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ABSTRACT

We consider the leader-following control problem on connected directed graphs for
stochastic linear agents in the presence of communications and actuator delays.
We propose to use a distributed protocol for detecting the distance of agents from
the leader and we show that by suitably using this information it is possible to
solve efficiently the leader-following control problem by means of predictors, thus
recovering results for the single-agent case. The proposed predictor and controller
are easy to design and the delay bound that guarantees stability can be computed
from closed-form expressions without resorting to LMIs.
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1. Introduction

This work is devoted to the stochastic leader-following control problem over static
networks in the presence of input and communicating delays by means of a stabiliz-
ing distributed predictor-based control law. In recent years the distributed consensus
problem and the leader-following control problem for multi-agent systems communi-
cating over a network have received considerable interest. The problem has been solved
for linear agent dynamics with fixed or switching network topology — see for example
Dong and Hu (2016); Hong, Hu, and Gao (2006); Z. Li, Wen, Duan, and Ren (2015); Ni
and Cheng (2010); Olfati-Saber, Fax, and Murray (2007); W. Ren and Beard (2005);
X. Wang, Li, and Shi (2013) — and extended to output-feedback consensus — Kim,
Shim, and Seo (2010); Lv, Li, Duan, and Chen (2016); J. Wang, Lanzon, and Petersen
(2015) —, measurement noise — Cheng, Hou, and Tan (2014); Cheng, Hou, Tan, and
Wang (2011); Cheng, Wang, Ren, Hou, and Tan (2016); Hu and Feng (2010); T. Li
and Zhang (2009, 2010) — and nonlinear systems — Battilotti and Califano (2019); Ding
and Li (2016a); Z. Li, Ren, Liu, and Fu (2012); Yu, Chen, Cao, and Kurths (2009).
On the other hand, the feedback control problem of deterministic linear systems
affected by input and output delays has been studied in recent years, starting from
the well-known approaches based on finite spectrum assignment Manitius and Olbrot

CONTACT L. Ricciardi Celsi. Email: ricciardicelsi@diag.uniromal.it



(1979); Olbrot (1978), up to reduction approaches Artstein (1982) in which the con-
trol is defined through an integral over the delay interval. These approaches have been
extended beyond linear systems by Krstic (2010) and they can compensate, in prin-
ciple, constant delays of any magnitude. Yet, they require a careful implementation
and are typically quite computationally intensive. Recently, approaches based on an
ODE-PDE cascade have been proposed to deal with large and/or time-varying de-
lays (see for example Krstic and Smyshlyaev (2008); Sanz, Garcia, and Krstic (2019)
and the references therein). Instead, for relatively small delay (that is, not arbitrarily
large) another class of approaches based on control Lyapunov functionals that typically
lead to control gains computed through LMIs was devised Fridman (2014). Approxi-
mate finite-dimensional predictors define a third class, that contains approaches like
truncated predictor feedback Zhou, Lin, and Duan (2012) and closed-loop predictors
Cacace, Conte, Germani, and Palombo (2016). Predictors in this class are typically
simple to implement and have an upper bound for the maximum tolerable delay. How-
ever, it is possible to use a cascade of predictors to compensate for arbitrarily large
delays. For example, in Cacace, Conte, Germani, and Palombo (2016) a cascade of
predictors in the form of delay differential equations is shown to be able to compen-
sate any delay and to generate the same trajectory as the (undelayed) optimal control.
The case of stochastic systems with input and output delays is more recent and fewer
approaches exist. Several works investigate the control problem for linear stochastic
systems with input and state delays in the stochastic H,, framework Hinrichsen and
Pritchard (1998), see for example H. Li, Chen, Zhou, and Lin (2009). In Gershon,
Fridman, and Shaked (2017) a predictor-based control is applied for the first time to
linear systems with state multiplicative noise. In Cacace, Conte, and Germani (2016) a
closed-loop predictor containing the exponential of the closed-loop matrix is proven to
be able to compensate small delays with guaranteed delay bounds for systems with ad-
ditive noise. In Cacace, Germani, Manes, and Papi (2019) the same predictor is applied
to the control problem of systems with nonlinear diffusions. All of these work deal with
small delays. In Cacace, Germani, Manes, and Papi (2021) and Cacace, d’Angelo, and
Germani (2021) the stability results of cascaded closed-loop predictors for determin-
istic systems are extended to stochastic linear systems (possibly time-varying) with
additive noise and arbitrarily large time-varying input delay, under suitable hypothesis
on the delay function.

In a distributed context the presence of delays cannot be ignored. Whereas actuator
delays can be dealt with in a similar way as for single systems — C. Wang and Ding
(2016); C. Wang, Zuo, Lin, and Ding (2017) —, communication delays represent a
serious problem for the stability of consensus and are more difficult to manage. Many
works in the recent literature study the consensus problem with measurement noise
and communication delays of first or second-order multi-agent systems — Liu, Liu, Xie,
and Zhang (2011); Olfati-Saber and Murray (2004); H. Ren and Deng (2017); Zhang,
Li, Zhao, and Huo (2018); Zhu and Cheng (2010); Zong, Li, and Zhang (2019). In
detail, Liu et al. (2011) solve the mean square consensus problem of single-integrator
systems with measurement noise and communication delays under strongly connected
and balanced digraphs, Olfati-Saber and Murray (2004) consider first-order integrators
under switching topology and communication delay, H. Ren and Deng (2017) solve
the consensus problem for a tracking problem on integrators, Zhang et al. (2018)
consider stochastic single integrators with delay, Zong et al. (2019) consider a network
of integrators with communication delays and additive, as well as multiplicative, noise
and Zhu and Cheng (2010) provide an approach for second-order systems with multiple
and time-varying delays. For general linear systems, Z. Wang, Zhang, Fu, and Zhang



(2017) solve the problem of delay through a predictor that involves an integral term.
Since this approach results in significant complexity of the implementation, which
is particularly critical for agents without large computing resources, Zhou and Lin
(2014) propose a truncated predictor approach for the case of deterministic agents,
that however requires that the open-loop dynamics is not exponentially unstable. The
approach in C. Wang, Zuo, Qi, and Ding (2018) addresses general linear systems with
possibly nonlinear disturbance and communications delay. This approach is based on
a novel extended state predictor, and the solution is found through LMIs.

