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Abstract 
In recent years, the structural safety of existing bridges has become an increasingly 
relevant topic due to the age and extent of the Italian infrastructure assets. Several 
technologies, such as the application of machine learning techniques, have been 
developed to automate inspections and monitoring processes of existing bridges. 
One promising approach is the use of simulated data from numerical models to 
train data-driven algorithms for detecting structural damage. To improve the ef-
fectiveness of the algorithm training, it is necessary to create an extensive dataset 
including various damage scenarios. This procedure entails performing numerous 
nonlinear analyses, thereby highlighting the importance of adopting an efficient 
numerical model to reduce the computational effort.  

This work proposes a high-performance computational approach to predict the non-
linear response of reinforced concrete and prestressed concrete bridges. Specifically, 
this work adopts an advanced fiber beam element based on a damage-plasticity 
model, which offers superior computational efficiency, compared to 2D and 3D finite 
element models. The proposed damage-plastic model introduces two different dam-
age variables for tensile and compressive behaviour to consider the re-closure of 
tensile cracks when moving from tension to compression states. To accurately assess 
the frequency variation due to the cracking of structural components, this research 
proposes a modification of the damage-plastic model which accounts for the partial 
closure of cracks. Both constitutive models are implemented in OpenSees software 
framework. Computational aspects and solution algorithms are extensively detailed 
in this thesis. 

Several applications are presented in this work to demonstrate the effectiveness of 
the proposed computational approach in simulating the nonlinear static and dy-
namic responses of concrete bridge structures. The advanced fiber beam element is 
validated by comparing numerical results with experimental measurements from 
tests conducted on reinforced concrete and prestressed concrete beams. Additionally, 
an application at the structural level of the proposed numerical method is discussed 
simulating a full-scale test of an existing prestressed reinforced concrete bridge. 

The application of the model within the new promising developments in Structural 
Health Monitoring (SHM) is explored. Especially, this research proposes an ap-
proach for training Artificial Neural Networks (ANNs) to detect structural damage 
using simulated data derived from numerical results. An unsupervised method has 



   

II 

been employed to train a neural network. The prediction error of such network 
model is investigated as a suitable measure for the definition of a damage indicator. 
Finally, regarding the new advancements in vision-based techniques, this thesis also 
explores the integration of the proposed fiber beam element into the process of 
creating synthetic environment, that is virtual dataset generated to train algorithms 
of visual recognition systems. In conclusion, the integration of the advanced fiber 
beam model with an accurate constitutive law and machine-learning techniques 
shows promising potential for future innovations in the monitoring of existing 
bridges. 
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1 Introduction 
1.1 Motivations 

The structural safety of existing infrastructures has become increasingly relevant 
topic in the public debate in recent years. Due to the age and extent of the infra-
structure assets, as well as the significant costs associated with maintaining and 
repairing them, there is an urgent need to develop more effective and reliable mon-
itoring and safety evaluation methods. For example, in the United States there are 
more than 617,000 bridges and a recent publication estimates that 42% of them are 
over 50 years old, with approximately 7.5% of them exhibiting structural deficien-
cies. From an economic perspective, the US backlog for bridge repairs is estimated 
at $125 billion [1]. This scenario could be qualitatively extended to Italy, consider-
ing that most bridges were constructed post-World War II and are nearing the end 
of their service life. Moreover, Italy has a denser bridge network, with the number 
of bridges per square kilometre approximately six times greater than in the United 
States [2], [3]. Given these considerations, the structural health of bridges is essen-
tial not only for safety but also for its significant social and economic implications. 
In this context, the maintenance and monitoring of bridges emerge as effective 
solutions for preserving structural integrity of infrastructure and reducing the risk 
of collapse and the economic losses.  

Responding to this need, in recent years the scientific community has increasingly 
focused on developing and refining reliable methods for Structural Health Monitor-
ing (SHM). Especially, this field aims to develop systems and methodologies for 
monitoring the health status of structures in real-time. By continuously or period-
ically assessing the structural condition, an effective SHM system can detect early 
signs of damage or deterioration and provide essential information for timely 
maintenance and repairs [4], [5], [6], [7]. Currently, the standard approach utilized 
to assess the structural conditions is the visual inspection, however, it tends to be 
time-consuming and susceptible to human error. To overcome these limitations, 
several new approaches and techniques have been developed to detect, locate, and 
quantify damage, as well as to evaluate structural conditions of existing bridges. 
Especially, the increase of computational power and the development of advanced 
technologies have led to a growing interest in the automatization of the evaluation 
processes, driving scientific and technological innovations in this direction.  
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Recent advancements in Structural Health Monitoring (SHM) have emphasized the 
use of vibration-based techniques for their efficiency in detecting damage and eval-
uating the structural integrity of bridges [8], [9]. These techniques rely on assessing 
variations of structural dynamic characteristics, derived from in-situ vibration 
measurements, that indicate potential damage or structural weaknesses. Especially, 
the damage of structural components causes the modification of vibration modal 
parameters, such as natural frequencies, mode shapes and modal damping. In liter-
ature, various vibration-based methods have been proposed, including techniques 
based on natural frequency variations, methods that utilize mode shapes, curvature 
mode shapes, and approaches that combine both mode shapes and frequencies [8], 
[10]. Furthermore, damage-sensitive features can be extracted from both time series 
analysis [11] and dynamic response in the frequency domain [12]. Vibration-based 
techniques are usually classified into model-based and data-driven methods; the 
former are based on structural identification and model updating procedures to 
calibrate physical models according to experimental measurements [13], while the 
data-driven methods are based on statistical models trained on past data [14]. The 
latter approach utilizes algorithms to identify patterns from the measured data, 
recognizing the presence of damage without the need for a detailed physical model 
of the structure. In this context, the researchers are currently exploring the appli-
cation of Artificial Intelligence (AI) for more accurate and automatized damage 
detection and identification. Particularly, the application of machine learning tech-
niques has become increasingly popular, with Artificial Neural Networks (ANNs) 
being particularly prevalent for their ability to efficiently identify and assess 
changes in structural systems [15]. The ANNs are extensively applied in several 
studies in literature [16], [17], [18], [19]. In particular, the adoption of Nonlinear 
AutoRegressive (NAR) networks is particularly effective for multi-step ahead pre-
diction, providing more accurate results than other types of neural networks [20]. 
The model-based approach provides a physical representation of the behaviour of 
structures, enabling predictive analyses and more accurate assessments of structural 
health, particularly effective with degradation models integrated into FEM models. 
However, a drawback is its limited applicability for real-time monitoring due to the 
significant computational effort required for the model updating process. Conversely, 
the data-driven approach excels in detecting changes which indicate structural dam-
age, but it lacks in providing a physical interpretation of the structural variations 
and in predicting structural behaviour. To enhance the reliability of machine learn-
ing algorithms, recent advancements include the use of FEM models to generate 
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simulated data with different damage scenarios. This data is then used to train 
artificial neural networks, improving their accuracy and predictive capabilities.  

Another area of research in SHM focuses on automated visual inspection, adopting 
one of the most advanced technologies: the Unmanned Aerial Vehicles (UAVs). 
Specifically, several research aims to integrate in UAVs autonomous capabilities for 
detecting and quantifying structural damages [21], [22], [23], [24], [25]. To develop 
a fully automated vision-based assessment process, it is necessary to train the visual 
recognition algorithms, but the availability of a training dataset of real images with 
various types of bridges and damage scenarios is limited. A new and promising 
approach to expand training datasets involves the use of synthetic environments 
including several simulated damage scenarios. Therefore, also for new advancements 
in vision-based approach, the adoption of a mechanical model into the training 
procedure is essential to improve the accuracy of machine learning algorithms. 

 

Figure 1: A new holistic approach in SHM to comprise physical modelling, structural monitoring, 
and information from visual inspections. 

Upon consideration of the discussed topics, contrary to the initial perception that 
new technologies are diverging from conventional assessment methodologies based 
on structural mechanics, it becomes evident that the academic community is gain-
ing a new understanding. Specifically, to enhance the reliability of machine learning 
algorithms, it is essential to integrate their training with numerical models capable 
of simulating the mechanics of the structural problem. In this regard, Figueiredo 
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[14] discusses a possible future advancement in SHM based on the adoption of a 
holistic approach, as shown in Figure 1. This approach should integrate the data 
derived from physical models, structural monitoring and from visual inspections, 
improving the learning process of AI algorithms to detect structural damages. 

Training machine learning-based algorithms require the generation of a wide range 
of simulated data for different damage scenarios. The simulated dataset derives 
from the numerical results obtained through several static and/or dynamic nonlin-
ear analyses, which demand a significant computational effort. For this reason, it 
is crucial adopting a FEM model that is computationally efficient as illustrated in 
Figure 2. Additionally, it is necessary that the FEM model accurately simulates the 
material nonlinearity, such as damage and degradation, to predict the structural 
behaviour under different damage scenarios. 

 

Figure 2: Requirements for FEM model to train ANNs. 

Several modelling approaches have been developed to analyse the behaviour of real 
structures and a crucial decision involves selecting the appropriate numerical 
method. In common practice, it is often necessary to choose whether to use more 
complex models like 2D or 3D elements that can accurately represent nonlinear 
material behaviour but are computationally expensive; or simpler models such as 
beam elements, where the behaviour is generally assumed to be linear elastic. The 
adoption of elastic beam elements is effective in identifying damage, which is mod-
elled through stiffness reduction of the damaged zone. However, this method is not 
suitable for the prediction of future structural performance [26]. In this regard, fiber 
beam finite elements provide a good compromise by allowing for the modelling of 
nonlinear material constitutive law while significantly reducing the number of ele-
ments and thus the computational effort, compared to models using 2D or 3D 
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elements. Although fiber beam finite elements have been widely applied in the field 
of seismic engineering, there are few applications in modelling bridge decks within 
the context of structural health monitoring.  

Different formulations for fiber beam element models have been proposed in litera-
ture. The displacement-based (DB) formulation is the most adopted in commercial 
software. This approach assumes compatible displacement and strain fields along 
the element and the equilibrium is satisfied in a weak form [27]. The force-based 
(FB) formulation, which strictly satisfies the equilibrium, is more suitable for de-
scribing beam elements in case of material nonlinearity [28], [29]. Specifically, the 
FB formulation is more computationally efficient compared to the DB approach 
because it requires fewer elements to accurately represent nonlinear behaviour.  Sev-
eral constitutive laws have been developed for both concrete and steel. Specifically, 
for concrete, one of the most advanced models is the damage-plastic models which 
describe the macroscopic effect of the micromechanical process through homoge-
nized parameters [30], [31]. Damage is related to the propagation of microcracks 
through the material, while plasticity is due to the intergranular displacements. 
The formulation proposed in [32], [33] also considers two different damage param-
eters in tension and compression to account for the unilateral effect of the re-closure 
of cracks. While these models have already been extensively adopted to model the 
nonlinear behaviour of concrete in several applications, further investigation is 
needed to verify their applicability in the field of structural monitoring. One of the 
most widely used FEM software in the academic community is OpenSees, which is 
an open-source software framework. Currently, the described damage-plastic con-
stitutive model is not available in OpenSees. Regarding the frequency variation due 
to structural damage in the case of static loading and unloading cycles, the dynamic 
response is significantly influenced by several mechanical phenomena such as con-
crete tensile damage and the partial closure of cracks induced by the presence of 
concrete aggregate [34], [35], [36]. While this phenomenon can be neglected in non-
linear static applications, it becomes crucial for accurately assessing the frequency 
of a cracked beam in the unloading phase. Therefore, integrating this phenomenon 
into the damage-plastic model is necessary to accurately capture frequency varia-
tions in vibration-based monitoring. 
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1.2 Research objectives 

The objective of this research is to propose a more efficient structural modelling 
approach that can accurately represent the nonlinear behaviour of reinforced and 
prestressed concrete bridges in the field of Structural Health Monitoring. The main 
objectives can be summarized as follows: 

• Propose a nonlinear modelling approach for Structural Health Monitoring 
(SHM) which adopts high-performance fiber beam elements. 
 

• Implement in OpenSees a three-dimensional damage-plastic constitutive 
model to accurately represent the material nonlinearities of concrete. 
 

• Propose an improved version of the classic damage-plastic model for concrete 
that accounts for the partial closure of cracks. This feature is crucial to 
accurately assess frequency variations due to damage of structural compo-
nents.  
 

• Demonstrate the reliability and potential of the proposed modelling ap-
proach in the field of SHM. This includes the validation of the model through 
applications at both the element level and the structural level, comparing 
numerical results with experimental data. 
 

• Propose a procedure for training of Artificial Neural Networks (ANNs) using 
simulated data derived from numerical analyses. 
 

• Develop a tool that allows the use of the fiber beam model for the generation 
of synthetic environments, which are adopted for the training of damage 
recognition algorithms in vision-based techniques. 

These objectives are defined to improve the training of machine learning algorithms 
in the field of Structural Health Monitoring by providing a computationally efficient 
modelling approach for prestressed concrete and reinforced concrete bridges. 
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1.3 Organization of the thesis 

The thesis is organized as follows: 

• Chapter 2 presents a detailed overview of the proposed modelling approach, 
including a comparison of beam formulations and an introduction of the 
fiber beam elements. This chapter also describes the classical damage-plastic 
model and the modified version which accounts for the partial closure of 
cracks. The discussion extends to the localization issues and regularization 
techniques for fiber beam elements. Additionally, the chapter introduces 
some computational aspects and the solution algorithms. It concludes 
providing an overview of OpenSees software framework, where the constitu-
tive models have been implemented in this research work. 
 

• Chapter 3 discusses the methods for modelling of prestressed concrete beams 
in nonlinear analysis. It presents an application to compare the prestressed 
concrete fiber element model with the models available in MIDAS software. 
Finally, a validation of the model is illustrated comparing numerical and 
experimental results. 
 

• Chapter 4 presents an overview of vibration-based methods in SHM and an 
introduction of dynamic analysis for fiber beam elements. It presents an 
application of the proposed modified damage-plastic model, comparing the 
numerical and experimental results. 
 

• Chapter 5 introduces the machine learning technique applied for SHM and 
it proposes an approach for training a neural networks algorithm to detect 
structural damage using the proposed fiber beam element model. Finally, 
the chapter presents the training results of two numerical applications.  
 

• Chapter 6 introduces the new technologies and advancements of artificial 
intelligence in vision-based techniques. Subsequently, it focuses on integrat-
ing the proposed beam model into the synthetic environment creation pro-
cess, followed by a comparison of DB and FB approaches in practical appli-
cation. The chapter concludes with a discussion of future developments in 
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integrating the mechanical model with synthetic environments for training 
algorithms of unmanned aerial vehicles. 
 

• Chapter 7 presents an application at the structural level of the proposed 
numerical approach simulating the nonlinear response and variation of fre-
quency of a full-scale test of an existing prestressed reinforced concrete 
bridge.  
 

• Chapter 8 summarizes the main contributions and provides overall conclud-
ing remarks. 
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2 Finite Element Formulation 
2.1 General 

Several modelling methods and approaches have been developed to represent the 
nonlinear behaviour of structures. In common practice, both researchers and pro-
fessional engineers often face the choice of adopting either more complex models 
like 2D or 3D finite elements, which can accurately represent the nonlinear behav-
iour of materials but are computationally demanding, or simpler models such as 
beam elements, where the behaviour is typically assumed elastic. In this regard, the 
fiber beam finite element provides a good compromise. Indeed, this element allows 
to model the nonlinear behaviour of materials with less computational effort com-
pared to 2D and 3D elements. Fiber beam finite elements have been extensively 
used in the field of Seismic Engineering to model structural components, such as 
beams or piers, subjected to seismic loads. The objective of this study is to propose 
a modelling strategy that balances computational efficiency of the beam formula-
tion with the accuracy of damage-plastic material model. This approach is devel-
oped to enhance the structural assessment and prediction of existing bridges, par-
ticularly within the realm of Structural Health Monitoring. 

This chapter outlines the proposed modelling approach in detail. Specifically, Sec-
tion 2.2 provides an overview of beam formulations, comparing the displacement-
based and force-based approaches. The fiber beam element is presented in Section 
2.3, while Section 2.4 describes the constitutive laws implemented in OpenSees 
software framework. This work adopts a damage-plastic model to represent the 
nonlinear behaviour of materials and proposes a modified version to consider the 
partial closure of cracks. In case of strain-softening behaviour, the localization of 
damage and/or strain within a confined area may occur, leading to the loss of 
objectivity of analysis. In Section 2.5, this numerical issue is described in detail, 
and several regularization techniques are discussed. Some computational aspects, 
including static condensation and solution algorithms, are described in detail in 
Section 2.6. Finally, Section 2.7 introduces the OpenSees software framework and 
the modelling strategy adopted in this research.  
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2.2 Beam Element Formulation  

Several approaches have been proposed in literature for finite element beam models. 
The most common approach is the displacement-based (DB) formulation, or stiff-
ness method, which assumes compatible displacement and strain fields along the 
element [27]. The equilibrium is satisfied in a weak form, leading to significant 
drawbacks, particularly in case of nonlinear analyses. Specifically, it requires a fine 
discretization in presence of nonlinear constitutive behaviour, which increases the 
computational effort of numerical analysis. To overcome the limitations of the DB 
approach, various methods have been proposed in literature. For instance, the 
Smart Displacement Based (SDB) beam element, introduced in [37], [38], utilizes 
adaptive displacement shape functions dependent on the diffusion of plastic defor-
mations to enhance result accuracy. Additionally, an advanced version of DB ele-
ment that strictly satisfies the axial equilibrium is proposed in [39] to accurately 
model the tension shift effects of reinforcement concrete columns and walls. In con-
trast to the DB formulation, the force-based (FB) exactly interpolates the stress 
fields along the element and the equilibrium is satisfied in a strong form. The FB 
approach is more suitable for describing beam elements in case of material nonlin-
earity, as extensively demonstrated in literature [28], [29], [40], [41], [42], [43], [44], 
[45]. Initially, this paragraph introduces the quantities that characterize the element 
formulation, followed by a brief description of the DB and FB approaches. 

The element formulation discussed in this section is based on Timoshenko beam 
theory. However, it can be applied to the case of Euler-Bernoulli beams as in [30]. 
The assumptions of element formulation include small displacements and the hy-
pothesis of rigid plane cross-sections. As illustrated in Figure 3, the local basic 
reference system comprises the x-axis, which is directed along the beam element 
axis, and the y and z-axes, which represent the principal axes of the cross-section. 
Eliminating the rigid body modes, the basic displacements of a beam element are 
expressed as follows: 

 𝛆𝛆𝑒𝑒 = [𝑢𝑢𝑗𝑗 𝜃𝜃𝑧𝑧𝑧𝑧 𝜃𝜃𝑧𝑧𝑗𝑗 𝜃𝜃𝑥𝑥𝑗𝑗 𝜃𝜃𝑦𝑦𝑧𝑧 𝜃𝜃𝑦𝑦𝑗𝑗]𝑇𝑇  (1) 

where 𝑢𝑢𝑗𝑗 is the translation along x of node j, while 𝜃𝜃𝑧𝑧𝑧𝑧, 𝜃𝜃𝑧𝑧𝑗𝑗, 𝜃𝜃𝑦𝑦𝑧𝑧 and 𝜃𝜃𝑦𝑦𝑗𝑗 are rotations 
of nodes i and j around the z- and y-axes. 𝜃𝜃𝑥𝑥𝑗𝑗 is the rotation around x-axes of node 
j. Similarly, the vector of the element basic forces is defined as: 
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 𝛔𝛔𝑒𝑒 = [𝑁𝑁𝑗𝑗 𝑀𝑀𝑧𝑧𝑧𝑧 𝑀𝑀𝑧𝑧𝑗𝑗 𝑀𝑀𝑥𝑥𝑗𝑗 𝑀𝑀𝑦𝑦𝑧𝑧 𝑀𝑀𝑦𝑦𝑗𝑗]𝑇𝑇  (2) 

being 𝑁𝑁𝑗𝑗, the axial force parallel to x-axes, and 𝑀𝑀𝑧𝑧𝑧𝑧 , 𝑀𝑀𝑧𝑧𝑗𝑗, 𝑀𝑀𝑦𝑦𝑧𝑧 and 𝑀𝑀𝑦𝑦𝑗𝑗 the mo-
ments at nodes i and j around z- and y-axes. 𝑀𝑀𝑥𝑥𝑗𝑗 is the torsional moment around 
x-axes.  

 
Figure 3: Local reference system and element basic forces. 

Assuming rigid plane cross-sections, the generalized displacement vector at each 
section located at x is defined as: 

 𝐮𝐮𝑠𝑠(𝑥𝑥) = [𝑢𝑢(𝑥𝑥) 𝜃𝜃𝑧𝑧(𝑥𝑥) 𝑣𝑣(𝑥𝑥) 𝜃𝜃𝑥𝑥(𝑥𝑥) 𝜃𝜃𝑦𝑦(𝑥𝑥) 𝑤𝑤(𝑥𝑥)]𝑇𝑇  (3) 

where 𝑢𝑢(𝑥𝑥), 𝑣𝑣(𝑥𝑥) and 𝑤𝑤(𝑥𝑥) are the translation along the local axes; and the respec-
tive rotations are represented by 𝜃𝜃𝑥𝑥(𝑥𝑥), 𝜃𝜃𝑦𝑦(𝑥𝑥) and 𝜃𝜃𝑧𝑧(𝑥𝑥). The generalized section 
deformation vector 𝛆𝛆𝑠𝑠(𝑥𝑥) is equal to: 

 𝛆𝛆𝑠𝑠(𝑥𝑥) = [𝜀𝜀𝐺𝐺(𝑥𝑥) 𝜒𝜒𝑧𝑧(𝑥𝑥) 𝛾𝛾𝑦𝑦(𝑥𝑥) 𝜒𝜒𝑥𝑥(𝑥𝑥) 𝜒𝜒𝑦𝑦(𝑥𝑥) 𝛾𝛾𝑧𝑧(𝑥𝑥)]𝑇𝑇  (4) 

being 𝜀𝜀𝐺𝐺(𝑥𝑥) the axial deformation, 𝜒𝜒𝑦𝑦(𝑥𝑥) and 𝜒𝜒𝑧𝑧(𝑥𝑥) the flexural curvatures and 
𝛾𝛾𝑦𝑦(𝑥𝑥) , 𝛾𝛾𝑧𝑧(𝑥𝑥) the shear deformations. Finally, the component 𝜒𝜒𝑥𝑥(𝑥𝑥) is the torsional 
curvature. The relation between the generalized section displacement vector and 
deformation vector is expressed as follows: 
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 𝛆𝛆𝑠𝑠(𝑥𝑥) =  𝐃𝐃(𝑥𝑥) 𝐮𝐮𝑠𝑠(𝑥𝑥) (5) 

where 𝐃𝐃(𝑥𝑥), in case of Timoshenko beam, is the compatibility operator defined as: 

 𝐃𝐃(𝑥𝑥) =

⎣
⎢
⎢
⎢
⎡
∂ ⋄ ∂𝑥𝑥⁄

0
0
0
0
0

0
∂ ⋄ ∂𝑥𝑥⁄

−1
0
0
0

0
0

∂ ⋄ ∂𝑥𝑥⁄
0
0
0

0
0
0

∂ ⋄ ∂𝑥𝑥⁄
0
0

0
0
0
0

∂ ⋄ ∂𝑥𝑥⁄
1

0
0
0
0
0

∂ ⋄ ∂𝑥𝑥⁄ ⎦
⎥
⎥
⎥
⎤

 (6) 

The generalized section stresses measure the stress state at a specific section located 
at x. In particular, this results as: 

 𝛔𝛔𝑠𝑠(𝑥𝑥) = [𝑁𝑁(𝑥𝑥) 𝑀𝑀𝑧𝑧(𝑥𝑥) 𝑇𝑇𝑦𝑦(𝑥𝑥) 𝑀𝑀𝑥𝑥(𝑥𝑥) 𝑀𝑀𝑦𝑦(𝑥𝑥) 𝑇𝑇𝑧𝑧(𝑥𝑥)]𝑇𝑇  (7) 

where 𝑁𝑁(𝑥𝑥) is the axial stress, 𝑀𝑀𝑧𝑧(𝑥𝑥) and 𝑀𝑀𝑦𝑦(𝑥𝑥) the bending moments, 𝑀𝑀𝑥𝑥(𝑥𝑥) the 
torsional moment and 𝑇𝑇𝑦𝑦(𝑥𝑥) and 𝑇𝑇𝑧𝑧(𝑥𝑥) the shear forces. The section constitutive 
law, which relates the generalized stress to the generalized deformation, is presented 
in its incremental form as:  

 �̇�𝛔𝑠𝑠(𝑥𝑥) = 𝐤𝐤𝑠𝑠(𝑥𝑥)�̇�𝛆𝑠𝑠(𝑥𝑥) (8) 

where 𝐤𝐤𝑠𝑠(𝑥𝑥) is the tangent section stiffness matrix. The constitutive relation in its 
inverse form results as: 

 �̇�𝛆𝑠𝑠(𝑥𝑥) = 𝐟𝐟𝑠𝑠(𝑥𝑥)�̇�𝛔𝑠𝑠(𝑥𝑥) (9) 

where 𝐟𝐟𝑠𝑠(𝑥𝑥) = 𝐤𝐤𝑠𝑠
−𝟏𝟏(𝑥𝑥). The displacement-based (DB) formulation assumes com-

patible displacement and strain fields. In particular, the displacements along the 
elements are approximated through the interpolation polynomials. The generalized 
section deformation vector is assumed equal to: 
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 𝛆𝛆𝑠𝑠(𝑥𝑥) = 𝛂𝛂𝑠𝑠(𝑥𝑥) 𝛆𝛆𝑒𝑒 (10) 

being 𝛂𝛂𝑠𝑠(𝑥𝑥)  =  𝐃𝐃(𝑥𝑥) 𝐍𝐍(𝑥𝑥), where 𝐍𝐍(𝑥𝑥) is the interpolation functions matrix. Us-
ing the virtual work equivalence, the element stiffness matrix is derived as: 

𝐊𝐊𝑒𝑒 = � 𝛂𝛂𝑠𝑠𝑇𝑇(𝑥𝑥)𝐤𝐤𝑠𝑠(𝑥𝑥)𝛂𝛂𝑠𝑠(𝑥𝑥)
𝐿𝐿

0
𝑑𝑑𝑥𝑥 (11) 

In the DB approach, the equilibrium is satisfied in a weak form, as it is enforced 
through the virtual work equivalence. Instead, the compatibility relation is satisfied 
in strong form.  

