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Abstract
The deferred correction (DeC) is an iterative procedure, characterized by increasing the 
accuracy at each iteration, which can be used to design numerical methods for systems of 
ODEs. The main advantage of such framework is the automatic way of getting arbitrarily 
high order methods, which can be put in the Runge-Kutta (RK) form. The drawback is the 
larger computational cost with respect to the most used RK methods. To reduce such cost, 
in an explicit setting, we propose an efficient modification: we introduce interpolation pro-
cesses between the DeC iterations, decreasing the computational cost associated to the low 
order ones. We provide the Butcher tableaux of the new modified methods and we study 
their stability, showing that in some cases the computational advantage does not affect the 
stability. The flexibility of the novel modification allows nontrivial applications to PDEs 
and construction of adaptive methods. The good performances of the introduced methods 
are broadly tested on several benchmarks both in ODE and PDE contexts.

Keywords Efficient deferred correction (DeC) · Arbitrary high order · Stability · Adaptive 
methods · Hyperbolic PDEs

Mathematics Subject Classification 65M12 · 65L20

1 Introduction

A huge amount of phenomena in many different fields can be modeled through ODEs 
and PDEs, whose analytical solutions are usually not available, hence, many numeri-
cal methods have been developed to approximate such solutions. Indeed, the higher 
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the accuracy needed in the approximation, the more expensive the associated numeri-
cal simulations are in terms of the  computational time and resources employed. If, 
on the one hand, with modern computers the speed of the simulations has drastically 
improved, and on the other hand, the always stricter tolerances required by mod-
ern applications have led to massive simulations only accessible to supercomputers 
and, still, characterized by very long computational times. That is why any effort in 
 reducing the computational costs of numerical simulations is of paramount impor-
tance. A classical way of reducing them is the adoption of high order methods, which 
allow to reach lower errors within coarse discretizations.

A wide series of arbitrarily high order methods is based on the DeC approach. Its 
original formulation has been firstly introduced in 1949 in [17] in a simple predic-
tion-correction time integrator framework. A more elegant version based on spectral 
integration in time was introduced in 2000 [16], characterized by an iterative proce-
dure allowing to increase the order of accuracy by one at each iteration. In 2003 [28], 
 Minion generalized the deferred correction (DeC) framework to obtain an implicit-
explicit arbitrarily high order method, with various applications to ODEs and PDEs 
[19, 23, 29, 30, 35]. Later on, the DeC approach has been generalized by Abgrall [2] 
to solve hyperbolic PDEs with high order continuous Galerkin (CG) spatial discretiza-
tions, overcoming the burden related to the mass matrix leading to numerous applica-
tions in the hyperbolic field [4, 6, 7, 14, 27]. The DeC has been also modified to pre-
serve physical structures (positivity, entropy, moving equilibria, conservation) [3, 5, 
14, 31]. Finally, in [18] it has been pointed out that DeC and ADER methods are very 
similar iterative time integrators and, when restricted to ODEs, they can be written as 
RK schemes, see also [21, 36].

The clear advantage of the DeC framework is the possibility to easily increase the 
order of accuracy, the drawback is the expensive computational cost, due to the itera-
tions and to the high degree of the polynomial reconstruction of the numerical solution 
considered in each of them. To alleviate such cost, the ladder strategy was proposed in 
implicit DeC algorithms [23, 28, 35], where the reconstruction in time increases the 
degree at each iteration. Between the iterations, an interpolation procedure links the 
different reconstructions. Though being the idea used in some works, it has never been 
deeply studied and analyzed, in particular, for the purely explicit DeC.

Inspired by this idea, in this work, we provide a detailed description of two novel 
families of efficient explicit DeC methods, based on easy modifications of existing DeC 
schemes. By explicitly constructing their Butcher tableaux and studying their  stability, 
we show that in some cases the new efficient versions and the classical one have the 
same stability functions. Moreover, we exploit the modification to build adaptive meth-
ods that, given a certain tolerance, automatically choose the order of accuracy to reach 
such error in the most efficient way. We also apply the efficient modification in the con-
text of mass matrix-free CG-DeC methods [2] for hyperbolic PDEs.

The structure of this work is the following. We start by introducing the DeC pro-
cedure in an abstract framework in Sect. 2 and as a tool for the numerical solution of 
ODEs systems in Sect.  3. In Sect.  4, we introduce the new families of efficient DeC 
methods. Then, we give their Butcher tableaux in Sect.  5 and in Sect.  6 we study 
in detail their linear stability. In Sect.  7, we describe the application to the numeri-
cal solution of hyperbolic problems with CG spatial discretizations avoiding mass 
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matrices. We propose an adaptive and efficient version of the methods in Sect.  8. In 
Sect. 9, we present numerical results for ODEs and hyperbolic PDEs with various com-
parisons with the classical DeC methods. Section 10 is dedicated to the conclusions.

2  Abstract DeC Formulation

We will first introduce the DeC abstract formulation proposed by Abgrall in [2]. Let 
us assume that we have two operators between two normed vector spaces 

�
X, ‖⋅‖X

�
 and �

Y , ‖⋅‖Y
�
 , namely L1

Δ
,L

2

Δ
∶X ⟶ Y  , associated to two discretizations of the same prob-

lem and dependent on a same discretization parameter Δ . In particular, assume that L2
Δ
 

corresponds to a high order implicit discretization, while, L1
Δ
 corresponds to a low order 

explicit one. We would like to solve L2
Δ
 , i.e., finding u

Δ
∈ X such that L2

Δ
(u

Δ
) = 0Y , to 

get a high order approximation of the solution to the original problem, but this is not 
easy because of its implicit character. Instead, the low order explicit operator L1

Δ
 is very 

easy to solve and, more in general, we assume that it is easy to solve L1
Δ
(u) = r with 

r ∈ Y  given, but the associated accuracy is not sufficient for our intended goals. In the 
next theorem, we will provide a simple recipe to get an arbitrary high order approxima-
tion of the solution of L2

Δ
 by combining the operators L1

Δ
 and L2

Δ
 in an easy iterative 

procedure.

Theorem 1 (DeC accuracy) Let the following hypotheses hold: 

i) existence of a unique solution to L2
Δ

      ∃! u
Δ
∈ X solution of L2

Δ
 such that L2

Δ
(u

Δ
) = 0Y;

ii) coercivity-like property of L1
Δ
 ∃ �1 ⩾ 0 independent of Δ such that

   

iii) Lipschitz-continuity-like property of L1
Δ
− L

2
Δ

   ∃ �2 ⩾ 0 independent of Δ such that 

Then, if we iteratively define u(p) as the solution of

we have that

Proof The proof relies on a direct use of the hypotheses. In particular, we have 

(1)
‖‖‖L

1
Δ
(v) − L

1
Δ
(w)

‖‖‖Y ⩾ �1
‖‖v − w‖‖X , ∀v,w ∈ X;

(2)
‖‖‖
(
L
1
Δ
(v)−L2

Δ
(v)

)
−
(
L
1
Δ
(w)−L2

Δ
(w)

)‖‖‖Y ⩽�2Δ
‖‖v − w‖‖X , ∀v,w ∈ X.

(3)L
1
Δ
(u(p)) = L

1
Δ
(u(p−1)) − L

2
Δ
(u(p−1)), p = 1,⋯ ,P,

(4)‖‖‖u
(P) − u

Δ

‖‖‖X ⩽

(
Δ
�2

�1

)P‖‖‖u
(0) − u

Δ

‖‖‖X .
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where in (5a) we have used (1), in (5b) the definition of the DeC iteration (3), in (5c) the 
fact that L2

Δ
(u

Δ
) = 0Y and, finally, in (5d) we have used (2). By repeating these calculations 

recursively we get the desired result.

Let us remark that, due to our assumption on the operator L1
Δ
 , the updating formula 

(3) represents a simple explicit recipe to approximate arbitrarily well the solution u
Δ
 of 

L
2
Δ
 . The convergence for P → +∞ is ensured independently of the starting vector u(0) 

provided that Δ 𝛼2

𝛼1
< 1 . The coefficients �1 and �2 can be computed once the operators L1

Δ
 

and L2
Δ
 are defined. In the next sections, we will provide such definitions for different 

DeC ODE solvers, and the convergence constraint imposed by Δ 𝛼2

𝛼1
< 1 will sum up to a 

classical timestep restriction for explicit methods.
If the solution u

Δ
 of L2

Δ
 is an Rth order accurate approximation of the exact solution 

uex of the original problem to which the operators are associated, it does not make sense 
to approximate u

Δ
 with the accuracy higher than R, as we are actually interested in uex . 

In particular, thanks to the accuracy estimate (4), if u(0) is an O(Δ)-approximation of uex , 
the optimal choice is P = R , i.e., the optimal number of iterations coincides with the 
accuracy of the operator L2

Δ
 . Any further iteration results in a waste of computational 

resources.
In the following, we will characterize the operators L1

Δ
 and L2

Δ
 for some DeC ODEs 

solvers, explicitly writing the associated updating formulas. To provide a clearer under-
standing of the methods, we also report their more classical formulation, in Appen-
dix A, in terms of residual and error functions [16]. However, we will stick to Abgrall’s 
formulation [2] for its compactness, the possibility to directly work on the solution and 
its flexibility, which allows for applications to more general contexts, such as structure 
preserving methods [3, 5, 14, 31], mass-matrix free finite element methods [2, 4, 6], 
ADER-DG methods [18, 25]. All these generalizations and the efficient modifications 
that we present in this paper are straightforward in Abgrall’s formulation, while they are 
more involved in the classical DeC framework.

(5a)
‖‖‖u

(P) − u
Δ

‖‖‖X ⩽
1

�1

‖‖‖L
1
Δ
(u(P)) − L

1
Δ
(u

Δ
)
‖‖‖Y

(5b)=
1

�1

‖‖‖L
1
Δ
(u(P−1)) − L

2
Δ
(u(P−1)) − L

1
Δ
(u

Δ
)
‖‖‖Y

(5c)=
1

�1

‖‖‖L
1
Δ
(u(P−1)) − L

2
Δ
(u(P−1)) − L

1
Δ
(u

Δ
) + L

2
Δ
(u

Δ
)
‖‖‖Y

(5d)⩽ Δ
�2

�1

‖‖‖u
(P−1) − u

Δ

‖‖‖X ,
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3  The DeC for Systems of ODEs

We want to solve the Cauchy problem

with u(t) ∈ ℝQ , z ∈ ℝQ and G∶ℝ+

0
×ℝQ

→ ℝQ a continuous map Lipschitz continuous 
with respect to u uniformly with respect to t with a Lipschitz constant L, which ensures the 
existence of a unique solution. We will present two explicit DeC methods for the numerical 
solution of such a problem, which are based on approximations of its integral form.