In this work we address general stochastic linear systems with actuator and com-
munication delays over a digraph. The improvement with respect to existing proposals
is that we design a computationally cheap controller that does not involve distributed
terms, it is amenable of a direct and constructive design and provides a non conser-
vative delay bound, which is easy to compute without resorting to LMIs.

We emphasize that the presence of communication delays poses significant chal-
lenges to the solution of distributed estimation and consensus problems, since, loosely
speaking, the delay accumulates over network paths and the synchronization of infor-
mation coming from neighboring nodes is lost. The approach pursued in this paper is
based on the following elements:

e a distributed stratification algorithm to redirect the flow of information from
the leader to the followers, thus avoiding network loops that are particularly
detrimental in presence of delays;

e a new consensus filter to estimate the state of the leader, that exploits the
modified structure of the communication graph;

e the application of existing results on finite-dimensional filters and controllers for
single systems affected by input and output delays.

In this way, we are able to recover the same performance as in the case of single
agents with input and output delays — Cacace, Conte, Germani, and Palombo (2016);
Cacace, Germani, and Manes (2014) —, and the proposed protocol may also reduce
redundant communications among agents, thus improving the overall efficiency of the
solution of the leader-following problem. To the best of our knowledge, this is the first
approach for the leader-following problem with fully stochastic linear agents of general
type in presence of communication delays.

The paper is organized as follows: Section 2 proposes the stochastic problem set-
ting and a few preliminaries. Section 3 introduces the algorithm that constraints the
communication topology. Section 4 introduces a distributed state estimator for the
modified graph structure based on Kalman-Bucy filtering in the case of no commu-
nication delay. Section 5 describes the predictor-based controller for stabilizing the
delayed leader-tracking error estimate for the multi-agent system. Numerical simula-
tions in Section 6 show that the proposed approach provides non conservative delay
bounds and conclusions are drawn in Section 7.

Notation. The symbol ® is the Kronecker product, o(M) is the spectrum of the
square matrix M and tr(M) its trace. Moreover, p(M) = max; ®{o;(M)} is the spec-
tral radius, and if (M) < 0, M is said to be Hurwitz stable. M > 0 denotes a
positive definite matrix, and the matrix I,, is the identity of size n. The operators
row;(A4;), col;(A;), and diag;(A;) yield respectively the horizontal, vertical and diag-
onal composition of matrices A;. st(M) denotes the vertical stack of the columns of
M. ||z|| denotes the Euclidean norm for z € R™ and ||M]|| the operator norm. On a
filtered probability space (£2, F, {F;},P), E[-] denotes the expectation, and L?(Q;R")
denotes the linear space of square integrable random vectors of R"™ endowed with



the norm |lzl|7, = E[[|«]?]. L7([0,T] x ©;R") is the linear space of R"-valued
stochastic processes in [0,7], such that z € L4([0,7] x Q;R") if |z|p < oo where
2|3 = fOT |z(7)||7, dr. Time dependence is made explicit in the presence of delays.

2. Problem Formulation and Preliminaries

In a complete probability space (2, F, {F:},P) with a filtration {F;} right-continuous
with Fy and containing all P-null sets we consider a group of N + 1 agents consisting of
N followers denoted by indices k € Z := {1,..., N} and one leader indexed by 0. Let

W,gl) € R% and W,g2) € R% be 2N independent standard Wiener processes defined on
the aforementioned probability space, and moreover for i = {1,2}, the noise W,gl) is

independent of Wj(i) for j # k. Each agent is a linear stochastic system in the form

dag(t) = (Azg(t) + Bug(t — 6,)) dt + F dW, 1 (#) (1)
dyp(t) = Cag(t) dt + G AW P (1), (2)

where xj, € R" is the state of the system, z(0) € L?(€;R") independent from ngl)

and W,gz), yr € R? is the output, up € RP is the control input affected by a known
actuator delay 0y, ug(7) = V(1) for 7 € [—0y,0), Vi € Lgu([—éu, 0]; RP). The matrices
A, B, C, F,G are of appropriate dimensions, with FF T and GG positive definite. The
information available to each agent is its own instantaneous output dy(t), the output
of its neighbors, affected by a communication delay §,, and the estimates of the leader
tracking error of its neighbors with the leader, that are also delayed (see Section 5.1).
Moreover, we shall see that neighboring nodes also exchange the covariance matrices
of the filter (as discussed in the subsequent Remarks 3 and 4).