Differently from the DB approach, the force-based (FB) approach exactly interpo-
lates the section stress fields along the element, as follows: 

 𝛔𝛔𝑠𝑠(𝑥𝑥) = 𝐛𝐛𝑠𝑠(𝑥𝑥)𝛔𝛔𝑒𝑒 (12) 

where 𝐛𝐛𝑠𝑠(𝑥𝑥) is the equilibrium matrix, containing the force interpolation functions. 
In particular, it is defined as:  

 𝐛𝐛𝑠𝑠(𝑥𝑥) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 0 0 0 0 0
0 𝑥𝑥

𝐿𝐿
− 1 𝑥𝑥

𝐿𝐿
0 0 0

0 − 1
𝐿𝐿

− 1
𝐿𝐿

0 0 0
0 0 0 1 0 0
0 0 0 0 𝑥𝑥

𝐿𝐿
− 1 𝑥𝑥

𝐿𝐿
0 0 0 0 1

𝐿𝐿
1
𝐿𝐿⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (13) 

The element flexibility matrix is obtained through the application of the virtual 
work equivalence, as follows: 

 𝐅𝐅𝑒𝑒 = � 𝐛𝐛𝑠𝑠
𝑇𝑇 (𝑥𝑥)𝐟𝐟𝑠𝑠(𝑥𝑥)𝐛𝐛𝑠𝑠(𝑥𝑥)

𝐿𝐿

0
𝑑𝑑𝑥𝑥 (14) 
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In the FB beam formulation, equilibrium is satisfied in a strong form, whereas 
compatibility is expressed in weak form: 

 𝛆𝛆𝑒𝑒 = � 𝐛𝐛𝑠𝑠(𝑥𝑥)𝛆𝛆𝑠𝑠(𝑥𝑥)
𝐿𝐿

0
𝑑𝑑𝑥𝑥 (15) 

As previously mentioned, the force-based (FB) formulation is more efficient in de-
scribing beam elements response in presence of material nonlinear constitutive be-
haviour. Indeed, for DB elements, the curvature distribution along the element 
length is not accurately represented in case of inelastic behaviour [44]. Several stud-
ies demonstrated that the FB beam element is computationally more efficient be-
cause it requires fewer meshes to accurately represent the nonlinear response of 
beams [29], [46], [47]. In Section 2.6, the solution algorithms for both the FB and 
DB approaches are presented. 

Besides FB and DB approaches, other more complex formulations can be found in 
existing literature. Spacone et al. [42] proposed a two-field mixed formulation, 
which is based on the principle of the stationary of the Hellinger-Reissner functional. 
This method adopts independent interpolation functions to approximate the strain 
and force fields. A three-field formulation, based on the Hu–Washizu principle, is 
discussed in [48]. In this case, displacement, stress and strain fields are inde-
pendently interpolated. Additional formulations and a comparison between DB, FB, 
and mixed approaches are presented in [44]. 
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2.3 Fiber Section Discretization 

Beam elements are characterized by a discrete number of Gauss points, which varies 
based on the adopted integration rule (for further details refer to Section 2.5). In 
the context of fiber beam element models, the cross-sections, located at correspond-
ing integration points, are subdivided into fibers. The section stiffness and general-
ized section stress are evaluated by the integration of the fiber response, which is 
governed by the constitutive law of the materials. The subdivision in fibers allows 
for a more accurate representation of the stress and strain distribution across the 
section. Additionally, in case of reinforced concrete beams, it allows to adopt dif-
ferent nonlinear constitutive laws for concrete and steel. 

 
Figure 4: Fiber beam element - Section Discretization 

Considering plane cross-sections, the fiber stress and strain vectors are defined as 
follows: 

 
𝛆𝛆𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = [𝜀𝜀1(𝑥𝑥, 𝑦𝑦, 𝑧𝑧), 𝛾𝛾12(𝑥𝑥, 𝑦𝑦, 𝑧𝑧), 𝛾𝛾13(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)]𝑇𝑇 , 

𝛔𝛔𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = [𝜎𝜎1(𝑥𝑥, 𝑦𝑦, 𝑧𝑧), 𝜏𝜏12(𝑥𝑥, 𝑦𝑦, 𝑧𝑧), 𝜏𝜏13(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)]𝑇𝑇   
(16) 

being 𝜀𝜀1 and 𝜎𝜎1 the axial strain and stress along x-axes; 𝛾𝛾12, 𝛾𝛾13, 𝜏𝜏12 and 𝜏𝜏13 are 
the shear strain and stress in x-y and x-z planes. The relation between fiber stress 
and strain vectors is given by the material constitutive law, which is expressed as:  

  𝛔𝛔𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝐤𝐤𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) 𝛆𝛆𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) (17) 
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Further details on the constitutive law adopted for concrete and steel are provided 
in Section 2.4. 

The fiber beam elements are based on the plane section hypothesis. Under this 
assumption, the fiber strain vector at point (y,z) of cross section is related to the 
generalized section deformation vector 𝛆𝛆𝑠𝑠(𝑥𝑥) through a geometric transformation 
matrix as follows: 

 𝛆𝛆𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = [𝜀𝜀1(𝑥𝑥, 𝑦𝑦, 𝑧𝑧), 𝛾𝛾12(𝑥𝑥, 𝑦𝑦, 𝑧𝑧), 𝛾𝛾13(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)]𝑇𝑇 = 𝐥𝐥𝑠𝑠(𝑦𝑦, 𝑧𝑧)𝛆𝛆𝑠𝑠(𝑥𝑥) (18) 

where 𝐥𝐥𝑠𝑠(𝑦𝑦, 𝑧𝑧) is the following kinematic operator: 

 𝐥𝐥𝑠𝑠(𝑦𝑦, 𝑧𝑧) = �
1 −𝑦𝑦 0 0 𝑧𝑧 0
0 0 1 −𝑧𝑧 0 0
0 0 0 𝑦𝑦 0 1

� (19) 

By applying the virtual work equivalence, the generalized section stress vector and 
the tangent section stiffness matrix are obtained with the following equations: 

𝛔𝛔𝑠𝑠(𝑥𝑥) = � 𝐥𝐥s𝑇𝑇 (𝑦𝑦, 𝑧𝑧)𝝈𝝈𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)𝑑𝑑𝐴𝐴𝑓𝑓
𝐴𝐴𝑓𝑓

 (20) 

𝐤𝐤𝑠𝑠(𝑥𝑥) = � 𝐥𝐥𝑠𝑠𝑇𝑇 (𝑦𝑦, 𝑧𝑧)𝐤𝐤𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)𝐥𝐥𝑠𝑠(𝑦𝑦, 𝑧𝑧)𝑑𝑑𝐴𝐴𝑓𝑓
𝐴𝐴𝑓𝑓

 (21) 

From a numerical point of view, previous integrals can be solved subdividing the 
cross-section into n fibers and adopting the midpoint integration rule [41]. With an 
increase of number of fibers, there is a corresponding improvement of the accuracy 
of integral calculations. However, this also leads to an increase of the computational 
effort. Further details about the influence of the number of cross-section integration 
points on the element response can be found in [45]. Additionally, more advanced 
models which integrate the effect of bond-slip into the fiber beam element are pro-
posed in [49], [50]. Figure 5 shows the different levels of analysis from the global to 
the material level. To integrate a three-dimensional constitutive law in the fiber 
beam element, static condensation is necessary, which is discussed in Section 2.6. 
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Figure 5: Scheme of the levels of analysis. 
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2.4 Material constitutive model 

The following chapter introduces the constitutive laws utilized in this study to 
simulate the nonlinear behaviour of concrete and steel. The two materials behave 
differently at both the micro and macro mechanical levels. The main characteristics 
of each are briefly described in this section. 

Steel is a ductile material characterized by a symmetric behaviour in tension and 
compression. When subjected to loading, steel behaves elastically until it reaches 
its yield point, where plastic deformation begins. After the yield point, the material 
usually exhibits a hardening behaviour in the nonlinear response. The unloading 
branch maintains the same slope as the initial elastic branch, and once the load is 
removed, the material deformation is equal to the residual plastic strain. The con-
stitutive law can be effectively described by mechanical models based on plasticity. 
In Figure 6, a typical stress-strain curve of steel and an example of a steel specimen 
after the tensile failure are illustrated.  

 
 

(a) (b) 
Figure 6: Typical constitutive law of steel (a) and the tensile failure of a steel specimen [51](b) 

Differently from steel, concrete is a heterogeneous material with a non-symmetric 
behaviour in compression and tension. Figure 7 shows a simplified constitutive 
model for concrete and a typical compression failure. As the applied load increases, 
cracks develop and propagate through the material, resulting in a predominantly 
brittle mode of failure. After reaching the maximum strength, the mechanical re-
sponse exhibits the softening response, characterized by a reduction of stiffness and 
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capacity. The micromechanical process is characterized by damage and plasticity 
phenomena. Damage is due to the propagations of microcracks through the material, 
while plasticity is related to the intergranular displacements and the inelastic de-
formations which occur during the loading process. Several mechanical models have 
been developed to represent the behaviour of brittle materials. The most common 
formulations for materials with softening behaviour are based on continuum dam-
age mechanics, which describe the macroscopic effect of the material cracking 
through homogenized parameters. Damage-plastic models are more advanced for-
mulations, which consider both damage and plasticity related to the intergranular 
displacements [30]. 

  
(a) (b) 

Figure 7: Typical constitutive law of concrete (a) and an example of compression failure of a con-
crete specimen [52](b) 

Sections 2.4.1 and 2.4.2 describe the plasticity and damage models adopted in this 
work. Subsequently, in Section 2.4.3 the three-dimensional damage-plastic model 
implemented in OpenSees will be introduced and discussed. Finally, Section 2.4.4 
proposes an improvement of the damage-plastic model by introducing the concept 
of partial closure of cracks. In the subsequent paragraphs, the deformation and 
stress vectors of the three-dimensional material are denoted as: 

 𝛆𝛆 = �𝜀𝜀1, 𝜀𝜀2, 𝜀𝜀3, 𝛾𝛾12, 𝛾𝛾13, 𝛾𝛾23�
𝑇𝑇,  𝛔𝛔 = �𝜎𝜎1,𝜎𝜎2,𝜎𝜎3, 𝜏𝜏12, 𝜏𝜏13, 𝜏𝜏23�

𝑇𝑇  (22) 
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2.4.1 Plasticity model 

Two different three-dimensional plasticity models are described in this section: the 
Von Mises (J2) [53] and Drucker-Prager models with isotropic and kinematic hard-
ening [54], [55]. In both cases, the stress-strain relation is defined as: 

 𝛔𝛔 = 𝐂𝐂 𝛆𝛆𝑒𝑒  = 𝐂𝐂(𝛆𝛆 − 𝛆𝛆𝑝𝑝) (23) 

where 𝛆𝛆𝑒𝑒 is the elastic strain vector, evaluated as the difference between the total 
strain, 𝛆𝛆, and the plastic strain vector, 𝛆𝛆𝑝𝑝. The matrix 𝐂𝐂  is the elastic isotropic 
stiffness matrix, depending on the Poisson ratio 𝜈𝜈 and Young modulus 𝐸𝐸.  

In case of Von Mises model, the plastic limit function is defined as: 

 𝑓𝑓(𝛈𝛈, α) = |𝛈𝛈| − �2
3 �𝜎𝜎𝑦𝑦 + 𝐻𝐻𝑧𝑧α� (24) 

where 𝜎𝜎𝑦𝑦 is the yield stress, 𝐻𝐻𝑧𝑧 is the isotropic hardening modulus, while α is the 
isotropic hardening variable. The vector 𝛈𝛈 depends on the deviatoric part of the 
stress vector 𝐏𝐏𝛔𝛔, where 𝐏𝐏 is the deviatoric operator, and the kinematic back stress 
𝛇𝛇, as follows:  

 𝛈𝛈 = 𝐏𝐏𝛔𝛔 − 𝛇𝛇 (25) 

The evolution laws of the plastic variables, in case of associative flow rule, are 
defined by the following equations. 

 �̇�𝛆𝑝𝑝 = �̇�𝜆 ∂𝑓𝑓
∂𝛔𝛔

= �̇�𝜆 𝐧𝐧,  �̇�𝛇 = 2
3

𝐻𝐻𝑘𝑘�̇�𝛆𝑝𝑝, α̇ = �2
3
�̇�𝜆 (26) 

The term �̇�𝜆 is the plastic multiplier and 𝐻𝐻𝑘𝑘 is the kinematic hardening, while the 
normal to the yield surface is equal to 𝐧𝐧 = 𝛈𝛈 |𝛈𝛈|⁄ . The Kuhn-Tucker and consistency 
conditions govern the plasticity evolution, and are expressed as: 
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 �̇�𝜆 ≥ 0,  𝑓𝑓(𝛈𝛈, α) ≤ 0, �̇�𝜆𝑓𝑓(𝛈𝛈, α) = 0,  �̇�𝜆𝑓𝑓(̇𝛈𝛈, α) = 0   (27) 

The incremental form of the constitutive law respect to the pseudo-time variable is 
defined as: 

 �̇�𝛔 = 𝐂𝐂𝑒𝑒𝑝𝑝�̇�𝛆 (28) 

being 𝐂𝐂𝑒𝑒𝑝𝑝 the elasto-plastic tangent stiffness matrix. In case of Von Mises plastic-
ity, the latter is evaluated as [30]: 

 𝐂𝐂𝑒𝑒𝑝𝑝 = 𝐂𝐂 − 4𝐺𝐺2�̇�𝜆
|𝛈𝛈| �𝐈𝐈 − 𝟏𝟏𝟏𝟏𝑇𝑇

3
− 𝐧𝐧𝐧𝐧𝑇𝑇 � − 4𝐺𝐺2𝐧𝐧𝐧𝐧𝑇𝑇

2𝐺𝐺 + 2/3(𝐻𝐻𝑧𝑧 + 𝐻𝐻𝑘𝑘)
 (29) 

where K and G are the bulk and shear moduli. 𝐈𝐈 is the identity matrix vector, while 
the vector 𝟏𝟏 is equal to 𝟏𝟏 = {1 1 1 0 0 0}𝑇𝑇 . 

The Drucker-Prager plasticity formulation is based on the Von Mises model and 
introduces an additional component depending on the volumetric part of the stress 
tensor, equal to 𝐼𝐼1 = 𝟏𝟏𝑇𝑇 𝛔𝛔. In this case the yield function with linear isotropic and 
kinematic hardening is defined as follows: 

 𝑓𝑓(𝛈𝛈, α) = |𝛈𝛈| − �2
3 �𝜎𝜎𝑦𝑦 + 𝐻𝐻𝑧𝑧α� + 𝜇𝜇𝐼𝐼1 (30) 

being 𝜇𝜇 the frictional coefficient. The elasto-plastic stiffness for Drucker-Prager 
plasticity is calculated through the following formula [33]: 

 
𝐂𝐂𝑒𝑒𝑝𝑝 = 𝐂𝐂 − 4𝐺𝐺2�̇�𝜆

|𝛈𝛈| �𝐈𝐈 − 𝟏𝟏𝟏𝟏𝑇𝑇

3
− 𝐧𝐧𝐧𝐧𝑇𝑇 �

− 4𝐺𝐺2𝐧𝐧𝐧𝐧𝑇𝑇 −  6𝐺𝐺𝐺𝐺𝜇𝜇𝐧𝐧𝟏𝟏𝑇𝑇

2𝐺𝐺 + 2/3(𝐻𝐻𝑧𝑧 + 𝐻𝐻𝑘𝑘)
 

(31) 



Chapter 2: Finite Element Formulation 

22 

The material constitutive parameters, such as the yield strength 𝜎𝜎𝑦𝑦 and the fric-
tional coefficient 𝜇𝜇, can be defined in terms of the tensile and compressive strength, 
𝜎𝜎𝑡𝑡 and 𝜎𝜎𝑐𝑐, through the formulation proposed in [56]: 

𝜎𝜎𝑦𝑦 = 2𝜎𝜎𝑐𝑐𝜎𝜎𝑡𝑡
𝜎𝜎𝑐𝑐 + 𝜎𝜎𝑡𝑡

,  𝜇𝜇 = �2
3�

σ𝑐𝑐 − σ𝑡𝑡
σ𝑐𝑐 + σ𝑡𝑡

� (32) 

Figure 8 (a) and (b) illustrate the yield functions in case of Von Mises and Drucker-
Prager plasticity, respectively. In the principal stress space, the former is a cylinder 
parallel to the octahedral axis, while the latter is represented by a cone. In case of 
Von Mises plasticity, the yield function is symmetric, whereas Drucker-Prager plas-
ticity exhibits a non-symmetric behaviour under tension and compression. These 
characteristics are better highlighted in Figure 9, (a) and (b), which illustrates the 
two yield functions in the principal stress plane with 𝜎𝜎3 = 0. The Von Mises func-
tion intersects each axis at σ𝑦𝑦, while the Drucker-Prager function intersects σ𝑡𝑡 in 
tension and σ𝑐𝑐 in compression. Moreover, the Drucker-Prager plasticity degenerates 
into Von Mises model when the material parameters are σ𝑦𝑦 = σ𝑡𝑡 = σ𝑐𝑐. 

  
(a) (b) 

Figure 8: Yield functions in principal stress space: Von Mises (a) and Drucker-Prager (b) plastic-
ity.  
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(a) (b) 

Figure 9: Yield functions in principal stress plane: Von Mises (a) and Drucker-Prager (b) plastic-
ity. 

In Figure 10, the cyclic uniaxial behaviour is illustrated for both the Von Mises and 
Drucker Prager plasticity models, where the material parameters are detailed in 
Table 1. Two different values of kinematic hardening were adopted. As  
𝐻𝐻𝑘𝑘 increases, the slope of the post-yield branch grows. Specifically, Drucker Prager 
plasticity shows distinct slopes between tension and compression in the post-peak 
branch. 

 𝐸𝐸 𝜈𝜈  𝜎𝜎𝑦𝑦 𝜎𝜎𝑐𝑐 𝜎𝜎𝑡𝑡 𝐻𝐻𝑧𝑧 𝐻𝐻𝑘𝑘 
 [MPa] [-] [MPa] [MPa] [MPa] [MPa] [MPa] 

Von Mises 30000 0.2 35 
- - 

0.006 E 
0.01 E 
0.02 E 

Drucker-Prager 30000 0.2 - 35 3 0.006 E 
0.01 E 
0.02 E 

Table 1: Von Mises and Drucker-Prager plasticity: material parameters in Figure 10  
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(a) (b) 

Figure 10: Uniaxial stress-strain law: Von Mises (a) and Drucker-Prager (b) plasticity model. 

In common practice, the Von Mises model is used to represent the symmetric be-
haviour of steel, while the Drucker Prager model is suitable for materials such as 
concrete with different behaviour in tension and compression. Another approach 
involves integrating the Von Mises plasticity model with a damage model, control-
ling tension response solely through damage and compression with a combined 
model. In this work, an advanced approach is adopted, combining a damage model 
with Drucker-Prager plasticity. This coupled model provides a more accurate rep-
resentation of the mechanical response of materials that exhibit asymmetric plastic 
behaviour in tensile and compression. 

2.4.2 Damage model 

Continuum Damage Mechanics provides an approach to representing the behaviour 
of brittle materials and the propagation of microcracks within them in the context 
of continuum mechanics. A common approach is the use of isotropic damage models 
which introduces homogenized parameters to describe the macroscopic effect of the 
material cracking. The internal damage variable D varies between the values 1 and 
0, where D = 1 represents a completely damaged state, and D = 0 denotes undam-
aged material. The principle of this approach involves defining a relation between 
the stresses 𝛔𝛔 of the damaged material and the effective stresses 𝛔𝛔 of an undam-
aged fictitious material, called virgin material. In the following section, two equiv-
alence principles are briefly introduced: the strain and energy equivalence principles. 
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The strain principle establishes an equivalence in terms of deformation between the 
damaged and undamaged material. In this case, the effective stress is expressed as 
follows: 

 𝛔𝛔 = 𝐂𝐂𝛆𝛆 = 𝛔𝛔
(1 − 𝐷𝐷)

 (33) 

being 𝐂𝐂 the elastic constitutive matrix of the undamaged material. Consequently, 
the constitutive relation between the stress of the damaged material and the total 
strain 𝛆𝛆 is given by: 

 𝛔𝛔 = (1 − 𝐷𝐷)𝛔𝛔 = (1 − 𝐷𝐷)𝐂𝐂𝛆𝛆 (34) 

The energy equivalence principle establishes that the elastic energy stored in a 
damaged material is equal to the elastic energy of an equivalent undamaged mate-
rial. Consequently, the effective stress 𝛔𝛔 is related to 𝛔𝛔 through the following equa-
tion: 

 𝛔𝛔 = 𝐂𝐂𝛆𝛆 = 𝛔𝛔
(1 − 𝐷𝐷)2 (35) 

In this case, the constitutive law of the damaged material can be expressed as: 

 𝛔𝛔 = (1 − 𝐷𝐷)2𝛔𝛔 = (1 − 𝐷𝐷)2𝐂𝐂𝛆𝛆  (36) 

Several damage models were proposed in literature [57], [58], [59], [60]. This work 
adopts the damage model proposed in Di Re [33] and Gatta [32], which is an en-
hancement of that proposed in Addessi [61]. Specifically, this model accounts for 
the unilateral effect related to the re-closure in compression of tensile cracks. It 
introduces a damage associated variable 𝐷𝐷 given by the combination of damage 
variables for tension, 𝐷𝐷𝑡𝑡, and compression, 𝐷𝐷𝑐𝑐, as defined in the following expres-
sion: 

 𝐷𝐷 = 𝛼𝛼𝑡𝑡𝐷𝐷𝑡𝑡 + 𝛼𝛼𝑐𝑐𝐷𝐷𝑐𝑐 (37) 
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where 𝛼𝛼𝑡𝑡 and 𝛼𝛼𝑐𝑐 are weight factors defined as follows: 

 𝛼𝛼𝑡𝑡 = 𝜂𝜂𝑡𝑡
2

𝜂𝜂𝑡𝑡
2 + 𝜂𝜂𝑐𝑐

2 ,  𝛼𝛼𝑐𝑐 = 1 − 𝛼𝛼𝑡𝑡 (38) 

The variables  𝜂𝜂𝑡𝑡 and 𝜂𝜂𝑐𝑐 are defined as: 

 𝜂𝜂𝑡𝑡 = 𝑌𝑌𝑡𝑡
𝑒𝑒

𝑌𝑌0𝑡𝑡 + (𝑎𝑎𝑡𝑡𝑌𝑌𝑡𝑡
𝑒𝑒 + 𝑏𝑏𝑡𝑡)𝐷𝐷

, 𝜂𝜂𝑐𝑐 = 𝑌𝑌𝑐𝑐
𝑒𝑒

𝑌𝑌0𝑐𝑐 + (𝑎𝑎𝑡𝑡𝑌𝑌𝑐𝑐
𝑒𝑒 + 𝑏𝑏𝑐𝑐)𝐷𝐷

 (39) 

being 𝑌𝑌0𝑐𝑐 and  𝑌𝑌0𝑡𝑡 the damage activation thresholds. 

The evolution of damage is governed by the associated variables, 𝑌𝑌𝑡𝑡 and 𝑌𝑌𝑐𝑐, which 
are related to total tensile and compressive strain. In particular, the definition of 
the associated variables is given by: 

 𝑌𝑌𝑡𝑡 = ��⟨𝑒𝑒𝑧𝑧⟩+
2

3

𝑧𝑧=1
,      𝑌𝑌𝑐𝑐 =

⎷

���⟨𝑒𝑒𝑧𝑧⟩−
2

3

𝑧𝑧=1
− 𝜅𝜅 � ⟨𝑒𝑒𝑧𝑧⟩−�𝑒𝑒𝑗𝑗�−

3

𝑗𝑗≠𝑧𝑧=1
 (40) 

being 𝜅𝜅 a material parameter that determines the shape of the limit function in 
compression. The variable 𝑒𝑒𝑧𝑧 depends on the principal total strains 𝜀𝜀�̂�𝑗 according to 
the following equation:  

 𝑒𝑒𝑧𝑧 = (1 − 2𝜈𝜈)𝜀𝜀�̂�𝑧 + 𝜈𝜈 �𝜀𝜀�̂�𝑗

3

𝑗𝑗=1
 (41) 

Similarly, 𝑌𝑌𝑡𝑡
𝑒𝑒 and 𝑌𝑌𝑐𝑐

𝑒𝑒 are defined as follows: 

 𝑌𝑌𝑡𝑡
𝑒𝑒 = ��⟨𝑒𝑒𝑧𝑧

𝑒𝑒⟩+
2

3

𝑧𝑧=1
,      𝑌𝑌𝑐𝑐

𝑒𝑒 =
⎷

���⟨𝑒𝑒𝑧𝑧
𝑒𝑒⟩−

2
3

𝑧𝑧=1
− 𝜅𝜅 � ⟨𝑒𝑒𝑧𝑧

𝑒𝑒⟩−�𝑒𝑒𝑗𝑗
𝑒𝑒�−

3

𝑗𝑗≠𝑧𝑧=1
 (42) 

where 𝑒𝑒𝑧𝑧
𝑒𝑒 is related to the principal elastic strains 𝜀𝜀�̂�𝑗

𝑒𝑒. 