• bDeC, which was introduced originally in [24] in a more general family of schemes, 
but fully exploited for its simplicity only starting from [2] in the context of Galerkin 
solvers for hyperbolic PDEs without the mass matrix. In this method, the integral form 
is approximated on “big” intervals, hence the name bDeC.

• sDeC, which has a longer history [16] and more developments [19, 22, 28, 35]. In this 
method, the integral form is approximated on “small” intervals, hence the name sDeC.

Then, we will consider a general family of DeC methods, �DeC, depending on a param-
eter � , which contains both the previously described formulations as particular cases, as 
described in [24].

We assume a one-step method setting: at each time interval [tn, tn+1] , we assume to know 
un ≈ u(tn) and we look for un+1 ≈ u(tn+1) . In particular, as in the context of a general con-
sistency analysis, we assume un = u(tn) . In this context, the parameter Δ of the DeC is the 
step size Δt = tn+1 − tn . A more traditional but equivalent formulation of bDeC and sDeC 
in terms of error and residual functions [8, 9, 12, 13] is reported in Appendix A.

3.1  bDeC

In the generic time step [tn, tn + Δt] , we introduce M + 1 subtimenodes tn = t0 < t1 < ⋯

< tM = tn + Δt. Several choices of subtimenodes are possible, but for the following discus-
sion we will consider equispaced ones. In the numerical tests, we will also present results 
obtained with Gauss-Lobatto (GL) subtimenodes [16, 18, 31], which can obtain a higher 
accuracy for a fixed number of subtimenodes. We will refer to u(tm) as the exact solution 
in the subtimenode tm and to um as the approximation of the solution in the same subti-
menode. Just for the first subtimenode, we set u0 ∶= un.

The bDeC method is based on the integral version of the ODE (6) in each interval 
[t0, tm] , which reads

Starting from this formulation, we define the high order operator L2
Δ
 and the low order 

operator L1
Δ
 . We define L2

Δ
∶ℝ(M×Q)

→ ℝ(M×Q) by approximating the function G in (7) with 
a high order interpolation via the Lagrange polynomials �� of degree M associated to the 
M + 1 subtimenodes and exact integration of such polynomials

(6)
{

d

dt
u(t) = G(t,u(t)), t ∈ [0,T],

u(0) = z

(7)u(tm) − u0 − ∫
tm

t0
G(t,u(t))dt = 0, m = 1,⋯ ,M.



 Communications on Applied Mathematics and Computation

1 3

where the normalized coefficients �m
�
∶=

1

Δt
∫ tm

t0
��(t)dt do not depend on Δt . This leads 

to the definition of the spaces X = Y ∶= ℝM×Q of Sect. 2. Let us remark that L2
Δ
 is defined 

on the M components um ∈ ℝQ corresponding to the subtimenodes where the solution 
is unknown, while u0 is an intrinsic datum of the operator. The generic mth component 
L
2,m

Δ
(u) = 0 of the global problem L2

Δ
(u) = 0 corresponds to a high order discretization of 

(7). In particular, for equispaced subtimenodes, we have that if um is the mth component 
of the solution of (8), then, it is an (M + 1) th order accurate approximation of u(tm) . The 
proof is based on a fixed-point argument and can be found in the supplementary material. 
It is worth noting that L2

Δ
(u) = 0 coincides with an implicit RK method with M stages, e.g., 

when choosing GL subtimenodes one obtains the LobattoIIIA methods.
The definition of the low order explicit operator L1

Δ
∶ℝ(M×Q)

→ ℝ(M×Q) is based on a first 
order explicit Euler discretization of (7) leading to

where the normalized coefficients �m =
tm−t0

Δt
 are determined only by the distribution of 

the subtimenodes. The generic mth component L1,m

Δ
(u) = 0 of L1

Δ
(u) = 0 corresponds 

to the explicit Euler discretization of (7), hence, it is first order accurate and any system 
L
1
Δ
(u) = r can be readily solved for a given r ∈ ℝM×Q.
The operators L1

Δ
 and L2

Δ
 fulfill the hypotheses required to apply the DeC procedure, the 

proofs can be found in the supplementary material. In particular, we highlight that �1 = 1 , 
while �2 = L ⋅maxm=1,⋯,M

∑M

𝓁=1
��m

𝓁
�.

Let us now characterize the updating formula (3) to this setting. The vector u(p) ∈ ℝ(M×Q) 
is, in this case, made by M components um,(p) ∈ ℝQ , associated to the subtimenodes tm 
m = 1,⋯ ,M in which the solution is unknown, while we set u0,(p) ∶= un for all p. Then, (3) 
gives

(8)L
2
Δ
(u) =

⎛
⎜⎜⎝

u1 − u0 − Δt
∑M

𝓁=0
�1
𝓁
G(t𝓁 , u𝓁)

⋮

uM − u0 − Δt
∑M

𝓁=0
�M
𝓁
G(t𝓁 , u𝓁)

⎞
⎟⎟⎠
with u =

⎛
⎜⎜⎝

u1

⋮

uM

⎞
⎟⎟⎠
,

(9)L
1
Δ
(u) =

⎛⎜⎜⎝

u1 − u0 − Δt�1G(t0, u0)

⋮

uM − u0 − Δt�MG(t0, u0)

⎞⎟⎟⎠
,

(10)um,(p) = u0 + Δt

M∑
𝓁=0

�m
𝓁
G(t𝓁 , u𝓁,(p−1)), m = 1,⋯ ,M.

min

Fig. 1  Sketch of the DeC iterative process for equispaced subtimenodes
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The starting vector u(0) for our iterative procedure is chosen as um,(0) ∶= un for all m. At the 
end of the iteration process, we set un+1 ∶= uM,(P) . A graphical sketch of the updating pro-
cess is shown in Fig. 1. As said in Sect. 2, the optimal number of iterations depends on the 
accuracy of the operator L2

Δ
 , i.e., P = M + 1 for equispaced subtimenodes and P = 2M for 

GL ones. Further iterations would not increase the order of accuracy of the method. On the 
other hand, to build a Pth order method, the optimal choice consists of P iterations with 
M = P − 1 for equispaced and M =

⌈
P

2

⌉
 for GL subtimenodes.

3.2  sDeC

The sDeC operators differ from the bDeC ones by the “smaller” intervals considered to 
obtain the integral version of the ODE. In fact, adopting the previous definition of the 
subtimenodes, the sDeC method is based on the integral version of (6) over the inter-
vals [tm−1, tm] for m = 1,⋯ ,M . This leads to the following definition of the operators 
L
1
Δ
,L2

Δ
∶ℝ(M×Q)

→ ℝ(M×Q),

with �m =
tm−tm−1

Δt
 and �m

�
∶=

1

Δt
∫ tm

tm−1
��(t)dt normalized coefficients. As before, L1,m

Δ
(u) = 0 

is a first order explicit discretization, while, L2,m

Δ
(u) = 0 is a high order implicit one and, 

further, we have u0 ∶= un.
Differently from the previous formulation, in this case we cannot solve the operator L1

Δ
 

in all its components at the same time but we have to do it component by component from 
u1 to uM . The same holds for the general problem L1

Δ
(u) = r for a fixed r ∈ ℝ(M×Q) . How-

ever, still the computation of its solution can be performed explicitly.
Let us characterize the updating formula (3) to this context. The explicit character of the 

operator L1
Δ
 leads to an explicit recipe for the computation of u(p) whose components, in 

this case, must be computed in an increasing order

With recursive substitutions, (13) can be equivalently written as

(11)L
1,m

Δ
(u) ∶= um − um−1 − Δt�mG(tm−1, um−1) for m = 1,⋯ ,M,

(12)L
2,m

Δ
(u) ∶= um − um−1 − Δt

M∑
𝓁=0

�m
𝓁
G(t𝓁 , u𝓁) for m = 1,⋯ ,M

(13)

um,(p) = um−1,(p) + Δt�m
(
G(tm−1, um−1,(p)) − G(tm−1, um−1,(p−1))

)

+ Δt

M∑
�=0

�m
�
G(t� , u�,(p−1)).

(14)

um,(p) = u0 + Δt

m−1∑
�=0

��+1
(
G(t� , u�,(p)) − G(t� , u�,(p−1))

)

+ Δt

m∑
r=1

M∑
�=0

�r
�
G(t� , u�,(p−1)).
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Now, let us focus on the last term of (14). Exchanging the sums over r and � , thanks to the 
fact that 

∑m

r=1
�r
�
= �m

�
 , we have

which allows to explicitly compute all the components um,(p) in sequence from m = 1 to 
m = M , in opposition to bDeC where a parallel strategy can be adopted. For what concerns 
the accuracy of the method and the optimal number of iterations, one can refer to what 
already said in the context of the bDeC formulation.

Let us observe that the sDeC method is equivalent to the DeC method presented in [16] in 
terms of residuals and error functions. We show the equivalence in Appendix A.

3.3  A General Family of DeC Methods, ̨ DeC

Following [21], we can construct a family of schemes dependent on a single parameter 
� ∈ [0, 1] by a convex combination of the updating formulas of bDeC (10) and sDeC (15):

Through (16), it is possible to explicitly compute iteration by iteration the different com-
ponents um,(p) starting from m = 1 until M. Of course, when � = 0 we retrieve the bDeC 
formulation, while for � = 1 we get the sDeC one.

3.3.1  Matrix Formulation

We will now introduce a compact matrix-formulation of the presented methods. For conveni-
ence, we will now introduce the vectors containing as components the quantities related to all 
the subtimenodes including the initial one, even if u0 = un is never changed along the itera-
tions and it is not an input of the operators previously described. To avoid confusion, we refer 
to the vectors not containing such a component with the small letter and to the vectors contain-
ing it with the capital letter, i.e.,

We will also denote the component-wise application of G to the vectors u(p) and U(p) by

(15)

um,(p) = u0 + Δt

m−1∑
�=0

��+1
(
G(t� , u�,(p)) − G(t� , u�,(p−1))

)

+ Δt

M∑
�=0

�m
�
G(t� , u�,(p−1)),

(16)

um,(p) = u0 + Δt

M∑
�=0

�m
�
G(t� , u�,(p−1))

+ �

[
Δt

m−1∑
�=0

��+1
(
G(t� , u�,(p)) − G(t� , u�,(p−1))

)]
.

