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ABSTRACT The development and the upgrade of railway networks is one of the strategies to reach
decarbonization targets in the transportation field, thanks to the considerably lower energy consumption
of electric trains with respect to other vehicles, typically fossil fuel powered. The design process of
electric railway power systems is complex, requiring advanced simulation tools. The paper proposes a novel
methodology for the design of the electrical power system of railway tracks, using genetic optimization. For
this purpose, the authors developed ROAR, a flexible simulation and optimization software that generates
optimized railway power system designs, helping engineers find the most efficient design solutions from
a technical and economic feasibility perspective. After validating the simulation engine and comparing it
with well-established software, the proposed method was applied to an operational electrified railway line in
Italy to assess the effectiveness of the optimization algorithm. The results demonstrate excellent convergence
properties, finding a different infrastructure design that achieves the same electrical performance, reducing
costs with respect to the existing design.

INDEX TERMS Genetic algorithms, multi-objective optimization, simulation software, rail transportation
power system.

I. INTRODUCTION
In recent years, the need for decarbonization has fueled
increasing interest in the electric transport of light and heavy
loads, for both short and long distances [1]. Railway systems
have always been an attractive alternative to other electric
vehicles, such as buses, passenger cars, and two-wheelers,
because of their lower energy consumption and associated
additional savings in CO2 emissions. For example, taking
a train instead of a car for medium-length distances would
reduce emissions by around 80% [2]. In fact, high-capacity
urban railways require approximately 10% of the energy
required to cover the same distance traveled by passenger
cars [3]. In addition to emissions savings, counteracting
global warming, the development of rail transport has great
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potential for improving citizens’ quality of life, as it reduces
air pollution, traffic and noise caused by cars and buses.
Therefore, governments worldwide have always supported
the development of railway networks, adopting it as a key
strategy to achieve a smaller carbon footprint for their coun-
tries. In 2021, the Italian Government planned to invest
approximately 24 billion euros by 2027 for the construc-
tion [4] of new railway lines and the upgrade of existing ones.

The adoption of train transport is contingent on the devel-
opment of railway infrastructure, requiring high initial costs
and long construction times. The design process of railway
systems is complex because of the large number of compo-
nents involved and the high level of interdependence between
them. Therefore, the comparison of different design solutions
and the evaluation of their performance is not an easy task,
especially when dealing with electrical aspects, where simpli-
fied linear models are not sufficiently accurate in most cases.
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Carrying out simulations is often the best way to consider
all relevant aspects before the construction of these types of
systems, whose cost is usually quite high. Simulations pro-
vide the opportunity to detect critical issues during the power
system design process when there is still a chance to modify
most parameters and avoid problems. Once a sufficiently
secure design has been established, iterative simulations can
be employed to assess the advantages of various deviations
from the baseline configuration. The process is inherently
intricate and time-consuming, necessitating refinement of the
initial design. Furthermore, in the contemporary context, it is
crucial to conduct a precise preliminary energy assessment
to ensure the adoption of appropriate measures to optimize
energy efficiency [5], [6] and achieve a design solution that
is both technically and economically feasible.

This paper proposes a novel design strategy employing the
development of an accurate simulation software coupled with
a custom meta-heuristic optimization algorithm, adapted for
the peculiarity of railway power system features. The method
is based on two main tools: the ROAR-simulator tool, a DC
railway system simulator, and the ROAR-optimization tool,
a custom genetic algorithm to optimize the electrification
design, both of which are written in Python language, exploit-
ing its capabilities to overcome the limitations imposed by
older languages.

Overall, the ROAR software allows a drastic reduction in
the design process time, giving the engineers a set of already
optimized solutions. In particular, this procedure enables the
optimization of the placement and sizing of the electrical
substations and the sizing of the conductors, considering the
phenomena involved in the entire electrical system of one or
more transport lines. Additionally, it allows for the compar-
ison of various design solutions, with the aim of optimizing
energy savings through the recovery of braking energy from
vehicles and the exchange of power between vehicles using
the traction line.

The sections are arranged as follows: Section II provides
a general overview of railway systems models and optimiza-
tion techniques, outlining and comparing different needs of
modeling. Section III presents the general structure of the
ROAR software, Section IV describes the mathematical mod-
els used to simulate the multi-physical system, and Section V
describes the validation of the simulation tool, performed
comparing simulation results by ROARwith those calculated
by an older validated software. Section VI describes the
optimization algorithm, and Section VII analyzes the results
of a case study, comparing the optimized design calculated
by ROAR with the actual design of an existing electrified
railway line. Section VIII presents conclusions and possible
future research directions.

II. LITERATURE REVIEW
A. RAILWAY SYSTEM SIMULATORS
Electric railway systems require dedicated simulation tools
because of the peculiar features of loads (trains) that move

over time and space, changing their kinematic and dynamic
performance. This specific aspect introduces additional com-
plexity in the software with respect to conventional power
system simulators, where loads do not change their positions
or connection points over time. Numerous scientific studies in
the literature have employed railway system simulators devel-
oped using different approaches and architectures according
to the specific needs of every study.

