) are not ob-
servable by investors since the process .((; )) is not F"! -adapted.

The ($,F!)-semimartingale structure of the risky asset !! is described in the
following proposition.

Proposition 2.3. Under (2.2), (2.7) and in addition

"
∫ $

0

∫

%
∣.̃((; ))∣0(')) <∞ (2.9)

!! is a ($,F!)-semimartingale with the decomposition

!! = !0 +E"
! +A"

!

where

A"
! =

∫ !

0
!151'F +

∫ !

0

∫

ℝ
!1−(4

2 − 1)D1Φ1(';)'F

is a process with finite variation paths, and

E"
! =

∫ !

0
!1-1'%1 +

∫ !

0

∫

ℝ
!1−(4

2 − 1)(?('F, ';) − D1Φ1(';)'F)

is a ($,F!)-local martingale.

Proof. Under (2.2), (2.7) and (2.9), the process

∫ !

0
5)'6+

∫ !

0
-)'%)+

∫ !

0

∫

%
.̃(6;))&('6,'))

=

∫ !

0

{
5)+

∫

%
.̃(6;))0('))

}
'6+

∫ !

0
-)'%)+

∫ !

0

∫

%
.̃(6;))(&('6,'))−0('))'6)

is a ($,F!)-semimartingale, hence !! is a semimartingale being the Doléans-Dade
exponential of a semimartingale. The expressions of the processes A"

! and E"
!

follow by Equation (2.6). □
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3. Reduction to an optimization problem
with complete information

To solve the utility maximization problem under partial information we first reduce
it to a full information one involving only F"! -adapted processes. To this aim we
need to compute the ($,F"! )-predictable projection of the integer-valued measure
?('(, ';).

From now on we will denote by Ĝ! the ($,F
"
! )-optional projection of a generic

process G!, satisfying "∣G!∣ <∞ ∀( ∈ [0, * ], defined as the unique optional process
(in a $ -indistinguishable sense) such that for each F"! -stopping time H , Ĝ3 =
"[G3 ∣F"3 ] $ -a.s. on {H <∞}.

Remark 3.1. We recall two well-known facts: for every ($,F!)-martingale ?!, the
projection ?̂! is a ($,F

"
! )-martingale and that for any progressively measurable

process Ψ! with "
∫ $
0 ∣Ψ!∣'( <∞

ˆ∫ !

0
Ψ)'6−

∫ !

0
Ψ̂)'6

is a ($,F"! )-martingale. Note that this implies that I
∫ $
0 Ψ!'( = "

∫ $
0 Ψ̂!'(.

Let us denote by P(F"! ) the F
"
! -predictable --field on (0, * ]× Ω.

Proposition 3.2. Let us assume (2.7). The ($,F"
! )-predictable projection, 0/('(,

';), of ?('(, ';) is given by 0/('(, ';) = 0/! (';)'(, where 0/! (';) is a measure-

valued F"
! -predictable process satisfying 0/! (';) = (̂D!Φ!)(';), '$ × '(-a.e. More

precisely, for each J((, ;), P(F"
! )-measurable

"
[∫ $

0

∫

ℝ
J((, ;) 0/! (';)'(

]
= "

[∫ $

0

∫

ℝ
J((, ;)(̂D!Φ!)(';)'(

]

= "
[∫ $

0

∫

ℝ
J((, ;) ?('(, ';)

]
.

Proof. By definition of ($,F!)-predictable projection of the integer-valued mea-
sure ?('(, ';) it follows that, for each J((, ;) ($,F!)-predictable process jointly
measurable w.r.t. ((, ;) ∈ [0, * ]× ℝ, verifying the condition ⇐= disp

"
∫ $

0

∫

ℝ
∣J(F, ;)∣D1Φ1(';)'F <∞,

the process

?! =

∫ !

0

∫

ℝ
J(F, ;)(?('F, ';) − D1Φ1(';)'F) (3.1)
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is a ($,F!)-martingale. Let us now consider in (3.1) a process J((, ;) which is
($,F"! )-predictable. By Remark 3.1 we get that

∫ !

0

∫

ℝ
J(F, ;)?('F, ';) − "

[∫ !

0

∫

ℝ
J(F, ;)D1Φ1(';)'F∣F"

!

]

is a ($,F"! )-martingale, and
∫ !

0

∫

ℝ
J(F, ;)?('F, ';) −

∫ !

0

∫

ℝ
J(F, ;)D̂1Φ1(';)'F

is a ($,F"! )-martingale. In particular, for any A ∈ B(ℝ)

?((0, (], A)−
∫ !

0
0̂(B.

) )'6 = ?((0, (], A)−
∫ !

0

∫

.
D̂)Φ)(';)'6

is a ($,F"! )-martingale. Hence, since 0̂(B
.
! ) is a progressively measurable process,

it provides the ($,F"! )-intensity of &!(A) = ?((0, (], A) and as in [4, Theorem
T13] one can find a ($,F"! )-intensity, D

.
! , that is predictable. It suffices define D

.
! ,

for any A ∈ B(ℝ), as the Radon–Nikodym derivatives of $ ('C)0̂(B.
! )(C)'( w.r.t.

$ ('C)'( on P(F"! ). □

Throughout the paper we denote by ?"('(, ';) the ($,F"! )-compensated
martingale random measure

?"('(, ';) = ?('(, ';) − 0/! (';)'(

and we recall that, for anyJ((, ;), jointly measurable process, F"! -predictable such
that

"
∫ $

0

∫

%
∣J((, ;)∣0/! (';)'( <∞

(
resp.

∫ $

0

∫

%
∣J((, ;)∣0/! (';)'( <∞ $ -a.s.

)

the process
∫ $
0

∫
% J((, ;)?

"('(, ';) is a ($,F"! )-martingale (resp. local-martin-
gale).

Next, assuming

"
∫ $

0

∣,!∣
-!
'( <∞, (3.2)

and the volatility -! to be F
"
! -adapted, we introduce the innovation process

K! :=%! +

∫ !

0

1

-)
(,) − ,̂))'6.

By extending classical results in filtering theory ([19]) to our frame we have the
following

Proposition 3.3. Let -! to be F"
! -adapted. The random process {K!}!∈[0,$ ] is a

($,F"
! )-Wiener process.
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Proof. By Equation (2.6) we get that
∫
% .((; ))&('(, ')) =

∫
ℝ ; ?('(, ';). Hence,

taking into account Equation (2.1), we have

'K! =
1

-!

