
Source Code Anti-Plagiarism: a C#
Implementation using the Routing Approach

Fabrizio d’Amore (0000-0002-6518-2445)
and Lorenzo Zarfati (0000-0003-3055-7873)

Sapienza University of Rome, Italy
damore@diag.uniroma1.it

lorenzozarfati@gmail.com

Abstract. Despite the approaches proposed so far, software plagiarism
is still a problem which hasn’t been solved entirely yet. The approach
introduced throughout this paper is about a source code anti-plagiarism
technique which aims at rendering the source code incomprehensible to
a possible plagiarist and at the same time preventing source code mod-
ifications. The proposal is based on the concept of Router and makes
use of both symmetric encryption and cryptographic hashing functions
to provide such guarantees.

Keywords: Plagiarism · Software Plagiarism · Source code · Routing
approach

1 Introduction

Plagiarism can be defined as the act of taking someone else’s work or idea, and
pass it as your own without giving the proper credits to the original authors. It
can affect anything that has a value including academic research papers, intel-
lectual property and software products, the last of which is causing huge money
losses to companies worldwide. Naturally it is not limited to copy-paste activ-
ities as they are the technique which is the most trivial to be detected. There
exist many plagiarism techniques that might be used depending on the target,
for instance mosaic and self-plagiarism are two of the most common in research
papers.

However when it comes to software plagiarism, both malicious and counter-
measure activities change, and the challenges become even harder when com-
pared with other domains where it must be considered. Plagiarism was not the
main concern when the first software products started to be released, it is a
problem which was considered only afterwards, while many products inevitably
were affected already.

Our approach relies on the introduction of a software module, which we call
“Router”, that through some suitable cryptographic operations, can make it
too difficult to copy or modify relevant parts of the source code. In our model
we consider it meaningful the effort spent in the plagiarism: we do not need a
provably secure approach but a heuristic that makes plagiarism costly as the
process of rewriting the source code.



1.1 Previous work

During the past decades several techniques have been proposed to fight software
plagiarism even though nowadays the problem is not entirely solved yet. The
majority of approaches proposed so far mainly aim at detecting plagiarism once
it has occurred, thus when it’s too late, rather than preventing its occurrence.

Due to size limits we omit most of the discussion. For details refer to [3].
The proposed technique partially relies on obfuscation but together with

symmetric encryption and cryptographic hash functions aims at preventing pla-
giarism attempts rather than just detecting them once they were carried out
successfully.

2 A new approach

The idea on which the paper is based is an approach that has been investigated
for several years, without however publishing the preliminary results. Terrinoni
was the first master student to write a thesis [5] on it; later the idea was refined.
It is inspired by the behavior of a well-known network device: the router, which is
responsible of correctly routing packets depending on their destination address.
The behavior is quite similar since the code implementing the approach consists
in forwarding function references containing encrypted parameters toward the
intended destination function and then return the output of such function (if
any) to the original caller. From now on we will refer to the code responsible
of performing all the features described in this paper with the term Router to
make a clear distinction between the common networking device and the code
implementing the approach.

The approach consists in rewriting function references (calls) to be protected
with correspondent Router references, according to well-defined format which
will be detailed in Section 3. Router calls input parameters will be encrypted by
the Router itself during its initialization step and once this step terminates, and
the software is re-compiled considering modified source files, encrypted param-
eters are decrypted only at runtime by the Router code which will then invoke
the original function if and only if some particular conditions are met. It’s very
clear that this approach modify the software source code to be protected and it
does so in only two ways: function calls replacement, which can be performed
during the development itself or subsequently; the Router.Init() invocation must
be inserted as the first statement of the software to be protected, so that a proper
Router initialization step can be performed. The approach mainly relies on static
features but it also depends on a specific runtime program state, therefore it may
be classified as a blended technique. Before describing the approach further the
definition of file dependency and closed hash values have to be clear.

Definition 1 (file dependency) A source file fi depends on another source
file fj (fi → fj) if and only if (functions in) fi reference (call) functions defined
within source file fj and both files are part of the same software.



