

Available online at www.sciencedirect.com

Transportation Research Procedia 74 (2023) 1232-1238

TRANSCOM 2023: 15th International Scientific Conference on Sustainable, Modern and Safe Transport

Residual risk in Automatic Train Protection systems: evaluation and management

Alessandro Baldassarra^a, Cristiano Marinacci^a, Stefano Ricci^a*

^aSapienza University of Rome – Development Innovation in Transport Systems, Via Eudossiana 18, 00184 Roma, IT

Abstract

The paper on typical rail operation hazards, such as Signal Passed at Danger (SPAD) and Failed Braking Application by Driver (FBAD). The protection against these hazards is normally by Automatic Train Protection (ATP) systems and emergency braking activation, operated by the onboard systems over a certain Minimum Release Speed (MRS). The determination of such speed is a key design parameter related with the achievable performances in terms of safety and capacity. The present research deal with a systematic analysis of the operational conditions potentially affecting the determination of such speed values by modelling the dynamics of the problem taking into account the features of the infrastructures (tracks layout, gradients, etc.), the vehicles (mass, braking performances, etc.) and the geography of signalling and ATP systems themselves. In fact, the position of main signals protecting the dangerous points (switches, level crossings, etc.) emerges as key player, affecting both the design and the operation of the systems.

© 2023 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the scientific committee of the TRANSCOM 2023: 15th International Scientific Conference on Sustainable, Modern and Safe Transport

Keywords: Railway, Signalling, Operation, Safety, ATP systems

1. Introduction

A complex transport system, such as the railway, requires a continuous and effective action of risk management and mitigation, to maintain its top safety performances. The translation into practice of this requirement includes the actuation of the actions defined in the safety plans and the continuous monitoring of its effectiveness. Nevertheless,

2352-1465 $\ensuremath{\mathbb{C}}$ 2023 The Authors. Published by ELSEVIER B.V.

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the scientific committee of the TRANSCOM 2023: 15th International Scientific Conference on Sustainable, Modern and Safe Transport 10.1016/j.trpro.2023.11.266

^{*} Corresponding author. Tel.: +39.06.44585144 *E-mail address:* stefano.ricci@uniroma1.it

the economic relevance of such actions and the need to maintain undisturbed the operational performances and the capacity of the system, suggest to use Decision Support Systems (DSS) to identify the priority actions.

In this context, the present work focuses on typical safety critical events (hazards), such as the Signal Passed at Danger (SPAD) and the Failed Braking Application by Driver (FBAD). The Automatic Train Protection (ATP) systems are normally protecting these situations by emergency braking activation, operated by the onboard systems over a certain Minimum Release Speed (MRS) threshold. Therefore, the determination of such speed in the various operational context represents the key design parameter related with the achievable performances in terms of both safety and capacity.

2. State-of-the-art

The several operational conditions potentially affecting the determination of the MRS for the ATP concern the features of both infrastructures (tracks layout, gradients, etc.) and vehicles (mass, braking performances, etc.). Meanwhile, the position of main signals protecting the dangerous points (switches, level crossings, etc.) is emerging as a key design parameter (Evans, 2007) (Independent Transport Safety Regulator, 2011) (Attou, 2019) (EU Agency for Railways, 2020) (Gawlak, 2023) affecting the effectiveness of the automatic protecting actions by ATP systems, which are progressively migrating towards the automation (Flamm, Scheier, 2019). Therefore, the focus of the present research work is on the wide explication of the correlation between braking distance and MRS in the framework of the risk acceptance requirements (Bepperling, Shaha, Geisler, Beck, 2012). The related potential effects on capacity as anticipated in (Bulkova, Gašparík, Masek, Zitricky, 2022) and highlighted in (Ranjbar, Olsson, Sipilä, 2022) are finally schematized in (Wang, Jeiziner, Luan, De Martinis, Corman, 2022).

3. Methodology

The considered hazard is the event that the train runs beyond a signal at danger protecting a safety relevant point, such as a switch or a level crossing, positioned at a Protection Distance (PD) beyond the signal itself, which is the key design parameter for the automatic protection system to implement. As an example, the Italian Infrastructure Manager RFI applies a MRS of 30 km/h in all conditions, with reduction to 10 km/h when the PD is shorter than 150 m.

The developed methodology is willing to determine the required MRS in typical situations depending on the existing PD, as well as the layout features beyond the protection signal, the rolling stock performances and the amount of traffic. It is potentially useful as a DSS in the ATP design phase, both for new and existing lines, in view of the prioritization of ATP improvements.

The methodological steps are the following:

- Calculation of Braking Distances (BD);
- Comparison between BD and PD;
- Quantification of residual risk according to BD-PD difference and the local conditions.

The *BD* calculation is basing on a 3-phases train trip emergency braking model (Fig. 1), including the trains stops starting from various motions conditions:

- Coasting on a descending slope, with braking effort not yet applied (M):
- Ongoing transition to maximum braking effort (R);
- Maximum braking effort applied (C).