{
'+! − ,̂! −

∫

ℝ
; ?('(, ';)

}
,

which implies that K! is an F
"
! -adapted process. We now compute the following

conditional expectation, ∀6 ≤ (

"
[
K! − K) ∣ F")

]
= "

[∫ !

)

{
,4
-4

− ,̂4
-4

}
'L ∣ F")

]
+ I[%! −%) ∣ F") ].

Since, the first term of the right-hand side vanishes because of the properties of
the conditional expectation and the second one vanishes because %! is an F!-
Brownian motion and F"! ⊆ F! we get that K! is a ($,F"! )-martingale. Finally, the
thesis follows by the Lévy Theorem. □

Taking into account (2.6), Propositions 3.2 and 3.3, we are able to give the
($,F"! )-decompositions of the semimartingales +! and !!

+! = +0 +

∫ !

0

{
,̂) +

∫

ℝ
;0/(';)

}
'6+

∫ !

0
-)'K) +

∫ !

0

∫

ℝ
; ?"('6, ';) (3.3)

!! = !0 +

∫ !

0
!)

{
5̂) +

∫

ℝ
(42 − 1)0/) (';)

}
'6

+

∫ !

0
!)-)'K) +

∫ !

0

∫

ℝ
!)−(4

2 − 1)?"('6, ';).

(3.4)

Remark 3.4. Let us observe that by Proposition 3.2 and assumptions (2.9) we get
that

"
[ ∫ $

0

∫

ℝ
∣42 − 1∣0/! (';)'6

]
= "

[ ∫ $

0

∫

ℝ
∣42 − 1∣(̂D!Φ!)(';)'(

]

= "
[ ∫ $

0

∫

ℝ
∣42 − 1∣D!Φ!(';)'(

]
= "

∫ $

0

∫

%
∣.̃((; ))∣0(')) <∞.

By virtue of (3.4) the wealth process 1! induced by the investment-
consumption strategy (8!, 9!), satisfies

'1! = 1!−

(
8!5̂!'(− 9!5('() + 8!-!'K! + 8!

∫

ℝ
(42 − 1)?('(, ';)

)
.

Then the utility maximization problem defined in (2.4) can be now treated as a full
information problem since all the processes involved are adapted to the observable
flow {F"! }!∈[0,$ ].

The last part of this section is devoted to derive a martingale representation
theorem for ($,F"! )-martingales. Let us observe that from Proposition 3.3 it follows
that

F5! ∨ F6! ⊆ F"!
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where F6! = -{?((0, 6]×A); 6 ≤ (, A ∈ B(ℝ)}, and in general this inclusion holds
in a strict sense. From now on we will assume a stronger condition than (3.2),
that is

"
∫ $

0

(
,)
-)

)2

'6 <∞ $ -a.s. (3.5)

and we consider the positive local martingale defined as the Doléans-Dade expo-
nential of the ($,F!)-martingale −

∫ !
0

7"
8"
'%),

M! = Exp

(
−
∫ !

0

,)
-)
'%)

)
= exp

{
−
∫ !

0

,)
-)
'%) −

1

2

∫ !

0

(
,)
-)

)2

'6

}
.

We shall make the usual standing assumption

Assumption A: M! is a ($,F!)-martingale, that is "[M$ ] = 1.

Under this last assumption we can define on F$ a probability measureN equivalent
to $ such that

'N

'$
∣F#

= M$ . (3.6)

By Girsanov theorem the process

%̃! :=%! +

∫ !

0

,)
-)
'6

is a (N,F!)-Wiener process, moreover since by the definition of K! the following
equality is fulfilled

%̃! = K! +

∫ !

0

,̂)
-)
'6 (3.7)

it turns out that the process %̃! is F
"
! -adapted, and as a consequence

M̂! = "[M!∣F"! ] =
'N

'$
∣F$

!
= Exp

(
−
∫ !

0

,̂)
-)
'K)

)
. (3.8)

Let us notice that, by Jensen’s inequality and (3.5)

"
∫ $

0

(̂,!)2

-2
!

'( ≤ "
∫ $

0

,̂2!
-2
!

'( = "
∫ $

0

(
,!
-!

)2

'( <∞.

In order to derive a representation theorem for ($,F"! )-martingales we need an
additional assumption on -!. Since -! is F

"
! -adapted and F

"
! = F&! there exists

for each ( ∈ [0, * ] a Borel measurable J! : Bℝ[0, * ] → (0,+∞) such that -! =
J!(+.∧!) $ -a.s. Here Bℝ[0, * ] denotes the space of càdlàg ℝ-valued paths endowed
with the Skorokhod metric, and we assume that J! satisfies a global Lipschitz
condition on Bℝ[0, * ].

We summarize below all the conditions introduced in this section that we
shall use from now on

Assumptions B: Assumption A, (2.2), (2.7), (2.9), (3.5) and assume -! to be F
"
! -

adapted and such that J! satisfies a global Lipschitz condition on Bℝ[0, * ].
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Lemma 3.5. Under Assumptions B, the filtration F"
! coincides with the filtration

generated by %̃! and the jump measure ?('(, ';), that is

F"
! = F:̃

! ∨ F6
! .

Proof. Since %̃! and ?('(, ';) are F
"
! -adapted we have that F

:̃
! ∨ F6! ⊆ F"! . To

prove the converse, let us observe that, taking into account (3.3) and (3.7), the
process +! solves under the probability N, defined by (3.6), the following equation

driven by %̃! and ?('(, ';)

'+! = -!'%̃! +

∫

ℝ
; ?('(, ';). (3.9)

Finally, since -! = J!(+.∧!) $ -a.s. and J! : Bℝ[0, * ]→ (0,+∞) satisfies a global
Lipschitz condition onBℝ[0, * ], the stochastic functional differential equation (3.9)

has a unique strong solution F:̃! ∨ F6! -adapted, hence F"! = F&! ⊆ F:̃! ∨ F6! , and
this concludes the proof. □

Finally we are able to prove the announced martingale representation theo-
rem, which extend to a non-Markovian case Proposition 2.6 in [7].

Proposition 3.6. Under Assumptions B, every ($,F"
! )-local-martingale E! admits

the decomposition

E! =E0 +

∫ !

0

∫

ℝ
O((, ;)?"('6, ';) +

∫ !