(17)u(p) =

⎛⎜⎜⎝

u1,(p)

⋮

uM,(p)

⎞⎟⎟⎠
, U(p) =

�
u0

u(p)

�
.
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With the previous definitions, it is possible to recast the general updating formula (16) in 
the following compact form:

where the vector U(0) ∈ ℝ((M+1)×Q) and the matrices Θ,Γ ∈ ℝ(M+1)×(M+1) are defined as

with the matrix Γ being strictly lower-triangular, as the scheme is fully explicit. Let us 
observe that the first component u0 of U(p) is never updated. This is coherent with what 
we have said so far. The matrices Θ and Γ that we have defined are referred to a sca-
lar ODE ( Q = 1 ). In case one wants to adapt them to a vectorial problem, they must be 
block-expanded.

4  Two Novel Families of DeC Methods

In this section, we will show how to construct two novel families of efficient DeC methods 
by introducing a modification in the �DeC methods, first focusing on equispaced subti-
menodes and then extending the idea to GL ones. The modification is based on the follow-
ing observation: at any iteration p < M + 1 , we get a solution u(p) that is pth order accurate 
using M + 1 subtimenodes even though only p would be formally sufficient to provide such 
accuracy. In other words, the number of subtimenodes is fixed a priori for all iterations 
to get the desired order of accuracy. These subtimenodes are used throughout the whole 
iterative process, although the formal order of accuracy, for which such nodes are required, 
is reached only in the final iteration. This represents indeed a waste of computational 
resources.

The proposed modification consists in starting with only two subtimenodes and increas-
ing their number, iteration by iteration, matching the order of accuracy achieved in the 
specific iteration. In particular, we introduce intermediate interpolation processes between 
the iterations to retrieve the needed quantities in the new subtimenodes. The idea has been 
introduced in [28] for implicit methods, but without a systematic theory and related ana-
lytical study. We will present here two possible interpolation strategies which will lead to 
the definition of two general families of efficient DeC methods.

We will use the star symbol ∗ to refer to quantities obtained through the interpolation pro-
cess. The number of subtimenodes will change iteration by iteration, therefore, it is useful to 

(18)G(u(p)) =

⎛
⎜⎜⎝

G(t1, u1,(p))

⋮

G(tM , uM,(p))

⎞
⎟⎟⎠
, G(U(p)) =

�
G(t0, u0)

G(u(p))

�
.

(19)
U(p) = U(0) + ΔtΘG(U(p−1)) + Δt�Γ(G(U(p)) − G(U(p−1)))

= U(0) + Δt(Θ − �Γ)G(U(p−1)) + Δt�ΓG(U(p)),

(20)U
(0) =

⎛⎜⎜⎝

un

⋮

un

⎞⎟⎟⎠
, Θ =

⎛
⎜⎜⎜⎜⎜⎝

0 0 … 0

�1
0

�1
1

… �1
M

�2
0

�2
1

… �2
M

⋮ ⋮ ⋮

�M
0

�M
1

… �M
M

⎞
⎟⎟⎟⎟⎟⎠

, Γ =

⎛⎜⎜⎜⎜⎝

0 0 … 0 0

�1 0 … 0 0

�1 �2 0 0

⋮ ⋮ ⋮ ⋮

�1 �2 … �M 0

⎞⎟⎟⎟⎟⎠
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define the vector t(p) ∶=
(
t0,(p),⋯ , tp,(p)

)T of the subtimenodes in which we obtain the approx-
imations of the solution at the pth iteration, with t0,(p) = tn and tp,(p) = tn+1.

4.1  ̨ DeCu

The �DeCu methods are obtained from the �DeC methods by introducing an intermediate 
interpolation process on the solution u(t) between the iterations. For convenience, we will for-
mulate the methods in terms of the vectors U(p) containing the component u0 = un associated 
to the initial subtimenode.

We start with U(0) = (un, un)
T ∈ ℝ(2×Q) associated to two subtimenodes, tn and tn + Δt , 

and we perform the first iteration

U(1) is first order accurate and it yields an O(Δt2)-accurate reconstruction on [tn, tn+1] . Here, 
Γ(1) and Θ(1) are the operators associated to two subtimenodes. Now, we perform the first 
interpolation, via a suitable interpolation matrix H(1) , passing from two to three equispaced 
subtimenodes

where the last equality is due to the fact that, by consistency, the sum of the elements on 
the rows of the interpolation matrices H(p) is equal to 1. The subscript 3 has been added to 
U

(0)

3
∈ ℝ3×Q to distinguish it from the initial U(0) ∈ ℝ2×Q . Now, we have U∗(1) ∈ ℝ(3×Q) , 

still first order accurate. Then, we perform the second iteration

which gives a second order accurate approximation, i.e., an O(Δt3)-accurate approxima-
tion. Thus, we continue with another interpolation

from which we can get U(3) O(Δt4)-accurate and so on. Proceeding iteratively, at the pth 
iteration we have

(21)U(1) = U(0) + Δt(Θ(1) − �Γ(1))G(U(0)) + Δt�Γ(1)G(U(1)) ∈ ℝ(2×Q).

(22)

U∗(1) = H(1)U(1)

= H(1)
[
U(0) + Δt(Θ(1) − �Γ(1))G(U(0)) + Δt�Γ(1)G(U(1))

]

= U
(0)

3
+ ΔtH(1)(Θ(1) − �Γ(1))G(U(0)) + Δt�H(1)Γ(1)G(U(1)),

(23)U(2) = U
(0)

3
+ Δt(Θ(2) − �Γ(2))G(U∗(1)) + Δt�Γ(2)G(U(2)),

(24)

U∗(2) = H(2)U(2)

= H(2)
[
U

(0)

3
+ Δt(Θ(2) − �Γ(2))G(U∗(1)) + Δt�Γ(2)G(U(2))

]

= U
(0)

4
+ ΔtH(2)(Θ(2) − �Γ(2))G(U∗(1)) + Δt�H(2)Γ(2)G(U(2)),

(25)
U

∗(p−1) = U
(0)

p+1
+ ΔtH(p−1)(Θ(p−1) − �Γ(p−1))G(U∗(p−2))

+ Δt�H(p−1)Γ(p−1)
G(U(p−1)),

(26)U(p) = U
(0)

p+1
+ Δt(Θ(p) − �Γ(p))G(U∗(p−1)) + Δt�Γ(p)G(U(p)),
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where U∗(p−1) ∈ ℝ(p+1)×Q is O(Δtp)-accurate, and U(p) ∈ ℝ(p+1)×Q is O(Δtp+1)-accurate. 
Clearly, the DeC operators Θ(p) and Γ(p) , used in the pth iteration, are chosen according to 
the dimension of involved variables.

Let us notice that U(p) ∈ ℝ((p+1)×Q) , got at the pth iteration, is O(Δtp+1)-accurate and 
associated to p + 1 subtimenodes but, actually, they would be enough to guarantee the 
O(Δtp+2)-accuracy. For this reason, if the final number of subtimenodes is fixed to be 
M + 1 , the optimal choice is to perform M iterations to reach such setting and a final 
(M + 1) th iteration without interpolation to saturate the O(ΔtM+2)-accuracy associated to 
the subtimenodes. In this way, we have that the interpolation is performed at each itera-
tion except the first and the last one. Thus, the last iteration reads

where the matrices Θ(M) and Γ(M) are the ones used also for the Mth iteration. A useful 
sketch of the algorithm is represented in Fig. 2.

On the other hand, one could also not fix a priori the final number of subtimenodes and 
stop when certain conditions are met, see an example for adaptive methods in Sect. 8.

4.2  ̨ DeCdu

Like the �DeCu methods, the �DeCdu methods are based on the introduction of an interpo-
lation process between the iterations. In this case, the interpolated quantity is the function 
G(t,u(t)) . The name is due to the fact that formally we interpolate d

dt
u(t) = G(t, u(t)).

We start with two subtimenodes, associated to tn and tn + Δt , and U(0) ∈ ℝ(2×Q) and we 
perform the first iteration of the �DeC method, as in (21), getting U(1) ∈ ℝ(2×Q) , which 
is O(Δt2)-accurate. Then, we can compute G(U(1)) , whose components allow to get an 
O(Δt2)-accurate global reconstruction of G(t,u(t)) in the interval [tn, tn + Δt] through the 
Lagrange interpolation. We thus perform an interpolation to retrieve the approximated 
values of G(t,u(t)) in three equispaced subtimenodes in the interval [tn, tn + Δt] , getting 
G∗(1) = H(1)G(U(1)) ∈ ℝ(3×Q) . Then, we compute

(27)U
(M+1) = U

(0)

M+1
+ Δt(Θ(M)− �Γ(M))G(U(M))+ Δt�Γ(M)

G(U(M+1)),

Fig. 2  �DeCu and �DeCdu, sketches: dots for computed values, crosses for interpolated ones
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which is in ℝ(3×Q) and O(Δt3)-accurate. We can iteratively continue with interpolations, 
G∗(p−1) = H(p−1)G(U(p−1)) , and iterations, obtaining the general updating formula

with U(p) ∈ ℝ((p+1)×Q) and O(Δtp+1)-accurate. Analogous considerations, as for the �DeCu 
method, hold on the advantage of performing a final iteration with no interpolation when 
the final number of subtimenodes is fixed. Also in this case, the reader is referred to Fig. 2 
for a better understanding of the method.

4.3  ̨ DeCu and ̨ DeCdu with Gauss‑Lobatto Subtimenodes

As already explained, M + 1 GL subtimenodes can guarantee an accuracy equal to 2M. 
In such a case, if the final number of subtimenodes is fixed, we start with two subti-
menodes and we alternate iterations of the �DeC method and interpolations as in the 
equispaced case, adding one subtimenode at each iteration until reaching the desired 
M + 1 subtimenodes, then, we continue with normal iterations of the �DeC until P = 2M 
to get the maximal order of accuracy associated to such a choice. The updating formulas 
are identical to the ones already presented. The interpolation is not performed at the first 
iteration and from the (M + 1) th iteration on. On the other hand, if the order P is fixed, 
the most efficient choice is given by a final number of subtimenodes equal to M + 1 with 
M =

⌈
P

2

⌉
 and P iterations.

Contrary to what one might think, it is not possible to postpone an interpolation 
process after the saturation of the maximal accuracy associated to some intermediate 
number of GL subtimenodes adopted in the early iterations. The interpolation processes 
must mandatorily take place in the first iterations. This is due to the mismatch between 
the O(Δt2p+1)-accuracy of the operator L2

Δ
 associated to p + 1 GL subtimenodes and the 

O(Δtp+1)-accuracy of the interpolation process with the same number of subtimenodes.

