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1. Introduction

Accurate modeling of materials at microscopic length scale is necessary for design and engineering of
structures with a detailed and complex substructure. The first-order (first-gradient) continuum
mechanics depends on displacement and its first gradient; however, it lacks accuracy at the scales which
are close to the length scale of the substructure [1], especially in capturing those phenomena which are
dependent on geometric length, known as size effect. A generalization of the first-order elasticity theory
is an approach for overcoming this issue. In generalized continuum mechanics, the governing equation
depends on displacement, first gradient of displacement, and second gradient of displacement.

The idea of generalized mechanics dates back to the beginning of 20th century, see [2,3] for a history.
Modern theories were introduced later starting around six decades ago [4–7]. Since then, many general-
ized mechanics theories have been proposed, and they can be considered as specific cases of a unified the-
ory [8].

Generalized mechanics has been widely investigated in the literature. It has been implemented for
problems of elasticity [9–13]; plasticity [14–19]; damage modeling [20–25]; modeling metamaterials [26–
28] such as pantographic structures [29–31], network materials [32], viscoelastic truss structures [33], bi-
pantographic structures [34], second gradient fluids [35]; gradient-enhanced homogenization [36–39];
micropolar continua [40]; fracture mechanics [41]; biomechanics [42–44]; and anisotropic systems [45].
Parameter determination of generalized mechanics models has been studied for static and dynamic
regimes in Shekarchizadeh et al. [46, 47], respectively.

Including higher gradients of displacement in the equations results in partial differential equations of
higher order. A reliable numerical computation of such equations requires suitable techniques and ele-
ment type selection that ensure the monotonous convergence. For this purpose, different numerical
approaches have been proposed for the strain gradient theories such as isogeometric analysis [47–50],
C1 continuous elements [52,53], and mixed finite element formulation [54–56]. It is beneficial to verify
the computations by analytical solutions. The analytical solutions for some example problems in the
generalized continua are presented, for example, in previous studies [57–61].

In this paper, a two-dimensional problem in the framework of the strain gradient elasticity theory is
solved numerically, by means of a finite element method (FEM) implemented using open-source
FEniCS libraries. Different techniques are used for the implementation of the numerical code including
using mixed finite element formulation, using Lagrange multipliers for imposing the boundary condi-
tions, and enforcing continuity of first gradient across elements. The computations are compared with
analytical solutions. Different implementations are compared to each other regarding convergence,
computation time, and robustness.

This paper is structured in the following way. First, in Section 2, the strain gradient theory is
explained, the weak form is generated to be used in the analytical solution, and the constitutive equa-
tions are presented. Then, in Section 3, an analytical solution is presented for a plate under simple shear
with two different sets of boundary conditions. Next, in Section 4, the numerical implementation and
weak form generation of FEM and Mixed FEM are sketched in detail. Finally, the results and error
analyses of two implementations of the strain gradient elasticity theory are shown in Section 5.

2. Strain gradient elasticity

2.1. Weak form generation

One of the well-known generalizations of the conventional continuum mechanics is the strain gradient
elasticity theory. In this theory, the energy density depends not only on strain, eij, but also on its gradi-
ent, eij, k , where

eij =
1

2
ui, j + uj, i

� �
,

eij, k =
1

2
ui, jk + uj, ik

� �
,

ð1Þ

where ui is the displacement field and the comma indicates differentiation in space, X 2 O � IR3, in
Cartesian coordinates. Therefore, we have
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ui, j =
∂ui

∂Xj

,

ui, jk = ui, j

� �
, k

=
∂

∂Xk

∂ui

∂Xj

� �
=

∂2ui

∂Xk∂Xj

:

ð2Þ

In equation (1), the geometric nonlinearities are neglected since the strain measure has to be linear for
deriving an analytical solution in the following. We begin with the general formulation based on a scalar
mathematical construct called action A. We postulate the action in the time interval T as

A=

ð
T

ð
O
LdV +

ð
∂O

WsdA +

ð
∂∂O

WedL

� �
dt, ð3Þ

over the domain, O, with its boundary, ∂O, and the set ∂∂O of the edges of the boundary surface. In a
three-dimensional problem, the terms Ws and We are the work done on the boundary surface elements,
dA, and line (edge) elements, dL, respectively. Herein, we neglect the term We for simplicity [62,63]. The
values of Ws are known, and as this term is applied on the boundary, for the same accuracy in an expan-
sion up to the second order in space derivative, we set Ws = Ws(ui, ui, j), i.e., depending only on the dis-
placement and its first gradient but not on the second gradient.

In equation (3), L is an existing Lagrangean density describing the underlying system. In the strain
gradient elasticity theory for an elastic material, as discussed in Abali [64], we consider the Lagrangean
density as

L=
1

2
r0 _ui _ui + d2 _ui, j _ui, j + t2€ui€ui

� �
� w + r0 fiui, ð4Þ

where the first three terms indicate the kinetic energy (inertial terms). The term w is the stored (deforma-
tion) energy density in J=m3. For homogeneous materials, the stored energy density reads

w = w ui, j, ui, jk

� �
: ð5Þ

The last term in equation (4) denotes the potential energy with the specific body force, f , in N/kg.
Based on the principle of least action, for reversible systems, we are looking for solutions such that the
variation of the action functional vanishes for any arbitrary test function du

dA= 0 8 du: ð6Þ

The variation of the action, dA, is derived by employing Taylor’s expansion with respect to a suitable
perturbation parameter, as explained in Abali et al. [65]. By inserting A from equation (3) in equation (6),
and neglecting the inertial terms, body forces, and boundary terms acting on edges, according to the least
action principle, the integral form for the second-order strain gradient elasticity for a domain O reads