0
P)'K)

where O((, ;) a F"
! -predictable process and P! a F"

! -adapted process such that
∫ $

0

∫

ℝ
∣O((, ;)∣0/! (';)'( <∞,

∫ $

0
P2
! '( <∞ $ -a.s.

Proof. Let N be the probability measure defined on F$ by (3.6). Notice that∫ $
0 0/! (ℝ)'( < ∞ $ -a.s. since

∫ $
0 0/! (ℝ)'( =

∫ $
0 D̂!'( $ -a.s. and, by (2.7),

"
∫ $
0 D̂!'( = "

∫ $
0 D!'( < ∞. Hence, recalling that F"! = F:̃! ∨ F6! we can ap-

ply Remark 3.2 in [3] which states that for any Ẽ!, (N,F
"
! )- local-martingale,

there exist two F"! -adapted processes Q̃((, ;) predictable and P̃! such that

Ẽ! = Ẽ0 +

∫ !

0

∫

ℝ
Õ(6, ;)?"('6, ';) +

∫ !

0
P̃)'%̃)

with ∫ $

0

∫

ℝ
∣Õ((, ;)∣0/! (';) <∞,

∫ $

0
P̃2
! '( <∞ N-a.s.

LetE! be a ($,F
"
! )-local martingale, by Kallianpur–Striebel formula Ẽ! =E!M̂

−1
!

is a (N,F"! )-local martingale, where M̂! is defined in (3.8). We can writeE! = Ẽ!M̂!
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and by the product rule we deduce

'E! = Ẽ!−'M̂! + M̂!−'Ẽ! + '
〈
Ẽ ;, M̂;

〉
!
+ '

(∑

)≤!

ΔẼ)ΔM̂)

)

= M̂!

(
P̃! −

,̂!
-!
Ẽ!

)
'K! +

∫

ℝ
M̂!− Õ((, ;)?

"('(, ';)

which gives the martingale representation for E! with P! = M̂!P̃! − 7̂!
8!
E! and

O((, ;) = M̂!− Õ((, ;). □

4. The optimal investment-consumption problem

In this section we focus on formulating the F"! -optimal investment-consumption
problem as a stochastic control problem. We begin by recalling that the wealth
process 1! satisfies

'1! = 1!−

(
8!
'!!
!!−

− 9!5('()

)
(4.1)

= 1!−

{
8!5̂!'(− 9!5('() + 8!-!'K! + 8!

∫

ℝ
(42 − 1)?('(, ';)

}
.

The set of admissible strategies A consists of all the pairs (8!, 9!), where 8! is an
ℝ-valued, F"! -predictable process and 9! a non-negative F

"
! -adapted process such

that 9$ = 1 and
∫ $

0

{
∣8!5̂! − 9!∣+ 82! -

2
! + ∣8!∣

∫

ℝ
∣42 − 1∣0/! (';)

}
'( <∞ $ -a.s. (4.2)

∀; ∈ ℝ 1 + 8!(4
2 − 1) > 0 '$ × '(-a.e. (4.3)

Proposition 4.1. Let {8!, 9!}!∈[0,$ ] be an admissible strategy. Then the wealth equa-

tion has a unique positive solution 1*,+
! given by

1*,+
! =704

∫ !
0

∫
ℝ log(1+*"(<

%−1))6(=),=2)+
∫ !
0 *"8"=5"+

∫ !
0 (*">̂"− 1

2 *
2
"8

2
")=)−

∫ !
0 +">(=)). (4.4)

Proof. Equation (4.1) can be written as '1! = 1!−'E
*,+
! , where from (4.2)

E*,+
! :=

∫ !

0
{8)5̂) + 8)

∫

ℝ
(42 − 1)0/) (';)}'6−

∫ !

0
9)5('6)

+

∫ !

0
8)-)'K) +

∫ !

0
8)

∫

ℝ
(42 − 1)?"('6, ';)

is a ($,F"! )-semimartingale. By the Doléans-Dade Theorem we get that there exists
a unique semimartingale 1*,+

! given by

1*,+
! = 70 4

?&,(
! − 1

2<(?&,()
)
>!Π)≤!(1 + ΔE

*,+
) )4−Δ?&,(

" .
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Moreover, 1*,+
! > 0 if and only if 1 + ΔE*,+

) = 1 +
∫
ℝ 8)(4

2 − 1)?({6}, ';) > 0
∀6 ≤ (, and this condition is implied by (4.3). Finally, by standard computation
we derive expression (4.4). □

Remark 4.2. Let us observe that the pair (8!, 9!) = (0, 0), ∀( ∈ [0, * ), is an
admissible strategy whose associated wealth is given by 10,0

! = 70.

Remark 4.3. For any (8, 9) ∈ A, the following inequality is fulfilled
∫

ℝ
∣(1 + 8!(4

2 − 1)), − 1∣0/! (';) ≤
∫

ℝ
∣8!∣∣42 − 1∣0/! (';) <∞ $ -a.s. (4.5)

As a consequence

E!(<) :=

∫ !

0

∫

ℝ
{[1 + 8)(4

2 − 1)], − 1}?"('6, ';) +

∫ !

0
<8)-)'K)

+

∫ !

0
<(8)5̂)'6− 9)5('6)) +

∫ !

0

∫

ℝ
{[1 + 8)(4

2 − 1)], − 1}0/) (';)'6

is a ($,F"! )-semimartingale and by (4.4), using standard computations, we have

1,
! = 7,0 4

1
2,(,−1)

∫ !
0 *2

"8
2
"=) Exp(E!(<)) (4.6)

where we recall Exp denotes the Doléans-Dade exponential.

From now on we shall furthermore assume that

sup
(*,+)∈A

"
[ ∫ $

0
(9!1!)

,50('()

]
<∞.

As usual in stochastic control frame we introduce the associated value process
which gives a dynamic extension of the optimization problem (2.4) to each initial
time ( ∈ [0, * ]. For any ( ∈ [0, * ], (8̄, 9̄) ∈ A, let us consider the set of strategies
coinciding with (8̄, 9̄) until time (

A!(8̄, 9̄) := {(8, 9) ∈ A : (8), 9)) = (8̄), 9̄)), 6 ≤ (}

and define the value process as

R!(8̄, 9̄) = ess sup
(*,+)∈A!(*̄,+̄)

"
[ ∫ $

!

(9)1)),

<
50('6) ∣ F"!

]
.

From the dynamic programming principle ([10]) ∀(8̄, 9̄) ∈ A

R!(8̄, 9̄) +

∫ !