 𝑒𝑒𝑧𝑧
𝑒𝑒 = (1 − 2𝜈𝜈)𝜀𝜀�̂�𝑧

𝑒𝑒 + 𝜈𝜈 �𝜀𝜀�̂�𝑗
𝑒𝑒

3

𝑗𝑗=1
 (43) 
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The progression of the two damage variables is controlled by the damage limit 
functions for tension and compression, defined as: 

 
𝑔𝑔𝑡𝑡(𝑌𝑌𝑡𝑡,𝐷𝐷𝑡𝑡) = (𝑌𝑌𝑡𝑡 − 𝑌𝑌0𝑡𝑡) − 𝐷𝐷𝑡𝑡(𝑎𝑎𝑡𝑡𝑌𝑌𝑡𝑡 + 𝑏𝑏𝑡𝑡) 

𝑔𝑔𝑐𝑐(𝑌𝑌𝑐𝑐,𝐷𝐷𝑐𝑐) = (𝑌𝑌𝑐𝑐 − 𝑌𝑌0𝑐𝑐) − 𝐷𝐷𝑐𝑐(𝑎𝑎𝑐𝑐𝑌𝑌𝑐𝑐 + 𝑏𝑏𝑐𝑐) 
(44) 

where 𝑏𝑏𝑐𝑐 and 𝑏𝑏𝑡𝑡 influence the rate of damage growth in tension and compression 
and govern the maximum strength of the material. The parameters 𝑎𝑎𝑐𝑐 and 𝑎𝑎𝑡𝑡 con-
trol the slope of the material response curves in the post-peak softening regime. 

The damage limit functions are governed by the classical Kuhn-Tucker and con-
sistency conditions: 

 
𝑔𝑔𝑡𝑡 ≤ 0, 𝐷𝐷�̇�𝑡 ≥ 0, 𝐷𝐷�̇�𝑡𝑔𝑔𝑡𝑡 = 0, 𝐷𝐷�̇�𝑡𝑔𝑔�̇�𝑡 = 0 

𝑔𝑔𝑐𝑐 ≤ 0, 𝐷𝐷�̇�𝑐 ≥ 0, 𝐷𝐷�̇�𝑐𝑔𝑔𝑐𝑐 = 0, 𝐷𝐷�̇�𝑐𝑔𝑔�̇�𝑐 = 0 
(45) 

The unilateral effect due to the re-closure in compression of tensile cracks implies 
that the damage in tension does not affect, partially or totally, the evolution of the 
damage in compression. Conversely, the cumulated damage in the compressive state 
leads to reduction of strength and stiffness also in the tensile behaviour. To intro-
duce this effect in the constitutive model, it is imposed that: 

 𝐷𝐷𝑡𝑡 ≥ 𝐷𝐷𝑐𝑐 (46) 

An example of uniaxial constitutive response for a cyclic load is illustrated in Figure 
11. The mechanical parameters adopted for the damage model are listed in Table 
2.  
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Figure 11: Damage model: Uniaxial stress-strain law. 

𝐸𝐸 𝜈𝜈 𝑌𝑌0𝑐𝑐 𝑎𝑎𝑐𝑐 𝑏𝑏𝑐𝑐 𝑌𝑌0𝑡𝑡 𝑎𝑎𝑡𝑡 𝑏𝑏𝑡𝑡  𝜅𝜅 
[MPa] [-] [-] [-] [-] [-] [-] [-]  [-] 
30000 0.2 3.5e-04 0.1 5e-03 8e-05 0.9 2e-05  0 

Table 2: Damage model: material parameters. 

Figure 12 shows the imposed strain history and the evolution of damage for the 
previous example. The damage variable 𝐷𝐷 equals 𝐷𝐷𝑡𝑡 under tensile loading condi-
tions. Conversely, when the strains are negative, 𝐷𝐷 coincides with the compressive 
damage variable 𝐷𝐷𝑐𝑐. This behaviour is regulated by the weight functions 𝛼𝛼𝑡𝑡 and 
𝛼𝛼𝑐𝑐, which assume values between 0 and 1, depending on the deformation state. The 
unilateral re-closure effect of tensile crack is evident in the graph illustrating the 
damage variation. Specifically, it is observed that, during the compressive loading 
conditions, 𝐷𝐷𝑡𝑡 assumes the value of 𝐷𝐷𝑐𝑐 when the latter exceeds it. Conversely, the 
compressive damage 𝐷𝐷𝑐𝑐 remains constant during tensile loading. This implies that 
the tensile cracking does not influence the compressive strength and stiffness. This 
work also introduces a damage model which accounts for the reduction of compres-
sive stiffness during the crack closure. Further details are provided in Section 2.4.4. 
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Figure 12: Damage model: strain history and damage evolution. 

The damage strain thresholds 𝑌𝑌0𝑐𝑐 and  𝑌𝑌0𝑡𝑡 define the strain elastic limit in com-
pression and tension. To calibrate this parameter, the formulation adopted by Di 
Re [30] is suggested:  

 𝑌𝑌0𝑐𝑐 = (1 − 𝜈𝜈 − 2𝜈𝜈2) 𝜎𝜎𝑐𝑐 𝐸𝐸⁄ ,      𝑌𝑌0𝑡𝑡 < (1 − 𝜈𝜈 − 2𝜈𝜈2) 𝜎𝜎𝑡𝑡 𝐸𝐸⁄  (47) 

where 𝜎𝜎𝑐𝑐 and 𝜎𝜎t are the tensile and compressive strength, respectively. As previ-
ously mentioned, the parameters 𝑎𝑎𝑐𝑐  and 𝑎𝑎𝑡𝑡  regulate the softening behaviour, 
whereas 𝑏𝑏𝑐𝑐 and 𝑏𝑏𝑡𝑡 influence both the peak strength and the rate of damage evolu-
tion. Figure 13 provides an example of the influence of these parameters on the 
material response. In particular, the stress-strain curve and the evolution of damage 
varying the tensile damage parameters 𝑎𝑎𝑡𝑡, and 𝑏𝑏𝑡𝑡 are illustrated. It can be observed 
that the parameter 𝑎𝑎𝑡𝑡 only affects the softening branch, while 𝑏𝑏𝑡𝑡 also influences the 
peak strength. 
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(a) (b) 

Figure 13: Damage model: Uniaxial stress-strain law and damage evolution varying damage pa-
rameter at (a) and bt (b). 
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2.4.3 Damage-Plastic model 

This work adopts the 3D damage-plastic material model for concrete proposed in 
[18]. Especially, the model considers plasticity and damage mechanisms in compres-
sion and tension. It adopts the Drucker-Prager plasticity model described in Section 
2.4.1 integrating it with the damage model discussed in Section 2.4.2. 

Combining plasticity and damage model, the stress-strain relation becomes: 

 𝛔𝛔 = (1 − 𝐷𝐷)2𝐂𝐂(𝛆𝛆 − 𝛆𝛆𝑝𝑝) (48) 

The tangent stiffness matrix is defined as follows: 

 𝐂𝐂t = (1 − 𝐷𝐷)2𝐂𝐂𝑒𝑒𝑝𝑝 − 2(1 − 𝐷𝐷)𝐂𝐂𝛆𝛆𝑒𝑒 ∂𝐷𝐷
∂𝛆𝛆

 (49) 

As a result, the incremental form of the equation (48) is expressed by the following 
relation: 

 �̇�𝛔 = 𝐂𝐂𝒕𝒕�̇�𝛆 (50) 

where �̇�𝛔 and �̇�𝛆 are the stress and strain rate vectors. 

An example of the constitutive response under cyclic loading for the damage-plastic 
model is reported in Figure 14  and Figure 15. The mechanical parameters used are 
listed in Table 3. Unlike the damage model response shown in Figure 11, the resid-
ual plastic deformations in tensile and compression are considered, accurately rep-
resenting the mechanical behaviour of the material. 

𝐸𝐸 𝜈𝜈 σ𝑐𝑐 σ𝑡𝑡 𝐻𝐻𝑧𝑧 𝐻𝐻𝑘𝑘  
[MPa] [-] [MPa] [MPa] [MPa] [MPa]  
30000 0.2 35 3.3 0.001 E 0.8 E  

       
𝑌𝑌0𝑐𝑐 𝑎𝑎𝑐𝑐 𝑏𝑏𝑐𝑐 𝑌𝑌0𝑡𝑡 𝑎𝑎𝑡𝑡 𝑏𝑏𝑡𝑡 𝛽𝛽 
[-] [-] [-] [-] [-] [-] [-] 

3.5e-04 0.1 5e-03 8e-05 0.9 2e-05 0 
Table 3: Damage-plastic model: material parameters 
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Figure 14: Damage-plastic model: uniaxial stress-strain law. 

 
Figure 15: Damage-plastic model: strain history and damage evolution. 

  



Chapter 2: Finite Element Formulation 

33 

2.4.4 Modified Damage-Plastic model with partial closure of cracks 

In case of static loading and unloading cycles, the dynamic response is influenced 
by several mechanical phenomena such as concrete tensile plasticity and the partial 
closure of cracks induced by the presence of concrete aggregate [36]. The previously 
described damage-plastic model does not consider the partial closure of cracks, and 
the recovery of stiffness occurs when transitioning from a state of tension to com-
pression. Typically, this approximation is of minor concern, but it becomes signifi-
cant when assessing frequency in the unloading phase. These aspects will be further 
explored in Chapter 4. This study proposes an enhancement of the 3D damage-
plastic model to account for the partial closure of cracks in concrete. Especially, 
the proposed damage-plastic model considers the stiffness matrix reduced by a por-
tion of the tensile damage 𝛽𝛽𝐷𝐷𝑡𝑡 during the compression phase, corresponding to 𝛼𝛼𝑐𝑐 
> 0. The constitutive law of concrete is defined as in equation (48): 

 𝛔𝛔 = (1 − 𝐷𝐷)2𝐂𝐂(𝛆𝛆 − 𝛆𝛆𝑝𝑝) (51) 

Unlike the previous model, the damage variable is defined as follows: 

 𝐷𝐷 = 𝛼𝛼𝑡𝑡𝐷𝐷𝑡𝑡 + 𝛼𝛼𝑐𝑐𝐷𝐷𝑐𝑐, 𝑤𝑤𝑤𝑤𝑤𝑤ℎ  𝛽𝛽𝐷𝐷𝑡𝑡 < 𝐷𝐷𝑐𝑐 ≤ 1 (52) 

where 𝛽𝛽 is bounded, 0 ≤ 𝛽𝛽 ≤ 1, and represents the portion of tensile damage that 
remains in the compression state. Specifically, if 𝛽𝛽 equals 0, the cracks are assumed 
completely closed, whereas if 𝛽𝛽 equals 1, the cracks are considered fully open. 
Therefore, the partial closure of cracks is given by intermediate values of 𝛽𝛽. This 
model assumes that the compressive stiffness is reduced by the partial closure of 
cracks until the compressive damage 𝐷𝐷𝑐𝑐 exceeds the value of 𝛽𝛽𝐷𝐷𝑡𝑡. This assumption 
is a simplified approximation of the real mechanical behaviour. Indeed, as reported 
in the literature [36], [62], [63], [64], [65], the stiffness of the concrete should be 
restored as soon as the cracks close. In particular, the complete closure of cracks 
occurs at a certain level of compression, which approximately equals the tensile 
strength, if the concrete is undamaged in compression [62], [65]. As stated by Lee 
[60], there is an objective challenge in modelling the sudden recovery of stiffness 
near the final cyclic loading stage through the use of continuous models, such as 
the damage-plastic model. However, in applications of interest where beams are 
subjected to cyclic loading and unloading, the concrete in the cracked area does not 
reach compressive stresses sufficiently high for a complete restoration of stiffness. 
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Therefore, it could be worth for future work to improve the model for complete 
cyclic loads, to consider the compressive elastic restoration of concrete following 
the full closure of cracks. Additionally, in the models proposed in literature [36], 
[65], the transition zone from tension to compression is assumed to be elastic, and 
the stiffness slope varies depending on the plastic tensile strain and the value of 
crack closure stress. Differently, the proposed damage-plastic model considers the 
variation of stiffness in the transition zone as dependent on the tensile damage 
variable through the factor 𝛽𝛽. 

Figure 16 shows the experimental results obtained in [66] and transformed from the 
stress-displacement plane to the stress-strain plane according to [65]. The experi-
mental curve is compared to the numerical results adopting 𝛽𝛽 = 0 and 𝛽𝛽 = 0.75. 
The calibrated mechanical parameters are listed in Table 4.  

𝐸𝐸 𝜈𝜈 σ𝑡𝑡 𝑌𝑌0𝑡𝑡 𝐻𝐻𝑧𝑧 𝐻𝐻𝑘𝑘 𝑎𝑎𝑡𝑡 𝑏𝑏𝑡𝑡 𝛽𝛽 
[MPa] [-] [MPa] [-] [MPa] [MPa] [-] [-] [-] 
3.4e-04 0.2 5e-03 8e-05 0.4E 0.9E 0.92 2e-04 0 - 0.75 

Table 4: Material parameters of numerical model in Figure 16 

 
Figure 16: Modified damage-plastic model compared with the experimental results in [66]. 
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It is observed that the model is capable of representing both the residual plastic 
deformations in tension and the partial closure of the cracks. Specifically, Figure 17 
provides a zoomed-in view of the transition zone, which is the phase where the state 
changes from tension to compression, but the cracks are not yet fully closed. For 𝛽𝛽  
equal to 0, corresponding to the condition of the classical damage-plastic model, 
the compressive stiffness is equal to the initial elastic stiffness, assuming that cracks 
are suddenly closed. By adopting the proposed modified damage-plastic model, it 
is possible to approximate the behaviour in the transition phase more accurately. 
In particular, 𝛽𝛽 was calibrated to obtain the average stiffness value resulting from 
the experimental test. As previously mentioned, the proposed formulation allows to 
consider the stiffness variation, so as the tensile damage increases, a lower stiffness 
is obtained. This characteristic is crucial for correctly calculating the frequency of 
vibration modes, which will be discussed in detail in Chapter 4. 

 
Figure 17: Transition zone - Zoom of Figure 16. 

Figure 18 illustrates the strain history and damage evolution of the numerical re-
sults. During the compression phase, the total damage 𝐷𝐷 is given by a portion of 
the tensile damage 𝐷𝐷𝑡𝑡 according to the equation (52). Specifically, in this applica-
tion 𝐷𝐷 equals 75% of the tensile damage, as highlighted in the figure. 
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Figure 18: Modified damage-plastic model: strain history and damage evolution. 

For the sake of completeness, this paragraph shows the comparison between the 
results of the model described in Section 2.4.3 and those obtained adopting the 
modified damage-plastic formulation with a 𝛽𝛽 = 0.5. The material parameters are 
specified in Table 3. Figure 19 and Figure 20 illustrate the response under cyclic 
loading, while Figure 21 and Figure 22 show the behaviour during loading and 
unloading cycles. 
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Figure 19: Damage-plastic model vs Modified damage-plastic model: cyclic loading.  

 
Figure 20: Damage-plastic model vs Modified damage-plastic model: strain history and damage 

evolution related to Figure 19. 
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Figure 21: Damage-plastic model vs Modified damage-plastic model: loading and unloading cycle. 

 
Figure 22: Damage-plastic model vs Modified damage-plastic model: strain history and damage 

evolution related to Figure 21. 
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2.5 Regularization Technique  

The adoption of strain-softening constitutive laws, as in the case of brittle materials, 
leads to a pathological mesh dependence of the numerical solution, caused by the 
ill-posedness of the governing equations [67], [68]. As a result, the structural re-
sponse may exhibit the localization of damage and/or strains within a limited region. 
However, the length of this zone is not correlated to the physical properties of the 
plastic hinge but solely depends on the numerical formulation adopted. Conse-
quently, in the case of strain softening, the numerical structural response loses the 
objectivity of the solution because the numerical results depend on the choice of 
the characteristic length of the element. This numerical issue impacts both dis-
placement-based (DB) and force-based (FB) beam element formulation. In a dis-
placement-based approach, the localization of damage and strains takes place 
within a single element. This occurs as the section deformations are interpolated 
over the length of each element. Conversely, in the force-based (FB) approach, 
localization occurs at the integration point, hence the length of localization depends 
on the specific numerical integration rule adopted [29], [69]. 

For illustrative purposes, an example is presented to show the impact on the nu-
merical results if the finite element procedure is not regularized. In particular, the 
experimental test conducted by Tanaka and Park [70] to evaluate the lateral ca-
pacity of a reinforced concrete bridge pier was modelled in OpenSees. The test 
characteristics and the mechanical parameters of the materials were adopted con-
sistently with those used in [69]. A displacement-controlled analysis was performed 
on the bridge pier model. The numerical results are presented in Figure 23 and 
compared with the experimental results (EXP). A number of elements from 1 to 3 
was considered, employing both displacement-based elements (DB) and force-based 
elements (FB).  

The results in Figure 23 highlight the lack of objectivity in the analysis, as in both 
cases are significantly influenced by the number of elements used. With force-based 
elements, the characteristic length influences the behaviour in the post-peak phase, 
whereas the maximum capacity of the element remains independent on the beam 
discretization. In contrast, the lack of objectivity in displacement-based beam ele-
ments affects not only the softening phase but also the pre-peak stage, as exten-
sively demonstrated in [29]. 
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(a) (b) 

Figure 23: Base shear – displacement without regularization: DB (a) and FB (b) approach.  

To overcome localization phenomena and solution non-objectivity, several methods 
have been proposed in literature. One of the main approaches used for regulariza-
tion is based on nonlocal formulations [71], [72], [73], [74]. The basic concept of this 
method is that the damage on a material point is influenced by the mechanical 
state at the surrounding points. Nonlocal formulations can generally be divided into 
two main groups: integral formulations and gradient formulations, which can also 
be categorized as explicit or implicit [61], [75], [76]. Addessi and Ciampi [29] pro-
posed an integral nonlocal formulation adapted for both FB and DB elements. 
Generally, the use of nonlocal formulation to avoid localization requires specific 
solving algorithms that can increase the computational effort of the analysis. 

Several simplified methods have been developed for the regularization of FB ele-
ments [29], [68], [69], [77], [78], [79]. Two different approaches can be distinguished: 
one operates at the constitutive law level, and the other at the element level. 
Spacone and Coleman [77] proposed a regularization approach which modifies the 
material constitutive law of FB element to maintain constant the energy dissipation 
during the softening behaviour. The element is regularized in terms of force-dis-
placement, but the localization of strains still depends on the adopted mesh size 
and a second regularization is required [69]. The regularization approach at element 
level is based on the adoption of an integration method along the element which 
enforces a priori the localization within a specified plastic hinge length [29], [69], 
[79]. This method enables achieving a globally objective structural response, while 
localizing strains within the nonlinear hinge of the element. The next paragraph 
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will provide a detailed description of several integration methodologies proposed in 
literature.  

2.5.1. Integration methods for FB element formulation 

In this section, the regularization methods for the FB element formulation are dis-
cussed. As previously mentioned, these methods are based on defining integration 
point weights, ensuring that the localization of strains occurs within the length of 
the nonlinear hinge. In force-based elements, the flexibility matrix, as for the com-
patible basic deformation, is calculated using a numerical integration rule, as fol-
lows: 

 𝐅𝐅𝑒𝑒 = � 𝐛𝐛𝑠𝑠
𝑇𝑇 (𝑥𝑥)𝐟𝐟𝑠𝑠(𝑥𝑥)𝐛𝐛𝑠𝑠(𝑥𝑥)

𝐿𝐿

0
𝑑𝑑𝑥𝑥 ≃ �𝑤𝑤𝑡𝑡𝐛𝐛𝑠𝑠

𝑇𝑇 (𝑥𝑥𝑡𝑡)𝐟𝐟𝑠𝑠(𝑥𝑥𝑡𝑡)𝐛𝐛𝑠𝑠(𝑥𝑥𝑡𝑡)
𝑛𝑛𝐺𝐺

𝑡𝑡=1
 (53) 

where 𝑛𝑛𝐺𝐺 is the number of integration points; 𝑥𝑥𝑡𝑡 and 𝑤𝑤𝑡𝑡 refer to the position and 
weight associated to each integration point of the element. In nonlinear beam ele-
ments, the most used integration rule is the Gauss–Lobatto (GL) quadrature for-
mula, which locates integration points at the ends of the element. The highest order 
polynomial exactly integrated is 2𝑛𝑛𝐺𝐺 − 3.  

In case of softening behaviour, strains concentrate at the initial integration point 
close to the end node of the element. The characteristic length of the region, where 
localization takes place, is equal to 𝑤𝑤1 𝐿𝐿, with 𝐿𝐿 equal to the element length. As 
briefly mentioned in the previous section, the regularization technique involves set-
ting the characteristic length equal to the nonlinear hinge length, which represents 
the physical zone of the beam where nonlinear mechanisms occur.  

The methods assume that the softening behaviour is limited to the nonlinear hinge 
regions of length Lp,i and Lp,j, located at the ends of the element, while the remaining 
portion of the element can exhibit an elastic or nonlinear behaviour. To effectively 
capture the softening behaviour within the hinge regions of the element, it is ad-
vantageous to utilize integration rules that meet these requirements [69], [78]: 

1. The existence of an integration point at the end of the element where the 
moment is maximum. 

2. The exact integration of quadratic polynomials to obtain the exact solutions 
for linear curvature distributions. 
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3. A single integration point in each nonlinear hinge region to integrate strains 
over the specified lengths Lp,i and Lp,j. 

A brief overview of different methodologies available in literature is presented:  

a) Midpoint Integration: 

In the midpoint integration approach, the positioning of the integration points at 
the centre of the hinges leads to an increase of the element flexural capacity. Fur-
thermore, this method accurately integrates solely linear functions, yet it introduces 
errors when integrating quadratic polynomials. Consequently, although meeting cri-
terion 3, it does not fulfil criteria 1 and 2. 

b) Endpoint Hinge Integration 

Moving the integration points to the element ends at 0 and L characterizes the 
endpoint integration method. This approach sacrifices accuracy, enabling the exact 
integration of constant functions. Consequently, it leads to a notable error in rep-
resenting linear curvature distributions. Thus, the endpoint hinge integration 
method satisfies the criteria 1 and 3 but falls as for criterion 2. 

c) Two-Point Gauss–Radau Integration 

The two-point Gauss–Radau integration method considers, in each nonlinear hinge 
region, two Gauss points which provide the exact integration for linear curvature 
distributions. Although this method satisfies criteria 1 and 2, it does not fulfil cri-
terion 3 because the characteristic length is equal to the integration weight at the 
element end (Lp/4). 

d) Regularized Hinge Integration 

The element is divided in three distinct parts: two sub-regions at both ends and an 
interior region. The length of central region is equal to 𝐿𝐿𝑧𝑧𝑛𝑛𝑡𝑡 =  𝐿𝐿 − 2𝐿𝐿𝑒𝑒, where 𝐿𝐿𝑒𝑒 
is the length of the end sub-regions. The central zone can employ any numerical 
integration scheme, whereas the end zones must satisfy the requirement 1. Addessi 
and Ciampi [29] proposed utilizing Gauss–Lobatto (GL) integration for the end 
region, while Scott and Fenves [69] suggests the adoption of the Gauss-Radau (GR) 
scheme. By imposing that the characteristic length 𝐿𝐿𝑐𝑐 associated to the end inte-
gration points is equal to 𝑤𝑤1𝐿𝐿𝑒𝑒 , results that 𝐿𝐿𝑒𝑒 =𝐿𝐿𝑐𝑐 𝑤𝑤1⁄ . For example, if an 
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integration scheme with two GL points is adopted, the element length 𝐿𝐿𝑒𝑒 is equal 
to 2𝐿𝐿𝑐𝑐 since 𝑤𝑤1 = 1 2⁄ . Figure 24 and Figure 25 show an example of integration 
scheme, comparing the method proposed by Addessi and Ciampi (AD) with that 
proposed by Scott (SC). 

 
Figure 24:  Example of AD integration scheme. 

 
Figure 25:  Example of SC integration scheme. 

The regularized hinge method effectively overcomes the limitations of the ap-
proaches previously discussed. Indeed, this technique defines the characteristic 
length of the external element equal to the hinge length, thereby setting the length 
of the end element accordingly. In contrast, the previous methodologies enforce the 
element length to be equal to the hinge length, either by utilizing a single integra-
tion point in case of (a) or (b), or by reducing the characteristic length to a value 
smaller than the plastic hinge length. 

One of the drawbacks of AD and SC methods is their inability to accurately repro-
duce strain-hardening behaviour. Scott and Hamutcuoglu [79] proposed an alterna-
tive approach (SH), adding two additional integration points positioned at small 
distances from the element end. This method improves the accuracy of the struc-
tural response in cases of strain-hardening behaviour, but it leads to an increase of 
computational effort of the numerical model.  
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The regularization techniques proposed by Addessi (AD), Scott (SC) and 
Hamutcuoglu (SH) were applied to the numerical model previously introduced. As 
suggested in [69], two different hinge lengths were considered, specifically 0.216L 
and 0.226L. In Figure 26, the numerical results are compared with the experimental 
cyclic test conducted by Tanaka and Park [70]. In contrast to the non-regularized 
FB element, shown in Figure 23 (b), the regularized FB element captures the sof-
tening behaviour during the post-peak phase. It can be observed that, with the 
same hinge length, the results are nearly consistent when adopting the AD or SC 
approaches. However, a more pronounced capacity reduction is observed in the 
softening branch with the SH method. 

  
(a) (b) 

Figure 26: Base shear – displacement FB element with regularization: Lp=0.216L (a) and 
Lp=0.226L (b)  

0 20 40 60 80
Displacement [mm]

0

100

200

300

400

500

600

700

800

900

Ba
se

 S
he

ar
 [k

N
]

Exp
SC
AD
SH

0 20 40 60 80
Displacement [mm]

0

100

200

300

400

500

600

700

800

900
Ba

se
 S

he
ar

 [k
N

]
Exp
SC
AD
SH



Chapter 2: Finite Element Formulation 

45 

2.6 Computational Aspects 

This section describes some computational aspects concerning the solution algo-
rithm of the fiber beam element integrated with the 3D damage-plastic constitutive 
model discussed in Section 2.4. Additionally, the following section introduces the 
software OpenSees, illustrating the additions and modifications made to the source 
code.  