�
ð
O

∂w

∂ui, j
dui, j +

∂w

∂ui, jk
dui, jk

� �
dV +

ð
∂O

∂Ws

∂ui

dui +
∂Ws

∂ui, j
dui, j

� �
dA = 0: ð7Þ

After applying the product rule and the divergence (Gauss’s) theorem multiple times (for details see
Appendix 1), we obtain

ð
O
� ∂w

∂ui, j
+

∂w

∂ui, jk

� �
, k

 !
, j

duidV +

ð
∂O

nj

∂w

∂ui, j
� ∂w

∂ui, jk

� �
, k

 !
� ∂Ws

∂ui

" #
duidA

+

ð
∂O

nk

∂w

∂ui, jk

� ∂Ws

∂ui, j

� �
dui, jdA = 0,

ð8Þ
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since, as already remarked, the inertial terms, body forces, and boundary terms acting on edges are
neglected. Here, n is the outward unit normal to the boundary ∂O. We define Ws on Neumann bound-
aries as

Ws = tiui + mijui, j, ð9Þ

where t, in N/m2 (traction), and m, in Nm/m2 (double traction), satisfy the following conditions

ti =
∂Ws

∂ui

= nj

∂w

∂ui, j
� ∂w

∂ui, jk

� �
, k

 !
, ð10Þ

mij =
∂Ws

∂ui, j
= nk

∂w

∂ui, jk
: ð11Þ

By inserting equations (10) and (11) in equation (8), the following governing equation is obtained

∂w

∂ui, j
� ∂w

∂ui, jk

� �
, k

 !
, j

= 0, ð12Þ

which is solved numerically to calculate the displacement field in the domain O.

2.2. Constitutive laws

The stored energy density, w, in equation (12), for centro-symmetric materials is expressed as

w = w eij, eij, k

� �
=

1

2
eijCijklekl +

1

2
eij, kDijklmnelm, n, ð13Þ

where Cijkl denotes the rank-4 stiffness tensor (first gradient), and Dijklmn indicates the rank-6 strain gradi-
ent stiffness tensor (second gradient) [66–70]. For isotropic materials, we have

Cijkl = c1dijdkl + c2 dikdjl + dildjk

� �
, ð14Þ

Dijklmn = c3 dijdkldmn + dindjkdlm + dijdkmdln + dikdjndlm

� �
+ c4dijdkndml

+ c5 dikdjldmn + dimdjkdln + dikdjmdln + dildjkdmn

� �
+ c6 dildjmdkn + dimdjldkn

� �
+ c7 dildjndmk + dimdjndlk + dindjldkm + dindjmdkl

� �
,

ð15Þ

where c1, c2 are the two Lame constants, and c3, c4, c5, c6, c7 are five additional parameters characterizing
the substructure of the material; we refer to Abali et al. [71] for a derivation of this form. After inserting
equations (14) and (15) in equation (13), the stored energy becomes

w =
1

2
c1eiiejj + c2eijeij + 2c3eik, iejj, k +

1

2
c4ejj, iekk, i + 2c5eik, iejk, j

+ c6ejk, iejk, i + 2c7ejk, ieji, k,
ð16Þ

which is equivalent to the potential energy density expressed in Mindlin’s work [72, equation (11.3) on
page 71]. There is a one-to-one relation between the material parameters used in our formulation
(c1, c2, c3, c4, c5, c6, c7) and in Mindlin’s formulation (~l, ~m, â1, â2, â3, â4, â5) as follows:

c1 = ~l, c2 = ~m, c3 =
1

2
â1, c4 = 2â2, c5 =

1

2
â3, c6 = â4, c7 =

1

2
â5: ð17Þ

The derivative of the stored energy density with respect to the first gradient of displacement is derived
using equations (13), (1), and the chain rule as
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∂w

∂ui, j
=

∂w

∂eqr

∂eqr

∂ui, j
=

1

2

∂ eklCklmnemn + ekl,mDklmnopeno, p

� �
∂eqr

1

2

∂ uq, r + ur, q

� �
∂ui, j

=
1

4
Cklmn dkqdlremn + ekldmqdnr

� �
dqidrj + dridqj

� �
=

1

4
Cqrmnemn + eklCklqr

� �
dqidrj + dridqj

� �
=

1

4
emn Cijmn + Cjimn

� �
+ ekl Cklij + Cklji

� �� �
=

1

4
ekl Cijkl + Cjikl + Cklij + Cklji

� �
= Cijklekl,

ð18Þ

by considering the symmetry of the stiffness tensor (Cijkl = Cjikl = Cklij = Cklji). In the same way, we get
the derivative of the stored energy density with respect to the second gradient of displacement as

∂w

∂ui, jk
=

∂w

∂ers, t

∂ers, t

∂ui, jk
=

1

2

∂ elmClmnoeno + elm, nDlmnopqeop, q

� �
∂ers, t

1

2

∂ ur, st + us, rtð Þ
∂ui, jk

=
1

4
Dlmnopq dlrdmsdnteop, q + elm, ndordpsdqt

� �
dridsjdtk + dsidrjdtk

� �
=

1

4
Drstopqeop, q + elm, nDlmnrst

� �
dridsjdtk + dsidrjdtk

� �
=

1

4
Dijkopq + Djikopq

� �
eop, q + elm, n Dlmnijk + Dlmnjik

� �� �
=

1

4
elm, n Dijklmn + Djiklmn + Dlmnijk + Dlmnjik

� �
= Dijklmnelm, n,

ð19Þ

by considering the symmetry of the strain gradient stiffness tensor (Dlmnijk = Dlmnjik = Dijklmn = Djiklmn). By
inserting equation (14) in equation (18), and equation (15) in equation (19), we have