0

(9̄)1 *̄,+̄
) ),

<
5('6)

is a ($,F"! )-supermartingale and (8
∗, 9∗) ∈ A is optimal for problem (2.4) if and

only if

R!(8
∗, 9∗) +

∫ !

0

(9∗
)1

*∗,+∗

) ),

<
5('6)
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is a ($,F"! )-martingale. By Equation (4.4) we get that, for any (8̄, 9̄) ∈ A

R!(8̄, 9̄) =
(1 *̄,+̄

! ),

<
"!

where the càdlàg process "! does not depend on (8̄, 9̄) and is defined as

"! = ess sup
(*,+)∈A!

"
[ ∫ $

!

(9)1)),

1,
!

50('6) ∣ F"!
]
, (4.7)

here A! denotes the set of admissible strategies over [(, * ]. The process "! is the
so-called opportunity process and it is a suitable tool to derive results about the
optimal investment-consumption strategy. In particular, the Bellman optimality
principle can be stated as follows.

Proposition 4.4. The following properties hold true:

(i) {"!}!∈[0,$ ] is the smallest càdlàg F"
! -adapted process s.t. "$ = 1 and ∀(8, 9) ∈

A, (1*,+
! ),"! +

∫ !
0 (9)1*,+

) ),5('6) is a ($,F"
! )-supermartingale.

(ii) (8∗, 9∗) ∈ A is an optimal investment-consumption strategy if and only if

(1*∗,+∗

! ),"! +
∫ !
0 (9

∗
)1

*∗,+∗

) ),5('6) is a ($,F"
! )-martingale.

We give now some other properties of the process "!.

Proposition 4.5. ∀( ∈ [0, * ], "! ≥ 1, $ -a.s. and sup!∈[0,$ ] "["!] ≤ "0 <∞.

Proof. Since (8!, 9!) = (0, 0) ∀( ∈ [0, * ) is an admissible strategy, by (4.7) we
get that "! ≥ 1 and, from Proposition 4.4, "! is a ($,F

"
! )-supermartingale. Then

"("!) ≤ "0, where "0 = ,
B*
0
sup(*,+)∈A "

[ ∫ $
0 :(9!1!)50('()

]
<∞. □

5. A BSDE approach

In this section, we address the problem of characterizing dynamically the oppor-
tunity process "!. In all this section we make the class of hypotheses summarized
in Assumptions B. First, let us fix some notations

∙ S/, 1 ≤ S ≤ +∞, denotes the space of ℝ-valued F"! -adapted stochastic pro-
cesses {J!}!∈[0,$ ] with ∥J∥S+ = ∥ sup!∈[0,$ ] ∣ J! ∣ ∥C+ <∞.

∙ L2D+ ( L1D+,loc ) denotes the space of ℝ-valued F"! -predictable processes
{:((, ;)}!∈[0,$ ] indexed by ; with

"
∫ $

0

∫

ℝ
∣ :((, ;) ∣20/! (';)'( <∞

(
resp.

∫ $

0

∫

ℝ
∣ :((, ;) ∣2 0/! (';)'( <∞, $ -a.s.

)
.
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∙ L2 (L2loc) denotes the space of ℝ-valued F"! -adapted processes {G!}!∈[0,$ ] with

"
∫ $

0
∣ G! ∣2 '( <∞

(
resp.

∫ $

0
∣ G! ∣2 '( <∞ $ -a.s.

)
.

From Proposition 4.4, since (8!, 9!) = (0, 0) ∈ A, the process {"!}!∈[0,$ ], is a

($,F"! )-supermartingale and it admits a unique Doob–Meyer decomposition

"! = ?E
! −A!

with ?E
! a ($,F

"
! )-local martingale and A! a nondecreasing ($,F

"
! )-predictable

process with A0 = 0. By the martingale representation result (Proposition 3.6)
there exist Γ((, ;) ∈ L1D+,loc and G! ∈ L2loc such that

?E
! =

∫ !

0

∫

ℝ
Γ(6, ;)?"('6, ';) +

∫ !

0
G)'K). (5.1)

Theorem 5.1. If there exists an optimal strategy (8∗, 9∗) ∈ A for the utility
maximization problem (2.4), the process {"!,Γ((, ;), G!}!∈[0,$ ] solves the follow-
ing BSDE

"! = 1−
∫ $

!

∫

ℝ
Γ(6, ;)?"('6, ';)−

∫ $

!
G)'K) (5.2)

+

∫ $

!
ess sup

(*,+)∈A

{
@(6, ",Γ, G, 8)'6+ (9,

) − <9)"))5('6)
}

where

@((, T, L, F, 8) =

∫

ℝ

(
T + L((, ;)

)[
{1 + 8!(4

2 − 1)}, − 1
]
0/! (';) (5.3)

+ <8!-!F +

{
<8!5̂! +

<(< − 1)
2

-2
! 8

2
!

}
T.

Moreover, the optimal strategy (8∗, 9∗) realizes the essential supremum in (5.2)

and 9∗
! = ("!)

1
*−1 , $ -a.s..

Proof. For any (8, 9) ∈ A we apply the product rule to compute (1*,+
! ),"!

(1*,+
! ),"! = 7,0 "0 +

∫ !

0
")−'(1

*,+
) ), +

∫ !

0
(1*,+

)− )
,'") (5.4)

+
∑

)≤!

Δ(1*,+
) ),Δ") + '

〈
1*,+, "

〉
!
.

Since by (5.1) and (4.6)

Δ") =

∫

ℝ
Γ(6, ;)?({6}, ';),

Δ(1*,+
) ), = (1*,+

)− )
,

∫

ℝ
[{1 + 8)(4

2 − 1)}, − 1]?({6}, ';),
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we get that (5.4) becomes

'
(
(1*,+

! ),"!
)
= (1*,+

!− ),'?E
!

+ (1*,+
!− ),"!−

{
<(< − 1)

2
-2
! 8

2
! '(+ 'E!(<)

}
− (1*,+

!− ),'A!

+

∫

ℝ

(
"!− + Γ((, ;)

)
(1*,+

!− ),
[
{1 + 8!(4

2 − 1)}, − 1
]
?('(, ';)

+ <8!-!G!(1
*,+
! ),'(.