In the leader-following framework it is reasonable to assume that the leader has
no neighbors and the leader’s control input is zero, Ding and Li (2016b); Z. Li et al.
(2015); Ni and Cheng (2010); H. Ren and Deng (2017); C. Wang et al. (2018), that is,

dao(t) = Azo(t)dt + Faw D (t) (3)
dyo(t) = Cao(t) dt + G AW D (1), (4)

The communication connections among agents are described by a directed graph
G = (V,&), where V = {vg,v1,...,un} represents the agents and £ represents the
connections among the agents, (vy,v;) € £ represents the communication from the j-
th agent to the k-th agent, but not vice versa. The associated adjacency matrix of G is
denoted by A = [akj](n41)x(N+1) € RNVHDX(N+1) If there is a connection from agent
j to agent k, ax; = 1; otherwise ag; = 0. The Laplacian matrix £ = [(i;](n41)x(N+1)
associated with A is defined by £, = Z;'V:o apj and f; = —ay; when k # j. The set of
neighbors of agent k is defined as N* = {j : ly; = —1}. In order to track the leader’s
state each agent makes use of information from its neighbors, but this information is
affected by a known communication delay J,.

Assumption 1. When j € N'* (or equivalently ap; = 1) agent j can send information
to agent k, with a known communication delay J,.



Assumption 2. The couples (A4,C) and (A, B) are observable and controllable, re-
spectively.

Assumption 3. The communication topology § contains a directed acyclic graph
(DAG) with the leader as root.

We define the leader-tracking error n; of node k as
Mk = Tk — T0- (5)

The process {n;} satisfies
dn(t) = (Am(t) + Buy(t — 8,)) dt + F dW (1), (6)

where W,ﬁl) = W,gl) — WO(I).
Definition 2.1. We say that the process {£(t)}¢>¢, is

o cxponentially centered with rate o if there exists £ > 0 such that |E[£(2)]] <
ke~ for any initial condition;

e mean square bounded: if there exists £ > 0 such that ||£(¢)||z, <  for any ¢ > 0
and any initial condition.

The problem considered in this paper is the following.
Goal: Given «, design a local output-feedback control law and determine bounds 4;; ()
and 0} («) such that, when ¢, < ¢} (a) and 0, < 6} (), Vk € T the leader tracking error
Nk is exponentially centered with rate o and mean square bounded.

Remark 1. We note that the function ||n;(t)||z, cannot converge to zero due to the
noise processes in (1) and (3).

Similarly to C. Wang et al. (2018), let {zx} be the process
dzp = Cpp dt + GAW . (7)

The fictitious output process (7) is not available. Nevertheless, it enjoys the following
two properties that are immediate to prove (see C. Wang et al. (2018) for details).

Lemma 2.2. For any k,j € Z, dz;, — dz; = dy, — dy;.

Lemma 2.3. For any k € Z,

N N
dz, = Zﬁkjdzj = Zakj(dyk —dy;). (8)
j=0 §=0

Lemma 2.3 states that, even though dz; is not available at agent k € Z, the term
dZ;, can be computed from the difference dy;, —dy; between neighboring nodes. Finally,

we note that ng = 0 and zg = GWéz).



3. Link Weighting for the Leader-Following Problem

In this section we introduce a simple distributed algorithm to restrict the communica-
tion among nodes so that the associated topology becomes a DAG with the leader as
the root. This is obtained by replacing the Laplacian entries f;; with the new entries
{; defined by the following (distributed) algorithm.

Algorithm 1.
Step 1) For each agent k € {0,..., N}, set

dk:{Oiszo o)

oo otherwise

Step 2) Each agent k € {1,..., N}, at each step, sends dj to the neighbors and
update the value of d;. as

dp =min{d;} +1 10
k ]xg}\}lk{]}+ (10)

(11)

- {ﬁkj if dj < dj,
ki =

0 otherwise

b =— Y ;. (12)

JENF

The idea behind the algorithm is the following. If dj, denotes the distance of the
agent k from the leader, expressed as the minimum number of graph edges from the
leader to agent k, the variable dj, converges to dj, in exactly dj, steps. All incoming
information from agents that have the same distance or are farther away from the
leader is suppressed by setting ¢;; = 0 whenever d; > dj,. Consequently, the resulting
graph has no oriented cycles and the information reaching agent k originates from
agents that are closer than k to the leader (or, equivalently, A’* contains only agents
J that satisfy d; < d). It is immediate to prove the following.

Proposition 3.1. Under Assumption 3, the graph associated to the transformed
Laplacian matriz L is a DAG with the leader as root.

In practice, a distributed controller that implements Algorithm 1 at node k only
needs to compute and send dj to the neighbors and to disregard any communication
from neighbors j such that d; > dj. Consequently, the communications arriving at the
controller k originates from nodes j that are closer than k to the leader. In the sequel,
we assume that the links in the communication topology have been changed according
to Algorithm 1. The next propositions are a standard consequence of the fact that L
is a DAG (see Kahn (1962)).

Proposition 3.2. The transformed Laplacian matriz £ has the following structure:

5 |0 Oixn
E—{@ El] (13)

where £1 € RN*N and Lo € RVN*L. Furthermore, L1 is a non-singular matriz with



positive eigenvalues.

Proposition 3.3. Any DAG admits a topological ordering such that the associated
Laplacian matriz is triangular.

Remark 2. The idea behind Algorithm 1 is that the leader-following control problem
differs from a the classic consensus problem in that the flow of information should be
oriented from the leader to the followers, whereas in the consensus problem all the
agents have the same role. We claim that the presence of loops in the topology has
no effect for instantaneous communications, but it is actually detrimental in presence
of delays. For example, the behavior of an agent having the root as neighbor can be
influenced by other neighbors that are farther away from the leader and communi-
cate outdated estimates of the leader’s behavior. This makes the network much more
sensitive to delays and the design of the local controllers more complicated and less
robust.