The definition does not consider references to files belonging to different software
nor self-dependencies, the latter are not considered because they are also some
of the most common. These considerations are made as a trade-off between
security and performance: replacing all the function references might lead to
severe performance degradation even though there might be scenarios where
this becomes viable.

Definition 2 (closed hash) Given a DAG G = (V,A) where V is the set of
source files that contain functions called by different source files, and each arc
(fi, fj) ∈ A is a file dependency: some function of fi calls some function of fj.
The closed hash value hi of the i-th file having m dependencies fi1 , . . . , fim , is
defined as:

hi = h′
i ⊕ hi1 ⊕ hi2 ⊕ · · · ⊕ him . (1)

where:

– h′
i is the traditional hash value computed just on file fi (h

′
i = h(fi), being h

the chosen cryptographic hashing function;
– hi1 , hi2 , . . . , him are the closed hashes of files fi1 , . . . , fim which file fi de-

pends upon.

If the file fk has no dependency, then the closed hash is its standard (traditional)
hash (hk = h′

k = h(fk)).

Closed hash value computation for a given file might lead to a deadlock situation
if there exist some circular dependency among source files, or equivalently, if one
or more cycles exist in the directed graph obtained as described above (in Def. 2).
Therefore when computing closed hash values the Router has to consider source
files, thus graph vertices, in a well-defined order to prevent any deadlock scenario.
It can be obtained by a topological sort and it is well-known that a topological
sort exists if and only if the graph is acyclic. For this reason, first the Router
runs a deterministic algorithm to break every cycle (if any) arbitrarily. Then,
the topological sort is done (deterministically, again) and then closed hash values
can be computed according its order (backward). These mentioned values are
computed by the Router during its initialization step, together with random IVs
(Initialization Vectors), one for each file that has information to be encrypted.
Such keys are obtained xor-ing the xor of all the closed hashes of dependent files
with a nonce (the IV) for preventing any known-ciphertext attack.

Of course the Router is a function written in another file. Let us briefly
summarize the process:

0. The original source code has been produced but not yet secured by our
approach;

1. all calls to functions in different files are replaced by a call to the Router,
with parameters the name of the originally called function, and a list of
comma separated original parameters;



2. the Router is called, for pre-processing the software and doing some verifi-
cations; in particular it symmetrically encrypts by using a proper key (see
details later) names and parameters that describe the original calls (and
changes itself!);

3. the code of the Router is obfuscated, in order to hide the logic of the original
program;

4. the software is now protected and can be released and deployed.

The symmetric encryption key is computed only during the initialization step
and a second time at runtime, when the software needs it to decrypt data pre-
viously encrypted. Since the key is never stored within the software it prevents
easy key extractions from the software source code leaving a potential plagiarist
with no option but performing a dynamic analysis with the aim to infer the
Router behavior and remove all the modifications performed before the software
was released. The process is summarized below:

kj = hj1 ⊕ hj2 ⊕ ...⊕ hjn ⊕ IVj . (2)

where:

– kj is the key used to encrypt function call information of functions belonging
to fj coming from other files (but now from the Router);

– hj1 , hj2 , . . . , hjn represent all the closed hashes of files which depend on fj
(destinations of the outgoing arcs);

– IVj is a nonce generated during Router initialization, associated with the
j-th file ((part of) whose functions should be called by external files, sources
of the incoming arcs).

Thus the key computation process depends on closed hash values and since such
values are always the same as soon as the same input DAG is provided, then it
follows the key uniqueness theorem [5]. However, note that both the encryption
key and closed hashes must be computed over decompiled source files rather
than the original ones that, for instance, contain user comments and blank lines.
This is strictly required because once the software is compiled and released, the
Router code will have no way to access the original source files and therefore
any hash value on different files will never match the one computed during the
Router initialization step.

Once closed hash values and IVs are computed they are printed to standard
output, together with file dependency info as Base-64 encoded strings which have
to be copied within the Router very first lines of code, replacing homonymous
declared yet not defined variables. This step can be easily automated and even
though it is planned for future releases the implemented technique currently
leaves this task to developers.