5  The DeC as RK

An explicit RK method with S stages applied in the interval [tn, tn+1] reads

The coefficients asr , cr , and br uniquely characterize the RK method and can be stored, 
respectively, into the strictly lower triangular matrix A and the vectors c and b , often sum-
marized in a Butcher tableau

(28)
U(2) = U

(0)

3
+ Δt(Θ(2) − �Γ(2))G∗(1) + Δt�Γ(2)G(U(2))

= U
(0)

3
+ Δt(Θ(2) − �Γ(2))H(1)G(U(1)) + Δt�Γ(2)G(U(2)),

(29)U(p) = U
(0)

p+1
+ Δt(Θ(p) − �Γ(p))H(p−1)G(U(p−1)) + Δt�Γ(p)G(U(p))

(30)

⎧⎪⎨⎪⎩

y0 = un,

ys = un + Δt
∑s−1

r=0
as,rG(tn + crΔt, y

r) for s = 1,⋯ , S − 1,

un+1 = un + Δt
∑S−1

r=0
brG(tn + crΔt, y

r).



Communications on Applied Mathematics and Computation 

1 3

It is well known, as presented in [18, 21, 24], that DeC methods can be written into the RK 
form. This also holds for the new methods, �DeCu and �DeCdu. In this section, we will 
explicitly construct their Butcher tableaux. We will adopt a zero-based numeration and the 
following convention for slicing. If M ∈ ℝD0×D1 , we denote by Mi∶j,k∶� its slice from the 
ith row to the jth row (included) and from the kth column to the � th column (included). We 
omit the last (first) index in case we want to include all the entries until the end (from the 
beginning), e.g., M1∶,∶6 = M1∶D0−1,0∶6

 . The same notation is assumed for vectors. We 

define also the vectors 
�(p) ∶=

(
0,

t1,(p)−tn

Δt
,⋯ ,

tp,(p)−tn

Δt

)T of the �m coefficients in different 

iterations of the new methods and, for the original �DeC method, the fixed vector 

� ∶=

(
0,

t1−tn

Δt
,⋯ ,

tM−tn

Δt

)T

 . In order to make the Butcher tableaux as compact as possible, 
the computation of the solution in the different subtimenodes at the first iteration will be 
always made through the explicit Euler method. This little modification has no impact on 
the formal accuracy, since the first iteration is meant to provide a first order approximation 
of the solution.

c A

b
.

Table 1  RK structures for the original �DeC with equispaced subtimenodes, c at the left b at the bottom, A 
in the middle

c u0 u(1) u(2) u(3) ⋯ u(M)
u
(M+1)

∶M−1
A

0 0 u0

�
1∶

�
1∶

0 u(1)

�
1∶

Θ1∶,0 (Θ − �Γ)1∶,1∶ �Γ1∶,1∶ 0 u(2)

�
1∶

Θ1∶,0 0 (Θ − �Γ)1∶,1∶ �Γ1∶,1∶ 0 u(3)

⋮ ⋮ ⋱ ⋱ ⋮

⋮ ⋮ ⋱ ⋱ ⋮

�
1∶M−1

Θ1∶M−1,0 0 ⋯ ⋯ 0 (Θ − �Γ)1∶M−1,1∶ �Γ1∶M−1,1∶M−1 u
(M+1)

∶M−1

b Θ
M,0 0 ⋯ ⋯ 0 (Θ − �Γ)

M,1∶ �Γ
M,1∶M−1 uM,(M+1)

Table 2  RK structures for the 
original bDeC with equispaced 
subtimenodes, c at the left b at 
the bottom, A in the middle

c u0 u(1) u(2) u(3) ⋯ u(M−1) u(M) A

0 0 u0

�
1∶

�
1∶

0 u(1)

�
1∶

Θ1∶,0 Θ1∶,1∶ 0 u(2)

�
1∶

Θ1∶,0 0 Θ1∶,1∶ 0 u(3)

⋮ ⋮ ⋱ ⋱ ⋮

⋮ ⋮ ⋱ ⋱ ⋮

�
1∶

Θ1∶,0 0 ⋯ ⋯ 0 Θ1∶,1∶ 0 u(M)

b Θ
M,0 0 ⋯ ⋯ ⋯ 0 Θ

M,1∶ uM,(M+1)
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We will focus on equispaced subtimenodes. The extension to the GL case is trivial: it suf-
fices to repeat the block without interpolation, related to the final iteration of the standard 
method, for the needed number of times, M − 1 in the optimal case.

5.1  ̨ DeC

We recall the general updating formula of the �DeC methods in a matricial form

If we align each iteration one after the other and we consider the approximation in each 
subtimenode of each iteration as an RK stage, we can pass to the RK formulation. Indeed, 
we do not repeat the redundant states, i.e., all the u0,(p) = un , and we keep only u0 as rep-
resentative of all of them. This leads to the RK formulation (30) with the Butcher tableau 
as in Table 1, where we added on top and on the right side the references to the different 
iteration steps. The number of stages of this formulation amounts to S = MP for any type 
of subtimenodes. If � = 0 , the �DeC method reduces to the bDeC method and the Butcher 
tableau simplifies to Table 2. In such case, we observe that we do not need the whole vec-
tor u(P) , but we can just compute the component associated to the final subtimenode with 
the only u(P−1) , leading to a total number of RK stages equal to S = M(P − 1) + 1.

5.2  bDeCu

Let us recall the general updating formulas of the �DeCu methods

(31)U(p) = U(0) + Δt(Θ − �Γ)G(U(p−1)) + Δt�ΓG(U(p)).

(32)
U

∗(p−1) = U
(0)

p+1
+ ΔtH(p−1)(Θ(p−1) − �Γ(p−1))G(U∗(p−2))

+ Δt�H(p−1)Γ(p−1)
G(U(p−1)),

(33)U(p) = U
(0)

p+1
+ Δt(Θ(p) − �Γ(p))G(U∗(p−1)) + Δt�Γ(p)G(U(p)),

Table 3  RK structures for the bDeCu method, c at the left b at the bottom, A in the middle

c u0 u∗(1) u∗(2) u∗(3) ⋯ u∗(M−2) u∗(M−1) u(M) A dim

0 0 u0 1

�(2)
1∶

�(2)
1∶

0 u∗(1) 2

�(3)
1∶

W
(2)

1∶,0
W

(2)

1∶,1∶
0 u∗(2) 3

�(4)
1∶

W
(3)

1∶,0
0 W

(3)

1∶,1∶
0 u∗(3) 4

⋮ ⋮ ⋱ ⋱ ⋮ ⋮

⋮ ⋮ ⋱ ⋱ ⋮ ⋮

�(M)

1∶
W

(M−1)

1∶,0
0 ⋯ ⋯ 0 W

(M−1)

1∶,1∶
0 0 u∗(M−1) M

�(M)

1∶
W

(M)

1∶,0
0 ⋯ ⋯ ⋯ 0 W

(M)

1∶,1∶
0 u(M) M

b W
(M+1)

M,0
0 ⋯ ⋯ ⋯ ⋯ 0 W

(M+1)

M,1∶
uM,(M+1)
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to which we need to add an initial iteration made with Euler and either a final iteration 
or, in the context of GL  subtimenodes, some final iterations (M in the optimal case) of 
the standard �DeC method performed without interpolation. In this case, the stages of the 
RK method are given by all the components of the vectors U(p) and U∗(p) (excluding the 
redundant states). From easy computations, one can see that for � ≠ 0 the number of stages 
of the �DeCu method coincides with the number of stages of the �DeC method without 
computational advantage under this point of view. For this reason, we focus on the bDeCu 
method ( � = 0 ), for which we have a substantial computational advantage. In such a  case, 
the updating formulas (32) and (33) reduce to

The right-hand sides of the previous equations involve the computation of G in interpolated 
states U∗ only and, in particular, the update of U∗(p−1) only depends on U∗(p−2) . This means 

that the scheme can be rewritten in terms of the vectors U∗(p) only (plus UM,(P) ), drastically 
reducing the number of stages. The RK coefficients are reported in Table 3, in which we 
have

The total number of RK stages is given by S = M(P − 1) + 1 −
(M−1)(M−2)

2
 , so (M−1)(M−2)

2
 

less with respect to the original method. The formula holds for both equispaced and 
GL subtimenodes.

Remark 1 (On the relation between stages and computational cost) The number of stages 
is not completely explanatory of the computational costs of the new algorithms. In the con-
text of the novel methods, the cost associated to the computation of the different stages 

(34)U∗(p−1) = U
(0)

p+1
+ ΔtH(p−1)Θ(p−1)G(U∗(p−2)),

(35)U(p) = U
(0)

p+1
+ ΔtΘ(p)G(U∗(p−1)).

(36)W (p) ∶=

{
H(p)Θ(p) ∈ ℝ(p+2)×(p+1), if p = 2,⋯ ,M − 1,

Θ(M) ∈ ℝ(M+1)×(M+1), if p ⩾ M.

Table 4  RK structures for the �DeCdu method with equispaced subtimenodes, c at the left b at the bottom, 
A in the middle

c u0 u(1) u(2) u(3) ⋯ u(M−2) u(M−1) u(M)
u
(M+1)

∶M−1
A dim

0 0 u0 1

�(1)
1∶

�(1)
1∶

0 u(1) 1

�(2)
1∶

X
(2)

1∶,0
X
(2)

1∶,1∶
Y
(2)

1∶,1∶
u(2) 2

�(3)
1∶

X
(3)

1∶,0
0 X

(3)

1∶,1∶
Y
(3)

1∶,1∶
u(3) 3

⋮ ⋮ ⋱ ⋱ ⋮ ⋮

⋮ ⋮ ⋱ ⋱ ⋮ ⋮

�(M−1)

1∶
X
(M−1)

1∶,0
0 ⋯ ⋯ 0 X

(M−1)

1∶,1∶
Y
(M−1)

1∶,1∶
0 u(M−1) M − 1

�(M)

1∶
X
(M)

1∶,0
0 ⋯ ⋯ ⋯ 0 X

(M)

1∶,1∶
Y
(M)

1∶,1∶
u(M) M

�(M)

1∶M−1
X
(M+1)

1∶M−1,0
0 ⋯ ⋯ ⋯ ⋯ 0 X

(M+1)

1∶M−1,1∶
Y
(M+1)

1∶M−1,1∶M−1
u
(M+1)

1∶M−1
M − 1

b X
(M+1)

M,0
0 ⋯ ⋯ ⋯ ⋯ 0 X

(M+1)

M,1∶
Y
(M+1)

M,1∶M−1
uM,(M+1)
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is not homogeneous, especially in applications to PDEs, as some of them are “properly” 
computed through the updating formula (16) of the original scheme, while the others are 
got through an interpolation process which is much cheaper. As an example, (32) can be 
computed as U∗(p−1) = H(p−1)U(p−2) . In particular, as already specified, the novel �DeCu 
methods for � ≠ 0 are characterized by the same number of stages as the original �DeC, 
nevertheless, roughly half of them is computed through interpolation. For this reason, they 
have been numerically investigated for � = 1.