∂w

∂ui, j
= c1dijekk + 2c2eij, ð20Þ

∂w

∂ui, jk

= c3 dijekm,m + djkemm, i + dijenk, n + dikemm, j

� �
+ c4dijemm, k

+ c5 dikejn, n + djkeli, l + dikenj, n + djkeim,m

� �
+ 2c6eij, k + 2c7 eik, j + ekj, i

� �
:

ð21Þ

Finally, by inserting equations (20) and (21) in equation (12), the governing equation is derived in
terms of the material parameters and the gradients of strain as

c1ekk, i + 2c2eij, j � c3 2enk, nki + emm, ikk + emm, jij

� �
� c4emm, kki

� 2c5 enj, nij + eim,mkk

� �
� 2c6eji, kkj � 2c7 eik, jkj + ekj, ikj

� �
= 0:

ð22Þ

Equation (22) corresponds to the equation of motion derived in Mindlin’s work [72, equation (11.8)
on page 72] (with the same one-to-one relation between the material parameters as in equation (17)).
Herein, we have neglected the body forces and inertial terms as well.

3. Analytical solution

In this section, the analytical solution for a plate under simple shear is derived. Two cases of loading and
boundary conditions are investigated.

Consider a two-dimensional plate under simple shear as in Figures 1 and 2 with infinite length in x-
direction, and with height H in y-direction. The bottom edge is fixed in both directions while the top
edge is fixed only in vertical (y) direction, and a displacement or traction is applied on the top edge in x-
direction.

Considering the boundary conditions of this problem, only ux and its derivatives along y-direction
are non-zero. This so-called semi-analytical ansatz reduces the problem to a one-dimensional conti-
nuum. Therefore, the problem is one-dimensional with uy = 0, ux = ux(y) = u. Hence, we have ux, y = u0,
ux, yy = u00, ux, yyy = u000, ux, yyyy = u0000, and

2222 Mathematics and Mechanics of Solids 27(10)



eij =
ui, j + uj, i

2
=

1

2

0 u0

u0 0

� �
: ð23Þ

Using equation (22), the governing equation for this problem is formed as

c2u00 � (c5 + c6 + c7)u0000= 0, ð24Þ

which is a fourth-order ordinary differential equation, and its general solution is

u = ux(y) = q1 + q2y + q3 sinh
y

r

� 	
+ q4 cosh

y

r

� 	
, ð25Þ

where r =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(c5 + c6 + c7)=c2

p
and q1, q2, q3, q4 are four integration constants. Four boundary conditions

are necessary for finding q1, q2, q3, q4. In the following, two sets of boundary conditions are discussed.

3.1. Case 1: displacement prescription

In the first case, as shown in Figure 1, the boundary conditions are considered as

ux(0) = 0, ux(H) = û, mxy(0) = 0, u0(H) = 0, ð26Þ

where a Dirichlet boundary condition is assumed on the top edge by applying a displacement û.
Furthermore, the displacement and double traction, mxy (as defined in equation (11)) are set to zero on
the bottom edge. The fourth boundary condition states that the displacement gradient is zero on the
top edge. This term activates the strain gradient terms of the theory. In the case of neglecting this
boundary condition, the problem of simple shear is obtained as known from the first-order theory.
Therefore, this boundary condition is crucial to test the numerical implementation of the strain gradient

Figure 1. The plate (infinitely long in x-direction) under simple shear with the boundary conditions stated in equation (26). The top
edge is moving in a rail, therefore its rotation is not allowed.

Figure 2. The plate (infinitely long in x-direction) under simple shear with the boundary conditions stated in equation (33).
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theory. On the application level, a relatively rigid bar is adhered on top of the plate. In this way, rotat-
ing along y is prevented, as visible in Figure 1, which leads to u0(H) = 0.

For the first two boundary conditions in equation (26), we use equation (25), and we obtain

ux(0) = q1 + q4 = 0, ð27Þ

ux(H) = q1 + q2H + q3 sinh
H

r

� �
+ q4 cosh

H

r

� �
= û: ð28Þ

The double traction, mxy, has been defined in equation (11) and is calculated in equation (21). For the
current problem, the double traction has only one non-zero term as

mxy =
∂w

∂ux, yy

= c5 + c6 + c7ð Þu00

= c5 + c6 + c7ð Þ q3

r2
sinh

y

r

� 	
+

q4

r2
cosh

y

r

� 	� 	
:

ð29Þ

Therefore, for the third boundary condition in equation (26), we have

mxy(0) = c5 + c6 + c7ð Þu00(0) = c5 + c6 + c7ð Þ q4

r2
= 0, ð30Þ

and for the fourth boundary condition, we take the derivative of u in equation (25) with respect to y, and
set y = H ,

u0(H) = q2 +
q3

r
cosh

H

r

� �
+

q4

r
sinh

H

r

� �
= 0: ð31Þ

By solving equations (27), (28), (30), and (31), as shown in Appendix 2, the four unknowns
(q1, q2, q3, q4) are acquired

q1 = 0, q2 =
û cosh H

r

� �
H cosh H

r

� �
� r sinh H

r

� � ,
q3 =

ûr

r sinh H
r

� �
� H cosh H

r

� � , q4 = 0:

ð32Þ

3.2. Case 2: applying traction

In the second case, as shown in Figure 2, the boundary conditions are considered as

ux(0) = 0, tx(H) = t̂, u0(0) = 0, mxy(H) = 0, ð33Þ

where a Neumann boundary condition is assumed on the top edge by a given traction t̂ (as defined in
equation (10)). The double traction is set to zero on the top edge. Furthermore, the displacement and
displacement gradient are set to zero on the bottom edge. The latter condition is responsible for the
strain gradient terms of the theory. Indeed, it models a clamped edge as seen in Figure 2.