Every reference’s first parameter to Router code is encrypted and contains all
the data required to invoke a specific function, such as its name and parameters
as well as the name of the enclosing class. Since such parameter was previously
encrypted with a key depending on files (according to Equation (2)), it follows



that as soon as the decryption succeeds we know such files were not modified (we
currently use aes-256-cbc, but we plan to switch to the more secure authen-
ticated encryption1). On the other hand before invoking the original function,
the Router ensures that runtime computed closed hash value of the calling file
corresponds to the same value computed during the initialization step. If these
values are equal and a secure cryptographic hash function is used, such as one of
the SHA-2 or SHA-3 family, then we also know that any potentially involved file
was not altered in any way. Thus if either the decryption of the string parame-
ter fails or if any runtime computed closed hash does not match the previously
computed one, then the Router terminates the running software and displays a
message to the user indicating a plagiarism attempt was detected.

3 C# Implementation

The Router functionalities have been implemented through multiple C# classes
which can be easily imported since they are part of a common C# VS (Visual
Studio) project. We chose to use C# as it is usually the preferred choice when
implementing executables and DLL files for Microsoft Windows. The prototype is
available as open-source software at the URL https://github.com/msc-antiplag.

3.1 Software Dependencies

The Router code uses both reflection and cryptographic API to retrieve/invoke
a specific function and to perform encryption and closed hashes related tasks,
respectively. Apart these two APIs the software also has two additional depen-
dencies:

– Roslyn. C# Code Analysis API.
– ilspycmd.2 A command-line decompiler using the ILSpy3 decompilation en-

gine.

Due to size limits we omit most of the discussion. For details refer to [3].

3.2 Anti-Plagiarism Steps

Once the Router project is referenced by the VS project(s) of the application
source code, we follow the steps mentioned below.

1. Replace original function calls (only those calling to other files) with corre-
spondent Router forwardCall.

2. Run the Router initialization step.

1 A method that guarantees confidentiality and authentication. Beginners can see,
e.g., [4, 6].

2 https://www.nuget.org/packages/ilspycmd/
3 https://github.com/icsharpcode/ILSpy/releases/



3. Copy output values within the Router code and compile the software with
the modified source files.

4. Obfuscate the Router code.

The calls replacement of the first step must be performed according to a pre-
defined format which essentially consists in invoking a Router forwardCall in-
stead, with all the parameters provided as a hyphen-separated values string. The
mentioned format is shown below whereas an example with dummy objects is
shown right after it.

[dstClssFullName]-[methodName]-[parametersTypes]-[parametersValues]

Class1.f1(); (defined in Class1)

obj.f2(); (obj is an instance of Class2)

obj.f3(7, "aString", varX); (obj is an instance of Class3)

The expected function call replacement is shown below:

Router.ForwardCall("Class1-f1-null-null");

Router.ForwardCall("Class2-f2-null-null", obj);

Router.ForwardCall("Class3-f3-System.Int32,System.String-7,aString",

obj, X);

Steps 2. and 3. require little or no effort and are fast to be performed whereas
the last one might require additional time. The Router code must be obfuscated
because otherwise, anyone having access to the executable would decompile it,
understands the internal logics and finally renders the protection scheme worth-
less by decrypting the ciphertext. It is recommended to apply obfuscation to
both static and dynamic variables to obtain stronger guarantees (e.g., using
SmartAssembly4).

4 Tests Outcomes

Due to size limits we omit most of the discussion. For details refer to [3].

5 Security Considerations

5.1 Comparison with Java implementation

From an attacker perspective, once the source code is obtained all that remains
to do is to decrypt data and retrieve original function references as if the Router
were never been used. When compared to previous Java proposal [1], the C#
implementation provides stronger guarantees in terms of security as it does not
leak any useful information to a potential plagiarist. On the other hand, previous

4 https://www.red-gate.com/products/dotnet-development/smartassembly/



Java proposals leak the name of the class containing a called function, thus mak-
ing the task of a plagiarist far easier. Every reference to the Router forwardCall
function will appear as depicted below, with a longer (non-truncated) Base-64
encoded string as first parameter.