Among the most widely adopted simulation software in
the literature, MATLAB [7] offers a high-level interpreted
language with a comprehensive Integrated Development
Environment (IDE) and several ready-to-use toolboxes and
functionalities. It provides basic object-oriented program-
ming features with totally dynamic typing, without any
type-checking system. MATLAB Coder can be used to com-
pile standalone applications to C/C++ to gain performance
but with less flexibility.

Simulink/Simscape is an interesting cyber-physical sys-
tem modeling tool integrated into MATLAB IDE, allowing
the construction of simulation models by simply connect-
ing blocks together. Since it does not require writing code,
it can significantly reduce the development time of simple
simulation models; however, this type of graphical interface
becomes difficult to use for complex projects because of the
large number of blocks connected. However, these tools are
becoming popular owing to their user-friendliness, fueling
research on layout optimization and automatic block place-
ment techniques [8].

OpenModelica [9] is an open-source modeling and simu-
lation environment developed and supported by a non-profit
organization. In some ways, it is similar to Simscape, but
it offers the double option of creating models in graphical
form or using code. In addition, the code is compiled into
C/C++ every time the models are modified, enabling con-
siderable performance levels. Moreover, OpenModelica has
an advanced system for type checking, which also supports
generic types, but dynamic typing is not supported because
the system is based on the traditional paradigm of C/C++,
resulting in limited flexibility.

B. LOW-LEVEL VS HIGH-LEVEL LANGUAGES
The selection of the programming language (or framework)
for software may be the most important choice because it
deeply influences the characteristics of the resulting program.

Low-level languages (e.g. C/C++ and FORTRAN) are
still used as the core of comprehensive simulation frame-
works, and high-level languages are suitable for building
both simple and sophisticated simulators. As confirmed by its
great diffusion, object-oriented programming is an incredibly
powerful approach for handling the high complexity required
by real-world problems, which can be addressed in a simple
way using design patterns. Custom software can remarkably
benefit from open-source libraries, whose exploitation can
considerably reduce the development time owing to code
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reuse, but it may be difficult to find such libraries for specific
applications.

C. RAILWAY SYSTEMS OPTIMIZATION
In past years, most studies on the performance improvements
of railway power systems regarded two main aspects [5]:

• changes in human behavior, modifying the driving style
of the driver, and timetable optimization;

• improving infrastructure using stationary and on-board
energy storage systems for braking energy recovery,
integration of renewable sources and energy exchange
with electric vehicles.

In recent years, several optimization methods for timetable
management have been proposed using various techniques.
In [10] a genetic algorithm was used to time shift loads,
smoothing the load profile, thereby significantly reducing
the maximum traction power. A different approach was used
in [11] where a two-step optimization, with linear program-
ming and a genetic algorithm, was performed to synchronize
the train schedules to reduce both waiting time and energy
consumption. A hybrid approach was used in [12] where a
genetic algorithm was employed to optimize both the driving
style and timetable, using a metro station in China as a
reference.

On-board energy storage systems have been already
adopted by some rail transit companies since such systems
offer several advantages, including peak power reduction,
minimized losses, voltage stabilization, and the ability to
operate without overhead catenaries. Among the differ-
ent technologies, in [13] an energy management system
has been explored to reduce the energy consumption of
fuel cell/supercapacitor hybrid trains. Conversely, in [6] a
battery-based storage solution was sized for placement in a
substation using particle swarm optimization.

In some studies, stationary storage is used also for the
integration of renewable sources into the railway power sys-
tem. [14] analyses the connection of renewable sources and
batteries to the catenary, whereas [15] describes a totally
renewable railway power system, with batteries both in sta-
tions and on-board. Reference [16] investigates the use of
batteries inside substations for energy exchange between
trains braking regeneratively and electric vehicles connected
to recharging points in the parking lots of stations; [17]
performs similar study, including also renewable sources.

About the enhancement of existing rail infrastructure, vari-
ous approaches to optimization problems have been explored.
In [18] a simplified system representation was employed to
reduce the optimization to a mixed-integer linear program-
ming problem. A more complex representation led the same
authors to use a genetic algorithm to optimize the spacing
between the autotransformers [19]. Additionally, a complete
optimization of the system, including the position of the
substation, the position of the autotransformers, and the cate-
nary configuration, was proposed in [20]. The problem of
the optimal positioning, which is studied in this paper, has

been already treated regarding the effect on the electrifi-
cation [21], the maximization of the regenerative breaking
energy [22] and the seismic risk [23] but has never treated
in a multi-objective problem optimized with a meta-heuristic
algorithm.

In this study, the authors exploited a genetic algorithm,
namely aNSGA-II, to optimize both the sizing and placement
of the electrical substations along the railway line. The main
problem addressed with this method is the strong influence
of the meta-parameters of the genetic algorithm on the num-
ber of electrical substations. This influence arises from the
encoding of the railway power system design into the genetic
algorithm. The authors propose a novel design methodology
that aims to achieve the following advancements:

• the ability to use a non-simplified representation of the
railway system within a simulation tool that addresses
all the non-linearities of the multi-physical nature of the
system, including train driver behavior in normal and
fault scenarios;

• the implementation of an innovative crossover func-
tion to eliminate the influence of the meta-heuristic
parameters of the genetic algorithm on the number of
substations;

• the use of new indicators to evaluate the quality of
the voltage profile of traction lines, and to assess the
response of the system in the event of a fault.