For the first boundary condition in equation (33), from equation (25), we obtain

ux(0) = q1 + q4 = 0: ð34Þ

The traction, tx with n = (0, 1), has been defined in equation (10), and for the current problem, it is
reduced to
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tx =
∂w

∂ux, y
� ∂w

∂ux, yyy

= c2u0 � c5 + c6 + c7ð Þu000

= c2 q2 +
q3

r
cosh

y

r

� 	
+

q4

r
sinh

y

r

� 	� 	
� c5 + c6 + c7ð Þ q3

r3
cosh

y

r

� 	
+

q4

r3
sinh

y

r

� 	� 	
ð35Þ

Therefore, for the second boundary condition in equation (33), we have

tx(H) = c2 q2 +
q3

r
cosh

H

r

� �
+

q4

r
sinh

H

r

� �� �

� c5 + c6 + c7ð Þ q3

r3
cosh

H

r

� �
+

q4

r3
sinh

H

r

� �� �
= t̂:

ð36Þ

The third and fourth boundary conditions in equation (33) give

mxy(H) = c5 + c6 + c7ð Þ q3

r2
sinh

H

r

� �
+

q4

r2
cosh

H

r

� �� �
= 0, ð37Þ

and

u0(0) = q2 +
q3

r
= 0, ð38Þ

respectively.
By solving equations (34), (36), (37), and (38), as shown in Appendix 3, the four unknowns

(q1, q2, q3, q4) are obtained as

q1 =
�r3̂t sinh H

r

� �
s

, q2 =
r2̂t cosh H

r

� �
s

,

q3 =
�r3̂t cosh H

r

� �
s

, q4 =
r3̂t sinh H

r

� �
s

,

ð39Þ

where

s = c2r2 cosh
H

r

� �
� 1

� �
+ c5 + c6 + c7: ð40Þ

4. Numerical implementation

For the numerical implementation of the strain gradient theory, we use the same simple shear problem
as in the analytical solution. Two approaches are discussed in the following: (1) FEM and (2) Mixed
FEM. The modeling, implementation, and post-processing steps are all carried out using open-source
packages. For the FEM analysis, we utilize the FEniCS libraries (73) by following the computational
framework as in Abali (74). FEniCS is a package of codes for solving partial differential equations, and
it supports symbolic differentiation, which is exploited herein. The FEM code is developed in Python.

The plate under simple shear is modeled as a two-dimensional plate with the height H = 0:5 mm. In
the problem description, the length of the plate is assumed to be infinite in the x-direction. In the numeri-
cal models, we set a finite value for the length (three times of the height of the plate). Periodic boundary
conditions are applied on the lateral edges of the plates; hence, the results will not depend on the value
that is chosen for the plate’s length. The periodic boundary conditions applied on the left and right edges
of the plate impose the following conditions on the domain: (1) the left and right edges of the plate are
of course equal in length, (2) the nodes of these two edges have the same vertical coordinates such that
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there are corresponding nodes on both edges, and (3) the nodal value at the left is restricted to be the
same as the corresponding nodal value at the right.

For the material of the plate, we assume Young’s modulus, E = 400 MPa and Poisson’s ratio,
n = 0:49. The choice of Poisson’s ratio is crucial for consistency with the semi-analytical ansatz. The
simple shear problem is valid under the constant volume assumption that is equivalent to a Poisson’s
ratio of 0.5, but here it is not possible to use 0.5 value since it makes the first Lame parameter (c1) to be
infinite; therefore, we use 0.49 for Poisson’s ratio. The constitutive parameters c1 and c2 read

c1 = l =
En

1 + vð Þ 1� 2nð Þ = 6577:18 MPa

c2 = m =
E

2 1 + nð Þ = 134:23 MPa:

ð41Þ

Moreover, the material parameters for strain gradient elasticity need to be chosen. For this purpose,
herein, we utilize the granular micromechanical modeling [75–78]. Based on the formulation derived in
Barchiesi et al. [79], we have

c3 = c4 =
‘2

112
l

c5 = c7 =
‘2

1120
7m + 3lð Þ

c6 =
‘2

1120
7m� 4lð Þ,

ð42Þ

where ‘ is the characteristic length of the granular material of the substructure. We assume three values
for ‘ as f0:1, 0:2, 0:3g mm, which lead to material parameters as compiled in Table 1. The negative val-
ues in Table 1 may raise concern about the positive definiteness of the strain energy function. However,
the individual values of the material parameters are not of importance. The energy value must be indeed
positive in order to have a unique solution. We refer to previous studies [66,70,80] for discussion of posi-
tive definiteness in the strain gradient theory. In the problem Case 1, we set û = 0:05 mm and in the prob-
lem Case 2, we set t̂ = 1:0 MPa.