4. Leader-Tracking Error Estimation in the Undelayed Case

The aim of this Section is to design an estimator of the leader-tracking error variable
Nk = x) — To in the undelayed case, namely 6, = 6, = 0!. The estimate at node k is
denoted with 7, and the corresponding estimation error is £, = 7, — 7. Notice that,
by definition, g = 0, thus we can set 7jg = 0 and £y = 0. Thus, in the case §, = 0, the
available measurement process {Z;} can be expressed as

N
dz, = Zﬁkjdzj = <Ck’l7k + Z gijﬁj + Z Kijéj) dt + GdWéQ), (14)
j=0 JEN® JENF

where Cy = {C, /V[7,§2) = Zé'vzo Kkjo(Q). We remark again that in accordance to
Lemma 2.3, the quantity Z; is available to the agent k, and the reason to use it is that
it involves the leader-tracking error 7. For each k € Z, the process {W,ﬁz)} is a Wiener
process, since it is a linear combination (with coefficients ;) of the independent

Wiener processes {Wj@)}, and it has covariance matrix given by

=@ (@) " Al T .
E [W1£2) (WS)) ] =¥ D il [WJ(Z)WP ] =0}, Iy, t, (15)

§=0 i=0

where £}, := Zé\fzo Ezj > 0. From equations (6) and (14) it follows that 7, can be
estimated by a Kalman-Bucy like filter, and, in order to derive an implementable

filter, we approximate the measurement error process » JEN* U CE;dt+G dWéz) with
a white process having power spectral density

Ry= ) 6,CPCT + GG, (16)
JENE

1We note that the input delay does not play any role in the estimation phase.



where P; = E[éjéjT] is the covariance of the estimation error of the neighbors j € N,
Each agent k computes and sends to the agents that have it as neighbor: (i) its own
estimate 7j; (ii) its present measurement dyy; (iii) the present value of its covariance
of the estimation error P;. These variable are computed according to the following
filtering algorithm

N
dije = (Ai + Bug) dt + Ly, (dék —CY i dt) (17)
N "
dfk = Zakj(dyk — dyj) (18)
7=0
Ly = B,C R} (19)
B, = AP, + P,A" + Q — Li,C). Py, (20)

with 7x(0) = E[nx(0)], Px(0) = Enk(0)n! (0)], @ = 2FF 7. It is easy to see that the
proposed filter (17) can be also written as

N
i = (Afig + Bug) dt + Ly Y _ £y (dz; — Cyj dt) (21)
§=0

where, as remarked in Lemma 2.3, even though the fictitious output dz; is not available,
the quantity Z;V:o l;dz; can be computed. Thus, the version (21) of the filter can
also be implemented. We note that the implementation of the proposed filter (17)-(21)
requires to exchange the measurements dy;, the estimates 7); and the error covariances
P; among neighboring nodes.

By defining L = diag(L1,...,Ly), 7 = col(N1,...,nn), u = col(uq,...,un), z =
col(z1,...,2nN), from (21) we can write the aggregate system of the filters of all followers
as

di=[INn®A) —L(Li®C)|ndt+ (In @ B)udt + L(L2 ® I,) dz. (22)

In the Theorem below, we prove internal stability of the stationary solution of the
global filter introduced above (which exists by Khasminskii (2011)), uniform bound-
edness of the estimation error, and consistency of the estimator.

Theorem 4.1. Under the Assumptions 1, 2, 8 and with the communications topology
induced by Algorithm 1, when 6, = 0 the filters (17)—(20) for each follower k € T
applied to the system (6) with the measurements (18) are asymptotically stationary
and internally stable. Moreover, the steady state estimation error &y satisfies ||&x||7, <
tr{P,}, Vk € T, with P, steady state value of Py.

The proof is given in Appendix B.

Remark 3. Note that the computation of the filter parameters can be performed by
each agent in a distributed fashion. In fact, the filter (17)—(20) of agent k relies on:
dZy, which can be computed from the difference dy;, — dy; among neighboring nodes;
the delayed estimates 7;(t — d,) associated with the neighboring nodes; and the gain
Ly, which depends on R}, computed through the P; of neighboring nodes.



Since the considered system is time-invariant, a steady state value for the P;’s
is eventually reached. Thus, each node exchanges the covariance matrix P; with its
neighbours up to the moment when such a steady state value is achieved.

When §,, = d, = 0 the output feedback that makes the leader-tracking error variable
mean square bounded can be easily designed by using 7.

Corollary 4.2. If 6, =0 and 6, = 0, given any o > 0 and gain K such that u(g) <
—a, A:= A— BK, with the control law, k € T,

U = —Kﬁk, (23)

with 1y, defined in (17), then the consensus processes ny, defined in (6) are exponentially
centered with rate oo and mean square bounded.

5. Leader-Following Control with Delays

5.1. Leader-tracking error estimate with communication delays

Let us now consider the output feedback leader-following control problem for a stochas-
tic multi-agent system subject to input and communication delays in the form (1)—(2).
In presence of a communications delay §, each agent receives from its neighbors j, for
t > do,

dg;(t) = Ca;j(t — 8)dt + GAW ) (t — 6,). (24)

In this equation, the differential de(Q) (t—14,) =d (f o dW )), t > 6,. With the
initial condition g;(d,) = y(0), it is easy to check that, for ¢ > 50,

t t
g;(t) =y;(d0) + / Cxz(s —d,)ds + / dej@)(s — o)
5o 8o

t—4, t—0,
—y(0) + /0 Ca(r)dr + /0 GAW 2 (1) = y;(t — 6,). (25)

We shall solve the problem by designing: (i) a filter to estimate the leader-tracking
error variable 7 (t) from dy;(t); (ii) a predictor of ny(t+d,) from an estimate of 7y (¢).
Clearly, an alternative solution is to use the filter in point (i) to estimate n (¢t + dy)
from dg;(t), but the solution with two modules is more flexible and works for a larger
total delay.