Then, taking into account Equation (4.6)

'
(
(1*,+

! ),"!
)

= 'EE
! − (1*,+

!− ),
[
'A! −

∫

ℝ

(
"! + Γ((, ;)

)
[{1 + 8!(4

2 − 1)}, − 1]0/! (';)'(

− <(<− 1)
2

-2
! 8

2
! "!'(− <"!(8!5̂!'(− 9!5('())− <8!-!G!'(

]

with

EE
! =EE

0 +

∫ !

0

∫

ℝ
(1*,+

)− )
,Γ(6, ;){1 + 8)(4

2 − 1)},?"('6, ';) (5.5)

+

∫ !

0

∫

ℝ
(1*,+

)− )
,")−

[
{1 + 8)(4

2 − 1)}, − 1]?"('6, ';)

+ <

∫ !

0
8)-)(1

*,+
) ),")'K).

Based on the above derivations, we obtain

'
(
(1*,+

! ),"!
)
+ 9,

! (1
*,+
! ),5('() (5.6)

= 'EE
! − (1*,+

!− ),['A! − @((, ",Γ, G, 8)'(− (9,
! − <9!"!)5('()]

with @((, T, L, F, 8) given by (5.3). Since, by the Bellman optimality principle
(Proposition 4.4), ∀(8, 9) ∈ A

(1*,+
! ),"! +

∫ !

0
9,
1 (1

*,+
1 ),5('F) (5.7)

is a ($,F"! )-supermartingale it follows that (5.5) is a ($,F
"
! )- local martingale and

'A! − @((, ",Γ, G, 8)'(− (9,
! − <9!"!)5('() ≥ 0, which in turn implies

'A! ≥ ess sup
(*,+)∈A

[@((, ",Γ, G, 8)'(+ (9,
! − <9!"!)5('()].

On the other hand, again by the Bellman optimality principle, (8∗, 9∗) ∈ A is an
optimal strategy if and only if the associated process given in (5.7) by replacing
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(8, 9) by (8∗, 9∗) is a ($,F"! )-martingale. Thus if and only if

'A! = @((, ",Γ, G, 8∗)'(+ {(9∗
! )

, − <9∗
! "!}5('()

= ess sup
(*,+)∈A

[@((, ",Γ, G, 8) + (9,
! − <9!"!)5('()].

To conclude the proof, let us notice that since the essential supremum of9,
! −<9!"!

is attained in ("!)
1

*−1 this implies that 9∗
! = ("!)

1
*−1 , $ -a.s. □

Remark 5.2. Conditions for existence of optimal strategies can be found in [14]
for the case of terminal wealth and [15] for the case with consumption.

Remark 5.3. By Proposition 4.5, ∀( ∈ [0, * ] "! ≥ 1 $ -a.s., thus if (8∗, 9∗) is

an optimal investment-consumption strategy then 9∗
! = ("!)

1
*−1 , which in turn

implies that ∀( ∈ [0, * ], 0 ≤ 9∗
! ≤ 1, $ -a.s.

We now study the utility maximization problem defined in (2.4) over the
subset AF ⊂ A of admissible strategies, (8, 9) ∈ A, such that 8 is uniformly
bounded by U, with U ≥ 1. In this frame the process "! is replaced by

"F
! = ess sup

(*,+)∈A,
!

"
[ ∫ $

!

(9)1)),

1,
!

'6+
1,
$

1,
!

∣ F"!
]
, (5.8)

here AF
! denotes the set of admissible strategies A

F over [(, * ]. We introduce for
any (8, 9) ∈ A the process

V*,+! := "
[ ∫ $

!

(9)1)),

1,
!

'6+
1,
$

1,
!

∣ F"!
]
.

Proposition 5.4. Let us assume ∀( ∈ [0, * ]

∣.̃((; ))∣ ≤ W, D! = 0(B!) ≤ W, ∣,!∣ ≤ W, -! ≤ W $ -a.s. (5.9)

with W positive constant. Then, for any (8, 9) ∈ AF, V*,+! is uniformly bounded on
( by a constant independent of (8, 9).

Proof. Firstly, we observe that assumptions (5.9) imply

D̂!Φ!(ℝ) = "[D!∣F"! ] ≤ W $ -a.s.

and since 0/! (';) = D̂!Φ!(';), '$ × '(-a.e.
∫

ℝ
∣42 − 1∣0/! (';) =

∫

ℝ
∣42 − 1∣D̂!Φ!(';) = "

[ ∫

%
.̃((; ))0('))∣F"

!

]
≤ W2 $ -a.s.

(5.10)

∀(8, 9) ∈ AF let us consider the probability measure $ *,, defined on F"$ as

'$ *,,

'$
∣F$

#
= M*

$ = Exp(E
*,,)$
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with

E*,,
! :=

∫ !

0
<8)-)'K) +

∫ !

0

∫

ℝ
[(1 + 8)(4

2 − 1)), − 1]?"('6, ';)

By the Doléans-Dade exponential formula for all ( ≤ 6 ≤ *

1,
)

1,
!
=
M*
)

M*
!

exp

{
<

∫ )

!

[(
81 5̂1 +

<− 1
2

821-
2
1

)
'F − 915('F)

]

+ <

∫ )

!

∫

%
[(1 + 81(4

2 − 1)), − 1]0/1 (';)'F
}

and, taking into account (4.5), we get

"
[
1,
)

1,
!

∣F"!
]
≤ "*,,

[
exp

{
<

∫ )

!
∣815̂1∣'F + <

∫ )

!

∫

%
∣81∣∣42 − 1∣0/1 (';)'F

}
∣F"!

]

where "*,, denotes the expectation w.r.t. $ *,,. Finally, by (5.9) and (5.10),

"
[
1,
)

1,
!

∣F"!
]
≤ 4;(F)()−!) $ -a.s.

with W(U) a suitable positive constant independent of (8, 9), which in turn implies
that ∀( ∈ [0, * ]

V*,+! ="
[ ∫ $

!

(9)1)),

1,
!

50('6) ∣ F"!
]
≤ (U + 1)4;(F)$ $ -a.s. □

Lemma 5.5. Under (5.9), ∀(8, 9) ∈ AF, the process {V*,+! ,Γ*,+((, ;), G*,+
! }!∈[0,$ ]

is the unique solution in S2 × L2
D+ × L2 to the BSDE

V*,+! = 1−
∫ $

!

∫

ℝ
Γ*,+(6, ;)?"('6, ';) −

∫ $

!
G*,+

) 'K) (5.11)

+

∫ $

!