4.1. FEM

In the classical elasticity theory, we deal with a second-order partial differential equation, while in the
strain gradient elasticity theory, we have a governing equation of fourth order [81]. As a result, for satis-
fying theH2 regularity in the weak form, unknown fields need to belong to C1 within the whole domain.
One possible approach is to set the minimum regularity requirement for the shape functions to be C1

[82,83]. Another implementation of the strain gradient theory with C1 regularity is presented in
Glüge [51].

For obtaining the weak form for implementing in the FEM code, we begin with the governing equa-
tion of strain gradient elasticity as derived in equation (7). The unknown displacement ui is represented
using nodal values discretely in space and form functions for interpolation between nodal values. We
circumvent using different notations for analytical functions and their discrete representations, since

Table 1. Strain gradient elasticity material parameters for constructing equation (15) calculated for different values of the
characteristic length ‘.

‘ (mm) c3 (N) c4 (N) c5 (N) c6 (N) c7 (N)

0.1 0.59 0.59 0.18 20.23 0.18
0.2 2.35 2.35 0.74 20.91 0.74
0.3 5.29 5.29 1.66 22.04 1.66
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they never appear in the same equation. We use a discretization using (triangle) Lagrange elements,
which generates piecewise continuous polynomials such that they are adequate for approximation in
Hilbertian Sobolev space H1. This standard FEM elements of order q spans Pq on triangles, T , in a
two-dimensional continuum. The computational domain, O, is discretized by dividing it in triangles,
and this triangulation is denoted by T . Therefore, we use a vector space for displacements

VFEM = uif g 2 H1(O) : uif g
��
T
2 P2(T) 8T 2 T

n o
: ð43Þ

The Lagrange elements are C0 continuous across element boundaries; however, it is necessary to have
C1 continuity everywhere in the domain. Instead of using more advanced elements [84], we add a term to
the weak form to enforce the continuity of the first gradient of displacement across the elements. By add-
ing such a term to equation (7), we obtain

�
ð
O

∂w

∂ui, j
dui, j +

∂w

∂ui, jk
dui, jk

� �
dV +

ð
∂O

tidui + mijdui, j

� �
dA

� Q

ð
G

u+
i, j � u�i, j

� 	
du+

i, j dI = 0,

ð44Þ

where

Q =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 c5 + c6 + c7ð Þ

p
, ð45Þ

and we have inserted ∂Ws

∂ui
= ti and

∂Ws

∂ui, j
= mij from equations (10) and (11), respectively. The term Q is the

penalty parameter; it is chosen arbitrarily but in connection with the material parameters and in the ade-
quate unit in a way that all the terms in equation (44) have the same unit. Since the formulation involves
second gradient in space, we choose q = 2 such that P2 elements are utilized.

In equation (44), u+
i, j and u�i, j are the displacement gradients on the two sides of an interior facet, which

is between pairs of adjacent cells of the mesh. Moreover, the integration in dI is done on the set G of the
two-sided facet elements while dA is for the one-sided exterior facets of the mesh, i.e., belonging the
boundaries of the domain. Figure 3 shows a schematic of a triangular mesh on a domain O, its boundary
∂O, a cell element dV , a one-sided exterior facet element dA, and a two-sided facet (edge) element dI .
The formulation holds in two-dimensional or three-dimensional domains; however, for the sake of the
visualization, we show the idea on a two-dimensional mesh in Figure 3. In a two-dimensional domain,
which is the case herein, the cell element dV is a surface and the facets dA and dI are edge elements.

It is possible to add a displacement prescription in the numerical computations as a Dirichlet bound-
ary condition. However, in the problems that are discussed in the analytical solution (Section 3), there

Figure 3. Schematic of a triangular mesh on a domain O, its boundary ∂O, a cell (surface) element dV, a one-sided exterior facet
(edge) element dA, and a two-sided facet (edge) element dI.
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are boundary conditions of ‘‘zero-displacement gradient’’ on top (Case 1) and bottom (Case 2) edges of
the rectangular domain. It is not possible to add such a boundary condition directly in the numerical
computations. Hence, we add the zero-displacement gradient condition into the weak form. We update
the weak form of equation (44) as

�
ð
O

∂w

∂ui, j
dui, j +

∂w

∂ui, jk
dui, jk

� �
dV +

ð
∂O

tidui + mijdui, j

� �
dA

� Q

ð
G

u+
i, j � u�i, j

� 	
du+

i, jdI + pQ

ð
∂O

ui, jdui, jdA = 0,

ð46Þ

where p = 106 is a penalty factor. Here, the last integral of equation (46) enforces the gradient of displa-
cement to be zero on the intended boundary (top or bottom edge of the plate). For the problem of Case
1 (Section 3.1), we set ti = 0 and mij = 0 in the weak form (46) as there are no traction or double traction
applied on the boundaries. Furthermore, the last integral of the weak form is calculated on the top edge
of the domain (y = H). For the problem of Case 2 (Section 3.2), we set ti = t̂ and mij = 0 in the weak form
(46) as the traction t̂ is applied on the top edge of the domain and there is no double traction applied on
the boundaries. Moreover, the last integral of the weak form is calculated on the bottom edge of the
domain (y = 0).

4.2. Mixed FEM

The Mixed FEM is developed using the Hu–Washizu principle [85]. In the Mixed FEM, more than one
function space is used for approximating the variables. Each function space is dedicated to one of the
variables, and all the variables are solved simultaneously. In other words, the additional variables are
calculated independently together with the primitive variable.