Fig. 1. Acceleration, speed and distance in the 3-phases (M-R-C) emergency braking model for train trip

The model includes the setup of a sequence of algorithms, detailed as an example in the scheme represented in Table 1 for the phase M.

The establishment of the reference parameters is the next key step in the analysis. It includes data fixed by Technical Specification for Interoperability (TSI) (European Commission, 2016) further detailed by National and local specifications and additional specific variable parameters, such as:

- Protection factor (k) basing on the required safety level, e.g. linked to Safety Integrity Level (SIL) (EN 50126, 2017);
- Initial reaction time (dead time) depending on mass, length and braking performances of the concerned trains. The following methodological step, largely motivated by the relevant variability of the concerned parameters, is a

Sensibility Analysis (SA) focused on the effects of:

- Train length and braking mass, differentiated for freight and passengers trains;
- Gradient of the line.

I	RFI TC.PATC	ST CM 01 M	11 A							
							PHASE	<u>M</u>		
	CALCULATION OF di						TRAIN STOP II	N PHASE IVI		
		$d_i = K$ $d_i = K$	i ₁ *g*ii _{i2} *g*ii	$> i_1$ $2 < i \le i_1$		CONDITION A:		$\leq T_M$		
	$d_i = K_{i3} * g * i i \le i_2$							L		
		К ₁₁	0,90	<i>i</i> 1	0,000		$S_{WA} = \frac{V_0^2}{V_0}$			
		K _{i2}	1,00	i2	-0,021		$3_{MA} - 2d_i$			
		К із	1,10			V ₀	d i	t _{MA}	5 _{MA}	
		g	i	K _{ix}	d i	(km/h)	(m /s ²)	(s)	(m)	
		(m/s^{2})	(-)	(-)	(m /s ²)	34,00	-0,38	/	1	
		9,81	-0,035	1,10	-0,38					
						CHEC	K OF CONDITIO	<u>NA</u>		
						t _{MA}	T _M	CHECK FEEDBACK		
		CALCUL	ATION OF d _p			(s)	(s)	(YES/NO)		
a	_ h . d		d _	4.1.0		/	3,00	NO		
u_p	$=\kappa * a_r$	r	$u_r = A$	4 * λ + <i>Β</i>						
Α	В	λ	d ,	k	d _p	TRAIN STOP	TRAIN STOP IN FOLLOWING PHASES			
(m /s ²)	(m /s ²)	(-)	(m /s ²)	(-)	(m /s ²)	$V - V dT S - VT d_{iT^2}$				
0,00685	0,094	105,00	0,81	0,90	0,73	$v_1 - v_0 - u_i$	$M_{M} S_{1} = V_{0}$	$\frac{1}{2} \frac{1}{2} \frac{1}$		
						T _M	V 1	\$ 1		
		<u>c</u>	ALCULATION O	F T _R		(s)	(km/h)	(m)		
			tf	Τ _M	T _R	3,00	38,08	28,46		
	$T_{R} = 2($	$(t_f - T_M)$	(s)	(s)	(s)					
			13,50	3,00	21,00	LEGENDA:				
							INPUT DATA			
$t_f = t$	t _{fV} if	TipoFre	no = Viag	giatori						
, t. – M	ΛΔX(†	t) if	TinoFra	no – Mer	ci	FORMULAS				
u _f = 1		(<u>fm</u>) (j	1100110	10 = 1401			REFERENCES			
	TipoFreno:	Viaggiato	ri = 1 Merci =	0						
						GLOBAL FORMULA				
	CALCULATION OF t _{fv} / t _{fm}									
			FD)	(1 ED) ?						
t	$a_{V} = a_{V} +$	$b_{\mu} \frac{L(1-1)}{L(1-1)}$	$\frac{EP}{EP} + c_{u} \left[\frac{L}{E}\right]$	$[1 - EP]^2$						
	,v ~v '	² / 10	0	100	,					
a ,	b _v	c,	L	EP	t _{fv}					
(s)	(s/m)	(s/m²)	(m)	(1/0)	(s)					
3,50	0,00	0,15			3,50					
$t_{fM} = a_M + b_M \frac{L}{100} + c_M \left(\frac{L}{100}\right)$										
	<i>a</i>	b.c.	100	100/	ta					
	(s)	(s/m)	(s/m ²)	(m)	• JWI (s)					
	13 50	0.00	0.04	(11)	13.50					
	13,30	0,00	0,04		10,00					

Table 1. Emergency braking calculations (Phase M)

An example of the values adopted for the SA (Tab. 2) are those consolidated on Italian railway network.

4. Results

Some interesting results of the SA with reference to the Braking Distance calculated for the shortest (50 m) and the longest (1000 m) train and for the minimum (50 m) and maximum (150%) braking mass, with gradient variable between -6% and +6% are in Fig. 2, 3, 4 and 5.