5.3  ̨ DeCdu

Again, we start by recalling the updating formulas of the method

supplemented with an initial Euler step and a final iteration or, for GL subtimenodes, at 
most M final iterations of �DeC without interpolation. The usual identification of subti-
menodes and RK stages leads to the Butcher tableau in Table 4, in which we have

(37)U(p) = U
(0)

p+1
+ Δt(Θ(p) − �Γ(p))H(p−1)G(U(p−1)) + Δt�Γ(p)G(U(p)),

(38)X(p) ∶=

{
(Θ(p) − 𝛼Γ(p))H(p−1) ∈ ℝ(p+1)×p, if p = 2,⋯ ,M,

Θ(M) − 𝛼Γ(M) ∈ ℝ(M+1)×(M+1), if p > M,

(39)Y (p) ∶=

{
𝛼Γ(p) ∈ ℝ(p+1)×(p+1), if p = 2,⋯ ,M,

𝛼Γ(M) ∈ ℝ(M+1)×(M+1), if p > M.

Table 5  Number of stages for the original ( �DeC, bDeC) and novel ( �DeCu, �DeCdu, bDeCu, bDeCdu) 
methods with equispaced subtimenodes and speed up factor

�DeC bDeC

RK stages Speed up RK stages Speed up

P M �DeC/�DeCu �DeCdu �DeCdu bDeC bDeCu bDeCdu bDeCu bDeCdu

2 1 2 2 1.000 2 2 2 1.000 1.000
3 2 6 5 1.200 5 5 4 1.000 1.250
4 3 12 9 1.333 10 9 7 1.111 1.429
5 4 20 14 1.429 17 14 11 1.214 1.545
6 5 30 20 1.500 26 20 16 1.300 1.625
7 6 42 27 1.556 37 27 22 1.370 1.682
8 7 56 35 1.600 50 35 29 1.429 1.724
9 8 72 44 1.636 65 44 37 1.477 1.757
10 9 90 54 1.667 82 54 46 1.519 1.783
11 10 110 65 1.692 101 65 56 1.554 1.804
12 11 132 77 1.714 122 77 67 1.584 1.821
13 12 156 90 1.733 145 90 79 1.611 1.835
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The number of stages in this case amounts to S = MP −
M(M−1)

2
 , with a computational 

advantage of M(M−1)

2
 with respect to the original method.

Also in this case, it is worth giving a particular attention to the method given by � = 0 . 
Again, the possibility to compute uM,(P) without any need for the other components of u(P) 
further reduces the number of stages to S = M(P − 1) + 1 −

M(M−1)

2
.

We conclude this section with two tables, Tables  5 and 6, containing the number of 
stages of the original methods and of the novel ones, respectively for equispaced and 
GL subtimenodes, up to order 13 with associated theoretical speed up factors computed 
as the ratios between the stages of the original methods and the stages of the modified 
methods.

6  Stability Analysis

In this section, we study the stability of the novel DeC schemes. We will prove two original 
results. First, the stability functions of bDeCu and bDeCdu coincide with the bDeC ones 
and do not depend on the distribution of the subtimenodes but only on the order. Second, if 
we fix the subtimenodes distribution and the order, the �DeCdu methods coincide with the 
�DeCu methods on linear problems. For all the schemes, we will show the stability region 
using some symbolical and numerical tools.

Let us start by reviewing some known results for RK methods [10, 37]. The linear stabil-
ity of an RK scheme is tested on Dahlquist’s problem u� = �u, where � ∈ ℂ with Re(𝜆) < 0 . 

Table 6  Number of stages for the original ( �DeC, bDeC) and novel ( �DeCu, �DeCdu, bDeCu, bDeCdu) 
methods with GL subtimenodes and speed up factor

�DeC bDeC

RK stages Speed up RK stages Speed up

P M �DeC/�DeCu �DeCdu �DeCdu bDeC bDeCu bDeCdu bDeCu bDeCdu

2 1 2 2 1.000 2 2 2 1.000 1.000
3 2 6 5 1.200 5 5 4 1.000 1.250
4 2 8 7 1.143 7 7 6 1.000 1.167
5 3 15 12 1.250 13 12 10 1.083 1.300
6 3 18 15 1.200 16 15 13 1.067 1.231
7 4 28 22 1.273 25 22 19 1.136 1.316
8 4 32 26 1.231 29 26 23 1.115 1.261
9 5 45 35 1.286 41 35 31 1.171 1.323
10 5 50 40 1.250 46 40 36 1.150 1.278
11 6 66 51 1.294 61 51 46 1.196 1.326
12 6 72 57 1.263 67 57 52 1.175 1.288
13 7 91 70 1.300 85 70 64 1.214 1.328
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Being the RK schemes linear, we can write a general RK iteration as un+1 = R(�Δt)un , 
with R(⋅) the stability function of the method. The stability function is defined as

where 1 is a vector with all the entries equal to 1. The set of complex numbers z such that 
|R(z)| < 1 is called the stability region. We remark that the stability function for explicit RK 
methods is a polynomial. In fact, the inverse of (I − zA) can be written in the Taylor expan-
sion as

and, since A is strictly lower triangular, it is nilpotent, i.e., there exists an integer r such that 
Ar = 0 and the minimum of these natural numbers N  is called degree of nilpotence. By 
definition of N  , it is clear that AN+r = 0 for all r ⩾ 0 . Moreover, it is also clear that N ⩽ S , 
where S is the number of stages of the explicit RK method and the dimension of the matrix 
A. Hence, R(z) is a polynomial in z with degree at most equal to S. We recall that [37], if an 
RK method is of order P, then

Thus, we know the first P + 1 terms of the stability functions R(⋅) for all the DeCs of order 
P presented above. Further, the following result holds.

Theorem 2 The stability function of any bDeC, bDeCu, and bDeCdu method of order P is

and does not depend on the distribution of the subtimenodes.

Proof The proof of this theorem relies only on the block structure of the matrix A for such 
schemes. In all these cases, the matrix A can be written as

where ⋆ are some non-zero block matrices and the 0 are some zero block matrices of dif-
ferent sizes. The number of blocks in each row and column of A is P, the order of the 
scheme. By induction, we can prove that Ak has zeros in the main block diagonal, and in 
all the k − 1 block diagonals below the main diagonal, i.e., (Ak)i,j = 0 if i < j + k , where 
the indices here refer to the blocks. Indeed, it is true that Ai,j = 0 if i < j + 1 . Now, let 

(40)R(z) = 1 + zbT(I − zA)−11,

(41)(I − zA)−1 =

∞∑
r=0

zrAr = I + zA + z2A2 +⋯

(42)R(z) = 1 + z +
z2

2!
+⋯ +

zP

P!
+ O(zP+1).

(43)R(z) =

P∑
r=0

zr

r!
= 1 + z +

z2

2!
+⋯ +

zP

P!
,

(44)A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 … 0 0

⋆ 0 0 … 0 0

⋆ ⋆ 0 … 0 0

⋆ 0 ⋆ … 0 0

… … … … … …

⋆ 0 0 ⋯ ⋆ 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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us consider the entry (Ak+1)i,j with i < j + k + 1 , i.e., i − k < j + 1 . Such entry is defined 
as (Ak+1)i,j =

∑
w(A

k)i,wAw,j, and we will prove that all the terms of the sum are 0. Let 
w < j + 1 . Then Aw,j = 0 because of the structure of A; while, if w ⩾ j + 1 > i − k , we have 
that i < w + k , so (Ak)i,w = 0 by induction.

In particular, this means that AP = 0 , because any block row index i is smaller than 
j + P for any block column index j, as P is the number of the blocks that we have in each 
row and column. Hence,

Plugging this result into (40), we can state that the stability function R(z) is a polynomial 
of degree P, the order of the scheme. Since all the terms of degree lower or equal to P must 
agree with the expansion of the exponential function (42), the stability function must be 
(43). Finally, let us notice that no assumption has been made on the distribution of the sub-
timenodes, hence, the result is general for any distribution.

(45)(I − zA)−1 =

∞∑
r=0

zrAr =

P−1∑
r=0

zrAr = I + zA + z2A2 +⋯ + zP−1AP−1.

Fig. 3  Stability regions for various schemes with order from 3 to 13: bDeC, bDeCu, and bDeCdu (equiva-
lent) for any distribution of subtimenodes (top left), sDeC for equispaced subtimenodes (top center), sDeCu 
and sDeCdu (equivalent) for equispaced subtimenodes (top right), sDeC for GL subtimenodes (bottom left), 
sDeCu and sDeCdu (equivalent) (bottom center), legend (bottom right)
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In the following, we will show that, given a certain order P and a distribution of sub-
timenodes, the �DeCu and �DeCdu methods are equivalent on linear problems and, as a 
consequence, they share the same stability functions.

Theorem  3 (Equivalence on linear problems) Given an order P, a distribution of subti-
menodes and � ∈ [0, 1] , the schemes �DeCu and �DeCdu applied to linear systems are 
equivalent.

Proof Without loss of generality, we can focus on Dahlquist’s equation u� = �u . Since the 
schemes are linear, the same arguments would apply component-wise also on linear sys-
tems of equations. Let us start by explicitly writing down the general updating formula (29) 
of the �DeCdu method for Dahlquist’s equation

For the �DeCu method, the updating formula (26) becomes

Now, using the definition of U∗(p−1) = H(p−1)U(p−1) , we obtain

which coincides with (46). This means that, at each iteration, the two modified schemes 
coincide.

In Fig.  3, we depict the stability region of all the presented methods from order 3 
to 13. We remark that there is no difference in terms of the stability between bDeC, 
bDeCu, and bDeCdu, nor dependence on the distribution of the subtimenodes, as well 
as sDeCu and sDeCdu have the same stability regions for fixed subtimenodes.

7  Application to Hyperbolic PDEs

In this section, we apply the novel explicit efficient DeC techniques to hyperbolic PDEs. 
We will focus on the CG framework, which is particularly challenging with respect to FV 
and DG formulations, due to the presence of a global sparse mass matrix. In particular, 
we will consider two strategies that allow to avoid the related issues. We will describe the 
operators L1

Δ
 and L2

Δ
 for the two strategies in the bDeC formulation and see how to apply 

the bDeCu efficient modification. The proofs of the properties of the operators are provided 
in the supplementary material.