III. ROAR SOFTWARE OVERVIEW
ROAR software is a powerful cross-platform simulation and
optimization software for railway systems, written in Python,
to speed up the design process of new lines or upgrades to
existing ones. Data entry, simulation, and optimization setup
were carefully designed to be seamless, and the computation
engine exhibited good performance.

A. ROAR SOFTWARE ARCHITECTURE
ROAR software exploits high-level capabilities of Python
language to achieve an improved trade-off between flexibil-
ity, complexity, and speed in simulations, to harness the great
flexibility of general-purpose physical modeling frameworks
used for research, with the simplicity and computational
performance of commercial software. Unlike other high-level
object-oriented languages (e.g. Java andC#), Python provides
an optional static type-checking system that ensures a way
to detect errors before runtime, simultaneously leaving the
chance of not defining fixed types for situations where a lot of
flexibility is required. For performance-sensitive situations,
the Cython compiler can be used to compile Python code into
C, allowing for the combination of the superior computational
speed of low-level languages with the power of high-level
code, thus taking the best of both worlds.

ROAR software consists of two tools: ROAR-simulator,
and ROAR-optimization. As shown in Fig. 1, the
ROAR-simulator acts as the inner part of the software,
simulating a DC railway system, computing all the relevant
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physical quantities, and calculating the key technical perfor-
mance indices to evaluate the design and compare it with
different ones. Instead, ROAR-optimization is responsible
for the generation of different designs to be simulated and
compared: it acts as the controller of a meta-heuristic multi-
objective optimization process [24], [25], exploring awide set
of technical choices to find the best trade-off between perfor-
mance and total system costs [26]. For ROAR-optimization,
the authors realized a custom version of a multi-objective
Non-dominated Sorting Genetic Algorithm (NSGA-II)
[27], [28].

FIGURE 1. ROAR-software architecture.

B. SIMULATION INPUT AND OUTPUT
Fig. 2 shows the input data of ROAR-simulator. Each box
represents an object responsible for a single aspect of the
simulation. Every object can be replaced with a customized
version to allow the software to simulate behaviors that are
different from standard ones.

FIGURE 2. Inputs of ROAR-simulator.

Table 1 summarizes the ROAR-simulator outputs for each
simulated component. In addition to the instantaneous val-
ues of the mechanical and electrical quantities, the software

TABLE 1. Outputs of roar-simulator.

evaluates the energy flows in the system, calculating different
types of losses, as shown in the Sankey diagram depicted in
Fig. 3. Fig. 4 reports different aspects of a railway system.
First, a train driver behavior model calculates the desired
force to be applied to each train, depending on train posi-
tion, speed, and speed limits. Then, a simplified model of
train motors, converters, and their control systems, computes
the real driving force (or braking force) applied to each
train, depending on the adsorbed electrical power, computed
towards a system load flow. In some cases, due to elec-
trical limitations (e.g. low values of line voltage, regulated
by technical standards), the applied forces can be different
from the desired ones. Finally, a mechanical model is used
to calculate the acceleration of each train, to update their
speeds and positions. After the simulation has been com-
pleted, a post-processing phase calculates total values (e.g.
adsorbed energy, losses) for each component (e.g. train, sub-
station).

C. LOAD FLOW
For each simulated time step, the software builds the electrical
model of the system, then calculates voltages perform-
ing one or more load flows, with a final check to verify
the voltage stability of the solution (to detect voltage col-
lapse). The Newton-Raphson method was preferred over the
Gauss-Seidel method because of its faster convergence at
the expense of relatively higher complexity. The computed
voltage value at each node (train pantograph or substation
busbars) is used as the initial value for the load flow of
the subsequent simulation step. This simple trick drastically
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FIGURE 3. Energy flows and losses calculated by ROAR-simulator.

FIGURE 4. Simulation algorithm of ROAR-simulator.

reduces the number of iterations required to reach conver-
gence (e.g. 3 iterations for 10−5 precision), thus decreasing
the total simulation time. When one or more trains pass near
a substation, the electrical model of the system can have one
or more branches with ‘‘low resistance’’ (resistance values
below 1% of the other ones), which may prevent the load flow
from converging properly. To avoid these situations, before
performing the load flow the software checks for the exis-
tence of low-resistance branches and simplifies the network
to an equivalent network without these types of branches.
Every group of nodes connected by low-resistance branches
are incorporated into a single ‘‘super-node.’’

D. FAULT SIMULATION AND AUTOMATIC
TRAFFIC REDUCTION
ROAR software simulates each design solution not only con-
sidering a healthy power system. In fact, it takes into account
the effect of faults, which may affect the transport capacity
of the railway. This enables the evaluation of the robustness
of the power system, highlighting the advantages of more
expensive solutions that may be excluded beforehand.

