
Neural Network Quantization in Federated Learning at the Edge

Nicola Tonellottob, Alberto Gottaa, Franco Maria Nardinia, Daniele Gadlerd, Fabrizio
Silvestric

aISTI-CNR, Pisa, Italy
bUniversity of Pisa, Pisa, Italy

c“Sapienza”, University of Rome
dONE LOGIC GmbH, Frankfurt, Germany

Abstract

The massive amount of data collected in the Internet of Things (IoT) asks for effective,

intelligent analytics. A recent trend supporting the use of Artificial Intelligence (AI)

solutions in IoT domains is to move the computation closer to the data, i.e., from cloud-

based services to edge devices. Federated learning (FL) is the primary approach adopted

in this scenario to train AI-based solutions. In this work, we investigate the introduction

of quantization techniques in FL to improve the efficiency of data exchange between

edge servers and a cloud node. We focus on learning recurrent neural network models

fed by edge data producers using the most widely adopted neural networks for time-

series prediction. Experiments on public datasets show that the proposed quantization

techniques in FL reduces up to 19× the volume of data exchanged between each edge

server and a cloud node, with a minimal impact of around 5% on the test loss of the final

model.

Keywords: Federated Learning, Artificial Neural Networks, Quantization, Internet of

Things

1. Introduction1

Internet of Things (IoT) is a disruptive technology that is pervasively extending the2

concept of data collection to everything around us through IoT devices, thus leading to3

a huge growth of the Internet traffic. Cisco Annual Internet Report forecasts that “the4

Email addresses: nicola.tonellotto@unipi.it (Nicola Tonellotto),
alberto.gotta@isti.cnr.it (Alberto Gotta), francomaria.nardini@isti.cnr.it (Franco Maria
Nardini), daniele.gadler@yahoo.it (Daniele Gadler), fabrizio.silvestri@uniroma1.it (Fabrizio
Silvestri)

Preprint submitted to Elsevier October 27, 2021

share of Machine-To-Machine (M2M) connections will grow from 33 percent in 2018 to 505

percent by 2023. There will be 14.7 billion M2M connections by 2023 ”. The huge amount6

of collected data enables the adoption of Artificial intelligence (AI) analytics currently7

provided by centralized cloud-based services. However, cloud-based solutions may raise8

major concerns among users about the privacy of online services. A recent approach to9

mitigate this issue is to decentralize the computation where data is, i.e., on personal IoT10

devices connected to the Internet. Edge computing [1] extends Cloud computing, accord-11

ing to the above decentralized approach: data processing and storage capabilities are not12

exclusive characteristics of centralized data centers, but an additional layer, called edge,13

is placed in the middle between the Cloud and the IoT devices. This edge layer allows14

for storing data and executing applications on edge servers directly connected with IoT15

devices. Moreover, edge computing allows to preserve the confidentiality of private user16

data, which are outsourced to edge servers for storage and computational processes. A17

privacy perimeter is defined in the edge - hereinafter called privacy domain - wherein ac-18

cess control, authentication, encryption, and secure computation are performed. In this19

scenario, the recent introduction of artificial-intelligence-as-a-service [2] tackles signifi-20

cant innovations across all the industrial sectors in particular in the artificial intelligence21

of things (AIoT) [3, 4], where the data required to train AI solutions are kept local to22

the device without disclosing private or sensitive data.23

In medical, industrial, and social IoT scenarios, AIoT solutions must analyze very24

large and dynamic time-series. Traditional time-series forecasting techniques, such as an25

autoregressive integrated moving average, rely on highly manually-tuned parameters [5]26

and are ill-equipped to learn long-range dependencies [4]. Recurrent Neural Networks27

(RNNs) have been successfully applied to tasks based on time-series data, such as stock28

forecasting, social behavior analysis, and natural language processing (NLP). Federated29

learning (FL) is a leading approach for training RNNs adopted in AIoT solutions [6].30

In FL, the computation involved in the training of an AI solution, e.g., a Neural Net-31

work (NN), is moved closer to where data are produced. FL can naturally apply to the32

IoT-Edge-Cloud scenario. This scenario may require preserving data privacy and data33

ownership. In an FL scenario applied to edge computing: i) every edge server receives a34

partially trained NN model from a cloud node, ii) every edge server performs additional35

2

training on data provided by the respective IoT devices to refine the previous model with-36

out disclosing any private data, iii) after the local training ends, the refined local model37

is sent back to the cloud node, and iv) the cloud node collects all the locally-trained38

models, generates a new global model, and broadcasts the global model back to the edge39

servers for a new round of local training. By doing so, the complex fusion of Machine40

Learning (ML) models on a cloud node is decoupled from the storage of training data on41

edge servers to preserve user data ownership and privacy. Yet, IoT devices are relieved of42

computationally intensive tasks, like AI services, allowing them to either publish data or43

execute a limited number of tasks. Learning state-of-the-art NN models in an FL scenario44

is challenging because of the models’ size that range from hundreds of MBs to several45

GBs [7]. Hence, transferring such models from a cloud node to edge servers and vice-versa46

would lead to prolonged data exchange, high data transfer costs, and energy drain. In47

this work, we investigate the introduction of quantization techniques in the FL scenario48

to improve the efficiency of data exchange between edge servers and a cloud node. We49

focus on learning accurate NN models in an FL scenario with the model training steps50

performed on edge servers and the model aggregation performed on cloud nodes.51

In detail, the novel and unpublished contributions of this article are the following:52

• we propose the application of quantization techniques to the FL scenario by defining53

of the Federated Learning with Quantization (FLQ);54

• we discuss how NN quantization techniques could apply to the FLQ scenario by55

introducing two new FL algorithms, namely FLQ and ∆FLQ.56

• we provide a comprehensive analysis of the performance of our FLQ and ∆FLQ57

algorithms with different quantization techniques in terms of i) the effectiveness of58

the learned NN model and ii) the data reduction attained on the public WikiText-259

text dataset;60

• we further assess the effectiveness and data efficiency performance of our FLQ61

and ∆FLQ algorithms with the best quantization techniques on different public62

datasets and NN models, namely the MNIST image dataset with a Convolutional63

Neural Network (CNN) applied to the task of image classification, and the BAR64

CRAWL sensor dataset with an RNN applied to a regression task;65

3

• we discuss the performance of the proposed ∆FLQ algorithm with up to 10 edge66

servers and evaluate our algorithm’s performance in the presence of faults.67

Our experimental results show that the application of quantization techniques to FL68

allows us to significantly reduce the total data exchanged between each edge server and69

a cloud node (up to 19×) with a minimal impact on the test loss of the final NN model70

(around 5%).71

The remainder of the article is organized as follows. After an overview of the current72

state of the art in Section 2, we outline the NN quantization schemes and the proposed73

FLQ and ∆FLQ algorithms in Section 3. We provide a thorough explanation of the74

experimental evaluation of our approach in Section 4, which includes experiments on75

multiple edge servers (up to 10) and a discussion of the robustness of our best approach76

in the presence of faults. Then, we discuss the comprehensive experimental evaluation of77

the quantization schemes and our FLQ and ∆FLQ algorithms in Section 5. Section 5.478

reports additional results on training networks for different datasets, containing namely79

image and sensor data. Finally, Section 7 draws the main conclusions and discusses future80

work.81

2. Related Work82

AI solutions and, in particular, NNs have been recently investigated in different IoT83

scenarios. Recently, Shanthamallu et al. survey AI methods and their applications to84

the IoT world [3], while Mohammadi et al. describe state-of-the-art methods in AI for85

IoT, big data, and streaming analytics [4]. Li et al. introduce a layered AI approach86

running on edge IoT devices [8], and Tang et al. describe methods to enable AI in IoT87

devices [9]. More recently, Lu et al. propose to apply federated learning in industrial88

IoT [10]. NNs are the current state-of-the-art model for such AIoT scenarios. Deep NNs89

are made up of multiple hidden layers of neurons connected through weighting matrices90

trained to accurately approximate a given objective function. Among them, convolutional91

neural networks (CNNs) are used to process image-based data, while RNNs are used to92

process variable-length sequences. RNNs are suitable for tasks involving time-series and93

time-segmented tasks. The Long-Short-Term-Memory (LSTM) is an RNN with long94

short-term memory blocks that consist of memory cell units. These memory cell units95

4

let the LSTM remember the state values for an arbitrarily long time sequence. LSTM96

networks have been successfully applied to applications with sequential data such as time97

series prediction [11], NLP [12], and social behavior analysis [13].98

Deep NNs are over-parameterized to ease the training process. For example, AlexNet [14]99

has 60M parameters to be learned. NN pruning [15] consists of removing weights in a100

neural network to reduce the storage requirements of the network parameters. NN prun-101

ing is orthogonal to our proposed approach since every edge server can deploy its pruning102

solution. NN quantization is another approach proposed to efficiently train NNs. This ap-103

proach constrains the precision of floating-point 32-bit weights, activation values, and/or104

gradients used in the training procedure to a fixed-point representation, using k < 32105

bits. Note that NN quantization only affects the massive computations performed to cal-106

culate the updates of the matrix weights. In contrast, the matrix weights are maintained107

at full precision during the training procedure. In this line of research, DoReFa-Net108

quantizes the weights of a CNN to 1 bit, activations to 2 bits, and gradients to 6 bits to109

preserve a high model accuracy [16]. Different quantization approaches for CNNs, i.e.,110

one-bit [17] and multi-bit quantization [18] for limited-precision training, have also been111

proposed. State-of-the-art methods for uniform quantization are XNOR-Net [19] and112

binary weight nets [20], which propose a binary quantization mapping weights to −1 and113

+1 and replace operations on the weights with more efficient bit-wise operations. More114

recently, ternary weight nets [21] have also been introduced, allowing weights to be zero.115

Zhou et al. propose incremental NN quantization [22]: this approach iteratively converts116

any pre-trained full-precision CNN into a low-precision version, whose weights are con-117

strained to be either powers of two or zeros. Xu et al. propose to quantize the weights118

of a full precision NN model to binary or ternary weights by leveraging an alternating119

optimization approach applied at training time [23]: the accuracy loss of the resulting120

model followed to be negligible both for binary and ternary quantization. Ardakani et al.121

propose another binary and ternary quantization approach, where weights are sampled122

from a Bernoulli distribution, and the obtained values are regularized [24]. While most123

of the previous techniques applied to CNNs, very few of them applied to RNNs. As far124

as RNN quantization is concerned, the two proposed techniques are alternating multi-bit125

quantization [23] and Bernoulli sampling regularization [24]. NN quantization is orthog-126

5

onal to our proposed solution since every edge server can deploy its quantization locally127

to speed up the local model training. Nevertheless, we will exploit weight quantization128

schemes to reduce the size of the NN (see Section 3).129

FL and the corresponding decentralized training of NNs have been recently proposed130

by McMahan et al. [25]: the main motivating example for FL arises when the training data131

comes from users’ interaction with mobile applications. Konečnỳ et al. [26] propose an132

FL collaborative approach, which enables smartphones to collaboratively learn a shared133

prediction model while keeping all the training data on the device, thus decoupling the134

ability to train an AI model from the need to store the data in the Cloud. The authors135

describe two ways to reduce the uplink communication costs: i) using a smaller number136

of parameters for the model and ii) compressing the parameters by using a combination137

of quantization, random rotations, and sub-sampling before sending the model or the138

model update to the cloud node. Experiments on both CNNs and RNNs show only139

the accuracy of the proposed method, while the reduction in communication overhead is140

only theoretically calculated in two orders of magnitude. More recently, Reisizadeh et al.141

propose a communication-efficient FL method with periodic averaging and quantization142

[27]: local CNN models are updated at each local device and only periodically averaged143

at the cloud node; moreover, only a fraction of devices participate at each round of the144

training; finally, the local devices quantize the parameters of their local models, before145

uploading them to the cloud node.146

Differently from [27], we introduce an intermediate computational layer, represented147

by the edge servers, which performs the quantization of the NN model, which, being148

a computationally intensive task, cannot be deployed on constrained IoT devices. To149

this aim, a publish-subscribe paradigm is applied within each privacy domain to locally150

transfer data from publisher IoT devices to the relative subscribed edge server. Moreover,151

we propose to quantize both the NN model broadcasted by the cloud node and the NN152

models sent by the edge servers to significantly reduce the background traffic related to153

the NN model training.154

6

3. Proposed Framework155

In this section, we present our proposed framework to perform FL of NNs, where: (i)156

data are produced by IoT nodes and collected by the relative edge servers belonging to157

the private domain, and (ii) training is jointly performed both on edge servers and in158

the Cloud. Edge servers perform local training in their isolated privacy domains, while159

the cloud node performs central aggregation of the locally learned models. To reduce160

Edge-Cloud data exchange, we propose a novel FL algorithm with quantization (FLQ),161

aimed at quantizing the NN weights during the FL procedure, i.e., when the NN models162

are transmitted from the edge servers to the cloud node and vice-versa. In Section 3.1163

the communication paradigm underlying the proposed AI/FL algorithm is presented to164

evaluate the amount of data exchanged among nodes within the IoT-Edge-Cloud scenario.165

In Section 3.2, we describe our reference scenario and we outline how FL works in such166

a scenario; in Section 3.3 we describe the quantization approaches for NN that we will167

use to compress the NN models before transmission; finally, in Section 3.4 we describe168

our proposed FLQ and ∆FLQ algorithms. For clarity, Table 1 summarizes all notations169

used herein.170

3.1. Communication Paradigm171

IoT communication paradigms have been widely studied in the literature, and some172

studies have assessed the out-performance of information-centric networking, based on173

the publish/subscribe paradigm, w.r.t. the client/server paradigm [28]. More specifically,174

concerning IP-based data exchange solutions, the two most diffused IoT application proto-175

cols are the Constrained Application Protocol (CoAP) and the Message Queuing Teleme-176

try Transport (MQTT) protocol, the latter being natively publish/subscribe. In MQTT,177

data producers (publishers) and data consumers (subscribers) are decoupled through a178

rendezvous node called broker. Data streams are organized into logical flows called top-179

ics. Each data packet is sent to the broker that maintains the list of active subscriptions180

and topics. Differently, CoAP adheres to the Representational State Transfer (REST)181

architectural style, providing support for resource-constrained environments. Resources182

are encapsulated by CoAP servers (data producers) and addressable by uniform resource183

identifiers. A CoAP client (data consumer) sends its request to retrieve a resource located184

on an IoT CoAP server. However, a publish/subscribe-like paradigm can be implemented185