[
@(6, V*,+ ,Γ*,+, G*,+ , 8)'6+ (9,

) − <9)V
*,+
) )5('6)

]

with @(6, T, L, F, 8) given in (5.3).

Proof. As in [2] we consider the space M(ℝ, 0/) of measurable functions L(;) with
the topology of convergence in measure and define for L, L̃ ∈ M(ℝ, 0/),

∥L− L̃∥! =
(∫

ℝ
∣L(;) − L̃(;)∣20/! (';)

) 1
2

. (5.12)

By (5.9), ∀(8, 9) ∈ AF, L(;) ∈ M(ℝ, 0/) and T ∈ ℝ there exists a positive constant
'(U), independent of (8, 9), such that

∫

ℝ

(
T + L(;)

)[
{1 + 8!(4

2 − 1)}, − 1
]
0/! (';) (5.13)

≤ ∣8!∣
∫

ℝ

{
∣T∣+ ∣L(;)∣

}
∣42 − 1∣0/! (';) ≤ '(U){∣T∣+ ∥L∥!} $ -a.s.
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Observing that the generator of BSDE (5.11) is given by

X((, T, L, F, 8, 9) =

∫

ℝ

(
T + L(;)

)[
{1 + 8!(4

2 − 1)}, − 1
]
0/! (';) (5.14)

+ <8!-!F + 9,
! +

{
<(8!5̂! − 9!) +

<(<− 1)
2

-2
! 8

2
!

}
T

in the case with intermediate consumption (by (5.14) without the part in 9! if
there is no intermediate consumption), it follows that it is uniformly Lipschitz in
(T, L, F). By classical results (see for instance Proposition 3.2 in [2]) there exists a

unique solution (Ṽ, Γ̃, ℝ̃) ∈ S2 × L2D+ × L2 to BSDE (5.11) and following the same
computations as in the proof of Theorem 5.1 we get that

'
(
(1*,+

! ),Ṽ!
)
+ 9,

! (1
*,+
! ),5('() = 'E G̃

!

where

'E G̃
! =

∫

ℝ
(1*,+

!− ),Γ̃((, ;){1 + 8!(4
2 − 1)},?"('(, ';)

+

∫

ℝ
(1*,+

!− ),Ṽ!−
[
{1 + 8!(4

2 − 1)}, − 1
]
?"('(, ';) + <8!-!(1

*,+
! ),Ṽ!'K!.

Equation (4.6) and conditions (5.9) imply that ∀(8, 9) ∈ AF

sup
!∈[0,$ ]

(1*,+
! ), ≤ 4=(H#+∣5# ∣+$ ) $ -a.s.

where &! = ?((0, (],ℝ) and ' is a suitable positive constant. Now, the intensity
D! of the point process &! is bounded by W, hence for any constant ,, "[47H# ] ≤
4(<

-−1);. This entails that ∀(8, 9) ∈ AF, (1*,+
! ), belongs to S/, for any S ≥ 1.

Therefore E G̃
! is a ($,F

"
! )-uniformly integrable martingale, whose (-time value is

the F"! -conditional expectation of its terminal value, which implies that Ṽ! = V*,+! .
□

Now we are in a position to solve the investment-consumption problem in
the case of bounded strategies.

Proposition 5.6. Under (5.9), the following hold:

∙ ("F
! ,Γ

F((, ;), GF
! ) ∈ S2 × L2

D+ × L2 is the unique solution to BSDE

"F
! = 1−

∫ $

!

∫

ℝ
ΓF(6, ;)?"('6, ';) −

∫ $

!
GF

)'K) (5.15)

+

∫ $

!
ess sup

(*,+)∈A,

[@(6, "F,ΓF, GF, 8)'6+ (9,
) − <9)"

F
) )5('6)]

with @(6, T, L, F, 8) given in (5.3).
∙ There exists an optimal strategy (8F, 9F) ∈ AF for (5.8).
∙ A strategy (8F, 9F) ∈ AF is optimal if and only if it attains the essential

supremum in (5.15).
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Proof. To prove that "F is a solution to BSDE (5.15) we follow the same lines
of the proof of Theorem 5.1. From Proposition 4.4, since (8!, 9!) = (0, 0) ∈ AF,
the process {"F

! }!∈[0,$ ] is a ($,F
"
! )-supermartingale and it admits a unique Doob–

Meyer decomposition

"F
! = ?E,

! −AE,

!

with ?E,

! a ($,F"! )-local martingale and A
E,

! a nondecreasing ($,F"! )-predictable

process with AE,

0 = 0. By the martingale representation result there exist
ΓF((, ;) ∈ L1D+,loc and G

F
! ∈ L2loc such that

?E,

! =

∫ !

0

∫

ℝ
ΓF(6, ;)?"('6, ';) +

∫ !

0
GF

)'K).

Again by the Bellman optimality principle (Proposition 4.4)

∀(8, 9) ∈ AF, (1*,+
! ),"F

! +

∫ !

0
9,
) (1

*,+
) ),5('6) (5.16)

is a ($,F"! )-supermartingale. By applying the product rule and following the same
computations as in the proof of Theorem 5.1 (see Equation (5.6)), we get that
∀(8, 9) ∈ AF

'
(
(1*,+

! ),"F
!

)
+9,

! (1
*,+
! ),5('() = 'EE,

! − (1*,+
!− ),

{
'AE,

! − 'Y ((, ",Γ, G, 8, 9)
}

where 'Y ((, T, L, F, 8, 9) = @((, T, L, F, 8)'(+(9,−<9T)5('() andEE,
is a ($,F"! )-

local martingale. As a consequence

'AE,

! ≥ ess sup
(*̃,+̃)∈A,

'Y ((, "F,ΓF, GF, 8̃, 9̃)

and (8F, 9F) ∈ AF is an optimal strategy for the problem (5.8) if and only if

'AE,

! ≥ ess sup
(*̃,+̃)∈A,

'Y ((, "F,ΓF, GF, 8̃, 9̃) = 'Y ((, "F,ΓF, GF, 8F, 9F).