In particular, ROAR simulates the same power system
multiple times, every time assuming a different fault among
a set of chosen faults. As shown in Fig. 5, the optimizer
gradually reduces the power and/or frequency of the trains
until an acceptable system operation is achieved, without vio-
lating the basic technical constraints: maximum current for
overhead conductors and conversion groups, and minimum
line voltage.

FIGURE 5. Normal and faulty railway power system simulation,
performed by ROAR software.

IV. MODELS OF RAILWAY SYSTEM COMPONENTS
A. TRAINS
1) MECHANICAL MODEL
In ROAR, each train is modeled as a point mass moving along
a curvilinear path (strictly following its track) using a 1-D
model. At every simulation step, the acceleration of each train
is calculated according to 2nd Newton’s law, and then train
speed v and position x are updated by integrating the motion
equations. As described further in paragraph IV-A.3, driving
and braking forces are applied according to the train control
algorithm (train driver behavior simulation), which considers
various constraints, such as the speed limit imposed by route
curves. For mechanical resistance, all terms (aerodynamic,
rolling, curve, and slope resistances) depend on the geode-
tic features of the route, such as slope angle and radius of
curvature of the track at the train position.

2) ELECTRICAL MODEL
Under normal conditions, the mechanical power delivered to
the train wheels (Pw > 0) is provided entirely by the motors
(Pmechmotor = Pw), and it is controlled to be equal to the value set
by the train driver (P∗

w), so the electrical power adsorbed from
the line (Pline > 0) is independent of the voltage V (constant
power control). When the power system is heavily loaded, the
line voltage V is low and converters decrease the adsorbed
electrical power to avoid large currents that may damage
the line or the train converters themselves. Most converters
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FIGURE 6. Electrical model used by ROAR-simulator for every train: equivalent circuit (left) and associated I-V characteristic (right).

switch to constant current control mode if the line voltage is
below a fixed voltage threshold Vth, so the mechanical power
delivered to the train wheels is smaller than the value set by
the driver (Pw < P∗

w).
In contrast to the previous case, where the limit imposed by

the electrical supply system results in a discrepancy between
the driver’s command and the train behavior (Pw ̸= P∗

w),
braking (P∗

w < 0) must always be accomplished as deter-
mined by the driver for safety reasons. During regenerative
braking, under normal conditions, the mechanical power
adsorbed by the motors (Pmechmotor < 0) is fed back to the line
(Pline < 0). Therefore, also in this case, the electrical power
exchanged with the line is independent of voltage. This is
true only if the line voltage is below its maximum limit Vmax ,
otherwise, the converters switch to constant voltage control,
reducing the power regenerated to the DC line. The excess
‘‘unregenerable’’ power is dissipated into mechanical brakes
(Pmechbrake > 0) and/or train rheostats (Prheo > 0), performing a
mixed regenerative-rheostatic braking.

ROAR software allows the simulation of trains with differ-
ent types of energy regeneration control: each train has its
converter control policy, which defines how converters are
controlled according to the desired driving or braking power
P∗
w and pantograph voltage V . However, custom converter

control policy objects can be defined, allowing the simula-
tion of more complex converter control modes. This can be
applied to all trains or only a few of them.

The equivalent circuit used by ROAR to simulate every
train, depicted in Fig. 6, is composed of three electrical
components:

• a non-linear constant-power load (or generator) for nor-
mal driving (or braking) operation;

• a current generator for traction operation at reduced
power when the line voltage is low;

• a voltage generator, for mixed regenerative-rheostatic
braking when line voltage is high.

At every simulation time step the software evaluates the
conditions listed in Table 2 to determine the component to use
in the equivalent circuit. The model considers the efficiency
of motors (ηmotor ) and converters (ηconv), which defines the
global train efficiency (= ηconv ηmotor ).

TABLE 2. Conditions for the calculation of energy flows.

3) TRAIN DRIVER BEHAVIOR
In general, simulating man-in-the-loop systems requires the
use of complex statistical models. However, a simplified
approach can be adopted to analyze which actions the train
driver should perform to comply with train running con-
straints (e.g. decrease the speed before a curve) and objectives
(e.g. running time minimization). The train driver behavior
simulation algorithm depends on the configured motor con-
trol policy, which is composed of a list of control rules, in a
well-defined priority order. As shown in Fig. 7, each control
rule is responsible for a particular action to be taken by the
train driver (e.g., maintaining a constant speed, braking at
maximum power, etc.) based on a condition (e.g. when the
train speed is close to the limit or when the train exceeds the
speed limit, etc.).

At every simulation time step, the condition of the first
control rule is evaluated, and the corresponding action is
taken only if the condition is satisfied. The second condition
is evaluated only if the previous one is not satisfied, and so on.
This allows the control to consider high-priority constraints
before low-priority constraints. Before evaluating the control
conditions, the software calculates the constraints to comply
with (listed in Table 3 ), which may vary from time to time.
For example, the maximum train acceleration amax depends
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FIGURE 7. Train driver behavior simulation algorithm used by the default
motor control policy in ROAR software.