7

Table 1: Table of symbols

Symbol Definition

n Number of edge servers

C1, . . . Cn Edge servers

S Cloud node

A Generic dataset

D,Di A dataset

M,Mi A NN model

W,Wi,W
′
i ,∆W Weights matrices in Rn×m

Ŵ , Ŵi, ∆̂W Quantized matrices in Rn×m

τ Number of local learning epochs

T Number of federated learning

rounds

k number of quantization bits

wmin, wmax Minimum and maximum values

in W

A(i) A matrix in Rn×m

B(i) A matrix in {−1,+1}n×m

1n×m Element-wise product identity

in Rn×m

εk k-bit quantization error

α, αi, α
∗, α∗i Real values

Ŵ (i) Residual matrix

also in CoAP, by exploiting the observer pattern in RFC 7641 and the proxy functionality186

in IETF RFC 7252. Therefore, both MQTT and CoAP can be deployed in the proposed187

framework to implement such a communication paradigm. In [29], the authors showed188

how, by implementing the publish/subscribe-like exchange advantage, CoAP can outper-189

form MQTT in terms of throughput, efficiency, and error resiliency. At present, however,190

MQTT is slightly more supported by a larger set of IoT embedded operating systems191

and micro-controllers, like Arduino, ESP6682, etc., and lightweight implementations of192

8

the MQTT broker are available for both constrained and unconstrained platforms [28].193

In our reference scenario, illustrated in Figure 1, a set {C1, . . . , Cn} of edge servers are194

connected to a central cloud node S. Every edge server is connected to a certain number195

of IoT devices and defines a privacy domain, i.e., a domain wherein data generated by the196

relative devices can move without privacy and/or security threats. Data contained in a197

privacy domain cannot move outside of that. Within a privacy domain, an MQTT broker198

is responsible to dispatch data between producers, i.e. the IoT nodes, and consumers.199

The MQTT broker service is naturally located on the edge server. Thus, an MQTT topic200

is applied to messages to identify the data flows from producers to consumers. Yet, a201

database service is deployed within the security domain and subscribes to the relative202

MQTT topic. Therefore, each edge server Ci manages, privately, a local dataset Di, fed203

by the devices publishing on the relative ith topic. For example, a local dataset can be204

composed of video and/or audio samples collected at home. Finally, the parameters of a205

NN are stored on each edge server, which can access the dataset Di: the training mecha-206

nism derives a model Mi from the Di dataset, which is, then, delivered to the Cloud for207

the FL task.208

3.2. Federated Learning Scheme209

During FL, the cloud node S aims at training a NN model encoded as a set of param-210

eters W . The number of parameters depends on the structure of the NN being trained.211

Algorithm 1 and Figure 2 illustrate the FL algorithm. The procedure Train(W,D)212

performs the training of the NN model with parameters W exploiting a generic dataset213

D over a single training epoch, and returns the trained model. Namely, this procedure214

computes, in each training round, the loss function produced by the NN model with cur-215

rent parameters W when fed with the training data D. Then, the loss is back-propagated216

through the network, and the updated network parameters W are returned [30]. After217

the random initialization of the model W on the cloud node S (line 1 in Algorithm 1,218

Init box in Figure 2), the federated learning procedure advances in (federated learning)219

rounds (line 2 in Algorithm 1). At the beginning of a round, the cloud node S distributes220

the current global model W to all the edge servers C1, . . . , Cn in a multicast manner221

(line 4 in Algorithm 1, double-lined arrows in Figure 2). Then, each edge server Ci per-222

forms an independent training of the global model W using its own local dataset Di over223

9

Internet

digital assistants

privacy domain

edge server Ci

dataset Di

mobile devices

cloud node S

Figure 1: Federated learning reference scenario.

τ (local learning) epochs, generating a locally trained model Wi (lines 5-6 in Algorithm 1,224

Train box in Figure 2). The edge servers send back their locally trained models to the225

cloud node (line 7 in Algorithm 1, double-lined arrows in Figure 2) and, finally, the cloud226

node merges the n locally trained models into a new global model (FedAvg box in Fig-227

ure 2), to be distributed again during the next round. The merging of the local models228

is an element-wise weighted average of the matrices W1, . . . ,Wn (line 8 in Algorithm 1).229

This procedure is repeated until a maximum number T of rounds is reached, and the final230

global model W is returned.231

The FL algorithm just described allows each edge server to keep its training data,232

collected through the respective server nodes, in its local privacy domain. In doing so,233

FL aims at producing a final NN model whose accuracy is as much as possible close to234

the accuracy of a NN model generated by a global training procedure performed on the235

aggregated dataset D1 ∪ . . . ∪Dn.236

10

Algorithm 1: The FL algorithm.

Input : n local datasets D1, . . . , Dn at edge servers C1, . . . , Cn

a number of rounds T

a number of epochs τ

Output: A matrix W of NN weights

FL(D,D1, . . . , Dn, T, τ):

1 Matrix W is randomly initialized

2 for T rounds do

3 for i← 1 to n do

4 S sends W to Ci as Wi

5 for τ epochs do

6 Wi ← Train(Wi, Di)

7 Ci sends Wi to S

8 W ←
∑N

i=1
|Di|
|D|Wi

9 return W

3.3. Model Quantization Schemes237

Model quantization aims at computing a representation Ŵ of the NN weights W with238

a smaller memory footprint. In particular, k-bit binary quantization maps the weights of239

a NN model to {−1,+1}k.240

For example, the binary quantization (BinQ), introduced in [31], assumes k = 1, and241

every weight is trivially quantized according to its sign. This quantization can be easily242

extended to k bits as shown in [32].243

Besides this simple quantization heuristic, the NN quantization schemes can be grouped244

into random and error minimization quantizations.245

Random quantization. Random quantization schemes select the bits representing246

every weight according to some probability. These approaches give theoretical guarantees247

on the expected value of the error introduced by the quantization scheme utilized.248

The probabilistic quantizer (ProbQ) is a 1-bit random quantization scheme [33].249

Let wmax and wmin be the maximum and minimum values among the elements of W ,250

11

W
<latexit sha1_base64="uTQ22gcAmpi1mKbus+H+QEIUXl8=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJAkV2QIIyEg1lIpGHlFjR+bIJp5zP1t0eUmTlC2ihokO0fBAF/4JtXEDCVKOZXe3sBLEUBl330ymtrW9sbpW3Kzu7e/sH1cOjroms5tDhkYx0P2AGpFDQQYES+rEGFgYSesHsNvN7j6CNiNQ9zmPwQzZVYiI4w1Rq90bVmlt3c9BV4hWkRgq0RtWv4TjiNgSFXDJjBp4bo58wjYJLWFSG1kDM+IxNYZBSxUIwfpIHXdAzaxhGNAZNhaS5CL83EhYaMw+DdDJk+GCWvUz8zxtYnNz4iVCxRVA8O4RCQn7IcC3SBoCOhQZEliUHKhTlTDNE0IIyzlPRppVU0j685e9XSbdR9y7rjfZVrXlRNFMmJ+SUnBOPXJMmuSMt0iGcAHkiz+TFsc6r8+a8/4yWnGLnmPyB8/ENTcqRTg==</latexit>

W2
<latexit sha1_base64="SQCZU2oaSBW7QZ7QV9PC5rOHRUc=">AAAB9XicbVC7TsNAEFyHVwivACXNiQiJAkV2QIIyEg1lEOQhJVZ0vmzCKeeH7tYgZOUTaKGiQ7R8DwX/gm1cQMJUo5ld7ex4kZKGbPvTKi0tr6yuldcrG5tb2zvV3b2OCWMtsC1CFeqexw0qGWCbJCnsRRq57ynsetPLzO/eozYyDG7pMULX55NAjqXglEo33WFjWK3ZdTsHWyROQWpQoDWsfg1GoYh9DEgobkzfsSNyE65JCoWzyiA2GHEx5RPspzTgPho3yaPO2FFsOIUsQs2kYrmIvzcS7hvz6HvppM/pzsx7mfif149pfOEmMohiwkBkh0gqzA8ZoWXaAbKR1EjEs+TIZMAE15wItWRciFSM01IqaR/O/PeLpNOoO6f1xvVZrXlSNFOGAziEY3DgHJpwBS1og4AJPMEzvFgP1qv1Zr3/jJasYmcf/sD6+AZ6xZHz</latexit>

W1
<latexit sha1_base64="3jjl5czM3oeEPE7oo1aHxW2MkAY=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJAkV2QIIyEg1lEOQhJVa0vmzCKeeH7tYgZOUTaKGiQ7R8DwX/gm1cQMJUo5ld7ex4kZKGbPvTKi0tr6yuldcrG5tb2zvV3b2OCWMtsC1CFeqeBwaVDLBNkhT2Io3gewq73vQy87v3qI0Mg1t6jND1YRLIsRRAqXTTHTrDas2u2zn4InEKUmMFWsPq12AUitjHgIQCY/qOHZGbgCYpFM4qg9hgBGIKE+ynNAAfjZvkUWf8KDZAIY9Qc6l4LuLvjQR8Yx59L530ge7MvJeJ/3n9mMYXbiKDKCYMRHaIpML8kBFaph0gH0mNRJAlRy4DLkADEWrJQYhUjNNSKmkfzvz3i6TTqDun9cb1Wa15UjRTZgfskB0zh52zJrtiLdZmgk3YE3tmL9aD9Wq9We8/oyWr2Nlnf2B9fAN5NpHy</latexit>

W
<latexit sha1_base64="uTQ22gcAmpi1mKbus+H+QEIUXl8=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJAkV2QIIyEg1lIpGHlFjR+bIJp5zP1t0eUmTlC2ihokO0fBAF/4JtXEDCVKOZXe3sBLEUBl330ymtrW9sbpW3Kzu7e/sH1cOjroms5tDhkYx0P2AGpFDQQYES+rEGFgYSesHsNvN7j6CNiNQ9zmPwQzZVYiI4w1Rq90bVmlt3c9BV4hWkRgq0RtWv4TjiNgSFXDJjBp4bo58wjYJLWFSG1kDM+IxNYZBSxUIwfpIHXdAzaxhGNAZNhaS5CL83EhYaMw+DdDJk+GCWvUz8zxtYnNz4iVCxRVA8O4RCQn7IcC3SBoCOhQZEliUHKhTlTDNE0IIyzlPRppVU0j685e9XSbdR9y7rjfZVrXlRNFMmJ+SUnBOPXJMmuSMt0iGcAHkiz+TFsc6r8+a8/4yWnGLnmPyB8/ENTcqRTg==</latexit>

W1
<latexit sha1_base64="3jjl5czM3oeEPE7oo1aHxW2MkAY=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJAkV2QIIyEg1lEOQhJVa0vmzCKeeH7tYgZOUTaKGiQ7R8DwX/gm1cQMJUo5ld7ex4kZKGbPvTKi0tr6yuldcrG5tb2zvV3b2OCWMtsC1CFeqeBwaVDLBNkhT2Io3gewq73vQy87v3qI0Mg1t6jND1YRLIsRRAqXTTHTrDas2u2zn4InEKUmMFWsPq12AUitjHgIQCY/qOHZGbgCYpFM4qg9hgBGIKE+ynNAAfjZvkUWf8KDZAIY9Qc6l4LuLvjQR8Yx59L530ge7MvJeJ/3n9mMYXbiKDKCYMRHaIpML8kBFaph0gH0mNRJAlRy4DLkADEWrJQYhUjNNSKmkfzvz3i6TTqDun9cb1Wa15UjRTZgfskB0zh52zJrtiLdZmgk3YE3tmL9aD9Wq9We8/oyWr2Nlnf2B9fAN5NpHy</latexit>

W2
<latexit sha1_base64="SQCZU2oaSBW7QZ7QV9PC5rOHRUc=">AAAB9XicbVC7TsNAEFyHVwivACXNiQiJAkV2QIIyEg1lEOQhJVZ0vmzCKeeH7tYgZOUTaKGiQ7R8DwX/gm1cQMJUo5ld7ex4kZKGbPvTKi0tr6yuldcrG5tb2zvV3b2OCWMtsC1CFeqexw0qGWCbJCnsRRq57ynsetPLzO/eozYyDG7pMULX55NAjqXglEo33WFjWK3ZdTsHWyROQWpQoDWsfg1GoYh9DEgobkzfsSNyE65JCoWzyiA2GHEx5RPspzTgPho3yaPO2FFsOIUsQs2kYrmIvzcS7hvz6HvppM/pzsx7mfif149pfOEmMohiwkBkh0gqzA8ZoWXaAbKR1EjEs+TIZMAE15wItWRciFSM01IqaR/O/PeLpNOoO6f1xvVZrXlSNFOGAziEY3DgHJpwBS1og4AJPMEzvFgP1qv1Zr3/jJasYmcf/sD6+AZ6xZHz</latexit>

⌧ epochs
<latexit sha1_base64="tg9F4Ht+rXUOyQ9sCGdoadJ52W4=">AAAB/3icbVC7TsNAEDyHVwivACXNiQSJKrJDAWUkGsogkYeUWNH6sklOOT+4WyNFUQq+ghYqOkTLp1DwL9jGBSRMNZrZ1c6OFylpyLY/rcLa+sbmVnG7tLO7t39QPjxqmzDWAlsiVKHuemBQyQBbJElhN9IIvqew402vU7/zgNrIMLijWYSuD+NAjqQASiS32ieIqxyjUEzMoFyxa3YGvkqcnFRYjuag/NUfhiL2MSChwJieY0fkzkGTFAoXpX5sMAIxhTH2EhqAj8adZ6EX/Cw2QCGPUHOpeCbi7405+MbMfC+Z9IEmZtlLxf+8XkyjK3cugygmDER6iKTC7JARWiZtIB9KjUSQJkcuAy5AAxFqyUGIRIyTekpJH87y96ukXa85F7X6bb3SqObNFNkJO2XnzGGXrMFuWJO1mGD37Ik9sxfr0Xq13qz3n9GCle8csz+wPr4BtPaV9Q==</latexit>

T rounds
<latexit sha1_base64="Hqvh1H0ekGEW/d0Yss0sBUjR2mc=">AAAB/HicbVC7TsNAEDyHVwivACXNiQSJKrJDAWUkGsog5SUSKzpfNuGU89m620OKovAVtFDRIVr+hYJ/wTYuIGGq0cyudnaCWAqDrvvpFNbWNza3itulnd29/YPy4VHHRFZzaPNIRroXMANSKGijQAm9WAMLAwndYHqd+t0H0EZEqoWzGPyQTZQYC84wke6qrSrVkVUjMyxX3Jqbga4SLycVkqM5LH8NRhG3ISjkkhnT99wY/TnTKLiERWlgDcSMT9kE+glVLATjz7PEC3pmDcOIxqCpkDQT4ffGnIXGzMIgmQwZ3ptlLxX/8/oWx1f+XKjYIiieHkIhITtkuBZJFUBHQgMiS5MDFYpyphkiaEEZ54lok25KSR/e8verpFOveRe1+m290qjmzRTJCTkl58Qjl6RBbkiTtAknijyRZ/LiPDqvzpvz/jNacPKdY/IHzsc3UQCUng==</latexit>