To solve nonlinear analyses, existing FEM software commonly adopts the Newton-
Raphson algorithm. The latter is a global iteration method, where each element 
computes the nodal forces and stiffness matrix for given nodal displacement incre-
ments. The element solution algorithm is based on a hierarchical approach, encom-
passing three computational nested procedures: Element State Determination, Sec-
tion State Determination, and Material State Determination. In details: 

• Element State Determination. At each iteration of the analysis, it computes 
the corresponding stiffness matrix and element basic forces.  

 from 𝛆𝛆𝑒𝑒
𝑧𝑧   𝐄𝐄𝑒𝑒

𝑧𝑧  and 𝛔𝛔𝑒𝑒
𝑧𝑧  (54) 

• Section State Determination: This refers to evaluating the generalized sec-
tion stiffness and forces at each integration point. It calculates the integrals 
over the cross-section of fiber response.  

 from 𝜺𝜺𝑠𝑠
𝑧𝑧   𝒌𝒌𝑠𝑠

𝑧𝑧  and 𝝈𝝈𝑠𝑠
𝑧𝑧  (55) 

• Material State Determination: This step involves the evaluation of the ma-
terial response at each fiber. A condensation procedure is adopted to intro-
duce the 3D material constitutive model. 

 from 𝛆𝛆𝑓𝑓
𝑧𝑧   𝐤𝐤𝑓𝑓

𝑧𝑧  and 𝛔𝛔𝑓𝑓
𝑧𝑧  (56) 

Element and Section State Determinations are detailed in Section 2.6.1, while Ma-
terial State Determination in Section 2.6.3 and Section 2.6.4. 
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2.6.1 Element and Section State Determination  

This section presents the solution algorithm of Element State Determination for 
FB and DB element formulation. The element iteration procedure within a global 
DB formulation, commonly used in existing FEM software, is more complex for the 
FB element [41]. A non-iterative solution algorithm was proposed by Neuenhofer 
and Filippou [46], which is an enhanced version of that presented by Ciampi and 
Carlesimo in [80]. In Table 5 and Table 6, the consistent numerical procedures for 
the DB and FB approaches are illustrated in detail. The matrices and vectors in 
tables refer to those defined in Section 2.2 and 2.3. In the solution algorithm for 
the DB approach, the section residual stress 𝐫𝐫𝜎𝜎𝑠𝑠

𝑧𝑧  is derived directly from the section 
state determination, and the residual element stress 𝐑𝐑𝜎𝜎𝑒𝑒

𝑧𝑧 is obtained by integrating 
𝐫𝐫𝜎𝜎𝑠𝑠

𝑧𝑧 (𝑥𝑥) along the element. Unlike the DB method, for the FB approach, the section 
and element residual vectors, 𝐫𝐫𝜀𝜀𝑠𝑠

𝑧𝑧  and 𝐑𝐑𝜀𝜀𝑒𝑒
𝑧𝑧 , are in terms of strains and basic displace-

ments. As previously mentioned, introducing this procedure into the global Newton-
Raphson algorithm is more complex due to the need of additional numerical steps 
for calculating the element stiffness matrix and the basic forces of the element. For 
further details, refer to literature [29], [46]. 

DB approach - Solution algorithm: Element State Determination 

 

Δ𝛆𝛆𝑒𝑒
𝑧𝑧 = 𝛆𝛆𝑒𝑒

𝑧𝑧  − 𝛆𝛆𝑒𝑒
𝑧𝑧−1 

𝛆𝛆𝑠𝑠𝑖𝑖 = 𝛂𝛂𝑠𝑠 𝛆𝛆𝑒𝑒𝑖𝑖   

Δ𝛆𝛆𝑠𝑠
𝑧𝑧 = 𝛆𝛆𝑠𝑠

𝑧𝑧  − 𝛆𝛆𝑠𝑠
𝑧𝑧−1  

Section State Determination: from 𝛆𝛆𝑠𝑠
𝑧𝑧   𝐤𝐤𝑠𝑠

𝑧𝑧  and 𝛔𝛔𝑠𝑠
𝑧𝑧  

𝐫𝐫𝜎𝜎𝑠𝑠
𝑧𝑧 = 𝛔𝛔𝑠𝑠

𝑧𝑧  − (𝐤𝐤𝑠𝑠
𝑧𝑧−1 Δ𝛆𝛆𝑠𝑠

𝑧𝑧 + 𝛔𝛔𝑠𝑠
𝑧𝑧−1)   

𝐊𝐊𝑒𝑒
𝑧𝑧 = � 𝛂𝛂𝑠𝑠

𝑇𝑇  𝐤𝐤𝑠𝑠
𝑧𝑧  𝛂𝛂𝑠𝑠 𝑑𝑑𝑥𝑥

𝐿𝐿

0
  

𝐑𝐑𝜎𝜎𝑒𝑒
𝑧𝑧 = � 𝛂𝛂𝑠𝑠

𝑇𝑇   𝐫𝐫𝜎𝜎𝑠𝑠
𝑧𝑧  𝑑𝑑𝑥𝑥

𝐿𝐿

0
 

Δ𝛔𝛔𝑒𝑒
𝑧𝑧 = 𝐊𝐊𝑒𝑒

𝑧𝑧−1 Δ𝛆𝛆𝑒𝑒
𝑧𝑧  + 𝐑𝐑𝜎𝜎𝑒𝑒

𝑧𝑧  

𝛔𝛔𝑒𝑒
𝑧𝑧 = 𝛔𝛔𝑒𝑒

𝑧𝑧−1 + Δ𝛔𝛔𝑒𝑒
𝑧𝑧  

Table 5: DB approach - Solution algorithm: Element State Determination 
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FB approach - Solution algorithm - Element State Determination 

 

Δ𝛆𝛆𝑒𝑒
𝑧𝑧 = 𝛆𝛆𝑒𝑒

𝑧𝑧  − 𝛆𝛆𝑒𝑒
𝑧𝑧−1 

Δ𝛔𝛔𝑒𝑒
𝑧𝑧 = 𝐊𝐊𝑒𝑒

𝑧𝑧−1 Δ𝛆𝛆𝑒𝑒
𝑧𝑧  

Δ𝛔𝛔𝑠𝑠
𝑧𝑧 = 𝐛𝐛𝑠𝑠 Δ𝛔𝛔𝑒𝑒

𝑧𝑧  + 𝐫𝐫𝜎𝜎𝑠𝑠
𝑧𝑧−1 

Δ𝛆𝛆𝑠𝑠
𝑧𝑧 (𝑥𝑥) = 𝐟𝐟𝑠𝑠𝑧𝑧−1 Δ𝛔𝛔𝑠𝑠

𝑧𝑧  

𝛆𝛆𝑠𝑠
𝑧𝑧 = 𝛆𝛆𝑠𝑠

𝑧𝑧−1 + Δ𝛆𝛆𝑠𝑠
𝑧𝑧  

Section State Determination: from 𝛆𝛆𝑠𝑠
𝑧𝑧   𝐤𝐤𝑠𝑠

𝑧𝑧  and 𝛔𝛔𝑠𝑠
𝑧𝑧  

𝐟𝐟𝑠𝑠𝑧𝑧 = (𝐤𝐤𝑠𝑠
𝑧𝑧 )−1   

𝐫𝐫𝜀𝜀𝑠𝑠
𝑧𝑧 = 𝐟𝐟𝑠𝑠𝑧𝑧 (𝛔𝛔𝑠𝑠

𝑧𝑧−1 + Δ𝛔𝛔𝑠𝑠
𝑧𝑧 − 𝛔𝛔𝑠𝑠

𝑧𝑧 )   

𝐅𝐅𝑒𝑒
𝑧𝑧 = � 𝐛𝐛𝑠𝑠

𝑇𝑇  𝐟𝐟𝑠𝑠𝑧𝑧 𝐛𝐛𝑠𝑠  𝑑𝑑𝑥𝑥
𝐿𝐿

0
 

𝐊𝐊𝑒𝑒
𝑧𝑧 = (𝐅𝐅𝑒𝑒

𝑧𝑧 )−1   

𝐑𝐑𝜀𝜀𝑒𝑒
𝑧𝑧 = � 𝐛𝐛𝑠𝑠

𝑇𝑇  𝐫𝐫𝜀𝜀𝑠𝑠
𝑧𝑧  𝑑𝑑𝑥𝑥

𝐿𝐿

0
 

𝛔𝛔𝑒𝑒
𝑧𝑧 = 𝛔𝛔𝑒𝑒

𝑧𝑧−1  + Δ𝛔𝛔𝑒𝑒
𝑧𝑧  − 𝐊𝐊𝑒𝑒

𝑧𝑧  𝐑𝐑𝜀𝜀𝑒𝑒
𝑧𝑧  

𝐫𝐫𝜎𝜎𝑠𝑠
𝑧𝑧 = 𝐛𝐛𝑠𝑠 𝛔𝛔𝑒𝑒

𝑧𝑧  − 𝛔𝛔𝑠𝑠
𝑧𝑧  

Table 6: FB approach - Solution algorithm - Element State Determination 
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The Section State Determination involves evaluating the response of the cross-sec-
tion in terms of generalized section forces and stiffness. These are subsequently 
integrated along the length of the element in the Element State Determination. In 
fiber beam element, the generalized variables are obtained by integrating along the 
cross-section fiber stress and stiffness, as described in Section 2.3. Table 7 describes 
the Section State Determination procedure.  

Solution algorithm - Section State Determination  

 

𝛆𝛆𝑓𝑓
𝑧𝑧 = 𝐥𝐥𝑠𝑠 𝛆𝛆𝑠𝑠

𝑧𝑧  

Material State Determination: from 𝛆𝛆𝑓𝑓
𝑧𝑧   𝐤𝐤𝑓𝑓

𝑧𝑧  and 𝛔𝛔𝑓𝑓
𝑧𝑧  

𝛔𝛔𝑠𝑠
𝑧𝑧 = � 𝐥𝐥s𝑇𝑇  𝛔𝛔𝑓𝑓

𝑧𝑧  𝑑𝑑𝐴𝐴𝑓𝑓
𝐴𝐴𝑓𝑓

   

𝐤𝐤𝑠𝑠
𝑧𝑧 = � 𝐥𝐥𝑠𝑠𝑇𝑇  𝐤𝐤𝑓𝑓

𝑧𝑧  𝐥𝐥𝑠𝑠𝑑𝑑𝐴𝐴𝑓𝑓
𝐴𝐴𝑓𝑓

 

Table 7: Solution algorithm - Section State Determination 
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2.6.2 Static Condensation 

A numerical condensation procedure is necessary to integrate the three-dimensional 
constitutive law, as the 3D damage-plastic, into the beam element formulation. 
Indeed, the latter is characterized by three strain and stress components, while the 
three-dimensional material model has six components, which can be decomposed 
into a principal vector, denoted with m, and a secondary vector, denoted with c, as 
follows: 

 
𝛆𝛆𝑓𝑓 = 𝛆𝛆𝑚𝑚 = {𝜀𝜀1, 𝛾𝛾12, 𝛾𝛾13}𝑇𝑇 ,  𝛆𝛆𝑐𝑐 = {𝜀𝜀2, 𝜀𝜀3, 𝛾𝛾23}𝑇𝑇  

𝛔𝛔𝑓𝑓 = 𝛔𝛔𝑚𝑚 = {𝜎𝜎1, 𝜏𝜏12, 𝜏𝜏13}𝑇𝑇 ,  𝝈𝝈𝑐𝑐 = {𝜎𝜎2, 𝜎𝜎3, 𝜏𝜏23}𝑇𝑇  
(57) 

The static condensation involves finding the strain vector 𝛆𝛆𝑐𝑐 such that 𝝈𝝈𝑐𝑐 =  0 
through a nonlinear iterative procedure. Considering the incremental form of the 
constitutive relation, given by �̇�𝛔 = 𝐂𝐂𝑡𝑡�̇�𝛆, the matrix tangent stiffness is decomposed 
as follows: 

 ��̇�𝛔𝑚𝑚
�̇�𝛔𝑐𝑐

� = �
𝐂𝐂𝑡𝑡,𝑚𝑚𝑚𝑚 𝐂𝐂𝑡𝑡,𝑚𝑚𝑐𝑐
𝐂𝐂𝑡𝑡,𝑐𝑐𝑚𝑚 𝐂𝐂𝑡𝑡,𝑐𝑐𝑐𝑐

���̇�𝛆𝑚𝑚
�̇�𝛆𝑐𝑐

� (58) 

Imposing �̇�𝛔𝑐𝑐 =  0, the condensed stiffness matrix is given by: 

 𝐂𝐂�̂�𝑡,𝑚𝑚 = 𝐂𝐂𝑡𝑡,𝑚𝑚𝑚𝑚  − 𝐂𝐂𝑡𝑡,𝑚𝑚𝑐𝑐�𝐂𝐂𝑡𝑡,𝑐𝑐𝑐𝑐�−1𝐂𝐂𝑡𝑡,𝑐𝑐𝑚𝑚 (59) 

Consequently, the condensed constitutive relation is defined as: 

 �̇�𝛔𝑚𝑚 = 𝐂𝐂�̂�𝑡,𝑚𝑚�̇�𝛆𝑚𝑚 (60) 

Di Re [30] proposed two different nonlinear iteration procedures for material con-
densation. The first procedure introduces an iterative algorithm within the element 
state determination. In contrast, the second procedure adopts a consistent non-
iterative approach, which carries the residual vectors to the upper level of analysis, 
significantly reducing the computational effort. The condensation procedure does 
not affect the equations governing the element and material state determination. 
In this work, a condensation procedure at the element level available in OpenSees 
is adopted. Further details are provided in the Section 2.7. 
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2.6.3 Solution algorithm for 3D damage-plastic model 

The following section outlines the solution algorithm for the 3D damage-plastic 
model.  The procedure is based on a predictor-corrector algorithm model, consisting 
of two phases [29], [30], [32], [33], [61], [81]. The first phase, the predictor phase, 
solves the elasto-plastic problem through the return mapping algorithm, maintain-
ing the damage constant. In the second phase, referred to as the correction phase, 
the damage variables are determined while the total and plastic strains are blocked. 
In Table 8, a brief overview of the solution procedure is provided. The detailed 
algorithm is presented in Table 9, where n+1 denotes the Newton-Raphson itera-
tion at the current step. The implemented solution algorithm is consistent because 
the iterations are conducted at global level rather than at material level. 

Elasto-Plastic Predictor Phase Damage Corrector 

Elastic  
predictor 

Plastic corrector  

∆𝛆𝛆 = 𝐋𝐋𝒆𝒆∆𝐮𝐮𝒆𝒆 ∆𝛆𝛆 = 𝟎𝟎 ∆𝛆𝛆 = 𝟎𝟎 

∆𝛆𝛆𝑝𝑝 = 𝟎𝟎 ∆𝛆𝛆𝑝𝑝 = � 𝟎𝟎, 𝑓𝑓(𝛈𝛈, α) < 0
∆𝜆𝜆 𝐧𝐧, 𝑓𝑓(𝛈𝛈, α) ≥ 0 ∆𝛆𝛆𝑝𝑝 = 𝟎𝟎 

∆𝛇𝛇 = 𝟎𝟎 ∆𝛇𝛇 = �
𝟎𝟎, 𝑓𝑓(𝛈𝛈, α) < 0

2
3
𝐻𝐻𝑘𝑘∆𝛆𝛆𝑝𝑝, 𝑓𝑓(𝛈𝛈, α) ≥ 0

 ∆ζ = 𝟎𝟎 

∆α = 𝟎𝟎 ∆α =
⎩�
⎨
�⎧ 𝟎𝟎, 𝑓𝑓(𝛈𝛈, α) < 0

�2
3

∆𝜆𝜆, 𝑓𝑓(𝛈𝛈, α) ≥ 0
 ∆α = 𝟎𝟎 

∆𝐷𝐷𝑡𝑡 = 0 ∆𝐷𝐷𝑡𝑡 = 0 

          ∆𝐷𝐷𝑡𝑡 = 0,      𝑔𝑔𝑡𝑡(𝑌𝑌𝑡𝑡, 𝐷𝐷𝑡𝑡) < 0 

𝐷𝐷𝑡𝑡 =
(𝑌𝑌𝑡𝑡 − 𝑌𝑌0𝑡𝑡)
(𝑎𝑎𝑡𝑡𝑌𝑌𝑡𝑡 + 𝑏𝑏𝑡𝑡)

, 𝑔𝑔𝑡𝑡(𝑌𝑌𝑡𝑡, 𝐷𝐷𝑡𝑡) ≥ 0 

∆𝐷𝐷𝑐𝑐 = 0 ∆𝐷𝐷𝑐𝑐 = 0 

          ∆𝐷𝐷𝑐𝑐 = 0,      𝑔𝑔𝑐𝑐(𝑌𝑌𝑐𝑐,𝐷𝐷𝑐𝑐) < 0 

𝐷𝐷𝑐𝑐 =
(𝑌𝑌𝑐𝑐 − 𝑌𝑌0𝑐𝑐)
(𝑎𝑎𝑐𝑐𝑌𝑌𝑐𝑐 + 𝑏𝑏𝑐𝑐)

,   𝑔𝑔𝑐𝑐(𝑌𝑌𝑐𝑐,𝐷𝐷𝑐𝑐) ≥ 0 

Table 8: Solution procedure for 3D damage-plastic model 
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Elasto-Plastic Predictor  

 From analysis:  𝛆𝛆𝑛𝑛+1 and all parameters at the previous step n 

 𝛔𝛔𝑛𝑛+1
𝑡𝑡𝑡𝑡𝑧𝑧𝑡𝑡𝑡𝑡 = C(𝛆𝛆𝑛𝑛+1 − 𝛆𝛆𝑛𝑛

𝑝𝑝 ) 

if 𝑓𝑓�𝛈𝛈𝑛𝑛+1, 𝛇𝛇𝑛𝑛, α𝑛𝑛� < 0 

 𝛆𝛆𝑛𝑛+1
𝑝𝑝 = 𝛆𝛆𝑛𝑛

𝑝𝑝 , 𝛇𝛇𝑛𝑛+1 = 𝛇𝛇𝑛𝑛, α𝑛𝑛+1 = α𝑛𝑛 

else 
�̇�𝜆𝑛𝑛+1 =

𝑓𝑓�𝛈𝛈𝑛𝑛+1, 𝛇𝛇𝑛𝑛, α𝑛𝑛�
2𝐺𝐺 + 2/3(𝐻𝐻𝑘𝑘 + 𝐻𝐻𝑧𝑧)

,  𝛆𝛆𝑛𝑛+1
𝑝𝑝 = 𝛆𝛆𝑛𝑛

𝑝𝑝 + �̇�𝜆𝑛𝑛+1𝐧𝐧𝑛𝑛+1 

𝛼𝛼𝑛𝑛+1 = 𝛼𝛼𝑛𝑛 + �2
3

�̇�𝜆𝑛𝑛+1 𝑎𝑎𝑛𝑛𝑑𝑑 𝛇𝛇𝑛𝑛+1 =
2
3
𝐻𝐻𝑘𝑘𝛆𝛆𝑛𝑛+1

𝑝𝑝  

end  

  𝛔𝛔𝑛𝑛+1
𝑡𝑡𝑡𝑡𝑧𝑧𝑡𝑡𝑡𝑡 = 𝐂𝐂�𝛆𝛆𝑛𝑛+1 − 𝛆𝛆𝑛𝑛+1

𝑝𝑝 � = 𝐂𝐂𝛆𝛆𝑛𝑛+1
𝑒𝑒 ,  calculate 𝐂𝐂𝑒𝑒𝑝𝑝 

Damage Corrector 

 

Calculate: 

𝛆𝛆𝑧𝑧,𝑛𝑛+1, 𝛆𝛆𝑧𝑧,𝑛𝑛+1
𝑒𝑒 , 𝑒𝑒𝑧𝑧,𝑛𝑛+1, 𝑒𝑒𝑧𝑧,𝑛𝑛+1

𝑒𝑒 , 𝑒𝑒𝑧𝑧,𝑛𝑛+1
𝑒𝑒 ,  𝑤𝑤 = 1, .. 

𝑌𝑌𝑡𝑡,𝑛𝑛+1, 𝑌𝑌𝑐𝑐,𝑛𝑛+1, 𝑌𝑌𝑡𝑡,𝑛𝑛+1
𝑒𝑒 , 𝑌𝑌𝑐𝑐,𝑛𝑛+1

𝑒𝑒  

if 𝑔𝑔𝑡𝑡�𝑌𝑌𝑡𝑡,𝑛𝑛+1, 𝐷𝐷𝑡𝑡,𝑛𝑛� < 0 and 𝑔𝑔𝑐𝑐�𝑌𝑌𝑐𝑐,𝑛𝑛+1, 𝐷𝐷𝑐𝑐,𝑛𝑛� < 0 

 𝐷𝐷𝑡𝑡,𝑛𝑛+1 = 𝐷𝐷𝑡𝑡,𝑛𝑛, 𝐷𝐷𝑐𝑐,𝑛𝑛+1 = 𝐷𝐷𝑐𝑐,𝑛𝑛 

else 𝐷𝐷𝑡𝑡,𝑛𝑛+1 =
𝑌𝑌𝑡𝑡,𝑛𝑛+1 − 𝑌𝑌0𝑡𝑡

𝑎𝑎𝑡𝑡𝑌𝑌𝑡𝑡,𝑛𝑛+1 + 𝑏𝑏𝑡𝑡
, 𝐷𝐷𝑐𝑐,𝑛𝑛+1 =

𝑌𝑌𝑐𝑐,𝑛𝑛+1 − 𝑌𝑌0𝑐𝑐

𝑎𝑎𝑡𝑡𝑌𝑌𝑐𝑐,𝑛𝑛+1 + 𝑏𝑏𝑐𝑐
 

η𝑡𝑡,𝑛𝑛+1 =
𝑌𝑌𝑡𝑡,𝑛𝑛+1

𝑒𝑒

𝑌𝑌0𝑡𝑡,𝑛𝑛+1 + �𝑎𝑎𝑡𝑡,𝑛𝑛+1𝑌𝑌𝑡𝑡,𝑛𝑛+1
𝑒𝑒 + 𝑏𝑏𝑡𝑡,𝑛𝑛+1�𝐷𝐷𝑛𝑛

,  

ηc,n+1 =
Yc,n+1

e

Y0c,n+1 + �𝑎𝑎c,n+1Yc,n+1
e + 𝑏𝑏c,n+1�Dn

 

α𝑡𝑡,𝑛𝑛+1 =
η𝑡𝑡,𝑛𝑛+1

2

η𝑡𝑡,𝑛𝑛+1
2 + η𝑐𝑐,𝑛𝑛+1

2 , α𝑐𝑐,𝑛𝑛+1 = 1 − α𝑡𝑡,𝑛𝑛+1 

𝐷𝐷𝑛𝑛+1 = α𝑡𝑡,𝑛𝑛+1𝐷𝐷𝑡𝑡,𝑛𝑛+1 + α𝑐𝑐,𝑛𝑛+1𝐷𝐷𝑐𝑐,𝑛𝑛+1 

end  

 𝛔𝛔𝑛𝑛+1 = (1 − 𝐷𝐷𝑛𝑛+1)2𝐂𝐂�𝛆𝛆𝑛𝑛+1 − 𝛆𝛆𝑛𝑛+1
𝑝𝑝 �, 𝐂𝐂𝑡𝑡,𝑛𝑛+1 = (1 − 𝐷𝐷𝑛𝑛+1)2𝐂𝐂𝑛𝑛+1

𝑒𝑒𝑝𝑝  

Table 9: Solution algorithm for 3D damage-plastic model [30] 
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2.6.4 Solution algorithm for modified damage-plastic model 

This section introduces the solution algorithm for the modified damage-plastic 
model, detailed in Section 2.4.4. In Table 10, the part of the algorithm highlighted 
in blue represents the additional component compared to the 3D damage-plastic 
algorithm, described in the related Table 9. 

Elasto-Plastic Predictor  

 See Table 9 

Damage Corrector 

 

Calculate: 

𝛆𝛆𝑧𝑧,𝑛𝑛+1, 𝛆𝛆𝑧𝑧,𝑛𝑛+1
𝑒𝑒 , 𝑒𝑒𝑧𝑧,𝑛𝑛+1, 𝑒𝑒𝑧𝑧,𝑛𝑛+1

𝑒𝑒 , 𝑒𝑒𝑧𝑧,𝑛𝑛+1
𝑒𝑒 ,  𝑤𝑤 = 1, .. 