Herein, we define three function spaces in the Mixed FEM formulation, which involves fui, gij,Mijg.
The first one (Space 1) is a vector space for the primitive variable of the problem, the displacement ui,
for which we choose q = 2 and P2 (quadratic) shape functions. We use a distinct notation for the space
derivatives in order to clearly approximate the space derivative of displacement. As the second space in
the mixed formulation (Space 2), we introduce gij = ui, j as a variable to be identified in the computations.
We use P1 (linear) shape functions for the unknown gij. For the spaces of displacement and displacement
gradient, we use standard polynomial FEM elements in FEniCS.

Then, we impose ui, j = gij in the computations. This condition ensures that the approximated gij in
Space 2 is equal to the gradient of the approximated displacement in Space 1. For enforcing such an
identity condition, as we will explain in the following, we define a tensor space of Lagrange multipliers,
Mij. We choose L2 elements for Mij with P0 such that they are simply constants within elements with a
jump across boundaries. We choose the family of discontinuous Galerkin elements in FEniCS which
are suitable for this purpose. We set the degree of element to zero as we need constant functions.

At the end, we have the three unknown functions fui, gij,Mijg. For our two-dimensional problem, in
each node, there are 2 unknowns for the components of ui, 4 unknowns for gij, and 4 unknowns for Mij,
i.e., 10 unknowns in total. These 10 unknowns are all independent in the formulation. In a nutshell, we
construct the space for the Mixed FEM formulation as

VMixed FEM = fuig 2 H1(O) : fuig
��
T
2 P2(T) 8T 2 T

n
,

^ fgijg 2 H1(O) : fgijg 2 P1 8T 2 T ,

^fMijg 2 L2(O) : fMijg 2 P0 8T 2 T
�
,

ð47Þ

within the domain of the continuum body, O, with its closure, ∂O, where boundary values are given on
Dirichlet boundaries, ∂OD.

In the Mixed FEM formulation, we create one single mesh in the domain and each of the function
spaces is constructed on the same mesh. Depending on the dimension, degree of shape function, and ele-
ment type, each space has a different total number of degrees of freedom in the domain. The quadratic
vector space of ui has 21,960, the linear tensor space of gij has 11,160, and the scalar tensor space of Mij

2228 Mathematics and Mechanics of Solids 27(10)



has 21,600 degrees of freedom. In total, the mixed space has 54,720 degrees of freedom. The test func-
tions, dui, dgij, dMij, are chosen from the same space as the ui, gij,Mij, respectively.

For generating the weak form for the Mixed FEM approach, we begin with the governing equation of
equation (7). From equations (18) and (19), we have

∂w

∂ui, j

= Cijklekl,
∂w

∂ui, jk
= Dijklmnelm, n: ð48Þ

By inserting ∂w
∂ui, j

and ∂w
∂ui, jk

in equation (7), and also setting ∂Ws

∂ui
= ti and

∂Ws

∂ui, j
= mij from equations (10)

and (11), respectively, we obtainð
O

Cijklekldui, j + Dijklmnelm, ndgij, k

� �
dV �

ð
∂O

tidui + mijdui, j

� �
dA = 0, ð49Þ

where we have replaced the dui, jk with dgij, k since it is the test function related to the second gradient of
displacement. For imposing the identity ui, j = gij (the equality of the approximated gij in Space 2 and the
gradient of the approximated displacement in Space 1), we define a residual as

R =

ð
O

Mij(gij � ui, j)dV : ð50Þ

Taking the variation of R gives

dR =
∂R

∂ui

dui +
∂R

∂ui, j
dui, j +

∂R

∂gij

dgij +
∂R

∂Mij

dMij

=

ð
O

Mij dgij � dui, j

� �
+ gij � ui, j

� �
dMij

� �
dV ,

ð51Þ

which should vanish in the domain O as we aim at minimizing the residual R. The complete weak form of
the Mixed FEM approach is generated by adding the variation of R from equation (51) to equation (49) asð

O
Cijklekldui, j + Dijklmnelm, ndgij, k

�
+ Mij dgij � dui, j

� �
+ gij � ui, j

� �
dMij

�
dV

�
ð
∂O

tidui + mijdui, j

� �
dA = 0:

ð52Þ

For the problem of Case 1 (Section 3.1), we set ti = 0 and mij = 0 in the weak form (52) as there are
no traction or double traction applied on the boundaries. For the problem of Case 2 (Section 3.2), we
set ti = t̂ and mij = 0 in the weak form (52) as the traction t̂ is applied on the top edge of the domain and
there is no double traction applied on the boundaries. The zero gradient boundary conditions of the
problem Cases 1 and 2 are applied as Dirichlet boundary conditions.

5. Results and discussion

In this section, the results of the computations are presented and verified by comparing them with the
analytical solutions. Furthermore, the convergence analyses of the formulations are reported.

As discussed in Section 4, two numerical implementations are used for the computations: FEM and
Mixed FEM. Table 2 summarizes the details of the spaces and the meshes of the two implementations.
As shown in Table 2, the total degrees of freedom in the two implementations are of the same order since
we want to compare their accuracy.
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5.1. Results of Case 1

Figure 4 shows the deformed state of the plate that has been under prescribed displacement on the top edge
from FEM analysis. The effect of the zero-displacement gradient condition on the top edge (u0(H) = 0) is
visible in this plot. We see that the lateral edges of the plate are fully vertical in the very beginning of their
upper part. In order to compare the numerical and analytical results, we consider the displacement of the
right edge of the plate. The displacement (ux) of the right edge calculated by FEM and Mixed FEM is
plotted along y in Figures 5 and 6, respectively, for three values of the characteristic length, ‘, which results
in different material parameters, c3, c4, c5, c6, and c7. Figures 5 and 6 show that both FEM and Mixed
FEM formulations are matching in a very satisfactory way with the analytical solution.