⌧ epochs
<latexit sha1_base64="tg9F4Ht+rXUOyQ9sCGdoadJ52W4=">AAAB/3icbVC7TsNAEDyHVwivACXNiQSJKrJDAWUkGsogkYeUWNH6sklOOT+4WyNFUQq+ghYqOkTLp1DwL9jGBSRMNZrZ1c6OFylpyLY/rcLa+sbmVnG7tLO7t39QPjxqmzDWAlsiVKHuemBQyQBbJElhN9IIvqew402vU7/zgNrIMLijWYSuD+NAjqQASiS32ieIqxyjUEzMoFyxa3YGvkqcnFRYjuag/NUfhiL2MSChwJieY0fkzkGTFAoXpX5sMAIxhTH2EhqAj8adZ6EX/Cw2QCGPUHOpeCbi7405+MbMfC+Z9IEmZtlLxf+8XkyjK3cugygmDER6iKTC7JARWiZtIB9KjUSQJkcuAy5AAxFqyUGIRIyTekpJH87y96ukXa85F7X6bb3SqObNFNkJO2XnzGGXrMFuWJO1mGD37Ik9sxfr0Xq13qz3n9GCle8csz+wPr4BtPaV9Q==</latexit>

Init

<latexit sha1_base64="OCTuwPPkTkDfFKbcy+BjdN2Oo0U=">AAAB/HicbVA9TwJBEJ3DL8Qv1NJmIzGhInfEBEsSG+0wkY8IhOwtA27Y27vszpmQC/4KW63sjK3/xcL/4h1SKPiql/dmMm+eHylpyXU/ndza+sbmVn67sLO7t39QPDxq2TA2ApsiVKHp+NyikhqbJElhJzLIA19h259cZn77AY2Vob6laYT9gI+1HEnBKZXukp4V7FpLmg2KJbfizsFWibcgJVigMSh+9YahiAPUJBS3tuu5EfUTbkgKhbNCL7YYcTHhY+ymVPMAbT+ZJ56xs9hyClmEhknF5iL+3kh4YO008NPJgNO9XfYy8T+vG9Poop9IHcWEWmSHSCqcH7LCyLQKZENpkIhnyZFJzQQ3nAiNZFyIVIzTbgppH97y96ukVa1455XaTbVULy+aycMJnEIZPKhBHa6gAU0QoOEJnuHFeXRenTfn/Wc05yx2juEPnI9vK2OVLw==</latexit>

FedAvg

<latexit sha1_base64="ms9SvhWoCyk8VY4zf5raU9YWtkw=">AAAB/nicbVDLSsNAFJ34rPVVdelmsAgupCRFqMuKIC4r2Ac0oUymt3XoJBlmbgolFPwKt7pyJ279FRf+i0nMQlvP6nDOvdxzj6+kMGjbn9bK6tr6xmZpq7y9s7u3Xzk47Jgo1hzaPJKR7vnMgBQhtFGghJ7SwAJfQtefXGd+dwraiCi8x5kCL2DjUIwEZ5hKbuIaTm9geDUdzweVql2zc9Bl4hSkSgq0BpUvdxjxOIAQuWTG9B1boZcwjYJLmJfd2IBifMLG0E9pyAIwXpJnntPT2DCMqAJNhaS5CL83EhYYMwv8dDJg+GAWvUz8z+vHOLr0EhGqGCHk2SEUEvJDhmuRlgF0KDQgsiw5UBFSzjRDBC0o4zwV47SdctqHs/j9MunUa85FrXFXrzbPi2ZK5JickDPikAZpklvSIm3CiSJP5Jm8WI/Wq/Vmvf+MrljFzhH5A+vjG2xKleA=</latexit>

Train

<latexit sha1_base64="mzwUjrQ4kwZNLQt55MkVoKg++9k=">AAAB/XicbVA9SwNBEN3zM8avqKXNYhAsJNwFIZYBG8sI+YLkCHObSVyyt3fszgnhCP4KW63sxNbfYuF/8RKv0MRXPd6bYd68IFbSkut+OmvrG5tb24Wd4u7e/sFh6ei4baPECGyJSEWmG4BFJTW2SJLCbmwQwkBhJ5jczP3OAxorI92kaYx+CGMtR1IAZVIv7VvBmwakng1KZbfiLsBXiZeTMsvRGJS++sNIJCFqEgqs7XluTH4KhqRQOCv2E4sxiAmMsZdRDSFaP11EnvHzxAJFPEbDpeILEX9vpBBaOw2DbDIEurfL3lz8z+slNLr2U6njhFCL+SGSCheHrDAy6wL5UBokgnly5FJzAQaI0EgOQmRikpVTzPrwlr9fJe1qxbuq1O6q5fpl3kyBnbIzdsE8VmN1dssarMUEi9gTe2YvzqPz6rw57z+ja06+c8L+wPn4Bvq2lac=</latexit>

Train

<latexit sha1_base64="mzwUjrQ4kwZNLQt55MkVoKg++9k=">AAAB/XicbVA9SwNBEN3zM8avqKXNYhAsJNwFIZYBG8sI+YLkCHObSVyyt3fszgnhCP4KW63sxNbfYuF/8RKv0MRXPd6bYd68IFbSkut+OmvrG5tb24Wd4u7e/sFh6ei4baPECGyJSEWmG4BFJTW2SJLCbmwQwkBhJ5jczP3OAxorI92kaYx+CGMtR1IAZVIv7VvBmwakng1KZbfiLsBXiZeTMsvRGJS++sNIJCFqEgqs7XluTH4KhqRQOCv2E4sxiAmMsZdRDSFaP11EnvHzxAJFPEbDpeILEX9vpBBaOw2DbDIEurfL3lz8z+slNLr2U6njhFCL+SGSCheHrDAy6wL5UBokgnly5FJzAQaI0EgOQmRikpVTzPrwlr9fJe1qxbuq1O6q5fpl3kyBnbIzdsE8VmN1dssarMUEi9gTe2YvzqPz6rw57z+ja06+c8L+wPn4Bvq2lac=</latexit>

Figure 2: Main phases of the FL algorithm.

respectively. The elements ŵij of the quantized matrix Ŵ are quantized as follows:251

ŵij =

+wmax with probability p(wij),

−wmin otherwise.

(1)

where p(x) is the function:252

p(x) =
x− wmin

wmax − wmin

. (2)

The low-precision quantizer (LowQ) is a multi-level random quantization scheme [34].253

Let s denote the number of quantization levels, i.e., k = dlog2(s)e, and let ωij = s
wij

‖W‖F
,254

where ‖ · ‖F is the Frobenius norm. The elements ŵij of the quantized matrix Ŵ are255

ŵij = sgn(wij)(bωijc+ δij)‖W‖F , (3)

where the random variable δij has the following distribution:256

δij =

1 with probability ωij − bωijc,

0 otherwise.

(4)

The sgn(x) function is the most suited function to quantize positive and negative values257

to a single bit.258

Error minimization quantization. Random quantization schemes do not make any259

assumption on the actual magnitude of the error introduced by the quantization schemes.260

Now, given a weight matrix W ∈ Rn×m, we look for an approximation matrix Ŵ ∈ Rn×m
261

such that:262

W ' Ŵ =
k∑
i=1

A(i) �B(i), (5)

12

where A(i) ∈ Rn×m is a matrix with some special structure, B(i) ∈ {−1,+1}n×m is263

a binary matrix, k is the number of bits used to represent every entry of the original264

matrix W , and � is the element-wise multiplication1 (Hadamard product). We denote265

the element-wise product identity as 1n×m.266

To investigate the optimality of the approximation matrix Ŵ , let’s define the k-bit267

quantization error εk between the matrix W and its quantized version Ŵ as:268

εk(W , Ŵ) = ‖W − Ŵ ‖F =

∥∥∥∥W −
k∑
i=1

A(i) �B(i)

∥∥∥∥
F

. (6)

The optimal 1-bit quantization is defined as the solution A∗, B∗ of the following269

optimization problem:270

J(A,B) = ε1(W , Ŵ) = ‖W −A�B‖F ,

A∗,B∗ = arg min
A,B

J(A,B).
(7)

As reported in [32], the optimal solution to problem (7) for A = α1n×m, where α ∈ R,271

is272

α∗ =
1

nm

n∑
i=1

m∑
j=1

|wij| B∗ = sgn(W). (8)

In general, directly minimizing the k-bit quantization error described in problem (6)273

with k > 1 is NP-hard [35]. All the proposed schemes minimizing the quantization error274

address such a problem with algorithms based on some kind of heuristics. All these275

schemes assume A(i) = αi1n×m, where αi ∈ R.276

The residual quantization (ResQ) [36] is a k-bit error minimization quantization277

leveraging the residual matrices Ŵ (i), defined as278

Ŵ (i) = W −
i∑

j=1

A(j) �B(j) for i = 1, . . . , k, (9)

with Ŵ (0) = W .279

Sequentially, for each i = 1, . . . , k, ResQ minimizes the residual errors ‖Ŵ (i)−W ‖F280

one at a time. The optimal solutions to these k minimization problems are similar to the281

1It produces a matrix with the same dimensions as the operands, where each output element i, j is

the product of corresponding elements i, j of the two input matrices.

13

optimal solution of the 1-bit quantization scheme, i.e.:282

α∗i =
1

nm

n∑
j=1

m∑
k=1

|ŵ(i−1)
jk |,

B(i)∗ = sgn(Ŵ (i−1)).

(10)

In most cases, solutions to these k minimization problems will not be optimal for the283

original minimization problem in (6). Hence, the αi values can be recomputed at every284

step, once the first j optimal B(i)∗ matrices have been computed. This is carried out by285

solving the following minimization problem:286

J(α1, . . . , αj) =

∥∥∥∥W −
j∑
i=1

αiB
(i)∗
∥∥∥∥
F

,

α∗1, . . . , α
∗
j = arg min

α1,...,αj

J(α1, . . . , αj).

(11)

Let us define the vectorization operator vec(X), which returns a column vector, whose287

elements are the stacking of the columns of the matrix X on top of one another, and288

let Bj be the matrix, whose columns are vec(B(1)∗), . . . , vec(B(j)∗). The least squares289

solution of problem (11) at step j is given by:290

[α1, . . . , αj]
> = (B>j Bj)

−1B>j vec(W). (12)

During the re-computation of the αj values in Eq. (12), the computed B(i)∗ matrices291

are no longer optimal for problem (7). Starting with the solution given by Eq. (10), the292

iterative quantization (IterQ) [23] iteratively re-computes these matrixes as follows:293

1. compute the α1, . . . , αk values with Eq. 12 with all B(1)∗, . . . ,B(k)∗ matrices294

known;295

2. build all possible 2k combinations of the α1, . . . , αk values with −1,+1 and store296

them in a binary search tree data structure2;297

3. for each element of W , select the closest combination and assign the corresponding298

values to the B(1)∗, . . . ,B(k)∗ matrices accordingly.299

3.4. Federated Learning with Quantization300

We propose to improve the efficiency of FL by reducing the amount of data being301

transferred from the edge servers to the cloud node. To do so, we propose to apply302

2For k = 2, assuming α1 > α2 > 0, the combinations are −α1 − α2, −α1 + α2, α1 − α2 and α1 + α2.

14

Algorithm 2: The proposed FLQ algorithm.

Input : n local datasets D1, . . . , Dn at edge servers C1, . . . , Cn

a number of rounds T

a number of epochs τ

Output: A matrix W of NN weights

FLQ(D,D1, . . . , Dn, T, τ):

1 Matrix W is randomly initialized

2 for T rounds do

3 W ← Quantize(W)

4 for i← 1 to n do

5 S sends W to Ci as Wi

6 for τ epochs do

7 Wi ← Train(Wi, Di)

8 Wi ← Quantize(Wi)

9 Ci sends Wi to S

10 W ←
∑n

i=1
|Di|
|D|Wi

11 return W

quantization schemes to the models being transferred during the execution of Algorithm 1.303

In particular, we propose to perform a first quantization after the model is updated by304

the edge servers, and a second quantization, before the global model is transferred from305

the cloud node to the edge servers.306

Algorithm 2 and Figure 3 illustrate our proposed federated learning with quantization307

(FLQ) algorithm. FLQ aims at obtaining a NN model W while i) reducing the volume of308

data (in bytes) transferred among the cloud node and the edge servers while exchanging309

the model updates, and ii) preserving the privacy of the data stored on the edge servers.310

In the FLQ algorithm, an FL round is now made up of 6 steps: (1) the cloud node311

applies quantization to its global model (line 3 in Algorithm 2, Q box on the left in312

Figure 3), (2) the cloud node sends its quantized global model (the red W on the left in313

Figure 3) to every edge server (line 5 in Algorithm 2, double-lined arrows in Figure 3),314

(3) each edge server trains its own local model, starting from the received quantized315

15

W
<latexit sha1_base64="uTQ22gcAmpi1mKbus+H+QEIUXl8=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJAkV2QIIyEg1lIpGHlFjR+bIJp5zP1t0eUmTlC2ihokO0fBAF/4JtXEDCVKOZXe3sBLEUBl330ymtrW9sbpW3Kzu7e/sH1cOjroms5tDhkYx0P2AGpFDQQYES+rEGFgYSesHsNvN7j6CNiNQ9zmPwQzZVYiI4w1Rq90bVmlt3c9BV4hWkRgq0RtWv4TjiNgSFXDJjBp4bo58wjYJLWFSG1kDM+IxNYZBSxUIwfpIHXdAzaxhGNAZNhaS5CL83EhYaMw+DdDJk+GCWvUz8zxtYnNz4iVCxRVA8O4RCQn7IcC3SBoCOhQZEliUHKhTlTDNE0IIyzlPRppVU0j685e9XSbdR9y7rjfZVrXlRNFMmJ+SUnBOPXJMmuSMt0iGcAHkiz+TFsc6r8+a8/4yWnGLnmPyB8/ENTcqRTg==</latexit>