Let us set A, = A — L,,Cy,, where L;, is the stationary value of the filter gain Ly,



then consider the following estimation algorithm, for ¢t > §,,

dﬁk(t) :Aﬁk(t)dt + Buk(t -0 )dt

+€Ak5"[_/k dzk t— szkﬂb 0 dt (26)
dzk t — Z Akj dyk dg](t)) (27)
Ly, :PkC'k Rk (28)
Ap =A— LuCh (29)
~ N ~
Ry =) £,CPCT +,GGT (30)
j=
J#k
0 :Apk + pkAT +Q — EkC’kPk, (31)

with 7 (7) = 0 for 7 < §,, 2, (0) = 0.

Theorem 5.1. Under Assumptions 1, 2 and 3, and with the communications topology
induced by Algorithm 1, if oy, € (0, —u(Ayg)), k € Z, are such that

s, o
a0 i= [ |Gk df < 1, (32)
0

then the filters (26)—(31) applied to the system (6) with the measurements (27) are
asymptotically stationary and internally stable. Moreover, Vk € I the estimation error
€ 1s exponentially centered with rate oy, and mean square bounded.

As a consequence, with the control law, k € T, (23), with 1y, defined in (26), then the
consensus processes 1y defined in (6) are exponentially centered with rate o and mean
square bounded.

The proof, reported in Appendix C, is inspired to the one used in Cacace, Conte,
d’Angelo, Germani, and Palombo (2022) for the case of single systems with measure-
ment delays.

We stress that the delay bound for d, in (32) is sufficient, that is, it can be less than
the actual maximum allowable delay for the stability of the filters.

5.2. Leader-following control with input delays

The predictor-based control is a feedback from the prediction 6y (t) of ny(t + d,,) from
the estimate 7 (t). The prediction 6y is thus d, + J,, time units ahead of the available
information.

Theorem 5.2. If the hypotheses of Theorem 5.1 are satzsﬁed by some choice {ay},
given any set of gains Ky such that Ay, = A — BK}, with M(Ak) < —ay, consider the
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control law fort > 0

uk(t) = —Kkak(t) (33)
Ou(t) = Abi(t) + BEe™ (fi(t) — Okt —64)), > 6, (34)
ak(t) =0, te [_61“ 50] (35)

with n(t) defined by (26)—(31). IfVk € T
Su _
e 8) = [ B dg < 1, (36)
0

then under the control law (33)—(34), Vk € I the processes ny, defined in (6) are
exponentially centered with rate oy, and mean square bounded.

Remark 4. Note that a distributed computation of the control parameters by each
agent is possible. In fact, the control law (33) of agent k relies on K}, which can be
computed by the agent with standard eigenvalues assignment such that the condition
w(Ag) < —ay is satisfied, and on the process 6 which depends on the known delay
and on the estimate 7, provided by the filter (the filter parameters are also computed
in a distributed fashion, see Remark 3).

Proof of Theorem 5.2. The delay differential equation (34) defines a stochastic pro-
cess for all ¢ > —d, (see Theorem 1.5 of Khasminskii (2011)). Let us define the pre-
diction error vy,

vg(t) = nk(t) — Ok(t — 0u), t>0. (37)

When wuy(t) = —Kpb0k(t), by replacing (34) and (6) in (37) we obtain the following
stochastic differential equation for ¢ > max{24,, J,}:
dog(t) =dng(t) — 0, (t — 6,)dt
= Ang(£)dt — BE6y(t — 6,)dt + F AWM (¢)
— (A~ BE})0(t — 8,)dt — BEe™ (f(t — 6,) — 0y(t — 26,)) dt
—Avp(t)dt + F AW () — BK e
’ (ﬁk(t - 5u) - nk(t - 5u) + nk(t - 6u) - ek(t - 26u)) de
— Avg(£)dt — BEe (vy(t — 6,) — éx(t — 6,)) dt + Faw M (1), (38)
Since £ is exponentially centered with rate @ and mean square bounded, Theorem

1 in Cacace, Germani, et al. (2021) guarantees in the hypothesis (36) that the same
holds for v. But since

dnp(t) = A (D)t + v ()t + AW (1), (39)
the thesis follows. t
Notice that {ay} is not used in the implementation of the filter and controller, but it

is the lower bound for the convergence rate to 0 of the expected value of £, and 7 and
it is not part of the design. Theorems 5.1-5.2 state that Vk «j cannot be larger than

11



the spectral abscissa of A, and Ek, which is intuitive, and that they also depend on
the input and output delay via (32), (36). The gain K}, is computed through standard
eigenvalue assignment algorithms. The dynamics of the leader-tracking error variable
is both exponentially centered and mean square bounded when ~,(0,d,) < 1. The
function -y, is monotonically increasing with &,, thus a delay bound is guaranteed to
exist (it may be infinite if v(0,00) < 1) and it is trivial to compute. In general, this
bound increases with the norm of Kj, thus a slower rate of convergence to 0 of the
mean of n; corresponds to a larger delay. Conversely, given d,,, it is rather easy to check
whether there exist gains K}, that make the closed-loop dynamics of the leader-tracking
error variable exponentially centered and mean square bounded. For example, in the
scalar input case, K} is uniquely determined by the choice of the eigenvalues of Ay,
thus the largest delay bound is obtained with the smallest gain K} that moves all the
eigenvalues of Ag in the left-hand part of the complex plane. Notice that the condition
Yu(0,0,) < 1 is only sufficient, however for scalar inputs it is sometimes a necessary
condition Cacace et al. (2014). Finally, when the total delay exceeds the largest delay
bound, it is possible to resort to a chain of predictors (see Cacace, Germani, et al.
(2021)).