To see the role of strain gradient terms in systems with different sizes, we simulate the problem of
Case 1 for three plates using the Mixed FEM formulation. The height of the three plates are
H = f0:2, 2:0, 20:0g mm. We set the characteristic length, ‘= 0:1 mm, and prescribed displacement,
û = 0:05 mm, for the three simulations. Figure 7 shows the displacement of right edge along y normal-
ized with respect to plate height. We see, in Figure 7, that the H = 20:0 mm case is behaving linearly

Table 2. Details of the spaces and meshes of the FEM and Mixed FEM implementations.

Space Variable Space type Element type Shape function
degree

Unknowns
per node

Degrees
of freedom

FEM – Displacement (ui) Vector Standard FEM 2 2 55872
Mixed
FEM

1 Displacement (ui) Vector Standard FEM 2 2 21960
2 Displacement gradient (gij) Tensor Standard FEM 1 4 11160
3 Lagrange multipliers (Mij) Tensor Discontinuous Galerkin 0 4 21600
Total – – – – 10 54720

FEM: finite element method.

Figure 4. The deformed state of the plate under prescribed displacement on the top edge (Case 1) from FEM analysis.

(a) (b) (c)

Figure 5. Displacement of the right edge of the plate, under prescribed displacement on the top edge (Case 1), along y: numerical
computation (FEM) versus analytical solution for three different values of ‘: (a) ‘= 0:1 mm, (b) ‘= 0:2 mm, and (c) ‘= 0:3 mm.
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compared to the smaller heights. The reason is simply the increased ratio of the characteristic length of
the geometry, H , by the characteristic length of the material, ‘. As expected, for higher H=‘ values,
strain gradient terms are less important. In fact, the strain gradient theory is necessary between H=‘
larger than 1 and smaller than a certain value which can be estimated using the study presented herein.

Convergence analyses are carried out for the FEM and Mixed FEM implementations to ensure the
mesh independency of the results. The error is defined as

Error=

ð
O
jucomp

i � uanai j
2dV ð53Þ

where u
comp
i is the displacement from the numerical analysis and uana

i is the displacement from the analy-
tical solution. In Figure 8(a) and (b), the monotonously decreasing trend of the error on the log� log
plots is seen for FEM and Mixed FEM implementations, respectively.

5.2. Results of Case 2

In the problem of Case 2, a traction is applied on the top edge of the plate. Figure 9 depicts the deforma-
tion of the plate from Mixed FEM analysis. Here, we see the effect of the zero-displacement gradient
condition on the bottom edge (u0(0) = 0). As a result, the lateral edges of the plate are vertical in the very
lower part. For Case 2, the FEM formulation does not produce reliable results and it is not verified by

(a) (b) (c)

Figure 6. Displacement of the right edge of the plate, under prescribed displacement on the top edge (Case 1), along y: numerical
computation (Mixed FEM) vs analytical solution for three different values of ‘: (a) ‘= 0:1 mm, (b) ‘= 0:2 mm, and (c) ‘= 0:3 mm.

Figure 7. Displacement of the right edge of the plate, under prescribed displacement on the top edge (Case 1) from Mixed FEM
analysis for different values of plate height, H, and ‘= 0:1 mm.
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the analytical solution. On the contrary, the Mixed FEM formulation yields highly matching results with
the analytical solutions. Figure 10 shows the displacement (ux) of the right edge calculated by Mixed
FEM for three values of the characteristic length, ‘, which results in different values for the material
parameters, c3, c4, c5, c6, and c7.

6. Conclusion

Two implementations of the strain gradient elasticity theory based on the FEM are verified. The gov-
erning equation of the strain gradient elasticity is modeled using FEM and Mixed FEM, in which three
distinct function spaces for the different variables are introduced, allowing the simultaneous

(a) (b)

Figure 8. Mesh convergence analysis of FEM and Mixed FEM approaches in log-log scale: (a) FEM and (b) Mixed FEM.

Figure 9. The deformed state of the plate under applied traction on the top edge (Case 2) from Mixed FEM analysis (Deformation
scale: 25:1).

(a) (b) (c)

Figure 10. Displacement of the right edge of the plate, under applied traction on the top edge (Case 2), along y: numerical
computation (Mixed FEM) vs analytical solution for three different values of ‘. (a) ‘= 0:1 mm, (b) ‘= 0:2 mm, and (c) ‘= 0:3 mm.
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determination of the different unknowns on the three distinct spaces. For a simple shear problem, the
computations are verified with an analytical solution. The Mixed FEM proved to be reliable in the con-
sidered boundary conditions (applying traction and displacement) while the FEM approach succeeds in
predicting the displacement only in one of the cases of boundary conditions.