W
<latexit sha1_base64="uTQ22gcAmpi1mKbus+H+QEIUXl8=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJAkV2QIIyEg1lIpGHlFjR+bIJp5zP1t0eUmTlC2ihokO0fBAF/4JtXEDCVKOZXe3sBLEUBl330ymtrW9sbpW3Kzu7e/sH1cOjroms5tDhkYx0P2AGpFDQQYES+rEGFgYSesHsNvN7j6CNiNQ9zmPwQzZVYiI4w1Rq90bVmlt3c9BV4hWkRgq0RtWv4TjiNgSFXDJjBp4bo58wjYJLWFSG1kDM+IxNYZBSxUIwfpIHXdAzaxhGNAZNhaS5CL83EhYaMw+DdDJk+GCWvUz8zxtYnNz4iVCxRVA8O4RCQn7IcC3SBoCOhQZEliUHKhTlTDNE0IIyzlPRppVU0j685e9XSbdR9y7rjfZVrXlRNFMmJ+SUnBOPXJMmuSMt0iGcAHkiz+TFsc6r8+a8/4yWnGLnmPyB8/ENTcqRTg==</latexit>

W1
<latexit sha1_base64="3jjl5czM3oeEPE7oo1aHxW2MkAY=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJAkV2QIIyEg1lEOQhJVa0vmzCKeeH7tYgZOUTaKGiQ7R8DwX/gm1cQMJUo5ld7ex4kZKGbPvTKi0tr6yuldcrG5tb2zvV3b2OCWMtsC1CFeqeBwaVDLBNkhT2Io3gewq73vQy87v3qI0Mg1t6jND1YRLIsRRAqXTTHTrDas2u2zn4InEKUmMFWsPq12AUitjHgIQCY/qOHZGbgCYpFM4qg9hgBGIKE+ynNAAfjZvkUWf8KDZAIY9Qc6l4LuLvjQR8Yx59L530ge7MvJeJ/3n9mMYXbiKDKCYMRHaIpML8kBFaph0gH0mNRJAlRy4DLkADEWrJQYhUjNNSKmkfzvz3i6TTqDun9cb1Wa15UjRTZgfskB0zh52zJrtiLdZmgk3YE3tmL9aD9Wq9We8/oyWr2Nlnf2B9fAN5NpHy</latexit>

W1
<latexit sha1_base64="3jjl5czM3oeEPE7oo1aHxW2MkAY=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJAkV2QIIyEg1lEOQhJVa0vmzCKeeH7tYgZOUTaKGiQ7R8DwX/gm1cQMJUo5ld7ex4kZKGbPvTKi0tr6yuldcrG5tb2zvV3b2OCWMtsC1CFeqeBwaVDLBNkhT2Io3gewq73vQy87v3qI0Mg1t6jND1YRLIsRRAqXTTHTrDas2u2zn4InEKUmMFWsPq12AUitjHgIQCY/qOHZGbgCYpFM4qg9hgBGIKE+ynNAAfjZvkUWf8KDZAIY9Qc6l4LuLvjQR8Yx59L530ge7MvJeJ/3n9mMYXbiKDKCYMRHaIpML8kBFaph0gH0mNRJAlRy4DLkADEWrJQYhUjNNSKmkfzvz3i6TTqDun9cb1Wa15UjRTZgfskB0zh52zJrtiLdZmgk3YE3tmL9aD9Wq9We8/oyWr2Nlnf2B9fAN5NpHy</latexit>

W2
<latexit sha1_base64="SQCZU2oaSBW7QZ7QV9PC5rOHRUc=">AAAB9XicbVC7TsNAEFyHVwivACXNiQiJAkV2QIIyEg1lEOQhJVZ0vmzCKeeH7tYgZOUTaKGiQ7R8DwX/gm1cQMJUo5ld7ex4kZKGbPvTKi0tr6yuldcrG5tb2zvV3b2OCWMtsC1CFeqexw0qGWCbJCnsRRq57ynsetPLzO/eozYyDG7pMULX55NAjqXglEo33WFjWK3ZdTsHWyROQWpQoDWsfg1GoYh9DEgobkzfsSNyE65JCoWzyiA2GHEx5RPspzTgPho3yaPO2FFsOIUsQs2kYrmIvzcS7hvz6HvppM/pzsx7mfif149pfOEmMohiwkBkh0gqzA8ZoWXaAbKR1EjEs+TIZMAE15wItWRciFSM01IqaR/O/PeLpNOoO6f1xvVZrXlSNFOGAziEY3DgHJpwBS1og4AJPMEzvFgP1qv1Zr3/jJasYmcf/sD6+AZ6xZHz</latexit>

W2
<latexit sha1_base64="SQCZU2oaSBW7QZ7QV9PC5rOHRUc=">AAAB9XicbVC7TsNAEFyHVwivACXNiQiJAkV2QIIyEg1lEOQhJVZ0vmzCKeeH7tYgZOUTaKGiQ7R8DwX/gm1cQMJUo5ld7ex4kZKGbPvTKi0tr6yuldcrG5tb2zvV3b2OCWMtsC1CFeqexw0qGWCbJCnsRRq57ynsetPLzO/eozYyDG7pMULX55NAjqXglEo33WFjWK3ZdTsHWyROQWpQoDWsfg1GoYh9DEgobkzfsSNyE65JCoWzyiA2GHEx5RPspzTgPho3yaPO2FFsOIUsQs2kYrmIvzcS7hvz6HvppM/pzsx7mfif149pfOEmMohiwkBkh0gqzA8ZoWXaAbKR1EjEs+TIZMAE15wItWRciFSM01IqaR/O/PeLpNOoO6f1xvVZrXlSNFOGAziEY3DgHJpwBS1og4AJPMEzvFgP1qv1Zr3/jJasYmcf/sD6+AZ6xZHz</latexit>

Ŵ2

<latexit sha1_base64="tXVv0nwAnbzDYrCgcS4jk4a8Ojs=">AAACC3icbVC7SgNBFJ31GeMramFhMxgECwm7IaB2ARvLCOYBSQh3JzfJkNkHM3eFsOwn+BW2WtmJrR9h4b+4u6bQxFMdzrl3zp3jhkoasu1Pa2V1bX1js7BV3N7Z3dsvHRy2TBBpgU0RqEB3XDCopI9NkqSwE2oEz1XYdqc3md9+QG1k4N/TLMS+B2NfjqQASqVB6biXvxG7CsQ04b0JUNxOBtVBqWxX7Bx8mThzUmZzNAalr94wEJGHPgkFxnQdO6R+DJqkUJgUe5HBMM2AMXZT6oOHph/n4Qk/iwxQwEPUXCqei/h7IwbPmJnnppMe0MQsepn4n9eNaHTVj6UfRoS+yIJIKsyDjNAybQb5UGokguxy5NLnAjQQoZYchEjFKK2qmPbhLP5+mbSqFadWub6rlesX82YK7ISdsnPmsEtWZ7eswZpMsIQ9sWf2Yj1ar9ab9f4zumLNd47YH1gf3+1ImxU=</latexit>

Ŵ1

<latexit sha1_base64="5pzWZ7z8OWTLeU/lmkwwv7wpS/E=">AAACC3icbVC7SgNBFJ2NrxhfUQsLm8EgWEjYlYDaBWwsI5gHJCHcndwkQ2YfzNwVwrKf4FfYamUntn6Ehf/i7ppCE091OOfeOXeOGyppyLY/rcLK6tr6RnGztLW9s7tX3j9omSDSApsiUIHuuGBQSR+bJElhJ9QInquw7U5vMr/9gNrIwL+nWYh9D8a+HEkBlEqD8lEvfyN2FYhpwnsToLidDJxBuWJX7Rx8mThzUmFzNAblr94wEJGHPgkFxnQdO6R+DJqkUJiUepHBMM2AMXZT6oOHph/n4Qk/jQxQwEPUXCqei/h7IwbPmJnnppMe0MQsepn4n9eNaHTVj6UfRoS+yIJIKsyDjNAybQb5UGokguxy5NLnAjQQoZYchEjFKK2qlPbhLP5+mbQuqk6ten1Xq9TP580U2TE7YWfMYZeszm5ZgzWZYAl7Ys/sxXq0Xq036/1ntGDNdw7ZH1gf3+u5mxQ=</latexit>

Ŵ

<latexit sha1_base64="KL+OIECVw9J9irIU97sSYAr4l0c=">AAACCnicbVC7SgNBFJ31GeMrKtjYDAbBQsKuBNQuYGMZwTwgCeHu5CYZMvtg5q4Q1v0Dv8JWKzux9Scs/Bd31xSaeKrDOffOuXPcUElDtv1pLS2vrK6tFzaKm1vbO7ulvf2mCSItsCECFei2CwaV9LFBkhS2Q43guQpb7uQ681v3qI0M/DuahtjzYOTLoRRAqdQvHXbzN2JXgZgkvDsGiltJsV8q2xU7B18kzoyU2Qz1fumrOwhE5KFPQoExHccOqReDJikUJsVuZDBMI2CEnZT64KHpxXl2wk8iAxTwEDWXiuci/t6IwTNm6rnppAc0NvNeJv7ndSIaXvZi6YcRoS+yIJIK8yAjtEyLQT6QGokguxy59LkADUSoJQchUjFKm8r6cOZ/v0ia5xWnWrm6rZZrZ7NmCuyIHbNT5rALVmM3rM4aTLAH9sSe2Yv1aL1ab9b7z+iSNds5YH9gfXwD7MGahA==</latexit>

T rounds
<latexit sha1_base64="Hqvh1H0ekGEW/d0Yss0sBUjR2mc=">AAAB/HicbVC7TsNAEDyHVwivACXNiQSJKrJDAWUkGsog5SUSKzpfNuGU89m620OKovAVtFDRIVr+hYJ/wTYuIGGq0cyudnaCWAqDrvvpFNbWNza3itulnd29/YPy4VHHRFZzaPNIRroXMANSKGijQAm9WAMLAwndYHqd+t0H0EZEqoWzGPyQTZQYC84wke6qrSrVkVUjMyxX3Jqbga4SLycVkqM5LH8NRhG3ISjkkhnT99wY/TnTKLiERWlgDcSMT9kE+glVLATjz7PEC3pmDcOIxqCpkDQT4ffGnIXGzMIgmQwZ3ptlLxX/8/oWx1f+XKjYIiieHkIhITtkuBZJFUBHQgMiS5MDFYpyphkiaEEZ54lok25KSR/e8verpFOveRe1+m290qjmzRTJCTkl58Qjl6RBbkiTtAknijyRZ/LiPDqvzpvz/jNacPKdY/IHzsc3UQCUng==</latexit>

⌧ epochs
<latexit sha1_base64="tg9F4Ht+rXUOyQ9sCGdoadJ52W4=">AAAB/3icbVC7TsNAEDyHVwivACXNiQSJKrJDAWUkGsogkYeUWNH6sklOOT+4WyNFUQq+ghYqOkTLp1DwL9jGBSRMNZrZ1c6OFylpyLY/rcLa+sbmVnG7tLO7t39QPjxqmzDWAlsiVKHuemBQyQBbJElhN9IIvqew402vU7/zgNrIMLijWYSuD+NAjqQASiS32ieIqxyjUEzMoFyxa3YGvkqcnFRYjuag/NUfhiL2MSChwJieY0fkzkGTFAoXpX5sMAIxhTH2EhqAj8adZ6EX/Cw2QCGPUHOpeCbi7405+MbMfC+Z9IEmZtlLxf+8XkyjK3cugygmDER6iKTC7JARWiZtIB9KjUSQJkcuAy5AAxFqyUGIRIyTekpJH87y96ukXa85F7X6bb3SqObNFNkJO2XnzGGXrMFuWJO1mGD37Ik9sxfr0Xq13qz3n9GCle8csz+wPr4BtPaV9Q==</latexit>

⌧ epochs
<latexit sha1_base64="tg9F4Ht+rXUOyQ9sCGdoadJ52W4=">AAAB/3icbVC7TsNAEDyHVwivACXNiQSJKrJDAWUkGsogkYeUWNH6sklOOT+4WyNFUQq+ghYqOkTLp1DwL9jGBSRMNZrZ1c6OFylpyLY/rcLa+sbmVnG7tLO7t39QPjxqmzDWAlsiVKHuemBQyQBbJElhN9IIvqew402vU7/zgNrIMLijWYSuD+NAjqQASiS32ieIqxyjUEzMoFyxa3YGvkqcnFRYjuag/NUfhiL2MSChwJieY0fkzkGTFAoXpX5sMAIxhTH2EhqAj8adZ6EX/Cw2QCGPUHOpeCbi7405+MbMfC+Z9IEmZtlLxf+8XkyjK3cugygmDER6iKTC7JARWiZtIB9KjUSQJkcuAy5AAxFqyUGIRIyTekpJH87y96ukXa85F7X6bb3SqObNFNkJO2XnzGGXrMFuWJO1mGD37Ik9sxfr0Xq13qz3n9GCle8csz+wPr4BtPaV9Q==</latexit>

FedAvg

<latexit sha1_base64="ms9SvhWoCyk8VY4zf5raU9YWtkw=">AAAB/nicbVDLSsNAFJ34rPVVdelmsAgupCRFqMuKIC4r2Ac0oUymt3XoJBlmbgolFPwKt7pyJ279FRf+i0nMQlvP6nDOvdxzj6+kMGjbn9bK6tr6xmZpq7y9s7u3Xzk47Jgo1hzaPJKR7vnMgBQhtFGghJ7SwAJfQtefXGd+dwraiCi8x5kCL2DjUIwEZ5hKbuIaTm9geDUdzweVql2zc9Bl4hSkSgq0BpUvdxjxOIAQuWTG9B1boZcwjYJLmJfd2IBifMLG0E9pyAIwXpJnntPT2DCMqAJNhaS5CL83EhYYMwv8dDJg+GAWvUz8z+vHOLr0EhGqGCHk2SEUEvJDhmuRlgF0KDQgsiw5UBFSzjRDBC0o4zwV47SdctqHs/j9MunUa85FrXFXrzbPi2ZK5JickDPikAZpklvSIm3CiSJP5Jm8WI/Wq/Vmvf+MrljFzhH5A+vjG2xKleA=</latexit>