Notice that for any fixed ((, C, "F,ΓF, GF), Y ((, "F,ΓF, GF, Z1, Z2) is continu-
ous with respect to the pair (Z1, Z2) ∈ [−U, U]×[0, 1], since the following inequality
holds

∣ΓF((, ;)∣∣{1 + Z1(4
2 − 1)}, − 1∣ ≤ ∣ΓF((, ;)∣∣Z1∣∣42 − 1∣

and, taking into account that ΓF((, ;) and ∣42− 1∣ ∈ L2D+ , we can apply Lebesgue’s
Theorem on dominated convergence. Therefore, by a predictable selection theorem
we have that there exists (8F, 9F) ∈ AF which realizes the essential supremum of
Y ((, "F,ΓF, GF, 8, 9) over AF. Hence (8F, 9F) ∈ AF is an optimal strategy for the
problem (5.8) and ("F,ΓF, GF) solves BSDE (5.15).

It remains to prove uniqueness of the solutions to BSDE (5.15). It is sufficient
to consider the case with intermediate consumption. Notice that the generator of
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BSDE (5.15) in such a case can be written as

X̃((, T, L, F) = ess sup
(*,+)∈A,

X((, T, L, F, 8, 9),

where X((, T, L, F, 8, 9) is given in (5.14).
Since we have, ∀(T, L, F), (T̃, L̃, F̃) ∈ ℝ× M(ℝ, 0/)× ℝ
X̃((, T, L, F) ≤ ess sup

(*,+)∈A,

∣X((, T, L, F, 8, 9)− X((, T̃, L̃, F̃, 8, 9)∣+ X((, T̃, L̃, F̃)

by (5.9) and (5.13) we obtain

X̃((, T, L, F)− X̃((, T̃, L̃, F̃) ≤ M
(
∣T − T̃∣+ ∥L− L̃∥! + ∣F − F̃∣

)

(see (5.12) for the definition of ∥L− L̃∥!) and by symmetry X((, T, L, F) is uniformly
Lipschitz in (T, L, F).

Applying classical results it follows that ("F,ΓF, GF) ∈ S2 × L2D+ × L2 is the
unique solution to BSDE (5.15). □

We now come back to the non constrained case and we give a characterization
of the value process "! as the limit of the sequence {"F

! }F≥1. Let us observe that
this result does not require the existence of an optimal investment-strategy for the
investment-consumption problem (2.4).

Proposition 5.7. For any ( ∈ [0, * ], we have that

"! = lim
F→∞

"F
! $ -a.s.

Proof. We follow the same lines of the proof of Theorem 4.1 in [17]. Fix ( ∈ [0, * ],
since AF

! ⊂ AF+1
! ∀U, we have that {"F

! }F≥1 is an increasing sequence and we define
the random variable

" ′(() = lim
F→∞

"F
! $ -a.s.

Now observing that AF
! ⊂ A! ∀U, we get that "F

! ≤ "! and therefore " ′(() ≤ "!
$ -a.s.

Before proving the opposite inequality we first observe that by monotone
convergence theorem for conditional expectation, since "F

! are F
"
! -supermartingales

∀U, " ′(() is a F"! -supermartingale, and we can consider its càdlàg version which
we denote by " ′

!. By the Doob–Meyer decomposition we can write

'" ′
! =

∫

ℝ
Γ′((, ;)?"('(, ';) +G′

!'K! − 'A′
!

with Γ′((, ;) ∈ M1
D+,loc, G

′
! ∈ M2

loc and A′
! a nondecreasing ($,F

"
! )-predictable

process. Following the same computations as in Theorem 5.1 (see Equation (5.6))
the product rules gives, ∀(8, 9) ∈ A

'
(
(1*,+

! )," ′
!

)
+ 9,

! (1
*,+
! ),5('() (5.17)

= 'EE′

! − (1*,+
!− ), ['A′

! − @((, " ′,Γ′, G′, 8, 9)'(− (9, − <9" ′
!)5('()]
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whereEE′

! is a ($,F"! )-local martingale defined as in (5.5). We now want to prove
that ∀(8, 9) ∈ A

(1*,+
! )," ′

! +

∫ !

0
9,
) (1

*,+
) ),5('6)

is a ($,F"! )-supermartingales. Let Ã be the set of uniformly bounded admissible
strategies. Since ∀(8, 9) ∈ Ã there exists [ ≥ 1 such that (8, 9) ∈ AI, we have
that (8, 9) ∈ AF ∀U ≥ [, and taking into account Equation (5.16), that

(1*,+
! ),"F

! +

∫ !

0
9,
) (1

*,+
) ),5('6)

is a ($,F"! )-supermartingale. By monotone convergence theorem we derive that

∀(8, 9) ∈ Ã, (1*,+
! )," ′

! +

∫ !

0
9,
) (1

*,+
) ),5('6)

is a ($,F"! )-supermartingale and by Equation (5.17) we have

∀(8, 9) ∈ Ã, 'A′
! − [@((, " ′,Γ′, G′, 8, 9)'(+ (9, − <9" ′

!)5('()] ≥ 0.
Thus

'A′
! ≥ ess sup

(*,+)∈Ã
[@((, " ′,Γ′, G′, 8, 9)'(+ (9, − <9" ′

!)5('()].

Now, since ∀(8, 9) ∈ A, 8! = limF 8F! with 8
F
! = 8!1I∣*!∣≤F ∈ Ã, we get

ess sup
(*,+)∈Ã

[@((, " ′,Γ′, G′, 8, 9)'(+ (9, − <9" ′
!)5('()]

= ess sup
(*,+)∈A

[@((, " ′,Γ′, G′, 8, 9)'( + (9, − <9" ′
!)5('()]

hence 'A′
! ≥ ess sup(*,+)∈A[@((, "

′,Γ′, G′, 8, 9)'( + (9, − <9" ′
!)5('()]. Again by

(5.17)

∀(8, 9) ∈ A EE′

! ≥ (1*,+
! )," ′

! +

∫ !

0
9,
) (1

*,+
) ),5('6) ≥ 0

is a ($,F"! )-supermartingale, since it is a non-negative local martingale. This im-

plies that (1*,+
! )," ′

!+
∫ !
0 9

,
) (1

*,+
) ),5('6) is a ($,F"! )-supermartingale ∀(8, 9) ∈ A.

Finally, by Bellman principle " ′
! ≥ "! $ -a.s. ∀( ∈ [0, * ] and this concludes the

proof. □
We conclude this section by giving a verification result for the general case

and providing an example which can be solved using this result.