7.1  Continuous Galerkin FEM

The general form of a hyperbolic system of balance laws reads

(46)U(p) = U
(0)

p+1
+ Δt�(Θ(p) − �Γ(p))H(p−1)U(p−1) + Δt��Γ(p)U(p).

(47)U(p) = U
(0)

p+1
+ Δt�(Θ(p) − �Γ(p))U∗(p−1) + Δt��Γ(p)U(p).

(48)U(p) = U
(0)

p+1
+ Δt�(Θ(p) − �Γ(p))H(p−1)U(p−1) + Δt��Γ(p)U(p),
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where u∶Ω ×ℝ+

0
→ ℝQ , with some initial condition u(x, 0) = u0(x) on the space domain 

Ω ⊆ ℝD , and boundary conditions on �Ω . We consider a tessellation Th of Ω with charac-
teristic length h, made by convex closed polytopals K, and we introduce the space of con-
tinuous piecewise polynomial functions Vh ∶= {g ∈ C0(Ω) s.t. g|K ∈ ℙM(K), ∀K ∈ Th} . 
We choose a basis {�i}i=1,⋯,I of Vh , e.g., the Lagrange polynomials or the Bernstein poly-
nomials, which is such that each basis function �i can be associated to a degree of free-
dom (DoF) xi ∈ Ω and such that supp

{
�i

}
= ∪K∈Ki

K with Ki ∶= {K ∈ Th s.t. xi ∈ K} . 
Further, we assume a normalization of the basis functions yielding 

∑I

i=1
�i ≡ 1. Then, 

we project the weak formulation in space of the PDE (49) over Vh , i.e., we look for 
uh(x, t) =

∑I

j=1
cj(t)�j(x) ∈ V

Q

h
 such that for any i = 1,⋯ , I

where the stabilization term STi(uh) is added to avoid the instabilities associated to central 
schemes. Thanks to the assumption on the support of the basis functions, it is possible to 
recast (50) as

where c is the vector of all ci and the space residuals �i(c(t)) are defined as

We would like to solve this system of ODEs in time without solving any linear system at 
each iteration nor inverting the huge mass matrix.

The first possibility consists in adopting particular basis functions, which, combined with 
the adoption of the induced quadrature formulas, allow to achieve a high order lumping of 
the mass matrix. This leads to a system of ODEs like the one described in the previous sec-
tion and, hence, the novel methods can be applied in a straightforward way. Examples of such 
basis functions are given by the Lagrange polynomials associated to the GL points in one-
dimensional (1D)  domains and the Cubature elements in two-dimensional (2D) domains, 
introduced in [15] and studied in [20, 26, 27, 32]. The second strategy, introduced by Abgrall 
in [2] and based on the concept of residual [1, 4, 6, 33], exploits the abstract DeC formulation 
presented in Sect. 2, introducing a first order lumping in the mass matrix of the operator L1

Δ
 , 

resulting in a fully explicit scheme, as we will explain in detail in the following.

(49)
�

�t
u(x, t) + divxF(u(x, t)) = S(x, u(x, t)), (x, t) ∈ Ω ×ℝ+

0
,

(50)∫
Ω

(
�

�t
uh(x, t) + divxF(uh(x, t)) − S(x, uh(x, t))

)
�i(x)dx + STi(uh) = 0,

(51)
∑
K∈Ki

∑
xj∈K

(
∫K

�i(x)�j(x)dx

)
d

dt
cj(t) + �i(c(t)) = 0, i = 1,⋯ , I,

(52)�i(c(t))=
∑
K∈Ki

∫K

(
divxF(uh(x, t))−S(x, uh(x, t))

)
�i(x)dx + STi(uh).
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7.2  DeC for CG

In this section, we will define the operators L1
Δ
 and L2

Δ
 of the DeC formulation for CG FEM 

discretizations proposed by Abgrall in [2]. In this context, the parameter Δ of the DeC is 
the mesh parameter h of the space discretization. We assume CFL conditions of the type 
Δ ≈ Δt ≈ h.

The definition of the high order implicit operator L2
Δ
 is not very different from the one 

seen in the context of the bDeC method for ODEs. We denote by c(tm) the exact solution of 
the ODE (51) in the subtimenode tm and by cm its approximation, containing, respectively, all 
components ci(tm) and cm

i
 . As usual, for the first subtimenode we set c0 = c(t0) = c(tn) = cn . 

Starting from the exact integration of (51) over [t0, tm] and replacing �i(c(t)) by its Mth order 
interpolation in time associated to the M + 1 subtimenodes, we get the definition of the opera-
tor L2

Δ
∶ℝ(I×Q×M)

→ ℝ(I×Q×M) as

where, for any i = 1,⋯ , I and m = 1,⋯ ,M , we have

The solution c
Δ
 to L2

Δ
(c) = 0 is (M + 1) th order accurate. Unfortunately, such problem is 

a huge nonlinear system difficult to directly solve. According to the DeC philosophy, we 
introduce the operator L1

Δ
 making use of low order approximations of (51) to achieve an 

explicit formulation. In particular, we use the forward Euler time discretization and a first 
order mass lumping, obtaining L1

Δ
∶ℝ(I×Q×M)

→ ℝ(I×Q×M)

whose components, for any i = 1,⋯ , I and m = 1,⋯ ,M , are defined as

with Ci ∶= ∫
Ω
�i(x)dx.

Remark 2 (Choice of the basis functions) For any m and i, we can explicitly compute cm
i
 

from L1,m

Δ,i
(c) = 0 if and only if Ci ≠ 0 . This means that the construction of the operator 

L
1
Δ
 is not always well-posed for any arbitrary basis of polynomials. For example, with 

Lagrange polynomials of degree 2 on triangular meshes, we have ∫
Ω
�i(x)dx = 0 for some 

i. However, the construction is always well-posed with Bernstein bases, which verify 
Ci > 0 for all i.

Let us characterize the iterative formula (3) in this context. We have

(53)L
2
Δ
(c) =

(
L
2
Δ,1

(c),L2
Δ,2

(c),⋯ ,L2
Δ,I

(c)
)
, ∀c ∈ ℝ(I×Q×M),

(54)L
2,m

Δ,i
(c) =

∑
K∈Ki

∑
xj∈K

(
∫K

�i(x)�j(x)dx

)(
cm
j
− c0

j

)
+ Δt

M∑
�=0

�m
�
�i(c

�).

(55)L
1
Δ
(c) =

(
L
1
Δ,1

(c),L1
Δ,2

(c),⋯ ,L1
Δ,I

(c)
)
, ∀c ∈ ℝ(I×Q×M),

(56)L
1,m

Δ,i
(c) ∶= Ci

(
cm
i
− c0

i

)
+ Δt�m�i(c

0)
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where c(p) ∈ ℝ(I×Q×M) consists of M subtimenodes components cm,(p) , each of them contain-
ing I DoF components cm,(p)

i
 . Just like in the ODE case, procedure (57) results in an explicit 

iterative algorithm due to the fact that the operator L1
Δ
 is explicit. After a direct computa-

tion, the update of the component associated to the general DoF i in the mth subtimenode 
at the pth iteration reads

We remark that also in this case we assume cm,(p)
i

= ci(tn) whenever p or m are equal to 
0. For what concerns the optimal number of iterations, analogous considerations to the 
ones made in the ODE case hold. Finally, it is worth observing that the resulting DeC 
schemes cannot be written in the RK form due to the difference between the mass matrices 
in L1

Δ
 and L2

Δ
 . In fact, such DeC formulation is not obtained via a trivial application of the 

method of lines.

7.3  bDeCu for CG

As for ODEs, it is possible to modify the original DeC for hyperbolic problems to get a 
new more efficient method by introducing interpolation processes between the iterations. 
The underlying idea is the same, and we increase the number of subtimenodes as the accu-
racy of the approximation increases. At the general iteration p, the interpolation process 
allows to get c∗(p−1) from c(p−1) and then we perform the iteration via (58) getting

8  Application to Adaptivity

In this section, we will see how to exploit the interpolation processes in the new schemes, 
�DeCu and �DeCdu, to design adaptive methods. In the context of an original �DeC 
method with a fixed number of subtimenodes, iteration by iteration, we increase the order 
of accuracy with respect to the solution u

Δ
 of the operator L2

Δ
 . For this reason, performing 

(57)L
1
Δ
(c(p)) = L

1
Δ
(c(p−1)) − L

2
Δ
(c(p−1)), p = 1,⋯ ,P,

(58)

c
m,(p)

i
= c

m,(p−1)

i
−

1

Ci

[ ∑
K∈Ki

∑
xj∈K

(
c
m,(p−1)

j
− c0

j

)
∫K

�i(x)�j(x)dx

+ Δt

M∑
�=0

�m
�
�i(c

�,(p−1))

]
.

(59)

c
m,(p)

i
= c

∗m,(p−1)

i
−

1

Ci

[ ∑
K∈Ki

∑
xj∈K

(
c
∗m,(p−1)

j
− c

0
j

)
∫K

�i(x)�j(x)dx

+ Δt

M∑
�=0

�m
�
�i(c

∗�,(p−1))

]
.
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Fig. 4  Linear system: error decay for DeC with the continuous line, DeCu with the dashed line, DeCdu with 
the dash-dotted line, reference order with the dotted line, adaptive DeCu with the dashed black line, and adap-
tive DeCdu with the dash-dotted gray line. Equispaced subtimenodes on the left and GL on the right

Fig. 5  Linear system: error with respect to computational time for DeC with the continuous line, DeCu 
with the dashed line, DeCdu with the dash-dotted line, adaptive DeCu with the dashed black line, and adap-
tive DeCdu with the dash-dotted gray line. Equispaced subtimenodes on the left and GL on the right
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a number of iterations higher than the order of accuracy of the discretization adopted in 
the construction of the operator L2

Δ
 is formally useless, as we have already pointed out in 

Sect. 2. Instead, in the context of an �DeCu or �DeCdu method, we could in principle keep 
adding subtimenodes, through interpolation, always improving the accuracy of the approxi-
mation with respect to the exact solution of (6), until a convergence condition on the final 
component of u(p) (always associated to tn+1 ) is met, e.g.,

with � a desired tolerance. This leads to a p-adaptive version of the presented algorithms.

9  Numerical Results

In this section, we will numerically investigate the new methods, showing the computa-
tional advantage with respect to the original ones. Since the �DeC, �DeCu, and �DeCdu 
methods of order 2 coincide, we will focus on methods from order 3 on.