Init

<latexit sha1_base64="OCTuwPPkTkDfFKbcy+BjdN2Oo0U=">AAAB/HicbVA9TwJBEJ3DL8Qv1NJmIzGhInfEBEsSG+0wkY8IhOwtA27Y27vszpmQC/4KW63sjK3/xcL/4h1SKPiql/dmMm+eHylpyXU/ndza+sbmVn67sLO7t39QPDxq2TA2ApsiVKHp+NyikhqbJElhJzLIA19h259cZn77AY2Vob6laYT9gI+1HEnBKZXukp4V7FpLmg2KJbfizsFWibcgJVigMSh+9YahiAPUJBS3tuu5EfUTbkgKhbNCL7YYcTHhY+ymVPMAbT+ZJ56xs9hyClmEhknF5iL+3kh4YO008NPJgNO9XfYy8T+vG9Poop9IHcWEWmSHSCqcH7LCyLQKZENpkIhnyZFJzQQ3nAiNZFyIVIzTbgppH97y96ukVa1455XaTbVULy+aycMJnEIZPKhBHa6gAU0QoOEJnuHFeXRenTfn/Wc05yx2juEPnI9vK2OVLw==</latexit>

Train

<latexit sha1_base64="mzwUjrQ4kwZNLQt55MkVoKg++9k=">AAAB/XicbVA9SwNBEN3zM8avqKXNYhAsJNwFIZYBG8sI+YLkCHObSVyyt3fszgnhCP4KW63sxNbfYuF/8RKv0MRXPd6bYd68IFbSkut+OmvrG5tb24Wd4u7e/sFh6ei4baPECGyJSEWmG4BFJTW2SJLCbmwQwkBhJ5jczP3OAxorI92kaYx+CGMtR1IAZVIv7VvBmwakng1KZbfiLsBXiZeTMsvRGJS++sNIJCFqEgqs7XluTH4KhqRQOCv2E4sxiAmMsZdRDSFaP11EnvHzxAJFPEbDpeILEX9vpBBaOw2DbDIEurfL3lz8z+slNLr2U6njhFCL+SGSCheHrDAy6wL5UBokgnly5FJzAQaI0EgOQmRikpVTzPrwlr9fJe1qxbuq1O6q5fpl3kyBnbIzdsE8VmN1dssarMUEi9gTe2YvzqPz6rw57z+ja06+c8L+wPn4Bvq2lac=</latexit>

Train

<latexit sha1_base64="mzwUjrQ4kwZNLQt55MkVoKg++9k=">AAAB/XicbVA9SwNBEN3zM8avqKXNYhAsJNwFIZYBG8sI+YLkCHObSVyyt3fszgnhCP4KW63sxNbfYuF/8RKv0MRXPd6bYd68IFbSkut+OmvrG5tb24Wd4u7e/sFh6ei4baPECGyJSEWmG4BFJTW2SJLCbmwQwkBhJ5jczP3OAxorI92kaYx+CGMtR1IAZVIv7VvBmwakng1KZbfiLsBXiZeTMsvRGJS++sNIJCFqEgqs7XluTH4KhqRQOCv2E4sxiAmMsZdRDSFaP11EnvHzxAJFPEbDpeILEX9vpBBaOw2DbDIEurfL3lz8z+slNLr2U6njhFCL+SGSCheHrDAy6wL5UBokgnly5FJzAQaI0EgOQmRikpVTzPrwlr9fJe1qxbuq1O6q5fpl3kyBnbIzdsE8VmN1dssarMUEi9gTe2YvzqPz6rw57z+ja06+c8L+wPn4Bvq2lac=</latexit>

Q

<latexit sha1_base64="RXo8MmxdZmO3JXdWOs8LStblj6w=">AAAB+XicbVDLSgNBEOyNrxhfUY9eBoPgQcJuEOIx4MVjAuYByRJmJ504ZPbBTK8QlnyEVz15E69+jQf/xd11D5pYp6Kqm64uL1LSkG1/WqWNza3tnfJuZW//4PCoenzSM2GsBXZFqEI98LhBJQPskiSFg0gj9z2FfW9+m/n9R9RGhsE9LSJ0fT4L5FQKTqnUT0ZGsM5yXK3ZdTsHWydOQWpQoD2ufo0moYh9DEgobszQsSNyE65JCoXLyig2GHEx5zMcpjTgPho3yeMu2UVsOIUsQs2kYrmIvzcS7huz8L100uf0YFa9TPzPG8Y0vXETGUQxYSCyQyQV5oeM0DLtAdlEaiTiWXJkMmCCa06EWjIuRCrGaTGVtA9n9ft10mvUnet6s9Oota6KZspwBudwCQ40oQV30IYuCJjDEzzDi5VYr9ab9f4zWrKKnVP4A+vjG708k9I=</latexit>

Q

<latexit sha1_base64="RXo8MmxdZmO3JXdWOs8LStblj6w=">AAAB+XicbVDLSgNBEOyNrxhfUY9eBoPgQcJuEOIx4MVjAuYByRJmJ504ZPbBTK8QlnyEVz15E69+jQf/xd11D5pYp6Kqm64uL1LSkG1/WqWNza3tnfJuZW//4PCoenzSM2GsBXZFqEI98LhBJQPskiSFg0gj9z2FfW9+m/n9R9RGhsE9LSJ0fT4L5FQKTqnUT0ZGsM5yXK3ZdTsHWydOQWpQoD2ufo0moYh9DEgobszQsSNyE65JCoXLyig2GHEx5zMcpjTgPho3yeMu2UVsOIUsQs2kYrmIvzcS7huz8L100uf0YFa9TPzPG8Y0vXETGUQxYSCyQyQV5oeM0DLtAdlEaiTiWXJkMmCCa06EWjIuRCrGaTGVtA9n9ft10mvUnet6s9Oota6KZspwBudwCQ40oQV30IYuCJjDEzzDi5VYr9ab9f4zWrKKnVP4A+vjG708k9I=</latexit>

Q

<latexit sha1_base64="RXo8MmxdZmO3JXdWOs8LStblj6w=">AAAB+XicbVDLSgNBEOyNrxhfUY9eBoPgQcJuEOIx4MVjAuYByRJmJ504ZPbBTK8QlnyEVz15E69+jQf/xd11D5pYp6Kqm64uL1LSkG1/WqWNza3tnfJuZW//4PCoenzSM2GsBXZFqEI98LhBJQPskiSFg0gj9z2FfW9+m/n9R9RGhsE9LSJ0fT4L5FQKTqnUT0ZGsM5yXK3ZdTsHWydOQWpQoD2ufo0moYh9DEgobszQsSNyE65JCoXLyig2GHEx5zMcpjTgPho3yeMu2UVsOIUsQs2kYrmIvzcS7huz8L100uf0YFa9TPzPG8Y0vXETGUQxYSCyQyQV5oeM0DLtAdlEaiTiWXJkMmCCa06EWjIuRCrGaTGVtA9n9ft10mvUnet6s9Oota6KZspwBudwCQ40oQV30IYuCJjDEzzDi5VYr9ab9f4zWrKKnVP4A+vjG708k9I=</latexit>

Figure 3: Main phases of FLQ algorithm.

global model, on its data (line 7 in Algorithm 2, Train box in Figure 3), (4) each edge316

server applies quantization to its locally trained model (line 8 in Algorithm 2, Q box317

on the right in Figure 3), (5) each edge server sends its quantized locally trained model318

(W on the right in Figure 3) back to the cloud node (line 9), and (6) the cloud node319

applies weighted averaging to the quantized local models received (line 10 in Algorithm 2,320

FedAvg box in Figure 3). The procedure Quantize(W) performs the quantization of321

the parameters W exploited by NN model. In principle, it may implement any of the322

quantization approaches described in Section 3.3.323

Since quantization can introduce large errors in the model weights in later rounds due324

to the smaller and smaller changes applied to the weights during training, we also propose325

∆FLQ, a variant of the FLQ algorithm, illustrated in Algorithm 3. The ∆FLQ algo-326

rithm applies the FLQ algorithm not to the full models, but on their difference before327

and after local training, at the edge servers, and before and after federated averaging, at328

the cloud node. Initially, a random matrix is initialized on the cloud node and distributed329

to all edge servers3 (lines 1-3). Then, at every round, the ∆W matrix, initially set to 0, is330

quantized (line 6) and transferred to the edge servers (line 8). Each edge server sums this331

matrix to its local model (line 9), and then it performs the local training on a copy W ′
i of332

their local models (lines 10-12). At the end, each edge server computes the ∆Wi matrix,333

i.e., the difference between the local model after and before the training, quantizes it and334

transfers it back to the cloud node (lines 13-14). Finally, the cloud node computes the335

weighted average of the received differences and stores it in the ∆W matrix (line 15).336

In the next section, we experimentally measure the accuracy of the final learned models337

produced by FLQ and ∆FLQ w.r.t. other training algorithms, such as local learning338

3In practice the matrices can be initialized by communicating the random seed used to generate the

random weights.

16

Algorithm 3: The proposed ∆FLQ algorithm.

Input : n local datasets D1, . . . , Dn at edge servers C1, . . . , Cn,

a number of rounds T

a number of epochs τ

Output: A matrix W of NN weights

∆FLQ(D,D1, . . . , Dn, T, τ):

1 Matrix W is randomly initialized

2 for i← 1 to n do

3 S sends W to Ci as Wi

4 ∆W ← 0

5 for T rounds do

6 ∆W ← Quantize(∆W)

7 for i← 1 to n do

8 S sends ∆W to Ci as ∆Wi

9 Wi ← Wi + ∆Wi

10 W ′
i ← Wi

11 for τ epochs do

12 W ′
i ← Train(W ′

i , Di)

13 ∆Wi ← Quantize(W ′
i −Wi)

14 Ci sends ∆Wi to S

15 ∆W ←
∑n

i=1
|Di|
|D|∆Wi

16 W ← W + ∆W

17 return W

and federated learning, and we evaluate the benefits of our FLQ and ∆FLQ algorithms339

at reducing the data transmitted among the cloud node and edge servers when different340

quantization approaches are exploited.341

17

4. Experimental Setup342

We experiment FLQ and ∆FLQ on the next word prediction task that, given a343

sentence context, i.e., a sequence of words, aims at learning a language model, i.e., a344

probability distribution over the words conditioned on a given context, to predict the345

next most likely word that appears after the context [23]. As such, this task can be seen346

as a time series prediction problem where data points are words in a given vocabulary,347

and given the first n words, we aim at predicting the n+ 1-th word. It is a common use348

case used in mobile applications like, for example, predictive keyboards or personal voice349

assistants. In our scenario, we assume that every edge server has a private collection350

of text written by the user, and we aim at learning a global language model without351

disclosing the private collections.352

Dataset. We conduct the experimental evaluation using the WikiText-2 dataset [37].353

The WikiText-2 dataset is composed of 720 text articles: 600 articles in the training set354

and 60 in both the validation and the test sets, respectively. The training set consists of355

2, 088, 628 tokens, while the validation and test sets consist of 217, 646 and 245, 569 tokens,356

respectively. The vocabulary consists of 33, 278 words. In the following analysis, we use357

the training set to train our models while the validation and test sets are used for early358

stopping the training of the model, and to measure its final performance, respectively.359

Neural Architecture. We perform next word prediction [12] by training a Long Short360

Term Memory Network (LSTM). In our experiments, following the setting and hyperpa-361

rameters laid out in [23], we train an LSTM model with an input embedding layer with362

200 neurons, two hidden LSTM layers, each one composed of 512 neurons, and an output363

linear layer with 33, 278 outputs, one per word in the vocabulary. We use a batch size of364

100 words. The training of the network is regularized with learning rate decay, i.e., if the365

validation loss does not decrease in an epoch, the learning rate, initially set to 20, is de-366

creased by a factor of 4, up to a minimum value of 10−4. For regularization purposes, we367

also employ a dropout strategy by setting the dropout rate to 0.5. Moreover, to address368

the gradient explosion problem when training the LSTM, we set the gradient clipping369

to 0.25, the gradient norm clipping to 0.3, and the weight clipping to 1.0. The training370

of the LSTM is performed by minimizing the cross-entropy loss until the learning rate371

decreases below the minimum value of 10−4 (early-stopping condition) or for a maximum372

18

of 80 epochs.373

Implementation Details. The experimental framework is implemented in PyTorch374

1.4.04. Experiments are performed using a Tesla T4 GPU on an AMD EPYC CPU375

clocked at 2.2 GHz and 24 GB of RAM. The machine works as both cloud node and edge376

server and we experiment with 2 edge servers. In the evaluation of federated scenarios,377

edge servers are emulated by training the LSTM models locally on the machine on equally-378

sized and disjoint partitions of the training set. All the quantization strategies tested in379

this paperwork quantize independently the weight matrices of the LSTM. No quantization380

is performed on the input embedding layer.381

5. Experimental Evaluation382

We now present a comprehensive analysis of the performance of the FLQ and ∆FLQ383

algorithms by investigating two main research questions (RQs):384

RQ1. What is the impact of the FLQ and ∆FLQ algorithms on the accuracy of the385

learned models, measured in terms of validation and test losses?386

RQ2. What is the reduction in terms of data transmitted between edge servers and cloud387

node by the FLQ and ∆FLQ algorithms w.r.t. standard FL approaches, i.e., without388

quantization?389

To investigate our RQs, we designed a comprehensive experimental setting structured390

in the following four scenarios.391

Local Learning (LL). In this scenario, we perform the training of the LSTM locally on392

the cloud node on the full training dataset.393

Local Quantization (LQ). In this scenario, we perform the training of the LSTM394

locally on the cloud node by locally applying the quantization schemes introduced in395

Section 3. As for LL, the training of the LSTM is performed on the full training dataset.396

Federated Learning (FL): In this scenario, we experiment with the standard FL397

algorithm. We learn the LSTM on each edge server on its partition of the training data.398

At the end of each round, the edge servers send their LSTM model to the cloud node,399

which performs the federated averaging step. The model is then sent back to all the edge400

4We plan to release the code upon acceptance of the paper.