𝑌𝑌𝑡𝑡,𝑛𝑛+1, 𝑌𝑌𝑐𝑐,𝑛𝑛+1, 𝑌𝑌𝑡𝑡,𝑛𝑛+1
𝑒𝑒 , 𝑌𝑌𝑐𝑐,𝑛𝑛+1

𝑒𝑒  

if 𝑔𝑔𝑡𝑡�𝑌𝑌𝑡𝑡,𝑛𝑛+1, 𝐷𝐷𝑡𝑡,𝑛𝑛� < 0 and 𝑔𝑔𝑐𝑐�𝑌𝑌𝑐𝑐,𝑛𝑛+1, 𝐷𝐷𝑐𝑐,𝑛𝑛� < 0 

 𝐷𝐷𝑡𝑡,𝑛𝑛+1 = 𝐷𝐷𝑡𝑡,𝑛𝑛, 𝐷𝐷𝑐𝑐,𝑛𝑛+1 = 𝐷𝐷𝑐𝑐,𝑛𝑛 

else 𝐷𝐷𝑡𝑡,𝑛𝑛+1 =
𝑌𝑌𝑡𝑡,𝑛𝑛+1 − 𝑌𝑌0𝑡𝑡

𝑎𝑎𝑡𝑡𝑌𝑌𝑡𝑡,𝑛𝑛+1 + 𝑏𝑏𝑡𝑡
, 𝐷𝐷𝑐𝑐,𝑛𝑛+1 =

𝑌𝑌𝑐𝑐,𝑛𝑛+1 − 𝑌𝑌0𝑐𝑐

𝑎𝑎𝑡𝑡𝑌𝑌𝑐𝑐,𝑛𝑛+1 + 𝑏𝑏𝑐𝑐
 

η𝑡𝑡,𝑛𝑛+1 =
𝑌𝑌𝑡𝑡,𝑛𝑛+1

𝑒𝑒

𝑌𝑌0𝑡𝑡,𝑛𝑛+1 + �𝑎𝑎𝑡𝑡,𝑛𝑛+1𝑌𝑌𝑡𝑡,𝑛𝑛+1
𝑒𝑒 + 𝑏𝑏𝑡𝑡,𝑛𝑛+1�𝐷𝐷𝑛𝑛

,  

ηc,n+1 =
Yc,n+1

e

Y0c,n+1 + �𝑎𝑎c,n+1Yc,n+1
e + 𝑏𝑏c,n+1�Dn

 

α𝑡𝑡,𝑛𝑛+1 =
η𝑡𝑡,𝑛𝑛+1

2

η𝑡𝑡,𝑛𝑛+1
2 + η𝑐𝑐,𝑛𝑛+1

2 , α𝑐𝑐,𝑛𝑛+1 = 1 − α𝑡𝑡,𝑛𝑛+1 

 

if        𝐷𝐷𝑐𝑐,𝑛𝑛+1 <  𝛽𝛽 𝐷𝐷𝑡𝑡,𝑛𝑛+1 

          𝐷𝐷𝑛𝑛+1 = α𝑡𝑡,𝑛𝑛+1𝐷𝐷𝑡𝑡,𝑛𝑛+1 + α𝑐𝑐,𝑛𝑛+1 𝛽𝛽 𝐷𝐷𝑡𝑡,𝑛𝑛+1 

else 
         𝐷𝐷𝑛𝑛+1 = α𝑡𝑡,𝑛𝑛+1𝐷𝐷𝑡𝑡,𝑛𝑛+1 + α𝑐𝑐,𝑛𝑛+1𝐷𝐷𝑐𝑐,𝑛𝑛+1 

end 

end  

 𝛔𝛔𝑛𝑛+1 = (1 − 𝐷𝐷𝑛𝑛+1)2𝐂𝐂�𝛆𝛆𝑛𝑛+1 − 𝛆𝛆𝑛𝑛+1
𝑝𝑝 �, 𝐂𝐂𝑡𝑡,𝑛𝑛+1 = (1 − 𝐷𝐷𝑛𝑛+1)2𝐂𝐂𝑛𝑛+1

𝑒𝑒𝑝𝑝  

Table 10: Solution algorithm for Modified damage-plastic model 
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2.7  OpenSees Framework and Modelling strategy 

This paragraph briefly introduces the software framework in which the 3D damage-
plastic model has been integrated. OpenSees, an acronym for the Open System for 
Earthquake Engineering Simulation, is an open-source software framework origi-
nally designed for applications in the field of earthquake engineering [82]. The soft-
ware platform is based on finite element methodologies and, due to its open-source 
nature, is widely used in the academic world. Unlike more common commercial 
software, it is a community-based environment designed to promote innovation and 
research. Especially, a fundamental characteristic of OpenSees is the possibility to 
add new element classes and libraries without necessitating modifications to the 
existing code. OpenSees is an object-oriented software framework, and its modular 
architecture enhances code flexibility and extendibility compared to traditional pro-
gramming methodologies. Indeed, in conventional methods, data and algorithms 
are often within a single subroutine or procedure, leading to both a code redundancy 
and a complicated software maintenance [83], [84], [85], [86], [87]. The specific ad-
vantage of utilizing software developed with an object-oriented approach is detailed 
in scientific literature [88]. The source code of OpenSees is mainly written in the 
programming language C++, but it also includes the use of other languages, spe-
cifically C and Fortran.  

The software architecture is composed of four main types of objects [87], [89], which 
are indicated in the dark grey blocks in Figure 27. In particular: 

• Model Builder creates the finite element model subdividing the geometry 
into elements and nodes. Additionally, it assigns loads and constraints. 

• Domain is responsible for storing the objects generated by the ModelBuilder 
and providing to the Analysis and Recorder access to these objects. 

• Analysis governs the analysis procedure. It is composed by several sub-ob-
jects that define the type, static or transient, and the parameters of the 
analysis. 

• Recorder monitors output variables during the analysis based on user-de-
fined parameters set during the input phase. 
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Figure 27: OpenSees software packages: Class diagram of high-level domain, analysis, and model 

building classes [84], [87] 

OpenSees can be used either as a Developer or simply as a User. In the former case, 
OpenSees is utilized as framework to create new sub-classes, such as elements or 
materials. Developers can access the source code via shared online repositories, such 
as GitHub. As previously mentioned, the programming language is C++, but there 
is also the possibility to program in Fortran or C. There are mainly two methods 
to add a new class: the first involves compiling the entire program and producing 
a new executable (.exe). The second method is to create a dynamic link library, 
which can be used with the existing executable without the need to recompile the 
entire program. In this work, the changes and additions to the source code have 
been programmed in C++ and the first method has been adopted. Unlike Devel-
opers, Users can download directly the pre-compiled interpreter of the software, 
tailored to different computing needs. This includes OpenSees.exe, which is de-
signed for sequential computing, ideal for standard analyses. For more complex 
analysis, parallel versions like OpenSeesSP.exe and OpenSeesMP.exe are also avail-
able. These versions leverage multi-threading and parallel processing capabilities, 
offering enhanced performance and efficiency for more computational demanding 
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simulations. Users can operate at the command level, where they can construct 
objects from existing classes available in the framework. The interaction with Open-
Sees occurs through input files, which are scripted in the Tcl (Tool Command Lan-
guage) language. In recent years, the development of the OpenSeesPy interpreter 
has represented a significant advancement, facilitating the scripting of input files. 
Indeed, this interpreter enables the writing of input commands using Python, a 
language that is currently much more widespread in the research community. To 
facilitate the input of data and the visualization of outputs, specialized software 
serving as both pre-processor and post-processor has been developed. This is par-
ticularly crucial for handling complex FEM models, such as in case of bridges or 
entire buildings, where the definition of geometries and the management of several 
initial input parameters may be more demanding. In this work, the software STKO 
(Scientific ToolKit for OpenSees)[90], [91], developed by Asdea Software Technol-
ogy, was adopted to generate and visualize FEM models. Especially, STKO is an 
OpenSees GUI (Graphical User Interface), combining the power of OpenSees solvers 
with the convenience of a user-friendly graphical interface. It enables users to gen-
erate a TCL input file for OpenSees and subsequently interpret the output file via 
its graphical interface. Additionally, it includes a Python scripting interface for the 
customization of results. Figure 28 schematically represents the tools for Users and 
Developers. 

 
Figure 28: Tools to for OpenSees Users and Developers 

Figure 29 shows the methodology adopted in this work for utilizing OpenSees as 
User and Developer. The process began with the procurement of the OpenSees 
source code, which was subsequently adapted to the specific objectives of the re-
search work. This customization involved the modifications of pre-existing classes 
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and the introduction of new ones, which will be described in the following section. 
After these modifications, OpenSees was compiled to generate the executable file 
NewOpenSees.exe. To facilitate the definition of FEM model input parameters, the 
STKO software was adopted as a pre-processing tool. STKO provides the capability 
to directly execute the analysis or, as an alternative, to generate input files through 
the 'Write Input File' command. To incorporate the new implementations, which 
are not available in the STKO library, it is necessary to generate and modify the 
Tcl input files. Subsequently, the analysis can be run using the new executable, 
NewOpenSees.exe. Finally, outputs can be visualized directly through the STKO 
post-processor for a comprehensive and detailed view. This feature is particularly 
valuable in case of complex models, allowing for a more effective interpretation of 
the structural behaviours. 

 
Figure 29: Methodology proposed for utilizing OpenSees as User and Developer. 
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2.7.1 Fiber Beam Element in OpenSees  

In this section, a description of the fiber beam element implemented in OpenSees 
is provided. The beam formulation is composed by several subclasses. In particular 
[85]: 

• Element Class: this class defines the formulation of the beam element, dis-
cussed in Section 2.2. In the case of distributed nonlinearity, two types of 
elements are distinguished: DispBeamColumn and ForceBeamColumn, 
which represent the DB and FB beam element formulation respectively. The 
latter is based on the non-iterative consistent element state determination 
algorithm, proposed by [46], where the residual error is carried into the 
global solution algorithm. Alternatively, the iterative form of the flexibility 
formulation can also be adopted [85]. 

• Integration Class: it defines the type of integration along the x-axis of the 
beam element. Specifically, it determines the positions and weights of the 
integration points, where the section stiffness and generalized section stresses 
are evaluated. Section 2.5 discusses various standard integration techniques 
to regularize the FB beam element. In OpenSees, several types of integration 
methods are already implemented. For example, RegularizedHinge repre-
sents the integration rules proposed by Scott and Hamutcuoglu [79]. Addi-
tionally, there is the possibility to use the class UserDefined to define the 
position and weights of all integration points. Adopting this class, it's also 
possible to integrate in OpenSees the regularization technique proposed by 
Addessi and Ciampi [29], described in Section 2.5.  

• Section Class: the Section Class is responsible for modelling the cross-section 
of beam elements by subdividing them into fibers. It computes the section 
forces and stresses by integrating the stress vector and stiffness of each fiber 
in the cross-section. In OpenSees, there are two distinct classes: FiberSection 
and NDFiberSection. The former is adopted in case of uniaxial material law, 
while the latter is for three-dimensional constitutive law, called NDMaterial. 
NDFiberSection requires the adoption of a wrapper class that performs static 
condensation, as described in Section 2.6.2. Specifically, for static condensa-
tion, the BeamFiber class is adopted in this work.  
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• Material Class: this defines the nonlinear behaviour of materials at the fiber 
levels. As previously mentioned, OpenSees differentiates between two mate-
rial classes: UniaxialMaterial and NDMaterial. These classifications are 
based on the number of stress and strain components defined by the consti-
tutive law. In OpenSees library, an extensive range of materials is available, 
and for more detailed information, it is recommended to refer to the software 
manual. 

2.7.2 New classes introduced in OpenSees 

Figure 30 shows the new classes implemented in OpenSees. To include the model-
ling of tendons in prestressed bridges, this work adopts a modified version of the 
NDFiberSection, introduced by [81] and described in Chapter 3. The new material 
classes are the DamagePlastic3d and PartialDamage. The first law represents the 
damage-plastic model based on the formulation discussed in Section 2.4.3. The so-
lution algorithm, written in C++, is detailed in section 2.6.3. PartialDamage is the 
added class referred to the modified damage-plastic model with partial closure of 
cracks, described in Section 2.4.4 and 2.6.4.  

 
Figure 30: New Classes (green) and Modified Class (yellow) in OpenSees. 
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3 Application for Prestressed Concrete 
Beam  

3.1 General 

Concrete is strong in compression but has a negligible tensile strength. In reinforced 
concrete beams, tensile stresses lead to the beam cracking under service load, caus-
ing durability issues such as steel corrosion. The use of prestressing tendons im-
proves the performance of structural elements, especially for bridges, allowing for 
greater slenderness and longer spans compared to traditional reinforced concrete 
bridges. Prestressing offers several advantages, including the capability to maintain 
an uncracked beam under higher bending moments, reducing flexural deformations, 
and minimizing fluctuations in state stresses due to variable loading. [92]. Prestress-
ing can be either 'full', 'limited' or 'partial' [92], [93], [94]. In the first case, the axial 
stresses are always in compression, whereas in case of the 'limited prestressing', 
tensile stresses in the concrete are accepted up to a set value. Finally, the ’partial 
prestressing’ allows a tension state in the concrete without restrictions.  

 

Figure 31: A precast concrete bridge with T-beams [95] 
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There are two types of prestressing: pre-tensioning and post-tensioning [93], [94]. 
In pre-tensioning, tendons are tensioned by jacking against an abutment or stress-
ing bed before the concrete is placed. After the concrete has set and reached suffi-
cient strength, the strands are released, transferring the prestressing force to the 
beam through the bond between the strands and the concrete. A disadvantage of 
this technique is the rigidity of the tendon geometry, which is typically limited to 
straight trajectories or, at most, includes only few deviation points.  

 
                                           (a): Applying tension to tendons 

 
                          (b): Casting of concrete 

 
                          (c): Transferring of prestress 

Figure 32: Stage of Pre-Tensioning [96] 
In post-tensioning, the tendons are stressed with a jack on the hardened concrete. 
The prestressing forces are directly transferred to the beam through the tendon 
anchor. There are two types of post-tensioning methods: internal and external post-
tensioning. The internal tendons are positioned within ducts into concrete, while 
the external tendons are placed in ducts outside of the concrete section [93], [94]. 
One of the advantages of post-tensioning is the possibility to adopt curved geometry 
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for tendons to improve the efficiency of the prestressing effect in the structural 
element. Post-tensioning with internal tendons can be categorized as bonded and 
unbonded. In the first case, the ducts are filled with grout after the prestressing of 
tendons to ensure the adherence of the steel to the concrete, and also to protect the 
cables from corrosion. In this case, the assumption of plane sections remains valid, 
as in the case of pre-tensioning. On the other hand, in unbonded post-tensioning, 
the bond between steel and the surrounding concrete is not guaranteed, thus the 
assumption of strain compatibility along the beam section is no longer valid. 

 
                                           (a): Casting of concrete 

 
                          (b): Tensioning and anchoring of tendon  

Figure 33: Stages of Post-Tensioning [96]  
In finite element analysis, prestressing tendons can be modelled using different ap-
proaches [50], [97]. The first method considers the prestressing tendons as equiva-
lent loads acting on the concrete, leading to inaccurate predictions of prestressing 
losses. The second method models the tendon as a structural element, which con-
tributes to the structural stiffness. This approach, which includes the interaction 
between the tendon and concrete, allows for accurate modelling of long-term effects. 
In the second approach, various models have been proposed in literature [98], [99]. 
These models are based on the displacement method and assume that prestressing 
tendons are fully bonded to the concrete. Ayoub [50] developed a beam model based 
on a two-field mixed formulation which accounts for bond-slip effects of tendons, 
including distributed interface elements with a specific bond stress-slip law. The 
formulation requires a finer discretization of the beam, increasing the computational 
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effort of the analysis. In [81], [100], the modelling of prestressing effect is introduced 
at fiber-level as initial strain in force-based elements. This approach also includes 
the possibility to consider the tension losses in construction stage analysis. However, 
its main drawback is the lack of consideration for prestressing losses due to bond-
slip. Moreover, for complex cable geometries, a considerable increase of number of 
integration points is necessary to ensure an accurate description of the cables.  

In this chapter, an overview of the two main approaches to model the prestressing 
tendons in nonlinear analysis is presented. In Section 3.3, the prestressing losses are 
briefly described, with a special focus on the elastic shortening. Section 3.4 presents 
two applications of the adopted modelling approach. The first shows a comparison 
between the prestressed concrete fiber element model and the models available in 
MIDAS GEN and Midas FEA NX. Finally, the second application compares the 
numerical results with the experimental results conducted by Choi [101]. 

3.2 Modelling Approach for Tendons 

For each tendon, the value of the initial tension 𝑁𝑁0(𝑥𝑥, 𝑤𝑤)  depends on the position x 
of the considered section and time t, to account for long-term prestressing losses. 
The prestressing stress in the steel fibers is equal to:  

 σ0(𝑥𝑥, 𝑤𝑤) = 𝑁𝑁0(𝑥𝑥, 𝑤𝑤)
𝐴𝐴𝑝𝑝

 (61) 

where 𝐴𝐴𝑝𝑝 is the effective area of steel tendons. The relative initial prestressing 
strain is equal to: 

 𝜀𝜀0(𝑥𝑥, 𝑤𝑤) = σ0(𝑥𝑥, 𝑤𝑤)
𝐸𝐸𝑝𝑝

 (62) 

being 𝐸𝐸𝑝𝑝 the Young's modulus of steel tendons. There are two main approaches to 
evaluate the effect of prestressing tendons in nonlinear analyses of prestressed rein-
forced concrete structures:  

• Approach 1 - Prestressing as initial steel fiber strain: this approach in-
volves considering prestressing effect as an initial strain in the steel fibers. 
The fiber stress is determined from the total strain, which is the sum of the 
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initial prestressing strain and the strain increment as resistant effect of the 
external load applied to the beam. The constitutive law should not be mod-
ified in this case, as shown in Figure 34 (a). 
 

• Approach 2 - Prestressing as external load: in this method, the precom-
pression force is considered as an external force acting on the beam element. 
Following the classical beam formulation, the tendons are modelled similarly 
to reinforcement. However, the tendon fibers necessitate a modification of 
the constitutive law by shifting its origin to the prestressing stress-strain 
point, as illustrated in Figure 34 (b).  

  
(a) (b) 

Figure 34: Constitutive law of prestressing steel: in case Approach 1 (a) and Approach 2 (b) 
In this work, the precompression is modelled in fiber beam element following the 
approach 1, according to [81], [100]. The fiber strains 𝛆𝛆𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧), defined in Chapter 
2, are related to the generalized section strain vector 𝛆𝛆𝑠𝑠(𝑥𝑥) through the geometric 
transformation matrix 𝐥𝐥𝑠𝑠(𝑦𝑦, 𝑧𝑧). The effect of the prestressing load is introduced as 
an initial fiber strain, as follows [81]: 

 𝛆𝛆𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝛆𝛆𝑝𝑝(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝐥𝐥𝑠𝑠(𝑦𝑦, 𝑧𝑧)𝛆𝛆𝑠𝑠(𝑥𝑥) + 𝛆𝛆0(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) (63) 
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where 𝛆𝛆𝑝𝑝(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) indicates the strain vector of prestressing tendon fiber; 𝛆𝛆0(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) 
is the initial prestressing vector, composed only by the initial axial strain of tendon 
𝜀𝜀0. The explicit form of equation (63) is as follows: 

In prestressed concrete beams, the cables are often characterized by a variable ge-
ometry along the beam axis. To account for the tendon inclination, the model pro-
posed in [81] is adopted. In particular, this approach projects the fiber strain vector, 
which is oriented in the reference system x, y, z into the tendon direction. The 
rotation matrix is defined as:  

 𝐑𝐑 = �
cos 𝜗𝜗 0 − sin 𝜗𝜗

− sin 𝜗𝜗 cos ψ −cos 𝜗𝜗 sin ψ
cos ψ sin 𝜗𝜗 sin ψ cos 𝜗𝜗 cos ψ

� (65) 

where 𝜗𝜗  and ψ are the inclinations with respect to the x-axis and y-axis, as illus-
trated in Figure 35.  

 
Figure 35:  Variable geometry of tendons: angles between tendon and beam axes. 

The section compatibility matrix in the tendon direction is given by:  

 𝐥𝐥�̌�𝑠(𝑦𝑦, 𝑧𝑧) = 𝐑𝐑 𝐥𝐥𝑠𝑠(𝑦𝑦, 𝑧𝑧) (66) 

 
⎣
⎢⎡

𝜀𝜀1(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)
𝛾𝛾12(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)
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𝛾𝛾𝑦𝑦(𝑥𝑥)
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⎥
⎥
⎥
⎥
⎥
⎤

+ �
𝜀𝜀0
0
0

� (64) 
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Finally, the generalized version of equation (63), which accounts for any geometry 
of the tendon along the beam, is equal to: 

 𝛆𝛆𝑝𝑝(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝐥𝐥�̌�𝑠(𝑦𝑦, 𝑧𝑧)𝛆𝛆𝑠𝑠(𝑥𝑥) + 𝛆𝛆0(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) (67) 

As discussed in Section 2.3, the fiber stresses are calculated through the tendon 
steel constitutive law, as follows: 

  𝛔𝛔𝑝𝑝(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝐤𝐤𝑝𝑝(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) 𝛆𝛆𝑝𝑝(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) (68) 

where 𝐤𝐤𝑝𝑝(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) is the stiffness matrix of the steel fibers.  

A scheme of the fiber beam element, considering the prestressing tendon, is shown 
in Figure 36: 

 
Figure 36: Prestressed concrete fiber beam element.  

The generalized section stress vector is obtained with the following equation: 

𝛔𝛔𝑠𝑠(𝑥𝑥) = � 𝐥𝐥s𝑇𝑇 (𝑦𝑦, 𝑧𝑧)𝝈𝝈𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)𝑑𝑑𝐴𝐴𝑓𝑓
𝐴𝐴𝑓𝑓

+ �𝐥𝐥�̌�𝑠,𝑘𝑘
𝑇𝑇 (𝑦𝑦, 𝑧𝑧)𝛔𝛔𝑝𝑝,𝑘𝑘(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)𝐴𝐴𝑝𝑝,𝑘𝑘

𝑛𝑛𝑝𝑝

𝑘𝑘=1
 (69) 

being 𝑛𝑛𝑝𝑝 is the number of tendons in the prestressed beam.  

Adopting the approach 1, which introduces precompression as fiber initial strain, 
the beam element deforms according to the plane sections assumption. Since the 
external loads associated with prestressing are zero, unlike approach 2, the stress 
diagram along the beam results null.  
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In finite element fiber beam models, the tendon position is considered constant 
along the length of the integration point. Therefore, in case of variable cable geom-
etry (especially in case of post-tension tendons) along the beam, the model accuracy 
depends on the number of integration points adopted. Specifically, as the number 
of integration points increases, the tendon geometry is more finely discretized, en-
hancing the accuracy of the analysis. A detailed study concerning the influence of 
integration points for different shapes of the tendons is proposed in [81]. 

3.3 Prestress Losses 

Tension losses of tendons influence the structural response of prestressed concrete 
beams. As known, different construction stages and time-dependent material prop-
erties alter the distribution of section stresses and internal forces within the pre-
stressed element. Prestress losses are generally classified into two main types: in-
stantaneous losses occurring at the time of tendon release, and time-dependent 
losses that occur after the release. The former mainly includes anchorage slip, fric-
tion between tendons and sheaths, and elastic shortening of the concrete. Long-
term losses comprise creep and shrinkage in concrete, and relaxation of tendons. 
The prestress reductions are affected by various factors, notably the method of 
tensioning [102]: 

• Pre-tensioning: before tensioning, the prestress losses are due to shrinkage 
and tendon relaxation, while after tensioning, they include elastic shortening, 
creep, shrinkage and tendon relaxation. 
 

• Post-tensioning: the tension losses are mainly caused by the frictions be-
tween tendons and sheaths, anchorage slip, creep, shrinkage and tendon re-
laxation. 

The application of prestressing force in a concrete member results in a state of 
compression in concrete, leading to the consequent shortening of the beam. Due to 
the adherence between the tendon and concrete, in cases of pre-tensioning or 
bonded post-tensioning, the tendon also undergoes shortening, resulting in a de-
crease of tension stresses. This phenomenon, known as elastic shortening, exhibits  
different characteristics between pre-tensioning and post-tensioning methods. Spe-
cifically, in pre-tensioning, an instantaneous elastic shortening of the beams occurs 
following the release of the tendon. As a result, the prestressing force 𝑁𝑁0 on the 
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concrete beam, is less than the initial jacking tension force 𝑁𝑁𝐽𝐽 . Instead, in post-
tensioning, the prestressing force is directly applied to the concrete beam and the 
tension force in the tendon is measured after the shortening has occurred [102]. 
Consequently, unlike in pre-tensioning, there is no initial loss of tension due to 
elastic shortening in the post-tensioning method. However, in case of a group of 
tendons progressively tensioned, it is necessary to account for the loss of pretension 
related to the tensioning of the subsequent tendon. 

 
Figure 37: Elastic shortening in pre-tensioned beam [102] 

Several studies have introduced prestress losses in fiber beam model [81], [100]. In 
Doty [100], the time-dependent phenomena have been included in the fiber beam 
element to consider different construction stages in segmental prestressed concrete 
bridges. Creep, shrinkage and relaxation are modelled as time-dependent strains in 
concrete and steel fibers, respectively. In [81], the fiber strain is defined as follows: 

 𝛆𝛆𝑝𝑝(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑤𝑤) = 𝐥𝐥𝑠𝑠(𝑦𝑦, 𝑧𝑧)𝛆𝛆𝑠𝑠(𝑥𝑥) + 𝛆𝛆0(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)  + 𝛆𝛆𝑑𝑑(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑤𝑤) (70) 

where 𝛆𝛆𝑑𝑑(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑤𝑤) is the time-dependent strain which represents the following phe-
nomena:  

• Creep and Shrinkage in concrete fiber: these phenomena are introduced 
through the application of positive strains to the concrete fibers. Creep leads 
to tension in the concrete fibers and compression in the steel, while the 
shrinkage involves the concrete fibers in a compressed state, decreasing the 
compression in proportion to the stress applied. 
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• Tendon Relaxation: is modelled using negative strains  𝛆𝛆𝑑𝑑(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑤𝑤) imposed 
on the tendon fibers, leading to a decrease of cable pretension. 

In this study, only instantaneous tension losses are considered, such as elastic short-
ening, in the case of pre-tensioned tendons, and steel relaxation. The first is directly 
calculated by imposing section compatibility, while the second is accounted for by 
reducing the initial fiber strain. The effects of creep and shrinkage are disregarded 
as they are beyond the scope of this work. 

3.4 Validation 

To validate the model described in the previous section, two application cases of 
the prestressed fiber beam element are presented. The first case examines the elastic 
phase, comparing the results obtained with the described model in OpenSees with 
those from MIDAS GEN and MIDAS FEA NX models. The second case focuses on 
validating the model in case of nonlinear analysis. Specifically, it involves compar-
ing the numerical results of the proposed model with experimental results conducted 
by Choi [101]. 

3.4.1 Numerical application I 

An example of a prestressed beam was modelled using both the described model in 
OpenSees and the existing models available in MIDAS GEN and MIDAS FEA NX 
software. The span length is 30 meters, and the geometry of the section is illustrated 
in Figure 38. The applied constraints correspond to those of a simply supported 
beam. The beam is composed of C40/50 concrete and an equivalent steel tendon 
with a tensile strength of 1860 N/mm². The initial stress applied to the tendon is 
σ0 = 1488 MPa and the materials are assumed linear elastic. The aim of this ex-
ample is to compare different approaches to modelling precompression and to vali-
date the model previously described. For this purpose, this study compares the 
distributions of stresses along the midspan cross section, considering the contribu-
tion of precompression and the self-weight of the beam. For simplicity, a tendon 
with a constant position along the beam length is assumed. 
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Figure 38: Section geometry of the example prestressed beam.  