Router.forwardCall("wAp48JGP1bYqVzCYiwuNwSIKVA==",

"KeePass.Util.BinaryDataUtil");

First encoded parameter corresponds to the encrypted binary string containing
all the information required to invoke the original function. Once decoded it
provides no useful information to anyone having no access to the decryption
key. The second plaintext parameter leaks no information since it’s just used to
shorten the overall delay of forwardCall and it might be obtained anyway by
just decompiling the running software.

5.2 No trial-error guessing

In order to guess the original function references an adversary might either at-
tempt to break the encryption scheme or guess all the original function references
at once. However, decrypting something previously encrypted with aes-256 is
known to be unfeasible. Thus, it remains to guess all the functions original ref-
erences and despite it has been made harder than before it is not impossible to
be accomplished.

Due to size limits we omit most of the discussion. For details refer to [3].

5.3 Strongly Typed Programming Languages

When a plagiarist will attempt to guess original references he will be helped by
the nature of the used programming language. Both C# and Java are strongly-
typed. Furthermore the function type is known too. Since the usage of a strongly
typed programming language somewhat weakens the C# implementation it is
highly recommended to replace (i.e. protect) only those references to functions
for which exist at least one other function definition returning the same output
type.

5.4 Dynamic Analysis

A plagiarist cannot understand much about the protected function references
and he might just have some intuition about the original ones, together with
all its input parameters, by looking at the context in which such reference is
found. For instance, it would be trivial to guess the original reference to function
returning a string value if the surrounding code performs string manipulation
and there exist only two function candidates: one performing string manipulation
as well and the other performing network-related activities. Thus it will be a
responsibility of the developer to choose what references should be replaced and
what should not be. If this is done properly, then there would not be much



information obtainable through a static analysis. However, dynamic analysis
can provide additional information. Depending on the obfuscation algorithms
used, it might be possible to understand which files are accessed and then infer
the technique used to compute both the encryption key and the runtime hash
checking mechanism, even though this requires far more skills than a simpler
static code analysis and is not guaranteed to succeed.

6 Conclusions

We presented a new approach to prevent the source code plagiarism. Our pro-
totypes showed that the approach is viable, at least while programming in Java
and in C# (see [3, 1, 2]). No other similar approach is known to the best of our
knowledge.

We understand that our solution is not unassailable (some advanced schemes
of attack are shown in [1]), however the main purpose is to render plagiarism
so long, boring and complicated to make it competitive to re-write the soft-
ware. The Router needs to be obfuscated, in order to prevent its analysis and
understanding.

Our method could lead to a new scheme/framework in software production,
making the addition of the anti-plagiarism technique integrated in the life cycle
of the software product to be protected.

Future work will focus on the Javascript language, since it is very used in
the construction of web sites/applications. Thus, our approach could prevent the
copying of code from web site and its reuse in other sites, a habit that is very
common in the modern web.

The authors acknowledge the contributions to this research by former master
students Terrinoni [5], Cardelli [1] and Cavallaro [2], who got their master degree
between 2017 and 2019, allowed to develop a more mature approach and tested
the method for the Java language.

References

1. R. Cardelli. Anti-plagiarism detectors: Providing source code integrity for water-
marking and protecting software. Master’s thesis, Sapienza University of Rome,
2019.

2. S. Cavallaro. Anti-plagiarism in software development, a Java implementation. Mas-
ter’s thesis, Sapienza University of Rome, 2019.

3. F. d’Amore and L. Zarfati. Source code anti-plagiarism: a C# implementation using
the routing approach, 2022. https://arxiv.org/pdf/2201.02241.pdf.

4. E.B. Kavun, H. Mihajloska, and T. Yalçin. A survey on authenticated encryption–
ASIC designer’s perspective. ACM Comput. Surv., 50(6), December 2017.

5. J. Terrinoni. Anti-plagiarism detectors (APD): an innovation in source code pro-
tection. Master’s thesis, Sapienza University of Rome, 2017.

6. F. Zhang, Z. Liang, B. Yang, X. Zhao, S. Guo, and K. Ren. Survey of design
and security evaluation of authenticated encryption algorithms in the CAESAR
competition. Frontiers Inf. Technol. Electron. Eng., 19(12):1475–1499, 2018.