19

servers. The edge servers compute the loss on the training set, while the validation and401

test losses are computed on the cloud node after the federated averaging step.402

Federated Learning with Quantization (FLQ): In this scenario, we experiment403

with the FLQ and ∆FLQ algorithms. The edge servers perform model quantization404

before sending their model to the cloud node. Then, the cloud node performs a federated405

averaging of the received models and quantizes again the result before sending the model406

back to the edge servers.407

Firstly, we assess the performance of the FL scenario w.r.t. the LL scenario. Sec-408

ondly, we apply quantization both in local scenario (LQ) and in the federated scenario409

(FLQ). In both scenarios, we first assess the performance of our FLQ algorithm, then we410

assess the performance of our ∆FLQ algorithm. The rationale behind this experimental411

methodology is to evaluate the impact of federated learning on the performance of the412

LSTM, i.e., the effect of working on partitioned training data for each worker. Then,413

we assess the impact of quantization techniques both in the LQ scenario, i.e., where no414

data partitioning is introduced by federated learning, and in the FLQ scenario, i.e., with415

both quantization and data partitioning. Finally, we compare the size of the models416

transmitted in the federated scenarios to quantify the data volume reductions yielded by417

the quantization schemes considered.418

We perform our experiments by reporting the effectiveness of the LSTM in terms of:419

i) test loss on the final model and ii) validation loss observed during the training process420

to analyze the convergence speed of each method. The size of the models is computed by421

counting the number of bits of both the quantized and un-quantized parameters of our422

LSTM.423

A note on time units. Local and federated scenarios employ different portions of the424

training data, depending on the number of workers, and perform different local training425

epochs and federated training rounds. The total wall-clock time required to train the426

different models depends on four factors: (i) the number of workers processing their427

portions of the dataset, (ii) the number of learning epochs used by each worker to locally428

learn its model, (iii) the number of federated rounds used to collect the local models and429

to compute their federated averaging, and (iv) the quantization process. In the following,430

we report on the x-axis the training time measured in time units. We assume that the431

20

time required to perform a single training epoch on a single worker on the whole dataset432

corresponds to 1-time unit. On w workers, the whole dataset, divided among all workers,433

requires 1/w time units to be processed in a single learning epoch in parallel on w workers.434

On w workers, τ training epochs require τ/w time units to perform the local training.435

Finally, by measuring the time required by the quantization, and the model transmission436

processing, we found out that their overhead is negligible w.r.t. the time required to437

perform a single learning epoch. For this reason, we do not take it into account.438

5.1. Local Learning and Federated Learning Scenarios439

In this section, we propose an experimental analysis of the performance of the LSTM440

network when trained both in LL and FL scenarios. Figure 4 reports the validation441

loss of the LSTM during the training in the FL scenario according to Algorithm 1 by442

varying τ in {1, 2, 4, 8, 16}, i.e., the number of epochs performed by two edge servers443

before transmitting the model to the cloud node for federated averaging.

0 10 20 30 40 50
Training time (time units)

5.0

5.5

6.0

6.5

V
al

id
at

io
n

lo
ss

LL

FL, τ = 1

FL, τ = 2

FL, τ = 4

FL, τ = 8

FL, τ = 16

Figure 4: Validation loss of the LSTM network in the FL scenario by varying the number of epochs τ

in a round of federated learning. We also report the performance on the LL scenario (red bold line).

444

We compare the performance achieved in the FL scenario with the one achieved in the445

LL scenario (bold red line). When training in LL, the validation loss drops significantly446

very soon, reaching the minimum value of 4.73 after 29 units of time. Moreover, the447

plot shows a clear trend: the more epochs are performed locally to each worker in a448

round of federated learning, i.e., the larger values of τ , the slower is the convergence449

of the validation loss to its minimum. The rationale of this behavior lies in the role of450

federated averaging, i.e., (FedAvg), which allows sharing the knowledge learned by the451

21

two workers in isolation in a single LSTM model that is then used locally by edge servers to452

continue the learning. Moreover, in the FL scenario, the neural network achieves a better453

performance in terms of validation loss than the LL corresponding loss with small values454

of τ , i.e., {1, 2, 4, 8}. This does not hold for τ = 16, where the FL minimum validation455

loss does not outperform the corresponding loss of the LL scenario. The rationale behind456

the better performance shown in the FL scenario w.r.t. the LL scenario relies in the457

federated averaging step that introduces a regularization effect in the resulting merged458

model, thus achieving a better generalization of the model learned.459

Table 2: Rounds and time units to minimum validation loss (Rounds & Time), minimum validation loss

(Val. loss) and test loss of the LSTM network model in the LL and FL scenarios, by varying τ .

τ Rounds Time Val. loss Test loss

LL – 27 27 4.78 4.73

FL

1 37 18.5 4.71 4.64

2 25 25 4.69 4.64

4 19 38 4.71 4.63

8 27 108 4.70 4.66

16 28 224 4.81 4.76

To better show the impact of τ on the convergence speed, we deepen the analysis460

by reporting, given τ , the number of federated rounds needed by the LSTM to achieve461

the minimum observed validation loss. Note that the time units required to perform a462

federated learning round depend on τ : a single federated round with 2 workers requires463

τ/2 time units. We report the results in Table 2. By increasing τ , the results show a464

clear slow down of the time units required by the NN to reach the minimum validation465

error. In a LL scenario, the LSTM needs 27 epochs, i.e., 27 time units, to reach the466

minimum validation loss. Instead, in a FL scenario, when τ ∈ {1, 2}, the FL algorithm467

is able to reach the minimum validation loss in just 37 × 1/2 = 18.5 and 25 × 2/2 = 25468

time units, respectively, while it needs 28× 16/2 = 224 time units to reach the minimum469

validation loss when τ = 16. Table 2 also reports the final test loss achieved by the LSTM470

in the LL and FL scenarios. The results consistently report the same trend identified471

for the validation loss, i.e., the test loss achieved in the FL scenario outperforms the one472

22

achieved in the FL one for τ ∈ {1, 2, 4, 8} but not for τ = 16.473

To conclude, federated learning allows to gain effectiveness on the final LSTM model474

with the big advantage of keeping data stored on edge servers in a decentralized manner.475

5.2. Local Quantization and Federated Learning with Quantization Scenarios476

We now focus our analysis on the impact of quantization when employed in the LQ477

and FLQ scenarios. Table 3 reports the test loss achieved when training an LSTM model478

with the 1-, 2-, and 3-bit quantization schemes discussed in Section 3 with τ = 1 in the479

LQ and FLQ scenarios.480

Table 3: Test loss of the LSTM network model in the LQ and FLQ scenarios for 1-, 2-, and 3-bit

quantization schemes.

Quantization
LQ FLQ

1 bit 2 bits 3 bits 1 bit 2 bits 3 bits

BinQ 33.19 - - 39.32 - -

ProbQ 13.28 - - 9.71 - -

LowQ - 6.91 6.88 - 6.99 6.95

ResQ - 7.04 7.03 - 6.85 6.86

IterQ - 7.62 6.89 - 6.89 6.85

Comparing the test losses in the LQ scenario, the two 1-bit random quantization481

schemes, i.e., BinQ and ProbQ, result in larger test losses than the other schemes,482

i.e., LowQ, ResQ, and IterQ. This is due to the very limited precision obtained by483

the former schemes in quantizing each model weight on a single bit, while the latter484

schemes, using 2 bits, result in smaller quantization errors. For sake of space, we do485

not include further results of BinQ and ProbQ schemes, as their performance is not486

competitive with respect to LowQ, ResQ, and IterQ. Concerning the FLQ scenario, the487

test losses of LowQ, ResQ, and IterQ are very close to the value in the corresponding488

LQ scenario, i.e., −1.2%, +2.8%, and +0.3% respectively.489

Figure 5 reports the validation loss achieved by LowQ, ResQ, and IterQ when490

training an LSTM model with 2-bit quantization and τ = 1 in the LQ and FLQ scenarios.491

Similar results are obtained with higher values of τ and with 3-bit quantization, with just492

23

a slight increase in convergence speed, so we do not report them. In both scenarios, the

0 20 40 60 80 100 120
Training time (time units)

7

8

9

10

V
al

id
at

io
n

lo
ss

LowQ in LQ

ResQ in LQ

IterQ in LQ

LowQ in FLQ

ResQ in FLQ

IterQ in FLQ

Figure 5: Validation loss of the LSTM network in the LQ and FLQ scenarios (dashed and solid lines,

respectively) with 2-bit quantization schemes and τ = 1.

493

ResQ and IterQ quantization schemes converge to the minimum validation loss quickly,494

i.e., in 4 time units or less. The LowQ scheme starts with a higher loss value even if it495

eventually converges towards the minimum value. However, the time needed by LowQ496

to converge is 33% more than the time needed by the previous two quantization schemes.497

By comparing the LQ and FLQ scenarios, both the ResQ and IterQ quantization498

schemes in the FLQ scenario converge slightly slower than in the LQ scenario, while the499

LowQ quantization scheme converges faster in the FLQ scenario. We can conclude that500

the considered quantization schemes can be successfully applied in federated learning501

scenarios. Our experiments show that quantization in the FLQ scenario achieves the502

same performance of the LQ scenario with no degradation in the effectiveness of the503

LSTM model.504

We now investigate the impact of the number of epochs τ on the performance. In505

particular, we assess if larger values of τ allow improving the effectiveness of the LSTM506

in the FLQ scenario, measured in terms of test loss. As τ controls the number of epochs507

performed on each edge server, the intuition is the following: the more epochs are per-508

formed on the edge servers, the more the error introduced by quantization decreases, due509

to the full precision used in the local learning process on the edge servers. In fact, no510

quantization is performed during the training process on an edge server, as it is performed511

only before sending the model or after receiving it from the cloud node.512

24

0 20 40 60 80 100
Training time (time units)

7

8

9

10

11

V
al

id
at

io
n

lo
ss

LowQ

0 20 40 60 80 100
Training time (time units)

6.8

7.0

7.2

7.4

V
al

id
at

io
n

lo
ss

ResQ

0 20 40 60 80 100
Training time (time units)

6.8

7.0

7.2

7.4

V
al

id
at

io
n

lo
ss

IterQ

τ = 1 τ = 2 τ = 4 τ = 8 τ = 16 Min in LQ

Figure 6: Validation loss of the LSTM network in an FLQ scenario using the FLQ Algorithm with 2-bit

quantization schemes, by varying τ .

Table 4: Minimum validation and test losses of the LSTM network model in the FLQ scenario using the

FLQ Algorithm with 2-bit quantization schemes, by varying τ .

τ
Minimum validation loss Test loss

LowQ ResQ IterQ LowQ ResQ IterQ

1 7.06 6.90 6.95 6.99 6.85 6.89

2 7.00 6.91 6.90 6.94 6.86 6.86

4 6.97 6.97 6.89 6.92 6.93 6.85

8 6.99 7.09 6.85 6.93 7.04 6.80

16 6.98 7.10 6.83 6.93 7.05 6.77

Figure 6 reports the validation losses achieved using the FLQ Algorithm with 2-bit513

schemes LowQ, ResQ, and IterQ, by varying τ in {1, 2, 4, 8, 16}, and Table 4 reports514

the corresponding minimum validation and test losses. As expected, the results show515

that, for all quantization schemes, the convergence is slower as τ increases. The results516

for ResQ show that the validation and test losses are negatively affected by larger values517

of τ . Moreover, ResQ and LowQ do not allow the LSTM to achieve the minimum518

validation loss reported in the LQ scenario. In particular, only for τ ∈ {1, 2}, ResQ is519

able to reach and outperform the minimum validation loss observed in the LQ scenario,520

even if, for τ = 2, the convergence to the minimum is significantly slower than for τ = 1.521

Instead, the validation and test losses using IterQ benefit from larger values of τ . The522

reported results show that, when increasing τ , the effectiveness of the model, i.e., the523

minimum validation loss, decreases significantly below the minimum achieved in the LQ524

scenario. A side effect of the increase of τ for IterQ is the convergence speed, which525

25

results to be slower. The convergence speed is important in the FLQ scenario because it526

potentially affects the number of data transmissions between edge servers and the cloud527

node, i.e., the slower the convergence, the larger the number of transmissions. When528

increasing τ , the slower convergence speed is reported for all the three quantization529

schemes. However, when IterQ is used, larger τ values boost the final effectiveness.530

Moreover, while the minimum validation loss for τ = 1 is reached after 8 units of time,531

i.e., 2× 8 = 16 model transmissions, with τ = 16 the minimum validation loss is reached532

after 48 units of time, i.e., 2 × 48/16 = 6 model transmissions, thus more than halving533

the number of transmissions required to achieve a more accurate model.534

To conclude, we observe that a larger number of epochs performed locally on the edge535

servers slows down the convergence of the whole training, even if this does not always536

imply a larger number of transmissions. However, we found that large values of τ impact537

positively on the validation and test losses of the LSTM when employing the IterQ538

quantization scheme. In this case, the final model in the FLQ scenario outperforms the539

final model in the LQ scenario for all τ in {2, 4, 8, 16}.540

5.3. Federated Learning with Delta Quantization541

While in the FLQ scenario our FLQ algorithm produces a LSTM network with vali-542

dation and test losses almost identical to the values of the LSTM network trained in the543

LQ scenario, the performance of the models trained with FLQ (test loss 6.93) are higher544

than the performance of the models trained with FL (test loss 4.73). We ascribe this545

decrease in test loss to quantization, since it can introduce errors in the model weights.546

In particular, during the training of the LSTM, the high variance in the small changes547

applied to the weights at later rounds can have a negative impact on the whole training.548

To mitigate this effect, in Section 3 we proposed the ∆FLQ algorithm, a variant of the549

FLQ algorithm. The ∆FLQ algorithm quantizes the changes in the network weights ex-550

change between the edge servers and the cloud node. We now investigate the performance551

of ∆FLQ when applied to the FLQ scenario. As before, we report the performance of552

LowQ, ResQ, and IterQ when varying τ in Figure 7 and Table 5.553

The introduction of changes quantization to LowQ negatively impacts the perfor-554

mance of the final LSTM network. Indeed, the validation loss never converges to the555

minimum achieved in LQ (green horizontal line). Moreover, for larger values of τ , the556

26

0 10 20 30 40
Training time (time units)

6

8

10

12

V
al

id
at

io
n

lo
ss

LowQ

0 20 40 60 80
Training time (time units)

5

6

7

8

V
al

id
at

io
n

lo
ss

ResQ

0 20 40 60 80
Training time (time units)

5

6

7

8

V
al

id
at

io
n

lo
ss

IterQ

τ = 1 τ = 2 τ = 4 τ = 8 τ = 16 Min in LQ LL

Figure 7: Validation loss of the LSTM network in the FLQ scenario using the ∆FLQ Algorithm with

2-bit quantization schemes, by varying τ .

Table 5: Minimum validation and test losses of the LSTM network model in the FLQ scenario using the

∆FLQ Algorithm with 2-bit quantization schemes, by varying τ .