TABLE 3. Constraints for motor control policy.

TABLE 4. Standard motor control rules in roar-simulator.

on the path slope in the current position, so amax must be
updated at every simulation step.

ROAR software library contains different control rules to
allow the user to build his motor control policy according
to his needs. Table 4 lists the control rules (in their priority
order) used in the default policy.

dsafe is the ‘‘minimum safe brake deceleration,’’ i.e. the
deceleration needed to perform a braking to target to:

• a station, where the train must stop (v∗ = 0)
• a speed limit change point (v∗ = vlim)
In general, it is useful to think in terms of ‘‘critical points,’’

i.e. points where trains should reach speed v = v∗ at position
x = x∗, so stations can be considered as zero-speed limit
change points. If dsafe > dmax the train is not able to brake
safely, in fact, its maximum deceleration is not sufficient
to perform proper braking to the target, thus the train will
decelerate less than needed, stopping after the station or
reaching the new speed limit too late, exceeding it for some
time, as shown in Fig. 8.

The minimum safe brake deceleration dsafe is evaluated as
follows. For each critical point i ahead of the train, in its
running direction, then only the lowest value is considered
for the train control, as shown in Fig. 9.

dsafe,i =
v2 − (v∗i )

2∣∣x∗
i − x

∣∣ dsafe = min
i

(dsafe,i)

FIGURE 8. Comparison of speed profiles of a train, braking at different
decelerations, before a critical point.

FIGURE 9. Determination of the minimum safe brake deceleration for
one train, based on the three critical points ahead of it.
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As shown in Table 4, some constant coefficients are used.
These coefficients are needed to ensure a proper safety mar-
gin so that the train can brake without problems even if
the real maximum deceleration is lower than the evaluated
one. In fact, dmax considers the local path characteristics to
calculate the total mechanical resistance of the train. Since the
path constantly changes along the route (and the air resistance
varies with speed) the maximum deceleration dmax is always
evaluated with some error. This coefficient can be optimized
depending on the path, but the values reported in the table are
a good compromise for common real-world cases.

Another important purpose of the coefficients is to avoid
control instability, which can occur due to the discrete nature
of the simulation. In fact, due to the variability of the mechan-
ical resistance (and thus the maximum deceleration), the
control could oscillate between two control rules, changing
from one to another, at every simulation step. The difference
between the coefficient in condition (0.6) and the control
action (0.75) ensures a proper margin, acting like a hysteresis,
keeping the train in the same state when approaching a critical
point, and avoiding an oscillating behavior.

Similar to converter control policies, also custom motor
control policies and control rules can be customized as
needed, allowing the simulation of more complex train driver
behaviors to be applied to all trains or just a few trains.

B. ELECTRICAL SUBSTATIONS
Electrical Substations (ESS) are simulated through simple
Thevenin equivalent circuits, thus modeling the voltage drop
at substation DC busbars as proportional to the total current
injected into the line. For one-directional substations, i.e.
which do not allow energy regeneration from the DC line
to the AC grid, the software checks the sign of the total
current injected into the line. If the current is negative, i.e.
some substations would transfer power from DC to AC, the
load flow calculation is repeated, turning off (disconnecting
from the DC line) substations with negative currents. These
substations are also simulated as turned off for the following
simulation steps, then are turned on again when the calculated
busbar voltage becomes greater than the Thevenin equiv-
alent voltage. For bidirectional substations, i.e. substations
equipped with DC/AC inverters to allow energy flow from
the line to the power grid, two different Thevenin equivalent
resistance and no-load voltage values can be used, one for
each energy flow direction, as shown in Fig. 10.

C. TRACTION LINES
DC traction lines are simply modeled by the software as
resistive branches, calculating the total equivalent resistance
of all the conductors: contact wires, load-bearing wires, and
feeder wires, connected in parallel. For contact wires, a usury
factor is used to consider the reduction in the gauge due to
mechanical usury over time. The resistance of rails is also
considered in the model, as an additional resistance in series
with each branch. Fig. 11 shows the complete electricalmodel

FIGURE 10. Equivalent circuits used by ROAR-simulator for the electrical
substations: (left) one-directional, (right) bidirectional.

of a small system with 2 tracks, 3 trains and 3 one-directional
substations.

In the future, ROAR software will be expanded to con-
sider the thermal behavior of line conductors and AC/DC
conversion groups in substations, to improve the assessment
of the thermal limits of the components and more accurately
evaluate the ability of the system to handle power overloads.

V. ROAR-SIMULATOR VALIDATION
The results obtained from the ROAR-simulator tool have
been rigorously compared with those from ‘‘Recupera’’ soft-
ware. ‘‘Recupera’’ has a proven track record of validity,
confirmed through extensive experimental measurements,
and has been employed successfully in numerous projects [5],
[6], [7], showing a high correspondence between simulation
results and experimental data.