The prestressed concrete beam was modelled using the STKO pre-processor. A 
force-based beam element was adopted, employing the Gauss-Lobatto integration 
method. The beam section was discretized using the Fiber Section Editor in STKO, 
as illustrated in Figure 39. As previously mentioned, the fiber materials for concrete 
and steel were assumed linear elastic. An initial strain equal to 𝜀𝜀0 =
𝛔𝛔0 𝐸𝐸𝑝𝑝 =⁄ 0.007440 was applied to the steel fibers. First, only the precompression 
was applied. Subsequently, the self-weight load was applied to the beam, and 
through the superposition of effects, the final stress/strain state of sections was 
determined. In this example, precompression losses were neglected, except for the 
elastic shortening, which was directly evaluated due to the imposed section com-
patibility. 

 

Figure 39: Prestressed concrete beam element model: view in STKO pre-processor. 
Figure 40 (a) and (b) illustrate the distribution of concrete strains under the con-
dition of only precompression and for the combined condition of precompression 
and self-weight. In the first case, the steel stress value results equal to 1357 MPa, 



Chapter 3: Application for Prestressed Concrete 

70 

which is lower than σ0. Similarly, the initial strain value of steel fiber, equal to 
0.0068, is lower than the applied 𝜀𝜀0. As discussed above, the reason for this tension 
loss is related to the elastic shortening, which is intrinsically considered in the for-
mulation. In particular, the application of prestressing causes the deformation of 
the beam. Consequently, for the section compatibility defined in Eq. (63), the re-
duction of the steel strain occurs. Figure 41 provides a detailed description of the 
elastic shortening. Specifically, 𝜀𝜀𝑐𝑐𝑐𝑐𝑚𝑚𝑝𝑝 represents the steel strain related to the sec-
tion compatibility; thus it is the first component of the vector 𝐥𝐥𝑠𝑠𝛆𝛆𝑠𝑠. 

  
(a) (b) 

Figure 40: Concrete strains: for precompression (a) and for the combined condition of precompres-
sion and self-weight (b). 

 
(a) (b) (c) 

Figure 41: Elastic shortening: (a) applied prestressing strain in steel, (b) concrete strains along 
prestressed beam section and relative steel strain for section compatibility and (c) resulting strain 

of the steel fiber due to elastic shortening.  
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Figure 42 and Figure 43 show the beam modelled in MIDAS GEN [103] and MIDAS 
FEA NX [104], respectively. The modelling approaches for prestressed concrete 
beams are significantly different compared to the formulation described in Section 
3.2. MIDAS GEN models the prestressing tendons as equivalent force, while the 
stiffness of tendons is included in the calculation of sectional characteristics. Spe-
cifically, the beam elements are divided into four segments, and for each of these, 
the equivalent prestressing load is evaluated assuming a linear geometry of tendons 
[102]. Moreover, in this software, the fiber sections can be defined specifically to 
include the nonlinear behaviour of materials.  

 

 
(a) (b) 

Figure 42: MIDAS GEN: Prestressed concrete beam element (a) and fiber section (b). 

MIDAS FEA NX is a finite element software developed for advanced nonlinear and 
detailed analysis for civil engineering applications. In this case, the beam was mod-
elled using 3D finite elements, as illustrated in Figure 43 (a). The tendons are 
included in the FEM model as embedded trusses, shown in Figure 38 (b). This 
approach provides enhanced accuracy of the analysis in modelling the tendons ge-
ometry, however significantly increases the computational effort. 
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(a) (b) 
Figure 43: MIDAS FEA NX  3D finite elements for concrete (a) and embedded trusses for steel 

tendons(b). 

In MIDAS GEN, since precompression is treated as an equivalent external load, in 
case of the application of prestressing force, generalized section stress diagrams are 
visible in analysis outputs, as illustrated for axial stress 𝑁𝑁 in Figure 44.  

 
 

Figure 44: MIDAS GEN: Axial Stress for prestressing load. 

 

The following figures show different outputs in MIDAS FEA NX. Figure 45 illus-
trates the axial force of tendons under the condition of only precompression. This 
software also accounts for elastic shortening, meaning the results consider the ten-
sion reduction associated with this phenomenon. Since the beam is modelled with 
3D finite beam elements, it does not yield generalized stress diagrams commonly 
used in practice, but the stresses of 3D elements, as shown in Figure 46. Therefore, 
to calculate the bending moment or axial force of the beam, it is necessary to 
integrate the stresses along the section of interest. 
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Figure 45: MIDAS FEA NX: Axial force in trusses for prestressing load. 

 

 

Figure 46: MIDAS FEA NX: stress in 3D elements for prestressing load. 

Figure 47 (a) shows concrete stresses along the midspan section for the effect of 
precompression, while Figure 47 (b) for the condition of precompression combined 
with self-weight. Comparing the three different models, it can be observed that the 
results of the proposed model align with those from the MIDAS FEA NX model. 
However, it can be noted a slight difference in the curvature obtained in MIDAS 
GEN. 
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Figure 47: Concrete stress along the midspan section for the effect of precompression (a) and for 
the condition of precompression combined with self-weight (b). 

In conclusion, the approach described in Section 3.2, which includes precompression 
as initial steel fiber deformation, accurately models the prestressing force, incorpo-
rating the elastic shortening in the case of pre-tensioning. However, attention is 
required in post-tensioning cases, as the tendon tension force is measured after the 
elastic-shortening.  

3.4.2 Numerical application II 

In this section, an application at the beam level of the prestressed finite element is 
shown, and the results of the nonlinear analyses are compared with the experi-
mental results conducted by Choi [101], [105]. The purpose of the experiment was 
to analyse the flexural behaviour of High Strength Concrete (HSC) prestressed 
girders, which are commonly used in bridge construction. Nine prestressed 
AASHTO Type II girders, with three different concrete strengths and three config-
urations of slab, were tested under static loading conditions with a four-point load-
ing test. The strands were tensioned to the 75% of their ultimate strength and the 
prestress losses were measured by internal strain gauges. 
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Figure 48: Test set-up for girder without deck with lateral frame [101]. 

 

 

Figure 49: Scheme of the test set-up [106] 

To validate the proposed model, the experimental test conducted on the specimen 
10PS-N [101], [105], characterized by the absence of the slab and the concrete 
strength equal to 69 MPa, was modelled through OpenSees software as solver and 
STKO as pre- and post-processor. The specimen was divided into 4 elements to 
apply the vertical load in two nodes located about 90 cm from the midspan. To 
simulate the experimental test, the constraint conditions were represented by a 
simply supported beam. Figure 50 shows the model of the specimen visualized in 
STKO. 



Chapter 3: Application for Prestressed Concrete 

76 

 

Figure 50: Test specimen model in STKO [106]. 

The damage-plastic constitutive law was assigned to the concrete fibers. The pa-
rameters, shown in Table 11, were calibrated to obtain the best fit with the exper-
imental results deduced by material tests, as illustrated in Figure 51 (a). Given the 
brittle nature of HSC concrete, a damage constitutive law was assumed for concrete 
fibers. Instead, a plastic behaviour was considered for steel. In addition, a numerical 
model with uniaxial constitutive laws available in OpenSees was considered. Con-
crete was modelled using Concrete02, and steel using UniaxialJ2Plasticity, which 
were properly calibrated, as shown in Figure 51 (a) and (b). 

𝐸𝐸 𝜈𝜈 𝑌𝑌0𝑐𝑐 𝑎𝑎𝑐𝑐 𝑏𝑏𝑐𝑐 𝑌𝑌0𝑡𝑡 𝑎𝑎𝑡𝑡 𝑏𝑏𝑡𝑡  𝜅𝜅 
[MPa] [-] [-] [-] [-] [-] [-] [-]  [-] 
35220 0.2 1.65e-03 0.05 4.3e-03 2e-05 0.8 2.5e-04  1 

Table 11: Concrete material parameters 



Chapter 3: Application for Prestressed Concrete 

77 

Figure 51: Constitutive law of concrete (a) and steel fibers (b): Existing Uniaxial Material (UM), 
Damage-plastic Model (NM) and Experimental curve (Exp). 

Figure 52 illustrates force-displacement curves, comparing the experimental re-
sponse with numerical results obtained using the proposed three-dimensional ma-
terial (NM) and the existing uniaxial material (UM). The results show a good 
agreement between the curves both in the concrete cracking phase and the yield 
phase. Instead, the ultimate displacement is highest in the numerical results, as the 
concrete in compression reaches an ultimate deformation almost equal to 0.4% while 
in the experimental test the failure is obtained for a value of about 0.3%. Figure 53 
shows the sudden beam failure followed by the buckling of prestressing strands in 
the compression zone. 
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Figure 52: Force-displacement curve: Existing Uniaxial Material (UM), Damage-Plastic Model 

(NM) and Experimental curve (Exp). 

 

Figure 53: Typical failure modes for the AASHTO girder without deck [105]. 
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4 Vibration-Based Monitoring  
4.1 General 

Several structural monitoring techniques have been developed for the control and 
management of existing bridges. Visual inspections allow for the identification and 
quantification of visible damage, such as corrosion, cracks or spalling. In common 
practice, a qualified inspector assesses the damage state of structures through visual 
inspections, yet this method, while standard, tends to be time-consuming and sus-
ceptible to human error. Recent years have seen the emergence of new technologies 
based on the use of autonomous platforms and image processing algorithms [107], 
designed to enhance and support this evaluation process. One of the limitations of 
the vision-based techniques is that the correlation between visual observations and 
structural reliability is often challenging [108]. For structural assessment of the 
global condition, Vibration-Based Monitoring (VBM) are more suitable to detect 
features indicative of changes in structural behaviour. These techniques identify the 
structural damage through the continuous monitoring of the characteristic dynamic 
parameters of the structure [109]. From the structural vibrational response, such as 
acceleration or velocity records, it is possible to identify dynamic parameters that 
describe the structural behaviour. The variations of these parameters are indicative 
of alterations in structural behaviour associated with damage of the structural com-
ponents, consequently, they can be defined as indicators of damage. Various ap-
proaches have been proposed for identifying damage utilizing dynamic monitoring 
data, employing both time series analysis [11], [110] and the dynamic responses in 
the frequency domain [12], [111]. Vibration-based methods are categorized into 
model-based and data-driven approaches [112]: 

• Model-based approach involves using structural identification and model 
updating procedures to calibrate physical models, often FE model, according 
to experimental measurements [13]. However, their applicability for real-
time monitoring is constrained by significant computational effort related to 
the model updating process. The main advantage of a model-based approach 
is its capacity to evaluate the residual service life of a structure. This is 
particularly efficient when a degradation model is integrated into the FE 
model, facilitating a reliable estimation of the structural durability. 
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• Data-driven approach relies on developing statistical models, which in-
volves applying pattern recognition to experimental data to quantify the 
damage state of the structure. Based on the available data, two types of 
learning algorithms can be distinguished: supervised or unsupervised learn-
ing algorithms [14]. Supervised learning algorithm is used when the behav-
iour of both the intact and damaged structure is known. On the other hand, 
unsupervised learning is applied when only the behaviour of the intact struc-
ture is known. The application of unsupervised methods is generally confined 
to recognizing the presence of damage, offering the advantage of requiring 
only knowledge of the parameters of the undamaged structure. In contrast, 
supervised methods application allows for the localization and quantification 
of damage. In data-driven approach, damage features are extrapolated from 
the recorded response, and changes in these features are detected compared 
to the undamaged condition of the structure. This method is particularly 
advantageous for real-time monitoring. However, without an associated 
physical model, it does not allow for the estimation of the damage severity 
and the remaining life of the structure. Some examples of data-driven meth-
ods using statistical algorithms are: Artificial Neural Networks (ANNs), Ge-
netic Algorithms and Bayesian Regression, discussed in [113]. 

Several research works discuss about the effects of environmental and opera-
tional conditions, such as temperature, humidity, wind and traffic intensity, in 
damage identification problem. In this regard, a large variety of approaches 
have been proposed for compensation of temperature effects [114], [115]. Further 
insights may be interesting for future developments of this work. 

In Section 4.2 of this chapter, an introduction to the vibration-based method is 
provided, with a focus on the detection of structural damage through frequency 
variation. This is followed by an introduction of the key concepts of dynamic 
analysis for fiber beams. Finally, Section 4.4 presents an application of the pro-
posed model, compared with experimental results presented in [116]. Specifically, 
the proposed procedure consists in performing a nonlinear analysis to induce 
damage, followed by a modal analysis of the structure to assess frequency vari-
ation. 
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4.2 Vibration-Based Damage Detection   

Structural analysis problems are distinguished into two types: direct and inverse. 
The direct problem, typically used in the design of new structures, involves known 
actions and structural properties, while the structural response remains the un-
known. Conversely, in the inverse problem, often used in structural health moni-
toring, the structural responses are known, while the structural characteristics are 
unknown. In the typical problem of Structural Health Monitoring, the structural 
response is given by the experimental tests, for example static or dynamic, and the 
unknown factor is the structural damage state. Modal models, based on the vibra-
tion-based approach, are most used in inverse problems, involving a process called 
model updating to refine the physical model using experimental data. 

Due to the different challenges presented by various structures and systems, several 
methods have been developed for monitoring existing bridges, which are largely 
discussed in literature [108], [112], [117]. Rytter [118] proposed a classification of 
these methods based on four levels:  

1) Level 1: confirming damage presence in the structure 

2) Level 2: identifying the damage location 

3) Level 3: quantifying the damage severity 

4) Level 4: predicting the structural remaining service life 

The first level simply indicates the presence of damage in a structure, instead the 
second level finds the specific damage locations. The third level evaluates the se-
verity or extent of the damage, necessitating a parametric model to characterize 
the damage, such as crack length and stiffness reduction. The most advanced level 
of structural assessment involves predicting the remaining service life of a structure, 
but it requires a global structural model with localized models of continuum damage 
or fracture mechanics [117]. 

Vibration-based damage identification is a pivotal approach in the field of struc-
tural health monitoring [8], [9], [10], [119], [120]. This technique utilizes the vibra-
tional characteristics of a structure to detect, locate, and assess damage. Damage 
or deterioration of the structural elements causes the modification of the vibration 
modal parameters, such as natural frequencies, mode shapes and modal damping. 
The vibration-based damage identification methods based on vibration features are 



Chapter 4: Vibration-Based Monitoring 

82 

classified into four main groups [8]: methods based on natural frequency, mode 
shape, curvature mode shape, and a combination of mode shapes and frequencies. 
Mode shape-based and curvature mode shape-based methods typically focus on the 
localization of damage. Mode shape-based approaches often depend on optimization 
algorithms or signal processing techniques for precise damage localization, whereas 
curvature mode shape-based methods are generally effective for this purpose. One 
of the most reliable and commonly used methods for assessing structural damage 
involves the use of natural frequency as a diagnostic parameter. Specifically, this 
method examines the resonant frequencies obtained from dynamic testing results. 
A decrease of these frequencies can indicate a reduction of the structural stiffness, 
caused by the presence of damage in one or more structural components. A varia-
tion of about 5% of natural frequency is often required to distinguish it from vari-
ations caused by environmental factors. Conversely, an increase of frequencies may 
suggest stiffer supports [10]. The degree of natural frequency reduction depends on 
the damage position relative to the mode shape. Especially, a crack located at re-
gions of high curvature for the modes leads to a significant reduction of the local 
bending stiffness, affecting the natural frequencies. Lower frequency vibration 
modes are generally regarded as effective for detecting structural damage. However, 
higher modes are more sensitive to local damage, but their availability in full-scale 
vibration tests is limited.  

Various studies have indicated that in prestressed concrete structures, vibration 
frequencies are not particularly sensitive to the reduction of stiffness of the pre-
stressing steel [10], [121]. Particularly, until the prestressing cable remains elastic, 
even in the presence of cracks, small frequency variations are observed. However, a 
significant reduction of frequency occurs only when prestressing wires exceed their 
elastic limit.  
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4.3 Dynamic Analysis for Fiber Beam Elements 

In the context of structural engineering and particularly for beam elements under 
dynamic loading, the discretized equations that govern the motion are given by: 

 𝐌𝐌�̈�𝐮 + 𝐂𝐂�̇�𝐮 + 𝐏𝐏int(𝐮𝐮) = 𝐏𝐏𝑒𝑒𝑥𝑥𝑡𝑡 (71) 

where �̈�𝐮, �̇�𝐮 , and 𝐮𝐮 represent the nodal acceleration, velocity, and displacement, 
respectively. The global mass matrix, denoted as 𝐌𝐌, is determined using a lumped 
or a consistent method. The matrix 𝐂𝐂 indicates the global damping matrix. These 
global matrices are obtained by assembling the corresponding element submatrices 
𝐌𝐌e and 𝐂𝐂e [32]. One of the most used approaches in dynamic structural analysis 
consists in the adoption of the Rayleigh damping. This method is based on the 
concept that the damping in a system can be represented as a linear combination 
of the mass and stiffness matrices. This is expressed as:  

 𝐂𝐂𝑒𝑒  = 𝑎𝑎1 𝐌𝐌e  + 𝑎𝑎2 𝐊𝐊𝑒𝑒   (72) 

being 𝑎𝑎1  and 𝑎𝑎2 the coefficients that determine the relative contribution of damp-
ing proportional to mass and stiffness, respectively.  The main advantage of Ray-
leigh damping consists in its simplicity of implementation in FE models. Especially, 
it allows for the introduction of damping into the system without needing to define 
a complex viscous damping matrix. 

The adoption of a consistent mass matrix or a lumped mass matrix are two distinct 
approaches used in computational mechanics to represent the mass distribution of 
a structural element. The consistent mass matrix reflects a more realistic distribu-
tion of mass across the entire element. In this approach, the mass matrix is typically 
non-diagonal and captures the inertia and dynamic properties of the element more 
accurately. The mass matrix of the element can be expressed in a consistent form 
as follows: 

 𝐌𝐌𝑒𝑒 = � 𝐍𝐍𝑇𝑇 𝜌𝜌 𝐍𝐍 𝑑𝑑Ω
𝑒𝑒

Ω
𝑒𝑒

 (73) 
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where 𝜌𝜌 is the mass density of the beam and 𝐍𝐍 is the matrix of the shape functions. 
In contrast, the lumped mass matrix simplifies the analysis by allocating the entire 
mass of an element to its nodes. This results in a diagonal mass matrix, where the 
mass is lumped at the nodes rather than being distributed along the element. The 
diagonal components of the lumped mass matrix can be expressed as: 

 𝑀𝑀𝑗𝑗𝑗𝑗
𝑒𝑒 = �𝑀𝑀𝑗𝑗𝑘𝑘

𝑒𝑒

𝑘𝑘
= � ρ 𝑁𝑁𝑗𝑗 𝑑𝑑Ω

𝑒𝑒

Ω
𝑒𝑒

 (74) 

Although this method is less accurate compared to that adopting consistent matrix, 
it requires a lower computation effort. The choice between a consistent and lumped 
matrix depends on the specific type of analysis, the required accuracy, and the 
computational complexity. 

In case of the displacement-based fiber beam element, the formulation of the con-
sistent mass matrix is relatively straightforward, because the interpolating func-
tions of the section displacements from the nodal degree of freedom are easy to 
obtain. In contrast, for force-based beam elements, the definition of the consistent 
mass matrix becomes significantly more complex [122]. Several methods were pro-
posed in literature to determine the exact shape functions interpolating the section 
displacements from the nodal degrees of freedom [122], [123], [124], [125]. Molins 
[125] introduced a method to evaluate the exact flexibility-based consistent mass 
matrix by applying d’Alembert's principle. However, the drawback of this method 
is that it requires the computation of a triple integral over the element. De Souza 
[124] proposed a simpler approach based on the Unit Load method, reducing the 
complexity to a double integral for 2D elements. This technique was further refined 
and extended to 3D elements by Shen [123]. Specifically for force-based elements, 
the consistent element mass matrix is defined as follows: 

 𝐌𝐌𝑒𝑒 = � 𝐍𝐍𝑠𝑠
𝑇𝑇 (𝒙𝒙) 𝐦𝐦𝑠𝑠 (𝑥𝑥) 𝐍𝐍𝑠𝑠 (𝑥𝑥) 𝑑𝑑𝑥𝑥

𝐿𝐿

0
 (75) 

where 𝐍𝐍𝑠𝑠 is shape function matrix for force-based beams obtained by the virtual 
work equivalence [122]: 
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 𝐍𝐍𝑠𝑠(𝑥𝑥) = 𝐛𝐛𝑡𝑡𝑠𝑠
𝑇𝑇 (𝑥𝑥) �� 𝐛𝐛𝑡𝑡

𝑇𝑇 (ξ)𝐟𝐟𝑠𝑠(ξ)𝐛𝐛𝑠𝑠(ξ) 𝑑𝑑ξ
𝐿𝐿

0
�𝐅𝐅𝑒𝑒−1𝐚𝐚𝑔𝑔 + 𝐍𝐍𝑡𝑡(𝑥𝑥)𝐚𝐚𝑡𝑡 (76) 

where 𝐛𝐛𝑡𝑡𝑠𝑠(𝑥𝑥) calculates the nodal reactions of the simply supported restraints for 
unit loads at x, instead 𝐛𝐛𝑡𝑡(ξ) computes the section stresses at ξ, which is the ab-
scissa along the element axis. The matrix 𝐍𝐍𝑡𝑡(𝑥𝑥) is the shape function matrix for 
the rigid body displacements. Finally, 𝐚𝐚𝑔𝑔 is the element compatibility matrix and 
𝐚𝐚𝑡𝑡 is the rotation matrix from the global to local reference system.  

To simulate environmental vibrations, the White Noise signal is applied to the 
nodes of the structural model. In this case, the equation (71) becomes:  

 𝐌𝐌�̈�𝐮 + 𝐂𝐂�̇�𝐮 + 𝐊𝐊𝐮𝐮 = 𝐡𝐡𝑤𝑤(t) (77) 

where 𝐡𝐡 represents the vector indicating the nodes of the model where the excita-
tion force is applied, and 𝑤𝑤(t) is a stochastic process of the White Noise. In partic-
ular, White Noise (WN) is a random signal characterized by the lack of periodicity 
over time and a constant amplitude in its entire frequency spectrum [113]. The key 
aspects of white noise signal include that the average value is zero and the variance 
function is constant. Additionally, the power spectral density of white noise is flat, 
signifying a uniform distribution of energy for different frequencies. In Figure 54, 
an example of a White Noise signal generated in MATLAB and applied to the 
model is shown. The terms 𝜇𝜇𝑥𝑥 and 𝜎𝜎 represent the mean and the standard devia-
tion of the generated signal, respectively. 

 

Figure 54: Example of a White Noise signal. 
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To assess the dynamic characteristics of the structure corresponding to its damaged 
state, a very low amplitude of the WN force is used. The outputs of the model, in 
terms of either displacements or accelerations, are then utilized for training a neural 
network. Additionally, the pseudo-experimental responses are analysed in the fre-
quency domain, obtained through the application of the Fast Fourier Transform 
(FFT). Further details on the procedure are provided in the following chapter. 
Several solution algorithms for nonlinear dynamic analyses are available in Open-
Sees [89]. In this work, the Newmark method is adopted for the time integration of 
equation (71), utilizing coefficients γ and β, equal to 0.5 and 0.25 respectively.   

For completeness, a brief overview of the linear modal analysis formulation used to 
evaluate the natural frequencies of the structural system is also provided. In this 
case, the equation (71) becomes as follows: 

 𝐌𝐌�̈�𝐮 + 𝐊𝐊𝐮𝐮 = 𝟎𝟎 (78) 

The general solution to the previous equation can be expressed as: 

 𝐮𝐮 = 𝐮𝐮���� eiωt (79) 

where 𝐮𝐮���� is a vector of the time-independent amplitudes. Substituting (79) in equa-
tion (78), the formulation of the generalized eigenproblem is expressed in eq. (80), 
where ω and 𝐮𝐮���� must be determined.  

 (−ω2 𝐌𝐌 + 𝐺𝐺)𝐮𝐮���� = 𝟎𝟎 (80) 

To solve the linear eigenvalue problem, the determinant of the following matrix 
needs to be zero:  

 | − ω2 𝐌𝐌 + 𝐊𝐊| = 0 (81) 

The most common commercial FE software can perform linear modal analysis of 
the structures. When a nonlinear analysis precedes a linear modal analysis, the 
solution to the eigenvalue problem considers the global stiffness matrix obtained at 
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the last step of the nonlinear analysis. Since the current global stiffness matrix is 
reduced by the material damage, the frequencies derived from the modal analysis 
are influenced by the current damaged state of the structural system. Further in-
sights on these aspects are provided in the following section. 

4.4 Application 

In this section, an application of the proposed finite element model to evaluate the 
frequency variation due to beam cracking is presented, and the numerical results 
are compared with those experimentally obtained by Cerri et al. [116]. The experi-
mental test involved both static and dynamic tests on two reinforced concrete 
beams, each measuring 2.45 meters in length, with a cross-section of 100 x 150 mm². 
The beam is reinforced by two steel bars in compression and two in tension, with 
a total area of 151 mm² and 57 mm², respectively. The class of concrete is C30/37, 
and the smoothed steel bars are characterized by fyk =320 MPa. Further details 
regarding the reinforcements and materials used are provided in [116]. In the static 
test, seven load-unload steps were performed. Subsequently, for each load step, a 
dynamic test was conducted after removing the load to assess the frequencies of the 
main vibration modes. The beam for the dynamic tests was hung by flexible springs 
to simulate the free-free condition. The resulting accelerations were transformed 
into the frequency domain to obtain the natural frequency in different damage 
phases. 