6. Numerical Simulations

6.1. Interconnected kinematic planar systems

In this Section, an example is used to demonstrate the potential applications of the
proposed approach. Suppose a network of five kinematic planar systems are subject to
the connection topology with Laplacian £ specified by the DAG G; shown in Fig. 1.

Figure 1. Communication digraph G;.

The communication graph in Fig. 1 shows that only the followers indexed by 1 and
2 can get access to the leader and the communication topology contains a directed
spanning tree. The dynamics of the i-th agent is described by (1)—(2), with

0100 00 0 0
000 0 10 002 0

A=lo 00 1|"B=lo o= 0 0 |-
000 0 0 1 0 0.02 (40)
100 0 0.05 0

C‘(o 0 1 0>’G_<o 0.05)’

with 2 (t) € R, ug(t) € R?, yp(t) € R2. The noise processes Wél)(t), ngz) € R?, with
k=0,1,...,4, are assumed to be independent standard Wiener processes. The initial
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states of the agents are chosen, in a uniformly random fashion, in the interval [0.5, 8.5]
for all four components of each agent’s state, and u(7) = (0 O)T V7 € [—0y,0] and

y(r) = (0 O)T,VT € [—0o,0]. A feedback gain K moving the eigenvalues of each
agent’s dynamics to {—2, 2.2, —2.4, —2.6} is found to be
5.63 4.76 —0.28 —-0.12
K= (0.26 —0.11 4.89 4.44 > ) (41)

With this gain, the total delay bound of d, + J,, to have exponentially centered agent
processes obtained from the condition ¥(0, dmax) = 1 18 dmax = 0.41s. Fig. 2 shows the
empirical value of the mean square leader-tracking error process E [anHQ], for k =
1,...,4, averaged over 100 simulations with constant delays d,, = 0.2s and J, = 0.15s.
Even though § = §, + 6, = 0.35 is close to the delay bound &pax, the values of E|[ng||
quickly converge to a bounded steady-state value. This value is slightly different across
agents as a consequence of the network topology.

0.35 T

agent 1 ‘
. agent 2
0.30 - agcnt 3 ]
agent 4
&
= 0.20 ,‘\ B
o)
= |
£ !
=
0.10 B
S R TS A R R T S R N
0 Il Il Il Il
0 20 40 60 80 100

t

Figure 2. Evolution of E||n;||? obtained averaging over 100 realizations, k = 1, 2, 3, 4, as a function of time.
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Figure 3. Delay bound for exponentially centered property and mean square boundedness as a function of
the most positive eigenvalues assigned to the closed-loop matrix A (left). Steady-state value of E||ny||? obtained
averaging over 100 realizations, for k = 1, 2, 3, 4, as a function of the total delay § (right)

In Fig. 3 we investigate the total delay bound in order to have exponentially centered
and mean square bounded leader-tracking error processes, i.e. dymax, depends on the
eigenvalues assigned to A and therefore on the gain K. We design K so that o(A) =
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{X\, A —0.05,\ 4 0.055} with A varying between —3 and —0.05. The resulting bounds
are plotted in Fig. 3 (left). The plot shows that dpax tends to 0 when the eigenvalues
of A move on the left direction of the complex plane. Conversely, the delay bound
becomes arbitrarily large when the eigenvalues tend to the imaginary axis. This is a
consequence of the fact that u(A) = 0, thus A can be made exponentially centered
with an arbitrarily small K. Thus, in this example, when o — 0 the control law at
each agent can be designed to compensate for arbitrary delays.

Finally, we investigate how conservative the delay bounds of Theorem 5.2 are: Fig.
3 (right) shows the steady-state mean square value of the leader-tracking error process
{nr} as a function of the total delay 0. The plot shows that the predictor is effective
exactly up to the theoretical bound dpmax = 0.41s and that E [||nx||*] blows up for any
delay exceeding this value.

6.2. Interconnected unstable integrators

Figure 4. Communication digraph Ga.

We propose here an example where 16 unstable agents are interconnected through
the DAG Go as shown in Fig. 4. In this case, the dynamics of the i-th agent is simply
described by

—05 1 0
A:( 0 0.1), B:<1>, F=0,B,C=(1 0), G=o0, (42)

with 2 € R?, ui,yr € R, and the noise amplitudes o, = 0.02 and oy = 0.05. As
before, the noise processes are assumed to be independent standard Wiener processes.

Assuming a uniformly random choice of the initial conditions in the interval [0.5, 8.5]
and a feedback gain K = [2.55,3.8] placing the closed-loop system eigenvalues (that
is, the eigenvalues of A) to {—2, —2.2}, the total delay bound is §,ee = 0.58s. In this
respect, Fig. 5 (left) shows that, in spite of the clear instability of the single agent
dynamics, the leader-following result is nonetheless preserved by the control law so
long as the total delay stays within the upper bound §,,4z-

Moreover, Fig. 5 (right) shows that the steady-state value of E||ng||? obtained aver-
aging over 100 realizations, k € {1,...,15}, with §, = 0.15s and §,, = 0.20s, increases
as the eigenvalue of A with the largest real part is progressively moved closed to the
imaginary axis.