Length of freight trains	Length of passengers trains	Braking mass	Gradient
[m]	[m]	[%]	[‰]
25	70	50	-35
100	100	60	-25
200	150	70	-15
300	200	80	-10
400	250	90	-5
500	300	100	0
600	350	110	5
700	400	120	10
800	500	130	15
900	600	140	25
1 000	660	150	35

Table 2: Set of values of parameters adopted for the Sensitivity Analysis

Fig. 2. Braking Distance for the shortest train (25 m) with gradient variable between -6‰ and +6‰

Fig. 3. Braking Distance for the longest train (1000 m) with gradient variable between -6‰ and +6‰

Fig. 4. Braking Distance for the minimum braking mass (50%) with gradient variable between -6‰ and +6‰

Fig. 5. Braking Distance for the maximum braking mass (150%) with gradient variable between -6‰ and +6‰

5. Conclusions and further research developments

The application of the described methodology confirmed the priority relevance of PD and the residual distance run by the train beyond the protected point, if any. Therefore, the first priority index is the difference between BD and PD, which is able to provide with feedback on:

- Probability to reach the protected point, despite the emergency braking action, which is depending on the intrinsic uncertainty of parameters affecting the calculation of *BD* (friction coefficient, etc.);
- · Potential consequences of the hazard, depending on the residual speed in correspondence of the protected point.

Nevertheless, for a complete risk assessment is still necessary to quantify the probability of an ongoing conflicting movement (Kohls et al., 2010). For this purpose, the model includes a second priority index basing on the daily planned traffic of trains (Φ) in correspondence to the protected point.

Therefore, an effective Global Priority index is:

$$GPI = (BD - PD) * \Phi \tag{1}$$

In this expression the first term (BD - PD) can assume both positive (train running beyond the protected point) and negative (train stopping before the protected point) values. Meanwhile Φ is never negative.

Therefore, the existence of the hazard is for GPI > 0 only. Meanwhile the potential severity of its consequences are increasing with the value of GPI.

The main Italian infrastructure manager (RFI) adopted experimentally this methodology for a prioritization of upgrading actions on the ATP systems in operation on its network. This experimental phase will provide relevant feedback in view of a more extended and systematic implementation.

Despite the extended and ongoing test phase, further developments of it on the application of the methodology are necessary to fine tuning the effects of specific parameters, particularly concerning the variability of trains' braking equipment and the combined effects of multiple protected points located in specific areas, such as big stations.

References

Attou A. (2019). Risk analysis of Signal Passed at Danger SPAD in ETCS Level 2. Signal + Draht (111) 3, 13-22

- Bepperling S.L, Shaha J., Geisler M., Beck R. (2012). Impact assessment of the risk acceptance criteria for technical systems (RAC-TS). Signal + Draht (103) 9, 46-52
- Bulkova Z., Gašparík J., Masek J., Zitricky V. (2022). Analytical Procedures for the Evaluation of Infrastructural Measures for Increasing the Capacity of Railway Lines. Sustainability 2022, 14, 14430 (doi: 10.3390/su142114430)
- EN 50126 (2017). Railway Applications The Specification and Demonstration of Reliability, Availability, Maintainability and Safety (RAMS) -Part 1: Generic RAMS Process
- European Commission (2016). Commission Regulation (EU) 2016/919 on the technical specification for interoperability relating to the 'controlcommand and signalling' subsystems of the rail system in the European Union

European Union Agency for Railways (2020). Report on Railway Safety and Interoperability in the EU. Valenciennes

Evans A. (2007). Rail safety and rail privatization in Britain. Accident Analysis and Prevention 39, 510-523

Flamm L., Scheier B. (2019). An integrated evaluation of train control systems on the path to automated train operations. Signalling + Data communication (111) 6, 33-40

- Gawlak K. (2023). Analysis and assessment of the human factor as a cause of occurrence of selected railway accidents and incidents. Open Engineering 2023; 13: 20220398 (doi: 10.1515/eng-2022-0398)
- Independent Transport Safety Regulator (2011). Managing signals passed at danger. Sydney
- Kohls H.H., Watson R. (2010). SPAD reducing timetable related risk. WIT Transactions on State of the Art in Science and Engineering, 45, 129-136
- Ranjbar V., Olsson N.O.E, Sipilä H. (2022). Impact of signalling system on capacity Comparing legacy ATC, ETCS level 2 and ETCS hybrid level 3 systems. Journal of Rail Transport Planning & Management 23, 100322
- Wang P., Jeiziner A., Luan X., De Martinis V., Corman F. (2022). An Experimental Analysis of Hierarchical Rail Traffic and Train Control in a Stochastic Environment. Journal of Advanced Transportation, 2022, 8674538, 19 (doi: 10.1155/2022/8674538)