A. TEST RAILWAY SYSTEMS
Software validation was performed on two case studies: a first
simple test with a train on an existing railway line in Piedmont
(northern Italy), and another one with multiple trains on a test
high-speed railway line.

The first case study consisted of:

• a 16.5 km single track line, with variable speed limit
between 60 and 90 km/h, various curves and a short
tunnel;

• a ‘‘Minuetto’’ train byAlstom equippedwith two driving
coaches (ALe 501 andALe 502), with nominal electrical
power of 3.5 MW, stopping on 5 stations;

• 3 kV DC traction line with 4 conductors per track:

◦ 2 contact wires (100 mm2, with 0.7 usury factor);
◦ 2 load bearing wires (120 mm2);

• 1 electrical substation at position 5.3 km, equipped
with 2 AC/DC groups of 5.4 MW each;

• simulation of 17 minutes with time step of 5 seconds.

The second case study consisted of:

• a 90 km double track line, with 2 curves and 2 tunnels;
• 5 minutes departures with ‘‘Frecciarossa’’ ETR500 with
nominal electrical power of 11 MW;

• 3 kV DC traction line with 5 conductors per track:

◦ 2 contact wires (150 mm2, with 0.7 usury factor);
◦ 2 load bearing wires (120 mm2);
◦ 1 feeder wire (150 mm2);

VOLUME 12, 2024 128475



A. Ruvio et al.: Novel Railway Power Systems Design Methodology Using Genetic Algorithms

FIGURE 11. Equivalent circuit used by ROAR for a system composed by 2 tracks (green), 3 trains (yellow) and 3 one-directional substations (blue).

• 7 electrical substations quite uniformly distributed
over the route, equipped with Italian standard high-
speed AC/DC groups (5.4 MW each, no-load voltage:
3.6 kV);

• 2 parallel points, between the traction lines of the
2 tracks;

• simulation of 45 minutes with time step of 15 seconds,
having 5 trains on each track at the same time.

The reference simulator Recupera performs the load flow
using the Gauss-Seidel method with per-unit values. The
software was set to its minimum allowed values for the base
power (100 W) and power error tolerance (1%) to run it
at its highest accuracy for comparison. The maximum error
tolerance of ROAR-simulator has been set to the same value
(1 W) to perform a fair comparison.

B. VALIDATION RESULTS
The results obtained through Recupera and ROAR-simulator
were compared by calculating the difference between the
power and voltage values at the pantographs of each train.
Simulation results are very satisfactory: in the first test
(Fig. 12) the power difference remains below 150 W for
the entire simulation, except for a few peaks. The voltage
difference is always below 0.2 V, apart from some points,
where the difference keeps below 1.5 V. The second test
(Fig. 13) showed even better results, with the power dif-
ference below 50 W for the entire simulation, except for
a few peaks that never exceed 100 W. The voltage differ-
ence is always below 1 V, except for the extreme points of
the line.

Table 5 shows a comparison of the total energies from the
grid to trains and line losses calculated by the two software.
As before, the difference between the values is minimal
(< 1%). Several other validation tests (not described here)
were performed, obtaining similar results, thus confirming
the quality and correctness of ROAR-simulator models and
algorithms.

FIGURE 12. Difference between the reference simulator and ROAR,
in voltage and power at the pantograph of Minuetto train, for the first
test case study.

FIGURE 13. Difference between the reference simulator and ROAR,
in voltage and power at each Frecciarossa train pantograph, for the
second test case study.

VI. POWER SYSTEM DESIGN OPTIMIZATION
ALGORITHM
To introduce increasingly advanced and intelligent perfor-
mances for the modeling and simulation of these systems,
the simulator for power system design was completed with
an optimization tool created specifically for this type of
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TABLE 5. Comparison between total energy results provided by the
reference simulator Recupera and roar.

application. This tool is primarily based on the a-NSGA-II
algorithm [27], which treats different railway power system
design solutions as distinct members of a population. As a
genetic algorithm, ROAR-optimization relies on four funda-
mental operators (evaluation, selection, crossover, mutation)
used sequentially to improve the performance of individuals,
mirroring a natural selection process.

Due to the particular nature of this problem, the crossover
operator has been customized to eliminate the influence of the
meta-parameters of the genetic algorithm on the structure of
the solutions [26]. Asmentioned previously, themain purpose
of the ROAR-optimization tool is to determine the optimal
railway power system design. Specifically, our goal was to
optimize:

• the placement of Electrical Substations (ESS);
• the number of AC/DC conversion groups for each ESS;
• the placement of Parallel Points (PP);
• the catenary configuration, i.e. conductors’ section.

The main issue with this optimization problem is the
unknown number of elements that must be placed, i.e.
the number of substations and parallel points. This num-
ber strongly affects the performance of the system, in fact,
fewer substations reduce capital costs but result in higher
energy losses and inferior voltage quality. When encoding
power system design data for the optimization problem,
the variability in the number of elements implies vari-
able lengths of the solutions. In the context of a genetic
algorithm, this leads to chromosomes of variable lengths,
imposing a modification of the crossover operator to mix
two chromosomes with different lengths. To ensure that
no meta-heuristic parameter influences chromosome length,
a novel crossover operator was developed. In the following,
the four operators used by the ROAR-optimization algorithm
are described.