Finally, in Fig. 6 we report the trajectories in the plane (x1,x2), of the 16 agents
initially placed around the point [5, 5], for o(A) = {—2, —2.2} and t € [0, 15], when
0o = 0.15 and 0, + d, = 0.50 (left) and 0, + d, = 0.58 = Jpee (the total delay
bound). In both cases the trajectories of the followers converge to the leader, that
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Figure 5. Steady-state value of E||ng||? obtained averaging over 100 realizations, k € {1,...,15}, for the

system of Section 6.2 with o(A4) = {—2, —2.2}, as a function of the total delay § (left) and as a function of the
closed-loop spectral abscissa for 6, = 0.15s and &, = 0.20s (right).
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Figure 6. Trajectories of the 16 agents for the system of Section 6.2 with total delay 6o, + d, = 0.50 (left)
and 0o + 6, = 0.58 (right). The initial positions are chosen randomly around the point [5,5] and ¢ € [0, 15].

moves exponentially fast along the straight line, but the variance of the tracking error
E||n|? is much larger in the plot on the right, since the followers are disseminated
along the trajectory and they follow the leader with a noticeable lag.

6.3. Network of unmanned aerials vehicles

We consider an example adapted from C. Wang et al. (2018) to illustrate the effects
of the link weighting mechanism and compare the total delay bounds. A network
of unmanned aerials vehicles is composed by one leader and 4 followers with state
x(t) € R?, input ug(t) € R?, and dynamics, k =0, ..., 4,

Tp(t) = Awg(t) + Bug(t) + (zp(t)), (43)
Yk(t) = Cai(t), (44)

0 —1 1 0.5 i
A_<1 0>’ B_<o.5 1)’ ¢=(@10), W—ﬁ(zigii)- (45)
This system is nonlinear, but since in (43) ¥(x) € [—f3,0] x [=3, ] is uniformly

bounded with respect to z, we may consider it a zero-mean uniformly distributed
disturbance and use the representation (1) with F' = /32/3I5. This approximation
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Figure 7. Communication topology for the example in Section 6.3 (left). The graph resulting from weighting
the edges according to the algorithm of Section 3 (right).

is legitimate, since the delay bounds of Theorem 5.1 and Theorem 5.2 do not depend
on the noise terms but only on the stability properties of the deterministic part of the
closed-loop system in presence of delay.

The network topology is shown in Figure 7 (left). The agents are strongly connected,
but by using the communication links according to the algorithm of of Section 3 the
connection is restricted to the DAG in Figure 7 (right). Notice that, by disregarding
the link from node 4, the estimation task of node 1 becomes simpler and node 4 is not
affected.

The control gain K} can be chosen identical for all the agents and it is computed
by a plain eigenvalue assignment algorithm for Ay = A — BK}. By choosing o(Ay) =

{=0.6 = j} we obtain
0.8 —-04
Kk = <—0.4 0.8 ) (46)

By setting ay, = —,u(gk) = 0.6 in (36) we can compute the delay bound dax for d,+ 0y,
that ensures a rate of convergence «; of the leader tracking error 7y to its stead-state
value, and we obtain d,.x = 0.940. The simulations confirm that practical consensus,
with an average steady state ||, (t)|| of about 1% of ||zk(t)| is obtained when ¢ > 10
for d, + &, up to about 0.7, thanks to the robust stability properties of the predictor.
This compares favourably with the results reported in C. Wang et al. (2018), where
the total delay is 6 = 0.1 and practical consensus is reached for ¢ > 150. Although
the comparison is only partial because the scheme in C. Wang et al. (2018) includes
additional modeled disturbances, the proposed method displays better performance in
dealing with delays. Besides, the design in C. Wang et al. (2018) requires to solve a
systems of LMIs to tune the gain parameters, an explicit formula for the delay bound
is not available, and the computation of the parameters depends on the knowledge of
the eigenvalues of the Laplacian matrix of the graph. In contrast, our approach relies
on a straightforward eigenvalue placement algorithm, is completely distributed and
provides an explicit sufficient bound for the total delay.

7. Conclusions
This paper proposes a novel approach to the leader-following control problem. We
showed that by suitably layering the network topology it is possible to obtain a strat-

ified decoupling of the estimation error. In this way, a modular design is achieved and
each agent may set the control gain independently from the other agents, in analogy
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with the case of single systems. We claim that in presence of delays this approach
is more flexible and robust and it incorporates the intrinsic properties of the flow of
information in the leader following context. This additional flexibility can be exploited
to deal with more complex settings, for example heterogeneous agent structure, non
uniform and time-varying delays, or multiplicative noises that will be the subject of
further research. Further developments can include the consideration of unknown de-
lays and the robust stability under the delay estimation error.
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Appendix A.

Lemma A.l. Let P;, = P:, = E[¢xé]] and P:,, = E[¢;¢]] be the covariance and
cross-covariance of the estimation error, then we have

N
My = Y ljlpiCP:,CT > 0. (A1)
ji=1
JFkF

Proof. We notice that the matrix

k-1 (2]
=, ::E[st—l{@gkﬁj) }] (a2
j=1

is positive semi-definite since it is the covariance matrix of the random vector
25;11 l1j€;. Moreover, because of Assumption 3 and Algorithm 1, we can use Propo-
sition 3.3 to obtain that the Laplacian £ (and thus £;) is lower triangular, and it is
not difficult to see that M, = C Z,CT, and the proof is completed. 0
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Appendix B. Proof of Theorem 4.1

We first prove by induction that equation (20) admits a stationary solution for all k €
7. In fact, as a consequence of Assumption 3 and Algorithm 1, for the agents i having
the leader as neighbor, equation (16) becomes R; = GG which is positive definite.
Thus, because of Assumption 2, equation (20) for & = i has a unique positive definite
stationary solution P;. Due to Proposition 3.3, the covariance Rj, depends on the Pj’s
for j < k. Thus, each Ry, admits a stationary value Ry, and, as a consequence, because
of Assumption 2, equation (20) has a unique positive definite stationary solution b,
satisfying