τ
Minimum validation loss Test loss

LowQ ResQ IterQ LowQ ResQ IterQ

1 8.29 6.16 6.13 8.27 6.10 6.06

2 8.45 5.82 5.74 8.42 5.76 5.66

4 8.59 5.47 5.43 8.54 5.41 5.36

8 8.17 5.17 5.17 8.07 5.11 5.10

16 7.78 4.98 5.05 7.73 4.91 4.99

validation loss grows significantly, thus revealing the presence of heavy overfitting on the557

local training data. On the other side, ResQ and IterQ show a completely different558

behaviour. For these two quantization schemes, the introduction of changes quantization559

improves the performance of the FLQ algorithm. Indeed, ResQ and IterQ outperform560

the performance achieved using FLQ for all values of τ considered. Moreover, when561

increasing τ , the validation loss gets closer to the value achieved in the LL scenario (pink562

line), even though convergence is slower.563

Finally, we evaluate the impact of the number of edge servers on the best 2-bit quanti-564

zation scheme in the FLQ scenario using the ∆FLQ Algorithm, i.e., IterQ with τ = 16565

local learning epochs. We report the performance of IterQ when varying the number of566

edge servers w in Figure 8. When more edge servers are deployed, the time units required567

to reach the minimum validation loss decrease with the number of servers, since more568

workers can carry out independently and in parallel the local learning over smaller por-569

27

0 10 20 30 40 50 60 70 80
Training time (time units)

5.0

5.5

6.0

6.5

7.0

V
al

id
at

io
n

lo
ss

w = 1

w = 2

w = 3

w = 4

w = 5

w = 6

w = 7

w = 8

w = 9

w = 10

Figure 8: Validation loss of the LSTM network in the FLQ scenario using the ∆FLQ algorithm with

2-bit IterQ quantization and τ = 16 by varying the number of edge servers w.

tions of the whole dataset. At the same time, the smaller local dataset portions available570

at each edge server lead to a decrease in the performance of the whole learned model.571

In fact, the minimum validation loss of the final model increases as the number of edge572

servers increases.573

Figure 9 illustrates the validation loss with 4 and 8 edge servers in the FLQ scenario574

using the FLQ and ∆FLQ algorithms with 2-bit IterQ quantization and τ = 16, with575

a fraction f = 0%, 25%, 50%, and 75% of faults. The faults happen after the second576

federated round, and the faulty edge servers are randomly selected at every federated577

round until the minimum validation loss is reached. For both 4 and 8 edge servers, the578

∆FLQ algorithm reaches a smaller validation loss, confirming the better performance579

of the ∆FLQ algorithm w.r.t. the FLQ algorithm reported in Tables 4 and 5 even in580

the presence of faults. As expected, as the number of faults increases, the minimum581

validation loss increases, since the dataset portions of the faulty edge servers no longer582

contribute to the accuracy of the global model learned via federated averaging. Moreover,583

the minimum validation loss increases with the number of edge servers also in the presence584

of faults, due to the smaller local dataset portions available to each server, confirming585

the experimental results illustrated in Figure 8.586

To conclude on RQ1, we experimentally showed that:587

• the FLQ algorithm with LowQ, ResQ, and IterQ quantization schemes is able588

to train an LSTM network with performances similar to a LSTM network trained in589

the LQ scenario. In particular, the LSTM network trained with IterQ in the FLQ590

28

2 4 6 8 10 12 14 16
Training time (time units)

6.8

6.9

7.0

7.1

7.2

V
al

id
at

io
n

lo
ss

FLQ algorithm with 4 edge servers

2 4 6 8 10 12
Training time (time units)

5.5

6.0

6.5

7.0

V
al

id
at

io
n

lo
ss

∆FLQ algorithm with 4 edge servers

2 4 6 8 10 12 14 16
Training time (time units)

6.9

7.0

7.1

7.2

7.3

V
al

id
at

io
n

lo
ss

FLQ algorithm with 8 edge servers

2 4 6 8 10 12
Training time (time units)

5.75

6.00

6.25

6.50

6.75

7.00

7.25

V
al

id
at

io
n

lo
ss

∆FLQ algorithm with 8 edge servers

f = 0% f = 25% f = 50% f = 75%

Figure 9: Validation loss of the LSTM network in the FLQ scenario using the FLQ (left) and ∆FLQ

(right) algorithms with 2-bit IterQ quantization and τ = 16, with 4 (top) and 8 (bottom) edge servers,

with a fraction f of faults after the second federated round.

scenario outperforms the LSTM network in the LQ scenario with any quantization591

scheme for all τ in {2, 4, 8, 16};592

• the ∆FLQ algorithm with ResQ and IterQ allows to train an LSTM network with593

performances similar to an LSTM network trained in the LL scenario. Moreover,594

we show that IterQ allows for a faster convergence speed, thus allowing for a595

reduced number of model transmissions between edge servers and the cloud node,596

even in the presence of edge server faults.597

5.4. Analysis of Model Transmission Costs598

We now evaluate the reduction in terms of data transmitted between the edge servers599

and the cloud node by the FLQ/∆FLQ algorithms w.r.t. the FL algorithm without600

quantization. Our LSTM model is composed of 27, 249, 264 parameters in total. As601

reported in Section 4, we do not apply quantization to the input embedding layer, whose602

weight matrix contains 6, 655, 600 elements. The other layers store 20, 593, 664 model603

weights, which are represented according to our quantization schemes.604

29

By storing each parameter as a 32-bit floating point number, the LSTM network605

requires 109.16 MB ≈ 0.11 GB, while the 1-bit random quantization schemes BinQ and606

ProbQ store the quantized LSTM network in 29.36 MB, with a space reduction of 3.71×,607

but their performance in term of test loss are poor, as we reported in Table 3. The 2-608

bit and 3-bit quantization schemes, i.e., LowQ, ResQ, and IterQ, store the quantized609

LSTM network in 31.94 MB (with a space reduction of 3.42×) and 34.51 MB (with a610

space reduction of 3.16×), respectively.611

Table 6: Rounds to reach the minimum validation loss with the FLQ and ∆FLQ algorithms, and total

data exchanged between the cloud node and a single edge server (in GB) for the 2-bit quantization

schemes.

τ
Rounds to minimum loss Total data exchanged

LowQ ResQ IterQ LowQ ResQ IterQ

FLQ

1 10 78 17 0.64 4.98 1.09

2 9 80 12 0.57 5.11 0.77

4 9 80 7 0.57 5.11 0.48

8 13 9 8 0.83 0.57 0.51

16 13 7 7 0.83 0.48 0.48

∆FLQ

1 9 17 5 0.57 1.09 0.32

2 4 14 5 0.26 0.89 0.32

4 2 11 5 0.13 0.70 0.32

8 1 9 5 0.06 0.57 0.32

16 1 7 5 0.06 0.48 0.32

Table 6 reports the number of federated rounds required to reach the minimum val-612

idation loss with the FLQ and ∆FLQ algorithms, for the 2-bit LowQ, ResQ, and613

IterQ quantization schemes. This number represents the optimal number of rounds to614

obtain the best LSTM network performance during training according to the validation615

loss, i.e., before the validation loss starts increasing and the local models start overfit-616

30

ting on the local data. The number of rounds T determines how many times the LSTM617

model is transferred from an edge server to the cloud node and vice-versa. Regarding618

the FLQ algorithm, LowQ is the best quantization scheme in terms of data exchanged619

when τ ∈ {1, 2}. For larger τ values, the best scheme is IterQ, requiring almost half of620

the rounds required by LowQ. As we have shown in Figure 5 and Table 4, in such cases621

IterQ produces a LSTM network with better performance than the LSTM produced by622

LowQ. With τ = 16, FLQ with IterQ quantization attains a validation loss of 6.83623

in 7 rounds (56 time units) with a total of 0.48 GB × 2 = 0.96 GB transferred (taking624

into account both workers), while FL attains a validation loss of 4.81 in 28 rounds (28625

time units) with a total of 0.11 GB× 2× 2× 28 = 12.23 GB transferred, by taking into626

account the full model size, the number of workers, the two-way transmissions and the627

number of rounds.628

Regarding ∆FLQ, LowQ still requires very few rounds to converge, but, as reported629

in Figure 7 and Table 5, the performance of the resulting LSTM network is far from being630

competitive. However, IterQ is always producing a LSTM network with performance631

close to the FL algorithm without quantization in very few rounds, namely 5, with just632

0.32 GB of data transferred. With τ = 16, ∆FLQ with IterQ quantization gets a633

validation loss of 5.05 in 5 rounds (20 time units) with a total of 0.32 GB× 2 = 0.64 GB634

transferred (taking into account both workers).635

To conclude on RQ2, we experimentally showed that both the FLQ and ∆FLQ636

algorithms are able to largely reduce the data transferred between the cloud node and637

the edge nodes in a federated learning scenario. In particular, when used with the IterQ638

quantization scheme and using 16 epochs for local training at each worker, the FLQ639

algorithm trains the LSTM model with a 14% degradation in the validation loss while640

reducing by a factor of 13× the total data transmitted over the network during federated641

learning. The ∆FLQ algorithm trains the LSTM model with just a 5% degradation in642

the validation loss while reducing by a factor of 19× the total data transmitted over the643

network during federated learning.644

645

31

6. Additional Experiments646

In this section, we conduct additional experiments to assess the performance of the647

FLQ and ∆FLQ algorithms on different datasets, namely image (Section 5.4) and sensor648

data (Section 5.4). All experiments are conducted on the same experimental framework649

detailed in Section 4. Given the results reported in Section 5, we limit our experiments650

to 2-bit IterQ quantization scheme and 2 edge servers, because IterQ yielded the best651

performance among the quantization methods considered.652

653

6.1. Experiments on the MNIST image dataset654

We conduct experiments on the popular MNIST dataset. The dataset consists of a655

training set of 60, 000 and a test set of 10, 000 28 × 28 gray-scale images. We randomly656

sample the 10% of the training set to be used as the validation set during training.657

The remaining training set is uniformly split among the edge servers. We use a CNN658

composed of two 5 × 5 convolutional layers, followed by two linear layers. We choose659

rectified linear units as activation functions, and we use 2×2 max-pooling layers and two660

dropout layers. Training is performed using a batch size of 10 and stochastic gradient661

descent with a learning rate of 0.01 and momentum 0.5. The training of the CNN is662

performed by minimizing the cross-entropy loss until the learning rate decreases below663

the minimum value of 10−4 (early-stopping condition) or for a maximum of 80 federated664

learning rounds.665

Table 7: Minimum validation, test losses, rounds to reach the minimum validation loss and the total data

(both directions) exchanged between the cloud node and a single edge server (in MB) of the CNN network

model in the FL and FLQ scenario using the FLQ and ∆FLQ algorithms with 2-bit quantization scheme

and 2 workers, by varying τ .

τ
Min. val. loss Test loss Rounds Total data

FL FLQ ∆FLQ FL FLQ ∆FLQ FL FLQ ∆FLQ FL FLQ ∆FLQ

1 0.0509 0.0596 0.0638 0.0351 0.0453 0.0460 15 16 11 23.10 2.00 1.37

2 0.0412 0.0461 0.0502 0.0357 0.0408 0.0400 14 13 11 21.56 1.62 1.37

4 0.0451 0.0482 0.0507 0.0353 0.0370 0.0357 10 10 7 15.40 1.25 0.87

8 0.0451 0.0441 0.0499 0.0320 0.0329 0.0340 8 8 7 12.32 1.00 0.87

16 0.0428 0.0429 0.0495 0.0308 0.0333 0.0381 5 7 5 7.70 0.87 0.62

32

Our CNN model is composed of 24, 090 parameters in total. We do not apply quan-666

tization to the 90 one-dimensional bias parameters. The 4D tensors of the convolutional667

layers have been decomposed into matrices along the first two dimensions and each ma-668

trix has been quantized independently. The uncompressed CNN model requires 770.88669

KB ≈ 0.77 MB, while the 2-bit IterQ quantization scheme stores the network in 62.40670

KB ≈ 0.06 MB, with a space reduction of 12.35×. This higher space reduction w.r.t. the671

LSTM model investigated in Section 5 takes into account the larger weight matrices in672

the fully connected layers of the CNN model.673

Table 7 reports the validation and test losses with the FLQ and ∆FLQ algorithms.674

Comparing the corresponding values with the validation and test losses in the FL scenario,675

where no quantization is employed, the networks, trained by the two algorithms for676

different τ values, exhibit slightly worse performance. Moreover, Table 7 reports the677

number of federated rounds required to reach the minimum validation loss with the FLQ678

and ∆FLQ algorithms. Recall that this number represents the optimal number of rounds679

to obtain the best CNN network performance during training before the validation loss680

starts increasing and the local models start overfitting on the local data. The number of681

rounds determines how many times the CNN model is transferred from an edge server to682

the cloud node and vice-versa. The table also reports the number of optimal rounds in683

the FL scenario.684

In the FL scenario, the best validation loss is 0.0428, obtained with τ = 16 and with685

5 federated learning rounds, with a total of 7.70 MB× 2 = 15.40 MB transferred (taking686

into account both edge servers). When the 2-bit IterQ quantization scheme is adopted,687

the best validation losses are 0.0429 (in 7 federated rounds) and 0.0495 (in 5 federated688

rounds) for the FLQ and ∆FLQ algorithms, respectively, obtained with τ = 16. Hence,689

FLQ transfers a total of 1.74 MB, while ∆FLQ a total of 1.24 MB over the network,690

taking into account both edge servers.691

Finally, when used with the 2-bit IterQ quantization scheme and using 16 epochs692

for local training at each worker, the FLQ algorithm trains the CNN model with almost693

no degradation in the validation loss while reducing by a factor of 8.8× the total data694

transmitted over the network during federated learning. The ∆FLQ algorithm trains the695

CNN model with a 15% degradation in the validation loss while reducing by a factor of696

33

12.4× the total data transmitted over the network during federated learning.697

698

6.2. Experiments on the Bar Crawl dataset699

We perform additional experiments on time series data by employing the Bar Crawl700

dataset5. The dataset collects acquisitions from the accelerometer and the transdermal701

alcohol content from a college bar crawl and it is used in literature to predict heavy drink-702

ing episodes via mobile data [38]. For our experiments, we employ the raw data collected703

from smartphones’ accelerometers at a sampling rate of 40Hz. We choose to make use of704

this dataset because of its size (i.e., several millions of observations collected). In detail,705

each data point of the accelerometer’s observations contains five fields, i.e., the times-706

tamp, a participant ID, and a sample from each of the three axes of the accelerometer.707

Data was collected from a mix of 11 iPhones and 2 Android phones. The whole dataset708

is fully anonymized.709

We preprocess the data by deriving, from each acquisition, the average acceleration.710

We then perform a per-user min-max standardization to normalize the data in the range711

[0, 1]. We employ the derived time series to learn a model that predicts the “next”712

acceleration value, i.e., given the sequence of previous N acquisitions we query the model713

to predict the N + 1 value. We model this task as a regression problem and we employ714

an LSTM to solve it. The employed LSTM is made up of one layer with 2 hidden nodes715

and one output node. We train the network by employing the Mean Squared Error loss716

function and by using a window of N = 16 previous acquisitions. We split the dataset in717

train/validation/test set on a per-user basis, i.e., we employ 8 users as the training set,718

2 users as the validation set and 3 users as test set. The preprocessed dataset divided in719

train/validation/test is made available to allow for reproducibility of the results6. The720

size of the model is 1, 376 bytes for the non-compressed model, while the 2-bit IterQ721

quantization scheme stores the network in 1, 096 bytes. Differently from the previous722

experiments, we train the network for a maximum of 40 federated learning rounds with a723

fixed learning rate. Early-stopping is performed when no improvement in the validation724

5https://archive.ics.uci.edu/ml/datasets/Bar+Crawl:+Detecting+Heavy+Drinking
6http://hpc.isti.cnr.it/~nardini/datasets/data_timeseries.tar.gz

34

loss is observed for 5 local training epochs. We also employ a batch size of 256 training725

samples and a learning rate of 0.01.726

Table 8: Minimum validation, test losses, rounds to reach the minimum validation loss and the total

data (both directions) exchanged between the cloud node and a single edge server (in KB) of the LSTM

network model in the FL and FLQ scenario using the FLQ and ∆FLQ algorithms with 2-bit quantization

scheme and 2 workers, by varying τ .