Proposition 5.8. Under the assumptions:

(i) there exists a solution ("̃!, Γ̃((, ;), G̃!) to BSDE (5.2) such that E Ẽ
! defined

in (5.5) is a ($,F"
! )-local martingale

(ii) there exists (8∗, 9∗) ∈ A which attains the essential supremum in Equation
(5.2) with ("!,Γ((, ;), G!) replaced by ("̃!, Γ̃((, ;), G̃!)
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(iii) V*
∗,+∗

! is the unique solution to BSDE (5.11) associated with (8∗, 9∗).

Then "̃! = "! $ -a.s. for any ( ∈ [0, * ], and (8∗, 9∗) is an optimal strategy.

Proof. Let ("̃!, Γ̃((, ;), G̃!) be a solution to BSDE (5.2), by applying the product
rule and following the same computations as in the proof of Theorem 5.1 (see
Equation (5.6)), we get that ∀(8, 9) ∈ A

'
(
(1*,+

! ),"̃!
)
+ 9,

! (1
*,+
! ),5('()

= 'E Ẽ
! − (1*,+

!− ),
{
ess sup

(*̃,+̃)∈A
'Y ((, "̃ , Γ̃, G̃, 8̃, 9̃)− 'Y ((, "̃ , Γ̃, G̃, 8, 9)

}

where 'Y ((, T, L, F, 8, 9) = @((, T, L, F, 8)'(+(9,−<9T)5('() andE Ẽ is a ($,F"! )-

local martingale such that E Ẽ
0 = 7,0 "0. Notice now that

E Ẽ
! ≥ (1*,+

! ),"̃! +

∫ !

0
9,
) (1

*,+
) ),'6 ≥ 0

and since every non-negative local martingale is a supermartingale the processE Ẽ

is a ($,F"! )-supermartingale.

Thus ∀(8, 9) ∈ A, (1*,+
! ),"̃!+

∫ !
0 9

,
) (1

*,+
) ),'6 is a ($,F"! )-supermartingale,

and from Bellman principle it yields that "̃! ≥ "! $ -a.s. for any ( ∈ [0, * ].
To prove the opposite inequality, let us observe that by (ii), "̃! solves

BSDE Equation (5.11) associated to (8∗, 9∗) ∈ A, and by (iii), "̃! = V*
∗,+∗

! ≤
ess sup(*̃,+̃)∈A V

*,+
! = "!, $ -a.s. for any ( ∈ [0, * ]. Hence "̃! = "!, $ -a.s. and

(8∗, 9∗) is an optimal strategy. □

Example. We now present a particular model where the risky asset follows a geo-
metric jump-diffusion driven by two independent point processes whose intensities
are not directly observed by investors. Let us assume

.((; )) =
2∑

J=1

.J(()1I0.(!)())

with .1(() > 0,.2(() < 0 ($,F"! )-predictable processes and BJ((), \ = 1, 2,
($,F"! )-predictable processes taking values in Z. In this particular case the logre-
turn process solves

'+! = ,!'(+ -!'%! +
2∑

J=1

.J(()&
J
!

with & J
! = &((0, (), BJ(()), \ = 1, 2, independent counting processes with ($,F!)-

predictable intensities given by DJ! = 0(BJ(()). In this model the agent can observe

the processes .J(() but not the intensities D
J
! . As in the general case we assume -!
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a strictly positive F"! -adapted process. The integer-valued random measure defined
in (2.5) and its ($,F"! )-predictable dual projection are given by

?('(, ';) =
2∑

J=1

='.(!)(';)&
J
! , 0/('(, ';) =

2∑

J=1

='.(!)(';)D̃
J
!'(

respectively, where D̃J! , \ = 1, 2, denote the ($,F
"
! )-predictable intensities of &

J
! .

From now on we assume ∀( ∈ [0, * ], $ -a.s.

∣,!∣ ≤ A2, ∣-!∣ ≤ A2, A1 ≤ DJ! ≤ A2, A1 ≤ .J(() ≤ A2, \ = 1, 2 (5.18)

with AK, ] = 1, 2, positive constants. We consider the case with intermediate con-
sumption. The BSDE (5.2) adapted to this particular model is given by

"! = 1−
2∑

J=1

∫ $

!
Γ(6, \)(& J

! − D̃J!'()−
∫ $

!
G)'K) (5.19)

+

∫ $

!
ess sup

(*,+)∈A
ℎ(6, ",Γ(1),Γ(2), G, 8, 9)'6

where

ℎ((, T, L1, L2, F, 8, 9) =
2∑

J=1

(
T + LJ

)[
{1 + 8!(4

'.(!) − 1)}, − 1
]
D̃J!

+ <8!-!F + 9,
! +

{
<(8!5̂! − 9!) +

<(< − 1)
2

-2
! 8

2
!

}
T.

We begin by observing that by (4.3) any admissible trading strategy 8! necessarily

satisfies 8! ∈
(
− 1

</1(!)−1
, 1
</2(!)−1

)
for a.e. ( and assumption (5.18) yields that

admissible investment strategies take values in a compact space. Following similar
computations as those performed in the proofs of Lemma 5.5 and Proposition
5.6 we obtain that the generator of the BSDE (5.19) is uniformly Lipschitz in
(T, L1, L2, F).

From classical results there exists a unique solution, ("̃!, Γ̃((, 1), Γ̃((, 2), G̃!) ∈
S2 × L21 × L22 × L2, to the BSDE (5.19). Here L2K denotes the space of ℝ-valued
F"! -predictable processes {:(()}!∈[0,$ ] such that "

∫ $
0 ∣:(()∣2D̃K!'( <∞.

Finally, we have that for any fixed ((, T, L1, L2, F) the essential supre-

mum of ℎ((, T, L1, L2, F, 8, 9) is achieved at
(
8∗((, T, L1, L2, F), 9∗ = T

1
*−1

)
where

8∗((, T, L1, L2, F) is such that ∂ℎ
∂* ∣*=*∗ = 0. Indeed, it is sufficient to observe that

∂2ℎ
∂2* < 0 $ -a.s. and that

lim
*→ −1

0/1(!)−1

∂ℎ

∂8
= +∞, lim

*→ 1

0/2(!)−1

∂ℎ

∂8
= −∞ $ -a.s.
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Proposition 5.8 implies that "̃! coincides with the opportunity process and the
unique optimal investment-consumption strategy is given by

(8∗! , 9
∗
! ) =

(
8∗((, "̃!, Γ̃((, 1), Γ̃((, 2), G̃!), ("̃!)

1
*−1

)

with ("̃!, Γ̃((, 1), Γ̃((, 2), G̃!) unique solution of BSDE (5.19).
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