 

Figure 55: Experimental arrangement for Static test [116] 

The experimental test was numerically modelled through OpenSees software as 
solver and STKO as pre- and post-processor. To simulate the experimental test, a 
simply supported beam with a span equal to 2.25 m was modelled. The beam was 
divided into two FB fiber beam elements, each 1125 mm in length. The regulariza-
tion technique proposed by Addessi in [29] was adopted, which is described in detail 
in Section 2.5.  Specifically, a length Lp equal to 0.2 L was assumed, where L is the 
length of the element. Initially, the self-weight was applied as a distributed load on 
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the beam. Subsequently a load-controlled analysis was performed by applying a 
vertical force at the midspan of beam, corresponding to the point of application of 
the experimental load. Specifically, seven cycles of loading and unloading were ap-
plied, according to the experimental test, which resulted in the cracking of the beam. 
The load amplitude was increased with each cycle, leading to the further spread of 
cracks. At the unloading point, a modal analysis was performed to assess the vari-
ations of frequencies caused by the increasing damage in the beam. In particular, 
the modal analysis is utilized to extract the frequency of the first mode of vibration. 
The percentage of frequency variation is calculated relative to the frequency meas-
ured before the application of the load, which is considered the undamaged state of 
reference. This method allows for an assessment of the structural integrity by quan-
tifying the degree of frequency variation with respect to the undamaged condition, 
thereby providing a relation between damage and dynamic parameters. 

The three-dimensional damage-plastic law implemented as a new material in Open-
Sees and described in Section 2.4 was assigned to the concrete fibers; instead, a 
plastic model was considered for steel. Three different constitutive models for con-
crete were adopted to compare their performance in simulating complex mechanical 
phenomena, such as damage and plasticity, for both nonlinear static and dynamic 
analyses. This comparison is crucial for identifying the most accurate and reliable 
model for predicting the structural response of damaged structural elements. 

The first model adopted considers a tensile behaviour characterized only by damage. 
The parameters are summarized in Table 12. Figure 56 (a) and (b) shows the results 
of the patch test for a loading-unloading cycle in tension. Specifically, Figure 56 (a) 
illustrates the results in terms of stress-strain, while Figure 56 (b) shows the evo-
lution of damage. As observed in the figure, the unloading branch is characterized 
by a reduction of stiffness, which is a direct consequence of the damage occurred 
during loading, as well described in Section 2.4.  

𝐸𝐸 𝜈𝜈 𝑌𝑌0𝑐𝑐 𝑎𝑎𝑐𝑐 𝑏𝑏𝑐𝑐 𝑌𝑌0𝑡𝑡 𝑎𝑎𝑡𝑡 𝑏𝑏𝑡𝑡 𝜅𝜅 
[MPa] [-] [-] [-] [-] [-] [-] [-] [-] 
30000 0.25 4.2e-04 0.9 2e-03 2e-05 0.65 1e-04 1 

Table 12: Concrete material parameters for damage model 
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Figure 56: Damage model: strain history and damage evolution.  

The results in Figure 57 show a good agreement between the curves both in the 
concrete cracking phase and in the yielding phase. Especially, it is observed that 
the model accurately captures the onset of cracking, evidenced by the reduction of 
stiffness occurred for a vertical load of approximately 2 kN. The stiffness in the 
initial cracked phase and in the post-yield phase closely matches the experimental 
curve. However, the numerical model predicts that the reinforcement yielding oc-
curred at a lower displacement value compared to that observed in the experimental 
tests. This discrepancy may be attributed to a possible slip of the reinforcement 
bars during the experimental test, particularly since smoothed bars were used. The 
numerical model does not consider the bond-slip between the reinforcement bars 
and the surrounding concrete. This phenomenon, while important, falls outside the 
scope of this study. Regarding the unloading branch, it is observed that the model, 
being based on a damage formulation, fails to capture the residual displacement. 
This results in a lower stiffness of the unloading branch compared to the experi-
mental data. Figure 58 shows the frequency variation of the first mode of vibration 
obtained from the numerical simulation, comparing it with the experimental results. 
It is noticeable that the model significantly overestimates the frequency variation 
from the initial loading steps, corresponding to the onset of the beam cracking. 

  
(a) (b) 
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Figure 57: Nonlinear static response: damage model and experimental results. 

 
Figure 58: Frequency variation: damage model and experimental results. 

The second and third constitutive law adopted in this study are based on the dam-
age-plasticity model, described in Section 2.4. The material parameters defined for 
concrete fibers are detailed in Table 13. Adopting a Drucker-Prager plasticity model, 
the proposed constitutive law can also consider the plasticity in tension, thereby 
enabling to capture the plastic residual after the unloading of the beam, as shown 
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by experimental results. While the second model assumes the complete closure of 
cracks, the third model adopts a more refined approach considering the partial 
closure of cracks, as described in Section 2.4.4. Figure 59 illustrates a comparison 
of the patch test results using the model with complete crack closure, given by 𝛽𝛽 =
0, and the model that considers the partial cracks closure with 𝛽𝛽 = 0.6. 

𝐸𝐸 𝜈𝜈 σ𝑡𝑡 𝐻𝐻𝑧𝑧 𝐻𝐻𝑘𝑘 𝑌𝑌0𝑐𝑐 
[MPa] [-] [MPa] [MPa] [MPa] [-] 
30000 0.25 1.5 0.01 E 0.01 E 4.2e-04 

      
𝑎𝑎𝑐𝑐 𝑏𝑏𝑐𝑐 𝑌𝑌0𝑡𝑡 𝑎𝑎𝑡𝑡 𝑏𝑏𝑡𝑡 𝜅𝜅 
[-] [-] [-] [-] [-] [-] 
0.9 2e-03 2e-05 0.9 1e-04 1 

Table 13: Damage-plastic model: material parameters 

Figure 59: Damage-plastic model, 𝛽𝛽 = 0, vs Modified damage-plastic model, 𝛽𝛽 = 0.6, loading and 
unloading cycle. 

Figure 60 illustrates the uniaxial constitutive response in tensile and compression 
of the concrete and steel material, which were adopted in this numerical application. 

  
(a) (b) 
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Figure 60: Constitutive law of concrete fibers(a) and steel fibers (b). 

The results of the nonlinear analysis and the frequency variation for the damage-
plastic model with 𝛽𝛽 = 0 are shown in Figure 61 and Figure 62.  Thanks to the 
capability of modelling the tensile plasticity of concrete, it has been possible to 
capture the residual plastic displacement of the global curve during the crack dif-
fusion phase, as shown in Figure 61. Due to the plastic residuals, the unloading 
phase causes compressive stresses in the concrete, as clearly visible in Figure 59. 
Therefore, the global stiffness of the unloading phase results significantly influenced 
by the compressive behaviour after the closure of cracks. In Figure 62, it can be 
observed that the frequency variation when 𝛽𝛽 = 0 is underestimated compared to 
the experimental results. Adopting the modified damage-plastic model described in 
Section 2.4.4, it is possible to include the effects of the partial closure of cracks. 
Figure 63 presents the results of the nonlinear analysis using the modified model 
with 𝛽𝛽 = 0.6. Differing from the results obtained for 𝛽𝛽 = 0, the stiffness in the un-
loading branch more accurately aligns with the experimental results. Additionally, 
the results in terms of frequency variation closely match the experimental frequency 
variation, as illustrated in Figure 64.  

  
(a) (b) 
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Figure 61: Nonlinear static response: damage-plastic model and experimental results. 

 
Figure 62: Frequency variation: damage-plastic model and experimental results. 
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Figure 63: Nonlinear static response: modified damage-plastic model with partial reclosure of crack 

and experimental results. 

 
Figure 64: Frequency variation: modified damage-plastic model with partial reclosure of crack and 

experimental results. 

Figure 65 provides a comparison of the frequency variation for the three models 
previously described. The model based on only damage shows a significantly devi-
ation from the experimental results, highlighting the inadequacy to represent the 
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frequency variation. Especially, this model overestimates the changes of frequency, 
so the results can be considered as an upper bound. The classical damage-plastic 
model, corresponding to 𝛽𝛽 = 0, tends to underestimate the frequency changes. The 
curve obtained with this model can be considered as a lower bound. Conversely, 
the modified damage-plastic model, proposed in this thesis, which accounts for the 
partial closure of cracks, more accurately represents the frequency variation of the 
damaged beams in the unloading phase. 

 
Figure 65: Comparison of frequency variation for the three models. 

In conclusion, the proposed fiber beam model is capable of not only representing 
the nonlinear behaviour of a concrete beam but also accurately assessing the vari-
ation of frequency, as the damage of the beam increases. Therefore, the proposed 
modelling approach can offer a reliable and efficient method for vibration-based 
assessment of structural elements. 
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5 Neural Network training for Struc-
tural Health Monitoring 

5.1 Introduction of Machine Learning for SHM 

The Machine Learning technique in the context of Structural Health Monitoring 
(SHM) refers to the application of algorithms designed to understand structural 
behaviour through the experience, mirroring the learning principles of the human 
brain [14]. In SHM, Machine Learning is used to analyse and interpret data col-
lected from sensors or other data sources, to detect patterns, anomalies and trends 
that may indicate changes in the condition or performance of a structure. Several 
studies discuss the application of machine learning techniques in SHM, [14], [126], 
[127], [128]. As mentioned in the previous chapter, two main methods are distin-
guished in SHM: the physics-based method and the data-driven method. The phys-
ics-based methods identify the damage of structures correlating measured data from 
sensors with numerical results of finite element models. Conversely, the data-driven 
method primarily adopts machine learning algorithms, which are based on learning 
from past measured data of structures. Two types of learning approaches can be 
identified for these algorithms: supervised and unsupervised learning. The super-
vised learning is based on the algorithm training with data from both undamaged 
and damaged conditions, whereas in unsupervised learning the training data derive 
exclusively from the undamaged condition of the structure. Often in bridge moni-
toring, the only data available are measured in the healthy state of the structure, 
leading to the frequent adoption of unsupervised learning methods.  

In the context of machine learning techniques, the most common approach involves 
the use of Artificial Neural Networks (ANNs), for which numerous applications can 
be found in the scientific literature. For example, ANNs have been adopted for 
detecting damage in bridges [17], [129], for model updating to assess the structural 
condition [16], and for prediction of structural behaviour integrating air tempera-
ture data into the neural network [130]. Several types of neural networks are fre-
quently utilized, such as Time Delay Neural Networks (TDNN), Layer Recurrent 
Networks [19], and Nonlinear AutoRegressive (NAR) networks [20]. Especially, 
NAR networks have been found to be particularly effective for multi-step ahead 
prediction, providing more precise results compared to other common neural net-
work models. 
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In this chapter, the proposed fiber beam element model is adopted to train a neural 
network for detecting structural damage. Especially, Section 5.2 describes the pro-
posed method to train the NAR model, while in Section 5.3 the results of two 
applications are presented. 

5.2 Training of Artificial Neural Networks (ANNs) with Simulated 
Data  

This section introduces the neural network model and the training strategy adopted 
in this work. The main idea consists in using the proposed finite element model to 
generate simulated data for training of ANNs algorithm, as illustrated in Figure 66. 
The trained algorithm can be integrated into monitoring alarm systems, which in-
dicates the presence of structural damage, triggering timely alerts and facilitating 
the activation of maintenance interventions. Specifically, various damage states of 
the structure can be simulated through nonlinear analyses of finite element models. 
For each damage scenario, a low-amplitude force with White Noise time variation 
is applied, and nonlinear dynamic analysis is performed. The results in terms of 
displacement and/or acceleration are used as time-series data to train the ANNs 
algorithm. 

 

Figure 66: Monitoring strategy adopting the Artificial Neural Networks (ANNs) algorithm trained 
through simulated data. 
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This work adopts a Nonlinear AutoRegressive (NAR) networks model, implemented 
in MATLAB and trained using time series from the response obtained through 
dynamic simulations in undamaged conditions (unsupervised learning). Specifically, 
Nonlinear AutoRegressive (NAR) networks model predicts future values of a time 
series from its past values. To update the weights and biases of the neural network, 
the Levenberg-Marquardt optimization algorithm [131] was utilized as the training 
function. The architecture of the network structure is defined by two inputs: the 
number of hidden layers and the time delay d, which denotes the number of the 
past values adopted to predict the future value at the d+1 time step. In the appli-
cations detailed in Section 5.3, the hidden layers and time delay are set equal to 10 
and 6, respectively. The scheme of Nonlinear AutoRegressive (NAR) networks 
model is shown in Figure 67. 

 
Figure 67: Nonlinear AutoRegressive (NAR) networks model. 

The performance of the NAR model can be assessed by calculating the Root Mean 
Squared Error (RMSE) and the Normalized Root Mean Squared Error (NRMSE) 
between the network predictions 𝑦𝑦(̂𝑤𝑤𝑘𝑘) (Output) and the numerical values (Target) 
𝑦𝑦(𝑤𝑤𝑘𝑘), as follows: 

 RMSE =
∑ [𝑦𝑦(̂𝑤𝑤𝑘𝑘) − 𝑦𝑦(𝑤𝑤𝑘𝑘)]2

𝑓𝑓
𝑘𝑘=𝑑𝑑+1

𝑓𝑓 − 𝑑𝑑
,  NRMSE = RMSE

𝑦𝑦𝑚𝑚𝑡𝑡𝑥𝑥 − 𝑦𝑦𝑚𝑚𝑧𝑧𝑛𝑛 (82) 

where  𝑓𝑓 is the final time step. The damage state of the structure can be associated 
to the prediction error of the neural network. The NRMSE (Normalized Root Mean 
Square Error) can be effective for the definition of a damage indicator and the 
determination of a damage detection threshold, as proposed in [132]. Figure 68 
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illustrates a diagram of the proposed training process adopting an unsupervised 
learning method. In the following section, the results of two applications are pre-
sented. 

 

Figure 68: Definition of damage indicator in case of unsupervised learning.  

5.3 Applications 

This section presents two applications of the ANNs training approach described in 
the previous section. Specifically, the numerical results are obtained for the two 
beams described in Section 3.4.2 and 4.4, which correspond to the experimental 
tests conducted by Choi [101] and Cerri [116], respectively. 

5.3.1  Application I 

As illustrated in Section 3.4.2, the results of the nonlinear analysis of the HSC 
prestressed girder tested by Choi [101] demonstrated high accuracy in representing 
the nonlinear flexural behaviour of beams. For the training of the ANNs algorithm, 
four distinct phases of the nonlinear analysis were defined as characteristic points 
of the beam damage state, as shown in Figure 69. The initial phase represents the 
beam subjected only to its self-weight and the prestressing force. Subsequently, a 
vertical load, corresponding to that applied in the experimental test, was introduced. 
Step 2 represents the initial phase of the tensile damage at the mid-span of the 
beam. The third phase is characterized by a stiffness reduction caused by concrete 
cracking on the beam intrados. Finally, the yielding of the strands occurs in the 
final phase at Step 4. For each step, a nonlinear dynamic analysis was performed, 
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utilizing a low-amplitude force characterized by a White Noise time variation, as 
illustrated in Figure 69. 

Figure 69: Force-displacement curve (a): Uniaxial Material Model (UM), Damage-Plasticity Model 
(NM) and Experimental curve (Exp). Application of White Noise in FEM (b).  

Six different White Noise signals were generated, each with 20000 samples and with 
a sampling frequency of 100 Hz. Two signals were used as excitation force applied 
to the beam in its reference state (Step 1) to generate training data in the undam-
aged scenario. The remaining four signals were employed to obtain the simulated 
data for testing the algorithm. Specifically, four tests were conducted: one for the 
reference state, Step 1, and the other three for damaged configurations, correspond-
ing to Steps 2, 3, and 4. From the results of nonlinear dynamic analyses, the mid-
span displacement was extracted and converted into acceleration time series 
through the double integration. Applying the Fast Fourier Transform (FFT) to the 
time series response enabled the determination of the frequency of the first flexural 
mode for each damage state. Figure 70 and Figure 71 illustrate the generated ac-
celeration time series (Target line) and the corresponding frequency response for 
Step 1 and Step 4, respectively. A notable reduction in the first bending mode 
frequency was observed, from around 10 Hz to approximately 6 Hz, which is related 
to the concrete cracking and the yielding of strands during the loading phases. As 
previously mentioned, the Nonlinear AutoRegressive (NAR) networks model was 
trained using two distinct White Noise (WN) signals at Step 1. Following the 

 

                        

 
(a) (b) 

0 50 100 150 200
Midspan Deflection [mm]

0

100

200

300

400

500

600

700

800

Lo
ad

s 
[k

N
]

UM
NM
Exp

STEP2

STEP3

STEP4

STEP1

White Noise 



Chapter 5: Neural Network training for Structural Health Monitoring 

101 

training phase, the NAR networks model was employed to predict the acceleration 
data of four loading steps, utilizing four different WN signals. This allowed for the 
evaluation of the model accuracy and effectiveness in predicting the beam response 
to different loading conditions. The prediction response of the neural network for 
Steps 1 and 4 is illustrated in Figure 70 and Figure 71 with red curves (Output) 
and compared with simulated data from the FEM (Target). 

Figure 70: Comparison between FEM (Target) and NAR (Output) results in testing phase for 
STEP1 in time domain (a), frequency domain (b). 

Figure 71: Comparison between FEM (Target) and NAR (Output) results in testing phase for 
STEP4 in time domain (a), frequency domain (b). 

Figure 72 and Figure 73 provide a zoomed view of the comparison between the 
acceleration derived from the FEM model (Target) and those predicted by the NAR 
algorithm (Output). Additionally, the error, calculated as the difference between 
the two time series, is illustrated. 

 
(a) (b) 

 
(a) (b) 
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Figure 72: Performance of NAR model in testing phase - Step 1: comparison between acceleration 
time series from FEM (Target) and NAR (Output) model (above) and prediction error by NAR 

algorithm (below). 

  
Figure 73: Performance of NAR model in testing phase - Step 4: comparison between acceleration 
time series from FEM (Target) and NAR (Output) model (above) and prediction error by NAR 

algorithm (below). 

As illustrated in Figure 70 (b) and Figure 71 (b), the prediction of spectral contents 
in signals by the NAR model is not influenced by the damage level. In contrast, as 
the damage level intensifies, there is a noticeable increase in the errors related to 
the prediction of the amplitude of the acceleration time series, which is highlighted 
in Figure 72 and Figure 73. The evaluation of the Normalized Root Mean Squared 
Error (NRMSE) for time series predictions, as illustrated in Figure 74, allows for 
the analysis of the prediction error through varying damage intensities. This 
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evaluation allows to establish a correlation between the structural damage state 
and the prediction error. The results show that the prediction error can represent 
a suitable measure for the definition of a damage indicator able to detect the pres-
ence of damage. Specifically, it is possible to define a damage threshold, marked by 
a dashed red line, above which the NRMSE value indicates beam damage, and 
below which the beam results undamaged. Further developments of the proposed 
study will concern the accurate characterization of the prediction error in the ref-
erence configuration. To achieve this, a larger dataset for training phase has to be 
taken into account, also by considering different load cases and intensities.  

 

Figure 74: Normalized Root Mean Squared Error in training (undamaged configuration of struc-
ture, STEP 1) and test (undamaged, STEP 1, and damaged, STEP 2-4, configuration) phase.  

5.3.2 Application II 

This section presents an additional application of the proposed procedure for gen-
erating simulated data from FEM model to train the neural network. Specifically, 
training data were generated from the beam model representing the experimental 
test conducted by Cerri [116], described in Section 4.4. Figure 75 illustrates the 
resulting force-displacement curve of the nonlinear analysis and the analysis steps 
defined as characteristic points of the damage state of the beam.   
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Figure 75: Nonlinear analysis response (a). Application of White Noise in FEM model (b).  

For each defined scenario, different White Noise signals were generated. A sampling 
frequency of 2500 Hz was adopted to obtain a frequency content able to excite the 
significative vibration modes of the beam. Ten nonlinear dynamic analyses were 
performed: three for undamaged scenarios (U1-U3) in the elastic stage, six for the 
different damage scenario (D1-D6) during the concrete cracking phase, and one in 
the yielding phase (P1). In contrast to the application discussed in the previous 
section, which utilized the acceleration time-series, the displacement responses were 
employed as simulated data for training and testing the NAR model. Specifically, 
the algorithm was trained using the displacement time-series obtained in the un-
damaged phase U1 and then tested for the various damage scenarios (U2, U3, D1-
D6, P1). To avoid overfitting issues, different magnitude orders of the vibration 
amplitudes were adopted as training data in U1 state, as shown in Figure 76 (a). 
It has been observed that the neural network model encounters difficulties in 
providing good results if the static displacement of testing signals is higher than 
the displacement of training signals. Consequently, to achieve more precise predic-
tions, the simulated data were detrended, thereby removing their static component 
and retaining solely the vibrational response. Figure 76 (a) shows the displacement 
at midspan obtained from the numerical model (Target) and network prediction 
(Output) for U1 state. The corresponding frequency content is illustrated in Figure 
76 (b). As demonstrated by the results, the neural network prediction is accurate 
both in time and frequency domain.  
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Figure 76: Dynamic response prediction under white noise excitation through NAR model in train-
ing phase (U1): comparison between numerical response (target) and network prediction (output) 

of displacement time series (a) and frequency content (b). 

The NAR model, trained for undamaged conditions (U1), was tested using the 
simulated displacement responses corresponding to conditions U1-U3, D1-D6, and 
P1. Figure 77 and Figure 78 illustrate the performance of the NAR model in the 
testing phase for state conditions D4 and P1, respectively. Specifically, the figures 
provide a zoomed view of the comparison between the displacement time series 
from the FEM (Target) and the predictions obtained through the NAR model 
(Output). Additionally, the corresponding prediction error is also illustrated. The 
results reveal a reduction of the accuracy of the neural network model prediction 
as damage occurs. This pattern highlights the model sensitivity to changes of struc-
tural conditions, showing that the presence of damage influences the predictive 
performance of the neural network model. 
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Figure 77: Performance of NAR model in testing phase - D4: comparison between displacement 
time series from FEM (Target) and NAR (Output) model (above) and prediction error by NAR 

algorithm (below). 

 
Figure 78: Performance of NAR model in testing phase - P1: comparison between displacement 
time series from FEM (Target) and NAR (Output) model (above) and prediction error by NAR 

algorithm (below). 

As previously discussed, by examining the prediction error via the evaluation of 
NRMSE in different beam conditions, a correlation can be identified between the 
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error in prediction and the state of the beam. Unlike the previous application, 
NRMSE Variation was used as the measure of prediction error, which is defined as:  

 NRMSE Variation = NRMSE − NRMSE (U1) 
NRMSE (U1)

 (83) 

being NRMSE (U1) the NRMSE calculated for the undamaged state U1. Figure 79 
shows NRMSE Variation for the considered scenarios.  From the results, it is pos-
sible to establish the threshold level (the red line depicted) which identifies the 
presence of concrete cracking.  

 
Figure 79: NRMSE Variation for the considered scenarios. 

In conclusion, through the simulation of the dynamic response under white noise 
excitation, a neural network model has been trained in the healthy state of the 
structure. The failure in predicting the structural response of the damaged beam 
has been considered as a damage indicator able to detect the presence of the con-
crete cracks. Such further investigations, supported by experimental validation aim-
ing to test the effectiveness of the simulation-based procedure in real scenarios, can 
improve the accuracy and applicability of machine learning techniques and better 
understand the relationship between prediction errors and specific types of damage. 
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6 Vision-Based Monitoring 
6.1 Introduction of Vision-Based for Infrastructure Monitoring 

Several monitoring techniques have been proposed and developed in the field of 
Structural Health Monitoring. The most widely adopted method for assessing struc-
tural conditions is the visual inspection conducted by human inspectors. However, 
this technique is often subjective and requires significant time investment, leading 
to considerable costs over time [[127], [133], [134], [135]]. In recent years, significant 
advancements in technological innovations have revealed new opportunities to over-
come the disadvantages of traditional assessment methods. This technological evo-
lution is spurring interest in innovative research areas, particularly in vision-based 
techniques using image acquisitions. In particular, the integration of digital image 
processing (DIP) and computer vision, utilizing devices like digital cameras and 
scanners, is becoming increasingly prevalent in civil engineering for efficient infra-
structure inspection [133]. Another application of the vision-based approach con-
sists in the use of convolutional neural networks (CNN) [136], [137] and semantic 
segmentation using deep learning techniques to extract region of an object in an 
image [138]. Grosman [139] proposed a procedure which utilizes numerical model 
results of a masonry bridge to generate synthetic video files to calibrate camera 
setups for Digital Image Correlation (DIC) monitoring. One of the most innovative 
technologies currently being developed is the use of unmanned aerial vehicles 
(UAVs) for automated inspections [21]. These UAVs, equipped with high-resolution 
cameras, are revolutionizing the way of conducting inspections improving their ef-
ficiency and accuracy. Recent advancements in this technology are geared towards 
integrating autonomous capabilities for the identification and localization of critical 
structural elements, as well as the detection and quantification of structural dam-
ages [22], [23], [24], [25]. To develop a fully automated vision-based assessment 
process, the algorithm of visual recognition systems needs to be trained through an 
extensive dataset of images that covers a wide variety of combinations of bridge 
types and damages. The complexity and variability of real structures, along with 
the different types of damage of structural components, mean that creating a com-
prehensive dataset from real images is extremely challenging. To overcome the lim-
itations given by the scarcity of available datasets, Narazaki [25] proposed the use 
of synthetic environments to increase the size of these datasets to train vision-based 
algorithms. These artificial environments generate virtual images to simulate the 
real-image and associated ground truth annotations for semantic segmentation of 
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structural components and damage. To ensure the accuracy of the algorithm, sev-
eral types of bridges with different simulated damage scenarios are generated and 
included in the synthetic environment. For instance, in [25], 200 synthetic environ-
ments that included 2,000 standard design railway viaducts were created. These 
environments produced a dataset comprising 8,648 images for structural component 
recognition and depth estimation, and 7,990 images for damage identification. The 
algorithm based on fully convolutional networks for semantic segmentation was 
trained using the generated dataset and real-world images. Figure 80 shows a sche-
matic view of the use of synthetic environments for the application of unmanned 
aerial vehicles (UAVs) in Structural Health Monitoring. 

 

Figure 80: Scheme of unmanned aerial vehicles (UAVs) in Structural Health Monitoring. 