τ
Min. val. loss Test loss Rounds Total data

FL FLQ ∆FLQ FL FLQ ∆FLQ FL FLQ ∆FLQ FL FLQ ∆FLQ

1 0.0784 0.0956 0.1576 0.107 0.112 0.160 40 40 40 110.08 87.68 87.68

2 0.0711 0.0759 0.1550 0.101 0.103 0.151 40 40 22 110.08 87.68 48.22

4 0.0691 0.0728 0.1489 0.091 0.098 0.150 40 40 7 110.08 87.68 15.34

8 0.0690 0.0714 0.1191 0.089 0.092 0.121 24 38 4 66.04 83.29 8.76

16 0.0687 0.0701 0.0841 0.086 0.089 0.099 36 34 3 99.07 73.16 6.45

Table 8 reports the validation and test losses with the FL, FLQ,and ∆FLQ algo-727

rithms. Comparing the corresponding values with the validation and test losses, in the728

FL scenario, where no quantization is employed, the networks, trained by the two algo-729

rithms for different τ values, exhibit slightly worse performance. Table 8 also reports the730

number of federated rounds required to reach the minimum validation loss with the FL,731

FLQ, and ∆FLQ algorithms. We recall that this number represents the optimal num-732

ber of rounds to obtain the best LSTM network performance during training before the733

local models start overfitting on the local data and the validation loss starts increasing.734

The number of rounds determines how many times the LSTM model is transferred from735

an edge server to the cloud node and vice-versa. The table also reports the number of736

optimal rounds in the FL scenario.737

In the FL scenario, the best validation loss is 0.0687, obtained with τ = 16 and with738

36 federated rounds, with a total of 99.07 KB × 2 = 198.14 KB transferred (taking into739

account both edge servers). The use of the 2-bit IterQ quantization scheme allows us740

to achieve 0.0701 minimum validation loss (in 36 federated rounds) and 0.0841 minimum741

validation loss (in 3 federated rounds) for the FLQ and ∆FLQ algorithms, respectively,742

obtained with τ = 16. Hence, FLQ transfers a total of 146.32 KB, while ∆FLQ transmits743

a total of 12.90 KB over the network, taking into account both edge servers.744

35

To conclude, the 2-bit IterQ quantization scheme allows to effectively train an LSTM745

model for the “next value” prediction task on time series data. In detail, when using746

16 epochs for local training at each edge server, the FLQ algorithm trains the LSTM747

model with no degradation in the validation loss while reducing by 25% the total data748

transmitted over the network during federated learning, and the ∆FLQ algorithm trains749

the LSTM model with a 20% degradation in the validation loss while reducing by a factor750

of 16× the total data transmitted over the network during federated learning.751

7. Conclusion752

In this work, we presented a federated learning platform for the IoT built upon an edge753

computing framework and according to a publish/subscribe communication paradigm.754

We introduced the edge computing layer to let the neural network reside as close as pos-755

sible to the IoT data producers and within the privacy domain of IoT device owners.756

Data privacy has been assumed by design as a mandatory requirement, leading to data757

retention on the edge. We developed two novel federated learning quantization algo-758

rithms, namely FLQ and ∆FLQ. The FLQ algorithm introduces quantization into the759

state-of-the-art FL algorithm. Instead, ∆FLQ is designed from scratch to reduce the760

amount of traffic exchanged among edge servers and the Cloud. Differently from [23],761

our FLQ and ∆FLQ algorithms quantize both the NN model broadcasted by the cloud762

node and the NN models sent by the edge servers to significantly reduce the background763

traffic related to the NN model training. The results achieved by ∆FLQ outperform764

those of FLQ both in terms of validation loss and efficiency in data exchange and show765

good tolerance to server faults. We conducted experiments on public datasets by train-766

ing a Long Short Term Memory neural network on an edge node to solve a next word767

prediction task as a case study. Only the federation task is left to the Cloud, or, eventu-768

ally, to a centralized entity, not necessarily located in the core network. To validate the769

generality of the proposed algorithms, we also applied both ∆FLQ and FLQ to different770

use cases and other deep learning models. In detail, we experimented our proposed al-771

gorithms with CNNs on image classification tasks using the popular MNIST dataset and772

with LSTMs on next value prediction using time series from the Bar Crawl dataset. In773

both cases, the ∆FLQ was able to reduce by 8− 16× the total amount of traffic among774

36

edge servers and the Cloud. Last but not least, the proposed federated learning approach775

allows for reducing the time to reach the minimum validation loss w.r.t. a centralized776

Cloud approach, with a negligible exchange of data at each training round, thanks to777

∆FLQ and FLQ algorithms. The comprehensive experimental evaluation compares our778

approach to state-of-the-art centralized learning, i.e., on the Cloud, namely local learning,779

and federated learning techniques employing both full precision and several quantization780

schemes. We remark that local learning violates the requirement of data privacy. Still, it781

stands here as the optimal performance metric of comparison, in terms of validation loss,782

when the whole dataset is centralized. The measurement campaign shows that the in-783

troduction of quantization techniques in federated learning allows to significantly reduce784

the data exchanged between each edge server and a cloud node, providing a measured785

improvement with a minimal impact on the validation loss of the final model. In detail,786

FLQ outperforms full-precision federated learning of an LSTM for next-word prediction787

by reducing by a factor of 13× the total data transmitted over the network, but leads788

to an increase in validation loss by 14%. On the other hand, ∆FLQ can further reduce789

the total data transmitted up to 19×, with a validation loss increase of less than 5%.790

Subsection 5.4 also provides a numerical quantification of the effective reduction in data791

volume exchanged with the 2- and 3-bit quantization schemes. Such promising results792

pave the way for deepening research on federated learning quantization, exploring how793

different schemes and techniques could impact the efficiency of the federated learning794

process.795

Future investigations will also address more in-depth communication models taking into796

account 5G mobility scenarios and investigate the fault-tolerance of federated learning797

architectures in real emerging contexts.798

Acknowledgements799

This work is partially supported by the Italian Ministry of Education and Research800

(MIUR) in the framework of the CrossLab project (Departments of Excellence), by the801

BIGDATAGRAPES and the TEACHING projects funded by the EU Horizon 2020 re-802

search and innovation program under grant agreements No. 780751 and No. 871385,803

respectively, and by the OK-INSAID project funded by the Italian Ministry of Education804

37

and Research (MIUR) under grant agreement No. ARS01 00917. This work is partially805

carried out in the framework of the project AUTENS (Sustainable Energy Autarky)806

funded by the University of Pisa (PRA 2020 program).807

References808

[1] Viraaji Mothukuri, Reza M. Parizi, Seyedamin Pouriyeh, Yan Huang, Ali Dehghantanha, and Gau-809

tam Srivastava. A survey on security and privacy of federated learning. Future Generation Computer810

Systems, 115:619–640, 2021.811

[2] Miguel De Prado, Jing Su, Rabia Saeed, Lorenzo Keller, Noelia Vallez, Andrew Anderson, David812

Gregg, Luca Benini, Tim Llewellynn, Nabil Ouerhani, Rozenn Dahyot, and Nuria Pazos. Bonseyes813

AI Pipeline – Bringing AI to You: End-to-End Integration of Data, Algorithms, and Deployment814

Tools. ACM Transaction on Internet of Things, 1(4), 2020.815

[3] Farzad Samie, Lars Bauer, and Jörg Henkel. From cloud down to things: An overview of machine816

learning in internet of things. IEEE Internet of Things Journal, 6(3):4921–4934, 2019.817

[4] Mehdi Mohammadi, Ala Al-Fuqaha, Sameh Sorour, and Mohsen Guizani. Deep learning for iot big818

data and streaming analytics: A survey. IEEE Communications Surveys & Tutorials, 20(4):2923–819

2960, 2018.820

[5] Weishan Zhang, Wuwu Guo, Xin Liu, Yan Liu, Jiehan Zhou, Bo Li, Qinghua Lu, and Su Yang.821

LSTM-based analysis of industrial IoT equipment. IEEE Access, 6:23551–23560, 2018.822

[6] Jed Mills, Jia Hu, and Geyong Min. Communication-efficient federated learning for wireless edge823

intelligence in iot. IEEE Internet of Things Journal, 7(7):5986–5994, 2019.824

[7] Peter Kairouz and et al. Advances and open problems in federated learning. ArXiv, abs/1912.04977,825

2019.826

[8] He Li, Kaoru Ota, and Mianxiong Dong. Learning IoT in edge: Deep learning for the Internet of827

Things with edge computing. IEEE Network, 32(1):96–101, 2018.828

[9] Jie Tang, Dawei Sun, Shaoshan Liu, and Jean-Luc Gaudiot. Enabling deep learning on IoT devices.829

Computer, 50(10):92–96, 2017.830

[10] Ahmed Imteaj and M. Hadi Amini. Distributed sensing using smart end-user devices: Pathway to831

federated learning for autonomous iot. In Proc. CSCI, pages 1156–1161, 2019.832

[11] Felix A. Gers, Douglas Eck, and Jürgen Schmidhuber. Applying LSTM to time series predictable833

through time-window approaches. In Neural Nets WIRN Vietri-01, pages 193–200. Springer, 2002.834

[12] Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui Jiang, and Diana Inkpen. Enhanced LSTM835

for Natural Language Inference. In Proc. ACL, pages 1657–1668, 2017.836

[13] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li Fei-Fei, and Silvio837

Savarese. Social lstm: Human trajectory prediction in crowded spaces. In Proceedings of the IEEE838

conference on computer vision and pattern recognition, pages 961–971, 2016.839

38

[14] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet Classification with Deep Con-840

volutional Neural Networks. In Proc. NIPS, pages 1097–1105, USA, 2012.841

[15] Russell Reed. Pruning algorithms-a survey. IEEE transactions on Neural Networks, 4(5):740–747,842

1993.843

[16] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. DoReFa-Net:844

Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients. arXiv e-845

prints, page arXiv:1606.06160, 2016.846

[17] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quantized847

neural networks: Training neural networks with low precision weights and activations. The Journal848

of Machine Learning Research, 18(1):6869–6898, 2017.849

[18] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with850

limited numerical precision. In Proc. ICML, pages 1737–1746, 2015.851

[19] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet852

classification using binary convolutional neural networks. In Proc. ECCV, pages 525–542. Springer,853

2016.854

[20] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized855

neural networks. In Proc. NIPS, pages 4107–4115, 2016.856

[21] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained ternary quantization. In Proc.857

ICLR, 2017.858

[22] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental network quantiza-859

tion: Towards lossless CNNs with low-precision weights. In Proc. ICLR, 2017.860

[23] Chen Xu, Jianqiang Yao, Zhouchen Lin, Wenwu Ou, Yuanbin Cao, Zhirong Wang, and Hongbin861

Zha. Alternating multi-bit quantization for recurrent neural networks. In Proc. ICLR, 2018.862

[24] Arash Ardakani, Zhengyun Ji, Sean C Smithson, Brett H Meyer, and Warren J Gross. Learning863

recurrent binary/ternary weights. In Proc. ICLR, 2019.864

[25] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.865

Communication-efficient learning of deep networks from decentralized data. In Proc. AISTATS,866

2017.867

[26] Jakub Konečnỳ, H Brendan McMahan, Daniel Ramage, and Peter Richtárik. Federated optimiza-868

tion: Distributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527,869

2016.870

[27] Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin Pedarsani.871

Fedpaq: A communication-efficient federated learning method with periodic averaging and quanti-872

zation. In Proc. PMLR, pages 2021–2031, 2020.873

[28] Jasenka Dizdarević, Francisco Carpio, Admela Jukan, and Xavi Masip-Bruin. A survey of communi-874

cation protocols for internet of things and related challenges of fog and cloud computing integration.875

ACM Computing Surveys (CSUR), 51(6):1–29, 2019.876

[29] Manlio Bacco, Marco Colucci, and Alberto Gotta. Application protocols enabling internet of remote877

39

things via random access satellite channels. In Proc. ICC, pages 1–6, 2017.878

[30] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.879

[31] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep880

neural networks with binary weights during propagations. In Proc. NIPS, pages 3123–3131, 2015.881

[32] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet882

classification using binary convolutional neural networks. In Proc. ECCV, 2016.883

[33] Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtarik, Ananda Theertha Suresh,884

and Dave Bacon. Federated learning: Strategies for improving communication efficiency. In Proc.885

NIPS Workshop on Private Multi-Party Machine Learning, 2016.886

[34] Dan Alistarh, Demjan Grubic, Jerry Z. Li, Ryota Tomioka, and Milan Vojnovic. Qsgd:887

Communication-efficient sgd via gradient quantization and encoding. In Proc. NIPS, page888

1707–1718, 2017.889

[35] Geoffrey Davis, Stephane G. Mallet, and Marco Avellaneda. Adaptive greedy approximations.890

Constructive Approximation, 13(1):57–98, 1997.891

[36] Yiwen Guo, Anbang Yao, Hao Zhao, and Yurong Chen. Network sketching: Exploiting binary892

structure in deep cnns. In Proc. CVPR, pages 4040–4048, 2017.893

[37] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture894

models. arXiv preprint arXiv:1609.07843, 2016.895

[38] Jackson A. Killian, Kevin M. Passino, Arnab Nandi, Danielle R. Madden, John D. Clapp, Nir-896

malie Wiratunga, Frans Coenen, and Sadiq Sani. Learning to detect heavy drinking episodes using897

smartphone accelerometer data. In KHD@ IJCAI, pages 35–42, 2019.898

40