In the FEM implementation approach, in every node, there exist 2 degrees of freedom, while in the
Mixed FEM, the number of degrees of freedom is 10 per node; however, for FEM computations, a finer
mesh is necessary to give acceptable results. In a nutshell, the Mixed FEM formulation proves to be
more robust and reliable for solving problems in the framework of the strain gradient elasticity theory.
The codes used for the computations are developed under the GNU Public license [86] made publicly
available in Abali [87] for encouraging a transparent scientific exchange.
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Appendix 1

For deriving equation (8):

Product rule

ð
O

∂w

∂ui, j
dui

� �
, j

dV =

ð
O

∂w

∂ui, j
dui, jdV +

ð
O

∂w

∂ui, j

� �
, j

duidV ð54Þ

Divergence (Gauss’s) theorem

ð
O

∂w

∂ui, j
dui

� �
dV =

ð
∂O

nj

∂w

∂ui, j
duidA ð55Þ

Insert equation (55) in equation (54)ð
O

∂w

∂ui, j
dui, jdV =

ð
∂O

nj

∂w

∂ui, j
duidA�

ð
O

∂w

∂ui, j

� �
, j

duidV ð56Þ

Product rule

ð
O

∂w

∂ui, jk
dui, j

� �
, k

dV =

ð
O

∂w

∂ui, jk
dui, jkdV +

ð
O

∂w

∂ui, jk

� �
, k

dui, jdV ð57Þ

Divergence (Gauss’) theorem
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ð
O

∂w

∂ui, jk
dui, j

� �
, k

dV =

ð
∂O

nk

∂w

∂ui, jk
dui, jdA ð58Þ

Insert equation (58) in equation (57)ð
O

∂w

∂ui, jk
dui, jkdV =

ð
∂O

nk

∂w

∂ui, jk
dui, jdA�

ð
O

∂w

∂ui, jk

� �
, k

dui, jdV ð59Þ

Product rule

ð
O

∂w

∂ui, jk

� �
, k

dui

 !
, j

dV =

ð
O

∂w

∂ui, jk

� �
, k

dui, jdV +

ð
O

∂w

∂ui, jk

� �
, kj

duidV ð60Þ

Divergence (Gauss’) theorem

ð
O

∂w

∂ui, jk

� �
, k

dui

 !
, j

dV =

ð
∂O

nj

∂w

∂ui, jk

� �
, k

duidA ð61Þ

Insert equation (61) in equation (60)ð
O

∂w

∂ui, jk

� �
, k

dui, jdV =

ð
∂O

nj

∂w

∂ui, jk

� �
, k

duidA�
ð
O

∂w

∂ui, jk

� �
, kj

duidV ð62Þ

Insert equation (62) in equation (59)ð
O

∂w

∂ui, jk

dui, jkdV =

ð
∂O

nk

∂w

∂ui, jk
dui, jdA

�
ð
∂O

nj

∂w

∂ui, jk

� �
, k

duidA +

ð
O

∂w

∂ui, jk

� �
, kj

duidV

ð63Þ

Finally, by inserting equations (56) and (63) in equation (7) and rearranging, we obtain equation (8).

Appendix 2

The parameters q1, q2, q3, and q4 in equation (32) are calculated using equations (27), (28), (30), and (31).
From equation (30)

(c5 + c6 + c7)
q4

r2
= 0 ) q4 = 0: ð64Þ

By inserting q4 in equation (27), we have

q1 + q4 = 0 ) q1 = 0: ð65Þ

Inserting q4 in equation (31) gives

q2 +
q3

r
cosh

H

r

� �
= 0 ) q2 = � q3

r
cosh

H

r

� �
ð66Þ

and inserting q1, q2, and q4 in equation (27) gives
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q3 =
ûr

r sinh H
r

� �
� H cosh H

r

� � , ð67Þ

hence, from equation (66)

q2 =
û cosh H

r

� �
H cosh H

r

� �
� r sinh H

r

� � : ð68Þ

Appendix 3

The parameters q1, q2, q3, and q4 in equation (39) are calculated using equations (34), (36), (37), and (38)
as explained in the following. From equation (37), we find q3 in terms of q4 as

q3 = � q4

cosh H
r

� �
sinh H

r

� � : ð69Þ

From equation (38), we find q2 in terms of q3 and consequently in terms of q4 as

q2 =
�q3

r
=

q4

r

cosh H
r

� �
sinh H

r

� � : ð70Þ

Now, we insert q3 and q2, respectively, from equations (69) and (70) into equation (36) and we get

q4

r
c2

cosh H
r

� �
� cosh2 H

r

� �
+ sinh2 H

r

� �
sinh ( H

r
)

 !

+
q4

r3
(c5 + c6 + c7)

cosh2 H
r

� �
� sinh2 H

r

� �
sinh H

r

� �
 !

= t̂,

ð71Þ

and using the formula for hyperbolic functions, cosh2 (x)� sinh2 (x) = 1, we have

q4

r2c2( cosh H
r

� �
� 1) + c5 + c6 + c7

r3 sinh H
r

� �
 !

= t̂, ð72Þ

therefore

q4 =
r3 t̂ sinh H

r

� �
r2c2 cosh H

r

� �
� 1

� �
+ c5 + c6 + c7

: ð73Þ

By inserting q4 in equations (69) and (70), we reach to the expression of q3 and q2 as

q3 =
�r3̂t cosh H

r

� �
r2c2 cosh ( H

r
)� 1

� �
+ c5 + c6 + c7

, ð74Þ

and

q2 =
r2 t̂ cosh H

r

� �
r2c2 cosh H

r

� �
� 1

� �
+ c5 + c6 + c7

: ð75Þ

Equation (34) gives the q1 as

q1 =
�r3̂t sinh H

r

� �
r2c2 cosh H

r

� �
� 1

� �
+ c5 + c6 + c7

: ð76Þ
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