AP+ PA" +Q - &, P.C'R'CP, = 0. (B1)
By noticing that
dzj — Cijdt = C&;dt + Gaw >, (B2)

we obtain the following error dynamics for the k-th follower

N
Aé = Adpdt = Ly Y by (Cat+ Gaw ) + Faw!. (B3)
j=0

Let Ly = ]}C,;r}_%,;l be the stationary value of the gain (19), and set L =
diag(Li,...,Ly). The aggregate error ¢ = col(é1,...,én) of the stationary filters
(17)-(20) is given by

dé = [(In® A) — L(Ly ® C)] édt + EdN, (B4)

with £ =row(Iy ® F,~L(L2 ® G), N = COI(W(I), W(Q)), wl = colk(Wél)) W@ =
C01k<W,£2)). B

_ Moreover, since the Laplacian £ (and £1) is triangular, the matrix 4 := (Iy ® A) —
L(L£1®C) is block-triangular with entries Ay, := A~ LyC (note that lp, = o1 (L1)).
Vk € T Ay is Hurwitz. In fact from (B1),

Akpk + PkAk =AP, + PkAT — QKZ]CP]CCTRI;ICP]C
=—Q. (B5)
Therefore, A is Hurwitz and this implies the internal stability of the filter and the

uniform boundedness of the error. Finally, let us prove the bound on the covariance
matrix of the estimation error. We can rewrite (B3) as

N
e, =Apépdt — Ly Y GyCédt + Ly Y 4G aw ) + Faw,
JENE Jj=0

Pop =AgPs, + Pe, A — L | > lyjleiCP: CT| L — 0, LyGG Ly +Q,  (B6)
JAENF

20



where Pz, and P, are defined in Lemma A.1, and Ay = A — L;Cy. Since the term

@kLkGGTL,—cr in (B6) is positive semi-definite and because of Lemma A.1, we have the
following differential matrix inequality

P:, < AyP: + P: Al +Q. (B7)
By considering (20) and (B6) by setting Ay, = P:, — P, we can write
Ay < ApAy + ALA] — PO L) =~y — POy R'Cy P, <0, (BS)
where we use the fact that, since the matrix A, is Hurwitz, then there exists Tj > 0
such that AgAy + ArA] = —Yj. Therefore, it follows that €kll7, = tr{Ps } < tr{P:}.
0

Appendix C. Proof of Theorem 5.1

In the case of communication delays equation (B3) of the estimation error £i(t) =
Nk (t) — 7k (t) becomes, for ¢t > d,,

dég(t) =Aé(t) dt — eA"(S"l_)kaék(t —3,) + Fdev]gl)(t)

— ML S 0y (CE(t - S)at+ Gaw P —s,)) . (C1)
JENF

whereas for 7 € [0,0,] we have €x(7) = ni(7), since 7Mx(7) = 0 by definition. The
solution £i(t) admits the following representation, t > 4,

t _ t s
Er(t) :/ 5 M=, Crén(r) dr+/ eAk(t—T)FdWél)(T)
t=0,

0
t—6, _
—/ eAk(tiT)Z—/kC Z fkjéj(T) dr

0 JENE

-5, )
“Y by [ AILGAW ) + 0k, (C2)

JENE 0
5 i 5 _
k.5, =1k(00) —/ MO~ L O (7) dT+/ A= P (r) (C3)
0 0
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as it can be verified by explicit differentiation. Notice that the choice of constant vector
V.5, ensures £x(d,) = k(o). Pre-multiplying by Cj, and taking Lo norm we get

60
ICee®lz, < /
0

t _
([ e

t _
+ [ ot On ao s 37 ilICE (s, + o,

TE[tféo,t] ]ENk

CkeAk(e)zkH a0 [su%) }Hckék(T)HLz
TE t— 07t

1
2

N _
“ao)" (11 X peslizGl?
JEN*

=7(0,00) sup [|Chép(T)llL, + B, (C4)
TE[t—d,,t]
where ¢y 5, = ||CVk;s,||L, < oo depends on the initial conditions in [0,d,]. We now

proceed inductively on the distance dj from the leader, as computed in (10). When
dr, =1, N* = {0} and consequently

B = </Ot HCkBA’“G

because &g = 0. Thus, since 7,(0,0,) < Vo(ak, o) < 1 we obtain the following bound

GOz, < Tt < o (c6)

2 é _ 1
" a0) (1P I s < e (09

We now prove that if ||Cyé;(t)||r, < oo for the nodes with d; < d then the same
holds for the nodes k with di = d. In fact, when the Laplacian matrix is transformed
according to the procedure described in Section 3 and dy = d all the nodes j in N
have distance d; < d and it holds by inductive hypothesis that ||Cyé;(t)||r, < oco. This,
together with the fact that Ay, is Hurwitz and the integrals in [0, ¢] are bounded for
t — oo, implies that Sy < oco. Therefore, (C6) holds for all the nodes k with dj = d.
Since the depth of the DAG is finite, |Cy€;(t)||1, is bounded for all k € Z, but, since
(A, C) is observable, is immediate to see from (C1) that ||Cyéx(t)||z, < oo implies
l€k(t)|| 2, < co. Finally, it is easily derived that éj is exponentially centered with rate
ay, by considering the auxiliary variable £ = e, writing the equation of E[é¢], that
does not contain the noise terms, and repeating the same steps as above.
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