A. EVALUATION OPERATOR
The evaluation operator is the ROAR-simulator tool. Since
the ROAR-simulator is a comprehensive railway system sim-
ulator, it enables the evaluation of various aspects of the
electric power system design. In the specific context of this

FIGURE 14. Example crossover between two railway power system
design solutions, performed by ROAR-optimization.

case study, the evaluation concerned four objectives: voltage
quality, fault response, substations cost, and catenary cost.

B. SELECTION OPERATOR
The selection operator employed is the classical a-NSGAII
binary tournament. The solutions are initially sorted based
on their membership in the Pareto frontier and then ranked
by their crowding distance. This selection method showed
good convergence and excellent search capability to avoid
local minima.

C. CROSSOVER OPERATOR
The novel crossover operator implemented in ROAR-
optimization acts as follows:

1. Given the two chromosomes that need to be mixed, one
becomes the ‘‘primary’’ chromosome (A), and the other
one becomes the ‘‘secondary’’ chromosome (B). The
primary has NA substations and parallel points, and the
secondary has NB.

2. Initially, a ‘‘son’’ chromosome (C) is created cloning
the primary, thus inheriting the number NA, configura-
tion and location of its substations and parallel points.

3. Next, NB/2 substations and parallel points, rounded
by excess, are randomly chosen from the secondary
chromosome and added to the son chromosome.

4. The closest existing substations and parallel points
are then removed from the son chromosome. Parallel
points within a minimum distance from any substation
are also removed.

5. Finally, the process is repeated swapping the roles of
primary and secondary chromosomes to create another
chromosome.

Fig. 14 reports an example, showing substations and paral-
lel points as circles, each one with the number of conversion
groups inside. For the sake of completeness, Table 6 reports
a sample chromosome of a design solution.

D. MUTATION OPERATOR
The mutation operator performs a random modification of
a solution, randomly choosing among 9 actions: adding,
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TABLE 6. Example chromosome of an electrical design solution.

FIGURE 15. Possible electrical designs (656) for the Via Formia route,
generated by ROAR-optimization, plotted on a 3D solution space.

shifting, removing a substation or a parallel point, adding or
removing a conversion group in a substation, and changing
the catenary configuration. To enhance the flexibility of the
program, a weighted system was introduced for the ran-
dom choice of the mutation action, favoring some mutation
modifications over others. Specifically, higher weights were
assigned to changes in substations and catenary, as opposed to
modifications to the parallel points. This reflects the common
practice among railway power system designers to limit the
number of parallel points.

VII. CASE STUDY
A. TRACK AND TRAFFIC
The testbed for this novel railway power system design
procedure is the ‘‘Rome-Naples via Formia,’’ an Italian his-
torical railway, electrified in the 1930s. This railway was
selected to compare the results obtained using the proposed
method with those of a real project. The track is 214 km
long, encompassing 25 train stations and 16 electrical sub-
stations. Given the high capacity and traffic of this railway,
the traffic scenario developed for this test comprises two
urban areas (near Rome and Naples respectively) with trains
every 5 min in the areas, and a suburban area (in the mid-
dle) with a train every 15 min. The optimization algorithm
was configured to use between 8 and 20 substations and an
equal number of parallel points. Two configurations were
considered for catenary wires: the first utilized 540 mm2 of
copper alloy, and the second involved a catenary configura-
tion with 690 mm2, achieved by incorporating an extra feeder
(150 mm2).

FIGURE 16. Possible electrical designs (656) for the Via Formia route,
generated by ROAR-optimization, plotted on a 3D solution
space.

FIGURE 17. Pareto-optimal electrical design solutions (54) for the Via
Formia route, generated by ROAR-optimization.

B. ROLLING STOCK
The rolling stock is composed of two train types. The first
is E464, consisting of 10 cars, including 2 driving cars. This
train features a maximum speed of 160 km/h, a calculated
mass of 464 t, and 3.5MWofmaximum electrical power. The
second train type is E404, also consisting of 10 cars, including
2 driving cars. It can reach 220 km/h, has a total mass of
576 tons and 6.4 MW maximum electrical power. ROAR-
simulator allows the configuration of all main characteristics
of the rolling stock to closely simulate real-world conditions.
All train characteristics needed for the study were collected,
but only the most interesting are described here.

C. OBJECTIVES
The following four objectives were considered: voltage qual-
ity, substations and parallel point cost, catenary cost, and loss
of capability in the event of an ESS failure.
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FIGURE 18. Existing substations placement of Rome-Naples via Formia railway (left) and optimal placement by ROAR software (right).

1) VOLTAGE QUALITY
To quantify voltage quality, we introduce the Standard Volt-
ageDrop (SVD)metric as follows, whereVr denotes the rated
line voltage and Vij denotes the pantograph voltage of the i-th
train at time j.