(60)
‖‖up,(p) − up−1,(p−1)‖‖

‖‖up,(p)‖‖
⩽ �

Fig. 6  Linear test: average num-
ber of iterations (± half standard 
deviation) of some adaptive DeC 
for different time steps

Fig. 7  Linear system test: speed up factor for the bDeCdu method. Equispaced subtimenodes on the left and 
GL on the right
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9.1  ODE Tests

We will assess here the properties of the new methods on different ODEs tests, checking 
their computational costs, their errors and their adaptive versions. We will focus on the 
methods got for � = 0 (bDeC) and � = 1 (sDeC).

9.1.1  Linear System

The first test is a very simple 2 × 2 system of equations

with the exact solution u(t) = u0 + (1 − e−6t)(−5u0 + v0) and v(t) = 1 − u(t) . We assume a 
final time T = 1.

In Fig.  4, we plot the error decay for all methods with respect to Δt for all orders 
from 3 to 9 and the expected order of convergence is achieved in all cases. We can see 
that the bDeC, bDeCu, and bDeCdu methods have the same error, since they coincide 
on linear problems, as shown in Theorem 2. The sDeC methods show a more irregular 
behavior and, on average, the errors with the sDeCu and sDeCdu, which coincide due 
to Theorem 3, are slightly larger than the one of sDeC for a fixed Δt . In Fig. 5, we plot 
the error against the computational time of the methods. For bDeC methods there is a 
huge advantage in using the novel methods: the Pareto front is composed only by the 
novel methods. In particular, for equispaced subtimenodes there is a larger reduction 
in computational cost than for GL ones, as predicted by theory. For sDeC methods the 
situation is not as clear as in the bDeC case. We can systematically see a difference 
between sDeCu and sDeCdu, being the latter more efficient than the former. In the con-
text of GL subtimenodes, the sDeCdu is slightly better than the original sDeC method 
from order 5 on in the mesh refinement. We also tested the adaptive versions of the 
methods, characterized by the convergence criterion (60) with a tolerance � = 10−8 . As 
we observe in Fig. 4, the error of these methods (in black and gray) is constant and inde-
pendent of Δt . The required computational time, see Fig. 5, is comparable to the one of 
very high order schemes. In Fig. 6, we report the average number of iterations ± half 
standard deviation for different adaptive methods with respect to the time discretization. 
As expected, the smaller the timestep, the smaller is the number of iterations necessary 
to reach the expected accuracy. In Fig. 7, we display, for different Δt , the speed up factor 
of the bDeCdu method with respect to the bDeC method computed as the ratio between 
the computational times required by the bDeCdu and the bDeC method. For equispaced 
subtimenodes we see that, as the order increases, the interpolation process reduces the 
computational time by an increasing factor, which is almost 2 for order 9. For GL subti-
menodes the reduction is smaller but still remarkable, close to 4

3
 in the asymptotic limit.

9.1.2  Vibrating System

Let us consider a vibrating system defined by the following ODE:

(61)
{

u� = −5u + v,

v� = 5u − v,

(
u0
v0

)
=

(
0.9

0.1

)
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Fig. 8  Vibrating system: error decay for DeC with the continuous line, DeCu with the dashed line, DeCdu 
with the dash-dotted line, reference order with the dotted line, adaptive DeCu with the dashed black line, and 
adaptive DeCdu with the dash-dotted gray line. Equispaced subtimenodes on the left and GL on the right

Fig. 9  Vibrating system: error with respect to the computational time for DeC with the continuous line, 
DeCu with the dashed line, DeCdu with the dash-dotted line, adaptive DeCu with the dashed black line, and 
adaptive DeCdu with the dash-dotted gray line. Equispaced subtimenodes on the left and GL on the right
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with m, k,Ω > 0 , r,F,� ⩾ 0 . Its exact solution [11] reads yex(t) = yh(t) + yp(t) with 
yp(t) = Yp cos(Ωt + �) particular solution of the whole equation characterized by

and yh(t) general solution of the homogeneous equation

where � =
1

2m

√
4km − r2 , �1 and �2 are the real roots of the characteristics polynomial 

associated to (62), which are equal to � when r = 2
√
km . C1 and C2 are two constants com-

puted by imposing the initial conditions y(0) = A and y�(0) = B . The mathematical steps 
needed to get the solution are reported in the supplementary material. The second order 
scalar ODE (62) can be rewritten in a standard way as a vectorial first order ODE. In the 
test, we have set m = 5 , r = 2 , k = 5 , F = 1 , Ω = 2 , � = 0.1 , A = 0.5 , and B = 0.25 with a 
final time T = 4 . In Fig. 8, we show the error decay for all methods. Differently from the 
linear case, here bDeC, bDeCu, and bDeCdu are not equivalent. Nevertheless, in terms of 
errors, they behave in a similar way and, also comparing equispaced and GL subtimeno-
des, we do not observe large deviations. On average the novel schemes are slightly less 
accurate for a fixed Δt , even if this is not true for all orders of accuracy. For the sDeC, 
there is a larger difference in the errors between sDeC and sDeCu or sDeCdu, though being 
the order of accuracy always correct. These effects are visible also in Fig.  9. For bDeC 
with equispaced subtimenodes, the advantages of using the novel methods are evident: the 
error is almost the same and the computational time reduces by almost half for high order 
schemes. For bDeC methods with GL subtimenodes the computational advantage of the 
novel methods is not as big as the one registered in the previous case as expected from 

(62)

⎧⎪⎨⎪⎩

my�� + ry� + ky = F cos(Ωt + �), t ∈ ℝ+

0
,

y(0) = A,

y�(0) = B

(63)Yp =
F√

(−mΩ2 + k)2 + Ω2r2
, � = � − arg (−mΩ2 + k + iΩr)

(64)yh(t) =

⎧⎪⎨⎪⎩

C1e
𝜆1t + C2e

𝜆2t, if r > 2
√
km,

C1e
𝜆t + C2te

𝜆t, if r = 2
√
km,

e
−

r

2m
t
�
C1 cos(𝜔t) + C2 sin(𝜔t)

�
, if r < 2

√
km,

Fig. 10  Vibrating system test: speed up factor for the bDeCdu method. Equispaced subtimenodes on the left 
and GL on the right
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theory, see Tables 5 and 6, but still pretty visible. For what concerns the sDeC methods 
with equispaced subtimenodes, the performance of sDeCdu is similar to the one of sDeC 
until order 5, while, from order 6 on, the novel method is definitely more convenient. The 
sDeCu method is always less efficient than the sDeCdu one; in particular, only for very 
high orders it appears to be preferable to the standard method. The general trend of the 
sDeC methods with GL subtimenodes is that the sDeCdu and the sDeCu always perform, 
respectively, slightly better and slightly worse than the original sDeC. The results of the 
adaptive methods for this test are qualitatively similar to the ones seen in the context of the 
previous test: the methods produce a constant error for any Δt . Also in this case, the thresh-
old for the relative error has been chosen equal to 10−8 . Finally, in Fig. 10, we display the 
speed up factor of the new bDeCdu methods with respect to the original bDeC: as expected 
from theory, it increases with the order of accuracy.

9.2  Hyperbolic PDE Tests

For hyperbolic PDEs, we will focus on the bDeC and the bDeCu methods with equispaced 
subtimenodes. The order of the DeC will be chosen to match the spatial discretization one. 
We will use two stabilizations discussed in [26, 27]: continuous interior penalty (CIP) and 
orthogonal subscale stabilization (OSS). The CIP stabilization is defined as

(65)STi(uh) =
∑
f∈Fh

�CIP
f ∫f

[[∇�f
�i]] ⋅ [[∇�f

uh]]d�(x),

elements

Order

Order
Order
Order

Fig. 11  1D LAE: bDeC with continuous line, bDeCu with the dashed line, and reference order with the dot-
ted line. Convergence analysis on the left and error with respect to computational time on the right

Table 7  Coefficients �CIP used for LAE in one dimension

∗The coefficients adopted for P3 and PGL4 are not provided in [26]

B2 P2 PGL2 B3 P3∗ PGL3 PGL4∗

�CIP 0.016 0.002 42 0.003 46 0.007 02 0.007 02 0.000 113 0.000 113
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where 𝛼CIP
f

= 𝛿CIP�̄�f h
2
f
 , Fh is the set of the (D − 1)-dimensional faces shared by two ele-

ments of Th , [[⋅]] is the jump across the face f, ∇�f
 is the partial derivative in the direction �f  

normal to the face f, �̄�f  is a local reference value for the spectral radius of the normal Jaco-
bian of the flux, hf  is the diameter of f, and �CIP is a parameter that must be tuned.

The OSS stabilization is given by

where 𝛼OSS
K

= 𝛿OSS�̄�KhK , wh is the L2 projection of ∇xuh onto VQ×D

h
 , �̄�K is a local reference 

value for the spectral radius of the normal Jacobian of the flux, hK is the diameter of K, and 
�OSS is a parameter that must be tuned.

9.2.1  1D Linear Advection Equation (LAE)

We consider the LAE, ut + ux = 0, with periodic boundary conditions on the domain 
Ω = [0, 1] , the initial condition u0(x) = cos(2πx) and the final time T = 1 . The exact solu-
tion is given by u(x, t) = u0(x − t) . For the spatial discretization, we considered three fami-
lies of polynomial basis functions with degree n: Bn, the Bernstein polynomials [2, 4]; Pn, 
the Lagrange polynomials associated to equispaced nodes; PGLn, the Lagrange polynomi-
als associated to the GL nodes [26]. For Bn and Pn, we used the bDeC version for hyper-
bolic PDEs (58) introduced by Abgrall; for PGLn, we adopted the bDeC formulation for 
ODEs (10), as, in this case, the adopted quadrature formula associated to the Lagrangian 
nodes leads to a high order mass lumping. For all of them, we used the CIP stabilization 
(65) with the coefficients �CIP reported in Table 7 found in [26] to minimize the dispersion 
error, even if, differently from there, we assumed here a constant CFL = 0.1 . In particular, 
since the coefficients for P3 and PGL4 were not provided, we used for the former the same 
coefficient as for B3, while, for the latter the same coefficient as for PGL3.

The results of the convergence analysis and of the computational cost analysis are dis-
played in Fig. 11. For a fixed number of elements, the errors of the bDeC and of the bDeCu 
methods are essentially identical, leading to a remarkable computational advantage of the 
novel method with respect to the original bDeC, visible in the plot on the right, where the 
error against the computational time is depicted. The formal order of accuracy is recovered 

(66)STi(uh) =
∑
K∈Th

�OSS
K ∫K

∇x�i

(
∇xuh − wh

)
dx,

elements

Fig. 12  Speed up in the hyperbolic tests of bDeCu with respect to bDeC. 1D LAE on the left and 2D shal-
low water (SW) on the right
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in all the cases but for B3 and P3 for which we get only second order for both bDeC and 
bDeCu.