The process of creating synthetic environments for generating training datasets in 
visual recognition is proposed in [25] and illustrated in Figure 81. Initially, geomet-
ric representations of the structure are determined through the creation of meshes 
(Step 1). Following this, the textures corresponding to different materials and dam-
age are defined (Step 2). In the subsequent step (Step 3), these chosen images are 
applied to the structural model by establishing a correlation with the mesh surfaces. 
Once the structural model is finalized, synthetic cameras are positioned to capture 
the render images (Step 4) obtaining ground truth maps of structural component 
labels, damage labels and ground truth depth maps, which are essential for visual 
recognition. 
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Figure 81: Scheme of creation of Synthetic environment. Figure in [25]. 

A significant limitation of the described work is the absence of a mechanical model 
in the definition of damage scenarios. Specifically, the damage is considered equally 
probable along the entire structural surface, without considerations for the distri-
bution of shear forces and bending moment. Therefore, it is essential to integrate a 
mechanical model into this procedure that can realistically represent damage zones, 
thereby ensuring a more accurate simulation of real structural conditions. By inte-
grating a mechanical model, the synthetic environment would be enhanced, leading 
to more robust and reliable algorithm in damage recognition. 

The goal of this chapter is to adapt the proposed beam model to the process of 
creating synthetic environments. As demonstrated in previous chapters, the pro-
posed fiber beam element has proven reliable in predicting the nonlinear behaviour 
of concrete beams, requiring low computational effort. This characteristic is crucial 
for creating a synthetic environment, which demands numerous nonlinear analyses 
to simulate several damage scenarios. Section 6.2 presents the development of a 
tool to use the fiber beam element in the context of vision-based techniques. Section 
6.3 presents an application of the model comparing the use of DB and FB approach. 
Finally, Section 6.4 discusses future developments for integrating the proposed nu-
merical model into synthetic environments.  
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6.2 Fiber Beam Element for Vision-Based Models  

This section presents a MATLAB tool designed for post-processing visualization of 
fiber beams in the context of vision-based monitoring. As shown in previous chap-
ters, fiber beam elements can reliably describe the nonlinear behaviour of beams 
while requiring less computational effort compared to two-dimensional or three-
dimensional elements. However, their application in vision-based monitoring may 
be limited due to the visualization of material outputs being confined to the sections 
at the integration points. Indeed, to integrate a mechanical model into a vision-
based procedure, it is necessary to visualize the material outputs across the external 
beam surface. To achieve this, a MATLAB tool was created that first interpolates 
fiber damage across the cross-section and then along the length of the beam, as 
illustrated in Figure 82. Through this method, a detailed surface-level output is 
produced, effectively differentiating between the cracked and uncracked areas of 
the beam. Additionally, this allows obtaining the length of the cracked zone, which 
is a key parameter to assess the damage state of the beam. 

 

Figure 82: New Tool for post-processing of fiber beam elements for vision-based techniques. 
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6.3 Application 

In this section, an application of the procedure proposed in the previous section is 
shown, comparing the use of a DB and FB fiber beam elements. The reference for 
this comparative study is the experimental test conducted by Cerri [116], which 
was initially discussed in Chapter 4. During the experimental test, the extension of 
the damaged zone along the beam was measured after each load increment. The 
experimental crack extension lengths are compared with those obtained through 
the numerical simulations. Differently from Chapter 4, unregularized DB and FB 
fiber beam finite elements were adopted. For each load step, damage results of all 
fibers of the beam were imported into the new MATLAB tool. This enabled the 
generation of a colourmap where undamaged zones (in blue) correspond to the areas 
where the damage variable is 0, and the cracked zones (in red) are characterized 
by the damage variable approximately equal to 1. The other colours are related to 
intermediate values of the damage variable. Figure 83 illustrates a comparison be-
tween the experimental and numerical results obtained for the DB beam element 
at load steps 2 and 4. It can be observed that the proposed model effectively cap-
tures the progression of damage along the beam corresponding to the increasing 
load. 
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Figure 83: Experimental crack diffusion length vs numerical simulation with DB element for Step 
2 and Step 4. The figures of the experimental test are in [116]. 

The structural response was simulated adopting both the DB and FB beam ele-
ments. Figure 84 presents a comparison of the outputs obtained with both ap-
proaches. It can be observed that for the DB beam, the progression of damage along 
the beam is more discontinuous compared to the FB beam, which exhibits a more 
uniform pattern. This behaviour is influenced by the curvature distribution, which 
depends on the adopted formulation, as shown in Figure 84. Analogous to the dis-
cussion presented in Section 2.5, the extension of the damaged zone along the beam 
is influenced by the characteristic length of the element. Therefore, when a dis-
placement-based approach is adopted, the cracked zone length is governed by the 
length of the finite element. Conversely, for FB beam element, it is influenced by 
the selected numerical integration rule. Figure 85 shows the results obtained adopt-
ing 2, 3, and 4 elements in case of DB fiber beam element. Additionally, Figure 86 
illustrates the cracked zone length, Ld, for different load steps, comparing the nu-
merical and experimental results. It is observed that, in case of DB formulation, a 
finer mesh is required to accurately determine the length of the damaged zone. The 
results obtained adopting the FB formulation are shown in Figure 87 and Figure 
88. In this case, the crack diffusion length converges to experimental results with a 
fewer number of elements compared to the DB approach. 
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Figure 84: Curvature and damaged zone visualization for Step 2 and Step 7 for DB and FB fiber 
element. 

In conclusion, this application demonstrated better computational performance of 
the FB method compared to the DB method, as discussed in Section 2.5. This 
investigation, however, expands the application of the fiber beam elements to the 
evaluation of the cracked zone extension. 
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Figure 85: Damaged zone visualization: results for DB Beam Element adopting 2, 3 and 4 mesh. 

 
Figure 86: Cracked zone length: Experimental vs numerical results adopting DB beam elements. 
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Force-Based Beam Element 
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Figure 87: Damaged zone visualization: results for FB Beam Element adopting 2, 3 and 4 mesh. 

 
Figure 88: Cracked zone length: Experimental vs numerical results adopting FB beam elements. 
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6.4 Future Developments for 3D Synthetic Environments 

The previous section demonstrated that fiber beam elements can capture the ex-
tension of the cracked zone along the beam surface. Through the developed 
MATLAB tool, which is introduced in Section 6.2, it is possible to distinctly visu-
alize a cracked and an uncracked zone. Integrating this model in the generation of 
synthetic environments is suggested as a direction for future research. In [22], a 
methodology for physics-based graphics models (PBGMs) was introduced to simu-
late the damage of buildings caused by earthquakes. The application of the same 
concept adopting fiber beam elements in the field of SHM could represent a prom-
ising research area to enhance the reliability of vision-based system. Specifically, 
various damage scenarios can be simulated performing several nonlinear structural 
analyses for different load conditions or different degradation states of materials. 
To create a physics-based synthetic environment, assigning textures to cracked and 
uncracked areas, as illustrated in Figure 89, can improve the accuracy of generated 
images representing the damaged structure.  

 

Figure 89: Future developments for proposed element in 3D synthetic environments. 
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7 Case Study: Alveo Vecchio Viaduct 
7.1 Experimental Test 

This chapter presents the application of the proposed numerical approach in the 
simulation of a full-scale test of an existing prestressed reinforced concrete bridge. 
This application aims to validate the effectiveness of the described fiber beam ele-
ment in modelling the nonlinear static and dynamic behaviour of concrete bridges, 
highlighting the potential developments in structural health monitoring. In scien-
tific literature, there is a limited number of full-scale bridge experiments due to a 
range of difficulties. Indeed, such tests are not only costly but also present organi-
zational and safety issues. In [140], a review of full-scale failure tests on concrete 
bridges is provided. The experimental test selected and modelled in this research is 
the Alveo Vecchio viaduct, which is located in the old track of the A16 Napoli-
Canosa Italian highway [141], [142]. This viaduct is representative of 52% of Italian 
highway bridges in terms of structural type, age and deterioration. The geometry 
of the bridge is illustrated in Figure 90 [142].  

 

Figure 90: Geometry of Alveo Vecchio viaduct [142] 
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The viaduct is composed of two independent decks, characterized by three 32.5 m 
long simply supported spans. The structure of each span includes four prestressed 
concrete (PC) girders, with a height of 2 meters, and a concrete slab which is 20 
cm thick. Five reinforced concrete cross-girders connect the longitudinal girders, 
and the bridge deck is supported by fixed and free neoprene bearings. The beams 
were prestressed using 14 post-tensioned parabolic cables, with a jacking tension of 
1250 MPa. The ultimate strength and the yielding strength are equal to 1700 MPa 
and 1450 MPa, respectively. Further information regarding the structure can be 
found in [141].  

The experimental test on span C3x involved five cycles of loading and unloading, 
employing progressively greater number of steel ballast blocks. Each block meas-
ured 2.35 × 1.84 × 0.45 meters and weighed 100 kN. These blocks were positioned 
at the centre of span C3sx, as illustrated in Figure 91. To induce the deck collapse, 
the experimental test was structured into five loading phases, with each phase fol-
lowed by a complete unloading of the structure. The total weight applied was: P1—
1200 kN, P2—2400 kN, P3—4800 kN, P4—7200 kN, and P5—9600 kN. The mon-
itoring setup for the experimental test included several sensors, categorized into 
eight different types: wire displacement sensors, deformation sensors, crack-opening 
sensors, electronic level, temperature sensors, inclinometers, accelerometers, and 
acoustic emission sensors. Further details on the experimental test and the layout 
of the SHM system are provided in [141].  

 

Figure 91: Picture of the Alveo Vecchio viaduct during the experimental test. Figure in [142]. 

To characterize the material properties, an experimental campaign was conducted 
both on the concrete of girders and slab and on the steel of prestressing cables and 
reinforcement. The results of the experimental campaign are reported in [123].  
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The structure was dynamically excited with a mass of 50 kg dropped from a height 
of 0.5 meters in loading and unloading conditions for each phase. The main fre-
quencies were calculated from the vibrational data measured by 15 accelerometers 
with a sampling frequency of 800 Hz. The results, reported in Section 7.3, indicate 
a reduction in the frequency of the first (flexural) and second (torsional) modes of 
vibration, related to the progression of structural damage. Further details about 
the experimental results can be found in literature in [141], [142]. 

7.2 Finite element model 

This section describes the modelling of the experimental test conducted on the 
Alveo Vecchio viaduct. Especially, the deck of the viaduct was numerically mod-
elled with OpenSees software as solver and STKO as pre- and post-processor. Each 
of the four girders was divided in 24 fiber beam elements, as suggested in [141]. 
Additionally, the cross-girders and transverse elements representing the slab were 
also modelled to account for the transverse stiffness of the deck. The restraints 
corresponding to a simply supported structure were applied at the ends of the gird-
ers. Figure 92 and Figure 93 show the finite element model of the Alveo Vecchio 
viaduct.  

 
Figure 92: Model of Alveo Vecchio Viaduct: Beam elements. 

Fiber beam elements were adopted to model the nonlinear behaviour of the girders, 
while elastic beam elements were utilized for cross-girders and slab in transversal 
direction. The cross-sections of fiber beam elements are given by the geometry of 
the girder and the portion of the collaborating slab, determined accordingly with 
[141]. Additionally, for beam T4, the curb was also modelled. In Figure 94, the 
cross-sections at the midspan of each girder are shown. The prestressing cables and 
the steel rebars were modelled for each cross-section according to the design 
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documentation of the bridge. Different beam elements along the girders were con-
sidered to account for the parabolic trajectory of the cables and the variation of the 
girder section geometry, as shown in Figure 95 

 

Figure 93: Model of Alveo Vecchio Viaduct: Extruded views. 

 
Figure 94: Cross-sections of fiber beam element at the midspan of each girder. 
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Figure 95: Cross-sections along the girders. 

Permanent loads were distributed along beam elements, including the self-weight 
of the structural components, g1, the weight of the pavement and the load of con-
crete casting used for surface levelling, g2. To simulate the experimental test, dis-
tributed loads (p) were applied to the girders where the steel ballast blocks were 
positioned during the experimental test. Figure 96 shows an overview of distributed 
loads applied to the model. A force-controlled nonlinear analysis was performed by 
applying five loading-unloading cycles to simulate the experimental test. 

 
Figure 96: Distributed loads applied to the model: g1, g2 (in light blue purple, yellow, and orange) 

and p (blue). 

The prestressing forces applied to the cables for each girder are detailed in Table 
12. These values represent the residual stresses of the cables accounting for prestress 
losses over time, which resulted different for each girder. Specifically, the prestress-
ing forces adopted in this FEM model refer to the calibrated values obtained in 
[141].  
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𝑇𝑇1 𝑇𝑇2 𝑇𝑇3 𝑇𝑇4 
[MPa] [MPa] [MPa] [MPa] 
696 794 820 950 

Table 14: Adopted values of residual stresses in prestressing cables for each girder.   

Two different FEM models were considered to compare the uniaxial material (UM) 
existing in OpenSees with the modified damage-plastic (MPDM) constitutive law 
proposed in this research. In the first case, the Concrete04 material was adopted 
for the concrete of girders and slab, with parameters listed in Table 15. The uniaxial 
material adopted for the steel was the Steel04 with 𝑓𝑓𝑦𝑦 = 1633 MPa and Steel01 
with 𝑓𝑓𝑦𝑦 = 529 MPa for the cables and reinforcement, respectively. The mechanical 
parameters are aligned with hypothesis C in [141], corresponding to the 95th per-
centile of the Non-Destructive Testing (NDT) results. 

 𝐸𝐸𝑐𝑐 𝑓𝑓𝑐𝑐 𝑓𝑓𝑡𝑡 𝜀𝜀𝑐𝑐 𝜀𝜀𝑐𝑐𝑐𝑐 
 [MPa] [MPa] [MPa] [-] [-] 
Girder 39899 49.5 2.45 0.002 0.0035 
Slab 34561 36.4 2.45 0.002 0.0035 

Table 15: Concrete parameter for UM constitutive laws   

Regarding the modified damage plasticity model, the parameters for the concrete 
adopted for the girders and the slab are listed in Table 16 and Table 17, respectively. 
The comparison between the described uniaxial material (UM) and the new mate-
rial model (MPDM) is presented in Figure 97 (a) and (b). For the steel, a plastic 
stress-strain relation (PM) was used for both the cables and the reinforcement, as 
illustrated in Figure 98 (a) and (b).  

𝐸𝐸 𝜈𝜈 σ𝑐𝑐 σ𝑡𝑡 𝐻𝐻𝑧𝑧 𝐻𝐻𝑘𝑘 𝜅𝜅 
[MPa] [-] [MPa] [MPa] [MPa] [MPa] [-] 
39899 0.2 60 2.5 0.7 E 5 E 1 

       
𝑌𝑌0𝑐𝑐 𝑎𝑎𝑐𝑐 𝑏𝑏𝑐𝑐 𝑌𝑌0𝑡𝑡 𝑎𝑎𝑡𝑡 𝑏𝑏𝑡𝑡 𝛽𝛽 
[-] [-] [-] [-] [-] [-] [-] 

7e-04 0.6 2.6e-03 4e-05 0.9 1.3e-04 0.2 
Table 16: Concrete for Girders: modified damage-plastic model (MPDM)    
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𝐸𝐸 𝜈𝜈 σ𝑐𝑐 σ𝑡𝑡 𝐻𝐻𝑧𝑧 𝐻𝐻𝑘𝑘 𝜅𝜅 
[MPa] [-] [MPa] [MPa] [MPa] [MPa] [-] 
34561 0.2 50 2.5 0.2 E 0.1 E 1 

       
𝑌𝑌0𝑐𝑐 𝑎𝑎𝑐𝑐 𝑏𝑏𝑐𝑐 𝑌𝑌0𝑡𝑡 𝑎𝑎𝑡𝑡 𝑏𝑏𝑡𝑡 𝛽𝛽 
[-] [-] [-] [-] [-] [-] [-] 

4e-04 0.9 2.8e-03 4e-05 0.9 1.3e-04 0 
Table 17: Concrete for Slab: modified damage-plastic model (MPDM)     

Figure 97: Constitutive law of concrete fibers for girders (a) and slab (b): Existing Uniaxial Mate-
rial (UM), Modified Damage-Plasticity Model (MDPM). 

Figure 98: Constitutive law of steel fibers for and reinforcement (a) cable (b): Existing Uniaxial 
Material (UM), Plasticity Model (PM).  
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7.3 Nonlinear Static Response and Variation of Dynamic Response 
with Damage 

This section presents the results obtained from the nonlinear analysis for loading 
and unloading cycles. Figure 99 illustrates the nonlinear static response of each 
girder in terms of force-displacement curves. Especially, the figure compares the 
experimental curves with the numerical results obtained adopting the existing Uni-
axial Material (UM) models for concrete and steel.  

  

  
Figure 99: Nonlinear static response:  Force-displacement curve for each girder - uniaxial material 

(UM) and experimental results. 
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The numerical results obtained from the model which adopts the modified damage-
plastic model (MPDM) for concrete, as described in the previous paragraph, are 
illustrated in Figure 100. 

  

  
Figure 100: Nonlinear static response:  Force-displacement curve for each girder - modified dam-

age-plastic model (MDPM) and experimental results. 
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and the residual stress of the prestressing cables. As suggested in [141], it can be 
observed that the residual stress determines the first-cracking load and the post-
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cracking stiffness without affecting the ultimate load capacity. In both models, the 
results show a good fit with the experimental data, except for the girder T4, for 
which the first-cracking load and the post-cracking stiffness result underestimated. 
The ultimate capacity is influenced by several factors, including the tensile and 
compressive strength of the concrete, the yield and ultimate tensile strength of the 
prestressing steel, and the ultimate strain of both concrete and steel. The results 
demonstrate a good numerical prediction for the yield point and the post-yield 
stiffness, except for the girder T4. 

The initial phase of the unloading branch and the plastic residual displacement are 
mainly governed by the tensile plasticity of the concrete and, after the cables yield-
ing, by the plasticity of the steel. As discussed in Section 4.4, the change of the 
stiffness in the unloading branch indicates the closing of cracks, transitioning from 
the tensile to compressive stress state in the cracked zone. The structural behaviour 
of this phase is determined by the compressive stiffness of the concrete. Although 
both the uniaxial material (UM) and modified damage-plastic model (MPDM) pro-
vide similar results for the loading branches, the UM does not capture the plastic 
residual displacement in the post-cracking phase. Since the proposed MPDM model 
also considers tensile plasticity of concrete, it captures the plastic residual displace-
ments during the cracking phase, achieving a closer alignment with the experi-
mental curves.  

Although the difference between the models may not seem significant in the non-
linear response curves, it becomes crucial in the evaluation of the decrease of the 
first vibration frequency due to cracking. Figure 101 shows the first two modes of 
vibration of the deck. Specifically, the first mode is flexural, and the second mode 
is torsional. 

  
(a) (b) 

Figure 101: First two vibration mode: Flexural (a) and Torsional (b) Mode. 
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Vibration frequencies were determined through the modal analysis conducted after 
each unloading step. The decrease of frequency for both vibration modes, caused 
by the progressive damage of the structure, was compared with results obtained 
from experimental observations. Specifically, Figure 102 (a) and (b) illustrates the 
frequency variations for the first and second vibration modes obtained adopting the 
uniaxial material (UM). Figure 103 presents the results of the model which adopts 
the modified damage-plastic model (MDPM). 

  
(a) (b) 

Figure 102: Frequency variation: UM model and experimental results. 

 

  
(a) (b) 

Figure 103: Frequency variation: Modified damage-plastic model and experimental results. 
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It can be observed that the UM model fails to capture the frequency reduction at 
loading steps 3 and 4, which represents the cracking phase of the girders. This 
observation highlights the limitation of UM model in simulating the structural be-
haviour under loading-unloading conditions. As discussed in Chapter 4, since the 
proposed MPDM considers the partial closure of cracks, it can predict the frequency 
value of cracked beams under unloading conditions. Figure 103 shows that for the 
first mode of vibration, the MPDM provides results that are more closely aligned 
with experimental results compared to the UM model. However, for the second 
mode of vibration (torsional mode), MPDM predictions underestimate the fre-
quency variation. Further investigation is suggested to understand the factors 
which influence the frequency reduction in the second mode.  

In conclusion, the MPDM provides a more suitable approach to modelling the struc-
tural behaviour, particularly in the unloading phase. Indeed, this includes a more 
accurate representation of the partial closure of cracks, ensuring that the decrease 
of natural frequencies is more precisely captured. This level of detail is crucial for 
monitoring and assessing the structural integrity of a bridge, allowing early detec-
tion of potential issues through changes in vibrational behaviour.  
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8 Conclusions 
8.1 Summary and main contributions 

This thesis proposed a computationally efficient approach to model nonlinear static 
and dynamic behaviour of prestressed concrete bridges in the field of Structural 
Health Monitoring (SHM). In this context, the integration of advanced computa-
tional models with recent advancements in artificial intelligence represents a prom-
ising approach to enhance the accuracy and efficiency of monitoring systems for 
detecting structural damage in infrastructures. 

An advanced fiber beam element based on a damage-plastic constitutive model was 
implemented in OpenSees software framework, offering enhanced computational 
efficiency compared to 2D and 3D finite elements commonly used in professional 
practice for nonlinear analyses. A comparison between the displacement-based (DB) 
and force-based (FB) formulation was provided. As extensively demonstrated in 
literature, the force-based formulation is more efficient than the classical displace-
ment-based approach, especially in case of nonlinear structural analysis. The 
adopted damage-plastic constitutive model for concrete material considers the uni-
lateral effect of crack closure by introducing two distinct damage variables for ten-
sile and compressive behaviour. Additionally, to accurately evaluate the frequency 
variation due to cracking of the structural elements, this research proposed a mod-
ification of the damage-plastic model to represent the partial closure of cracks. In 
this work, both 3D constitutive models, i.e. the damage-plastic and the modified 
damage-plastic model, have been implemented in OpenSees. Chapter 2 provided 
details on the formulation and computational aspects of the proposed advanced 
fiber beam model. Additionally, this chapter introduced the numerical issue of lo-
calization in case of brittle-material, by presenting and comparing various regular-
ization methods for FB fiber beam elements. 

The proposed computational approach was validated in Chapters 3, 4 and 7 by 
comparing the numerical results with those derived from experimental tests avail-
able in literature. Specifically, Chapter 3 focused on the nonlinear modelling tech-
niques for prestressed concrete beams. A comparative study between the prestressed 
concrete fiber element model in OpenSees and the modelling approaches imple-
mented in MIDAS software was presented. Additionally, this chapter illustrated a 
validation of the model by simulating an experimental failure test of the prestressed 
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concrete beam. This application demonstrated a good correlation between the nu-
merical results and experimental measurements, confirming the model reliability in 
accurately representing the nonlinear structural behaviour. Chapter 4 introduced 
vibration-based methodologies in SHM and dynamic analysis for fiber beam ele-
ments. This chapter demonstrated the importance of adopting the modified dam-
age-plastic model, which incorporates the partial closure of cracks, for precise eval-
uation of the reduction in vibration frequency due to tensile damage. The compar-
ison between the numerical model and experimental results highlighted its efficacy 
in capturing not only the nonlinear behaviour but also the frequency variation. 
Finally, Chapter 7 presented the numerical model which simulates a full-scale ex-
perimental test of an existing prestressed reinforced concrete bridge. The results 
validated the proposed numerical approach also at the structural level. 

In Chapter 5, this thesis also proposed a method for training an Artificial Neural 
Networks (ANNs) algorithm using the data generated from numerical applications. 
Especially, the procedure involved applying a white noise excitation to each damage 
scenario. Adopting an unsupervised learning approach, the neural network model 
was trained with data simulated in undamaged conditions. Two different numerical 
applications demonstrated that the prediction error of the ANNs algorithm can be 
considered a suitable measure for the definition of damage indicators. Additionally, 
the numerical simulations allowed for the evaluation of the trend of damage indi-
cator and the determination of its alert threshold. Further research is required to 
improve the accuracy and applicability of the proposed procedure and better un-
derstand the relation between prediction errors and specific types of damage.  

Finally, Chapter 6 explored the new advancements in the application of artificial 
intelligence in vision-based monitoring. A tool was developed to enable the use of 
the proposed fiber beam model for creating synthetic environments. The application 
discussed in this chapter demonstrated that the FB formulation is more efficient in 
determining the length of the damaged zone. 

In conclusion, this thesis proposed and validated an advanced finite element to 
simulate the structural static and dynamic behaviour of bridges. Furthermore, it 
explored the applications of this numerical approach to enhance the performance 
of artificial intelligence in structural monitoring.  
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8.2 Recommendations for future works 

Future works can further explore the integration of the proposed advanced numer-
ical model in structural health monitoring. Future developments are listed here: 

1. Enhance the proposed formulation including the modelling of shear failure 
and bond-slip effect.  

2. Integrate the modelling of material degradation phenomena of existing 
bridges, as the steel corrosion and concrete deterioration. Especially, the 
corrosion can lead to the reduction of steel area and cause concrete cracking, 
potentially resulting in spalling of the cover. 

3. Further applications of the proposed ANNs training procedures to enhance 
the accuracy of machine learning techniques in structural health monitoring. 
This study could focus on understanding the correlations between prediction 
error and different types of structural damage. 

4. Validate the neural network algorithm trained with simulated data. This 
involves testing the algorithm on real bridges, including further investigation 
about the effect of environmental factors such as temperature and humidity 
variations. 

5. Enhance the ANNs training procedure to include the capability of locating 
damage. One method could involve extracting the structural responses from 
different points located along the girder and observing if the damage indica-
tor shows higher values for the results extracted in the damaged area. 

6. Propose a hybrid procedure for calibrating the characteristic parameter of 
partial crack closure using real data measured by the monitoring system. 

7. Develop a training procedure based on the supervised learning approach. In 
this case, the algorithm will be trained using data from both damaged and 
undamaged conditions. 

8. Develop an automated tool for assigning specific textures to cracked and 
uncracked areas to obtain realistic images of damaged beams. Additionally, 
create a synthetic environment with a range of damage scenarios for training 
visual recognition algorithms.  
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