SVD =

√∑k,h
i,j=1

(
Vr − Vij

)2
kh

The SVD metric gives greater importance to the points with
a higher voltage drop. The use of this metric as an objective
to minimize pushes the algorithm to optimize the system so
that the voltage profile along the line is as homogeneous as
possible.

2) COSTS
In the absence of readily available cost information for elec-
trical railway infrastructure in the literature, a parametric
cost estimation approach was employed. The presence of
an Electrical Substation (ESS) corresponds to 1 Cost Unit
(CU). A conversion group, which includes a 12-pulse rectifier
and its transformers, corresponds to 0.25 CU, whereas one
Parallel Point (PP) costs 0.125 CU. The cost associated with
the catenarywas considered separately, due to the difficulty in
estimating the need for upgrading the conductor suspension
system.

3) FAULT ROBUSTNESS
An important part of this study was the evaluation of the
impact of losing an entire substation on the performance of
the railway power system, considering the unavailability of
an entire ESS chosen among the 3 most loaded ones. The
evaluation of the performance loss was based on a transport
capability indicator, calculated as the product of the train
power and train frequency. This value was expressed as a
percentage, with a fully operational system corresponding to

100%. In the event of a fault, the reduction in the maximum
power of trains or their frequency involves a loss of capability,
adopted as the fourth objective of the optimization.

D. SIMULATIONS
In total, 656 individuals were simulated. Such a wide range of
solutions allows designers to choose among different design
options based on project requirements.

Initially, the convergence of the algorithm was verified
by focusing on two opposing objectives. In fact, a single
objective is insufficient to confirm the convergence of a
multi-objective optimization algorithm; on the other hand,
considering all four objectives at once is not practical. Fig. 15
shows a scatter plot to visualize the trend of voltage quality
and the cost of substations along the generations, represented
by the color of the points. As generations increase, the
solutions move closer to the origin of the axes, where the
‘‘ideal optimum’’ is located. This illustrates the simultaneous
minimization of two contrasting objectives, performed by the
algorithm.

Fig. 16, presenting a 4-dimensional global representation
(3 spatial dimensions and 1 color dimension) of the solu-
tions, reveals that a large number of solutions exhibited a 0%
capability loss in the event of a fault, i.e. showing very high
robustness. Also, it confirms that the auxiliary feeder notably
increases voltage quality.

After verifying the convergence of the method, it is pos-
sible to manually select the final design according to project
requirements and priorities, e.g. the robustness to faults can
be secondary to the containment of costs. The authors per-
formed the selection with the aim of obtaining a final design
comparable to the existing one, to compare the results of the
proposed method to a real design.

The following considerations were applied to the set of
solutions: suboptimal solutions were eliminated, and only
non-dominated (Pareto-optimal) solutions were retained.
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Only solutions with 0% capability loss (for a single fault)
were considered, discarding the other ones. Additionally,
designs with no extra feeder were preferred to facilitate a
direct comparison with existing electrification. The remain-
ing 54 solutions are shown in Fig. 17. The red arrow indicates
the real electrification design of the ‘‘Via Formia’’ route,
and the chosen optimized solution is indicated by the green
arrow.

Remarkably, the selected solution exhibited equivalent
electrical performance in terms of loss of capability and stan-
dard voltage drop, with lower construction costs. A detailed
comparison between the actual electrification and the solu-
tion generated by the new optimization procedure is presented
in Fig. 18.

Cost reduction is primarily derived from a different substa-
tion distribution and the replacement of some substationswith
parallel points, which is noteworthy, given the divergence
from modern practices.

VIII. CONCLUSION
In this study, a novel method for railway electrification design
is proposed. The method consists of a non-simplified railway
system simulator coupled with a custom genetic optimiza-
tion algorithm. The models were validated by comparing
the results with those calculated using another simulator,
obtaining less than 1% error. The method has proven to
have fast convergence and produces a wide variety of Pareto-
optimal solutions, among which the designer can choose,
to find an optimal trade-off between technical performance
and overall system cost. The algorithm was tested on an
existing railway in Italy, challenging the existing design in
terms of substation cost, optimizing their distribution along
the path, and replacing some of them with parallel points
without reducing system robustness to faults. A limit of the
proposed method is the fixed cost of substations: in practice,
the realization of a substation requires its connection to the
power grid, with the construction of a new power line, whose
cost depends on its rated voltage and power, and the distance
between the substation and the grid. Other factors influencing
substation cost include the characteristics of the territory near
the railway, affecting the cost of the land to be acquired for
the construction of the substation and the power line. The
algorithm may be improved including a position-dependent
substation cost model, allowing the algorithm to prefer loca-
tions where constructing a substation is simple and cheaper.
However, this enhancement of the algorithm would neces-
sitate additional information, not straightforward to collect
or estimate, requiring additional time, and possibly leading
to biased optimization solutions in case of wrong estimation
of such parameters. For this reason, the actual convenience
in introducing this functionality requires more investiga-
tion. Also, the implementation of energy storage models
would allow the simulation of batteries, inside substations
or onboard, to evaluate the techno-economic convenience of
their use for both urban and long-distance railway systems.
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