Remark 3 (Issues with the DeC for PDEs) The loss of accuracy for bDeC4 and B3 ele-
ments has been registered in other works, e.g., [4, 26, 27]. Even in the original paper [2], 
the author underlined the necessity to perform more iterations than theoretically expected 
for orders greater than 3 to recover the formal order of accuracy. According to authors’ 
opinion the problem deserves a particular attention, for this reason, the results related to 
B3 and P3 have not been omitted. The pathology seems to have effect only in the context 
of unsteady tests and it is maybe due to a high order weak instability. The phenomenon is 
currently under investigation; more details can be found in the supplementary material. 
However, we remark that this issue does not occur for elements that allow a proper mass 
lumping like PGL (or Cubature in 2D).

The speed up factor of the novel bDeCu with respect to the original method is 
reported in Fig. 12. The obtained speed up factors are higher than ODE ones, because in 
the implementation of the DeC for PDEs the major cost is not given by the flux evalua-
tion of previously computed stages, but by the evolution of the new stages. This slightly 
changes the expected and the observed speed up, providing even larger computational 
advantages.

9.2.2  2D Shallow Water (SW) Equations

We consider the SW equations onto Ω = (0, 3) × (0, 3) ∈ ℝ2 , defined, in the form (49), by

(67)u =

(
H

Hv

)
, F(u) =

(
Hv

Hv⊗ v + g
H2

2
�

)
, S(x, u) = 0,

Fig. 13  2D SW: bDeC with the continuous line, bDeCu with the dashed line, and reference order with the 
dotted line. Convergence analysis on the left and error with respect to computational time on the right
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where H is the water height, v = (v1, v2)
T ∈ ℝ2 is the vertically averaged speed of the flow, 

g is the gravitational constant, 𝕀 ∈ ℝD×D is the identity matrix, and D = 2 is the number of 
physical dimensions. The test is a C6(Ω) compactly supported unsteady vortex from the 
collection presented in [34] given by

where u∞ = (1, 1, 1)T , xm(t) = xc + t ⋅ (1, 1)T , and

with � =
π

r0
 and the function � defined by

We set g = 9.81 , r0 = 1 , ΔH = 0.1 , xc = (1, 1)T with a final time T = 1 and Dirichlet bound-
ary conditions. For the spatial discretization, we considered two basis functions: Bn, the 
Bernstein polynomials; Cn, the Cubature elements introduced in [15]. As they allow a high 
order mass lumping, for Cn elements we used the bDeC (10) for ODEs and OSS stabiliza-
tion (66), instead, for Bn we considered the PDE formulation (58) and CIP stabilization 
(65). The tests with B2 have been run with CFL = 0.1 and �CIP = 0.04 ; for C2 elements we 
have set CFL = 0.12 and �OSS = 0.07 , the optimal coefficients minimizing the dispersion 
error of the original bDeC according to the linear analysis performed in [27]; for C3 we 
adopted CFL = 0.015 and �OSS = 0.2.

The results of the convergence analysis and of the computational cost analysis are dis-
played in Fig. 13. The errors produced by the novel and the original bDeC method are so 
close that the lines coincide. The resulting computational advantage can be seen in the plot 
on the right. The formal order of accuracy is recovered in all the cases and the speed up 
factor, in Fig. 12, proves the convenience in using the novel bDeCu formulation instead 
of the original bDeC. Let us observe that, according to Table 5, the number of stages of 
bDeC3 and bDeCu3 is identical, nevertheless, as observed in Remark  1, the number of 
stages does not strictly correspond to the computational time. If we do not consider the 
“cheap” stages computed via interpolation, we get the theoretical speed up factor 5

4
= 1.25 , 

which is what we obtained in the numerical test for B2. We conclude this section with 
one last observation: the computational advantage registered with B2 is much higher with 
respect to C2 and C3 ones, because we have run the simulations with different codes: the 
results obtained with B2 are obtained with a Fortran implementation, while, for C2 and C3 
we have used Parasol, a Python implementation developed by Michel et al. [27] and kindly 
provided to us. A more careful implementation would increase further the speed up factors 
associated to such elements.

(68)u = u∞ +

{
ur0 (r), if r = ||x − xm(t)||2 < r0,

0, else,

(69)ur0 (r) =

⎛⎜⎜⎜⎝

1

g

�
Γ

�

�2

(�(�r) − �(π))

Γ(1 + cos(�r))2(x2 − xm,2)

−Γ(1 + cos(�r))2(x1 − xm,1)

⎞⎟⎟⎟⎠
, Γ =

12π
√
gΔH

r0

√
315π2 − 2 048

(70)
�(s) =

20

3
cos(s) +

27

16
cos(s)2 +

4

9
cos(s)3 +

1

16
cos(s)4 +

20

3
s sin(s)

+
35

16
s2 +

27

8
s cos(s) sin(s) +

4

3
s cos(s)2 sin(s) +

1

4
s cos(s)3 sin(s).



Communications on Applied Mathematics and Computation 

1 3

10  Conclusions and Further Developments

In this work, we have investigated analytical and numerical aspects of two novel families 
of efficient explicit DeC methods. The novel methods are constructed by introducing inter-
polation processes between the iterations, which increase the degree of the discretization 
to match the accuracy of the approximation associated to the iterations. In particular, we 
proved that for some of the novel methods the stability region coincides with the one of 
the original methods. The novel methods have been tested on classical benchmarks in the 
ODE context revealing, in most of the cases, a remarkable computational advantage with 
respect to the original ones. Furthermore, the interpolation strategies have been used to 
design adaptive schemes. Finally, we successfully proved the good performances of the 
novel methods in the context of the numerical solution of hyperbolic PDEs with continu-
ous space discretizations. Overall, we believe that the approach proposed in this work can 
alleviate the computational costs not only of DeC methods but also of other schemes with a 
similar structure. For this reason, investigations of other numerical frameworks are planned 
and, in particular, we are working on applications to hyperbolic PDEs (with FV and ADER 
schemes), in which also the order of the space reconstruction is gradually increased itera-
tion by iteration. We hope to spread broadly this technique in the community to save com-
putational time and resources in the numerical solution of differential problems, as only 
little effort is required to embed the novel modification in an existing DeC code.

Appendix A: Residual Formulations

Here, we report the residual formulations of the original bDeC and sDeC methods pre-
sented in Sect. 3. In particular, we will present the spectral DeC formulation in terms of 
residuals introduced in [16] and prove that it is equivalent to the sDeC method. Then, we 
will see how to get, with a little modification of the presented spectral DeC formulation, 
the residual formulation of the bDeC method.

Appendix A.1: Link Between Spectral DeC and sDeC

We want to solve system (6) in the interval [tn, tn+1] getting un+1 ≈ u(tn+1) from 
un = u(tn) . Also in this case, we consider an iterative procedure on the approximated 
values um,(p) of the solution in the subtimenodes m = 1,⋯ ,M , collected in the vec-
tor u(p) , with u0,(p) ∶= un fixed. Given u(p−1) , we consider the interpolation polynomial 
I(u(p−1), t) ∶=

∑M

m=0
um,(p−1)�m(t) . The spectral DeC relies on the definition at each itera-

tion p of two support variables, namely the error function e(p)(t) with respect to the exact 
solution and the residual function r(p−1)(t) respectively given by

(A1)e(p)(t) ∶= u(t) − I(u(p−1), t),

(A2)r(p−1)(t) ∶= un + ∫
t

tn

G(s,I(u(p−1), s))ds − I(u(p−1), t).
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By integrating the original ODE (6), making use of the definitions of the error function 
e(p)(t) and of the residual function r(p−1)(t) and differentiating again, we get that the error 
function satisfies the ODE

We can numerically solve such an ODE in each subinterval [tm−1, tm] through the explicit 
Euler method starting from m = 1 on, thus getting

with the integrals in the residual function approximated through a spectral integration, i.e., 
rm,(p−1) ∶= un + ∫ tm

tn

∑M

�=0
G(t� , u�,(p−1))��(t)dt − um,(p−1) . We have used for em,(p) and 

rm,(p−1) the usual convention adopted throughout the manuscript, with m standing for the 
subtimenode tm to which such quantities are associated. Indeed, we have e0,(p) = 0 and 
r0,(p−1) = 0 . The computed errors are then used to get new approximated values of the solu-
tion um,(p) ∶= um,(p−1) + em,(p) , allowing to repeat the described process with new error and 
residual functions, e(p+1)(t) and r(p)(t) , analogously defined. The procedure gains one order 
of accuracy at each iteration until the accuracy of the discretization is saturated and, at the 
end of the iteration process with P iterations, one can set un+1 ∶= uM,(P) . By explicit com-
putation, we have that (A4) is equivalent to the sDeC updating formula (13). In fact, recall-
ing the definition of um,(p) and rm,(p−1) , we get

from which, recalling the definition of �m
�

 , follows

Appendix A.2: bDeC

The residual formulation of the bDeC method is obtained in a similar way. Keeping the 
same definitions of I(u(p−1), t) , e(p)(t) , and r(p−1)(t) , we have that (A3) still holds. We solve it 
through the explicit Euler method in each subinterval [t0, tm] obtaining

with the same definition for rm,(p−1) through spectral integration. This is the residual formu-
lation of the bDeC method. Recalling that e0,(p) = r0,(p−1) = 0 , we get

(A3)
{ d

dt
e(p)(t) = G(t,I(u(p−1), t) + e(p)(t)) − G(t,I(u(p−1), t)) +

d

dt
r(p−1)(t),

e(p)(tn) = 0.

(A4)
e
m,(p) = e

m−1,(p) + Δt�m[G(tm−1, um−1,(p−1) + e
m−1,(p))

− G(tm−1,um−1,(p−1))] + r
m,(p−1) − r

m−1,(p−1)

(A5)

e
m,(p) = e

m−1,(p) + Δt�m
[
G(tm−1, um−1,(p)) − G(tm−1, um−1,(p−1))

]

+ ∫
tm

tm−1

M∑
�=0

G(t� , u�,(p−1))��(t)dt − u
m,(p−1) + u

m−1,(p−1),

(A6)

um,(p) = um−1,(p) + Δt�m
[
G(tm−1, um−1,(p)) − G(tm−1, um−1,(p−1))

]

+ Δt

M∑
�=0

�m
�
G(t� , u�,(p−1)).

(A7)
em,(p) = e0,(p) + Δt�m

[
G(t0, u0,(p−1) + e0,(p)) − G(t0, u0,(p−1))

]

+ rm,(p−1) − r0,(p−1)
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from which, recalling the definition of um,(p) and of �m
�

 , finally follows

which is nothing but (10).
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