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Abstract
Higher risks for commercial banks correspond to lower probability of access to financing 
transactions. Climate change risk strongly impacts bank loan supply. In particular, in the 
tourism industry, it is noteworthy that lenders charge higher interest rates for mortgages 
that face a greater risk of rising sea levels. As loans are one of the most important busi-
nesses for commercial banks, innovative strategies can lead to the design of a composite 
bank loan supply for building resilience, especially against physical climate risk. In this 
work, we propose a new tool, which is an insured loan relying on a climate change risk-
sharing mechanism, where we develop a bioclimatic composite indicator based on machine 
learning naïve technique.

Keywords Climate change · Insured loan · Machine learning · Random forest

1 Introduction

Financial planning in the beach tourism industry consists of controlling special financial 
security, which includes climate change risk as a relevant component of its risk profile. 
The impact of climate change that cannot be avoided such as sea level rise, flooding, heat 
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waves, desertification, crop failures, etc. leads to strong direct effects on tourism, which has 
become one of the world’s fastest-growing industries. In particular, seaside industry activi-
ties generate significant revenues in coastal and marine areas, even if the areas that attract 
tourists are also coming under increasing pressure from the damage and pollution caused 
by tourist facilities and the supporting infrastructure and from the increase in the frequency 
and severity of adverse climate events. There is a strand of recent literature in the field 
of climate change impact that stresses the climate-tourism relationships (Gambarelli and 
Goria 2004; Sygna et al. 2004; Hamilton and Tol 2007, Hein et al. 2009, Jennings 2004; 
Phillips and Jones 2004; Surugiu and Surugiu 2009; Surugiu et al. 2011, Filho 2022). The 
World Economic Forum highlights the alteration of traditional tourist trends due to rising 
temperatures that are likely to result in tourists travelling in spring and autumn rather than 
summer (World Economic Forum, 2023). Some authors emphasise the duality of climate 
change risk in the tourism sector, which is highly vulnerable to climate change and contrib-
utes to the emission of greenhouse gases (GHG), which cause global warming (for instance 
see Nazir 2023).

In particular, climate change impacts on the coast, such as storm surges and rising sea 
levels, are inevitable, and, in some regions, they are already damaging coastal tourism 
economies making coastal tourism a vital part of the world economy. The big issue is that 
climate change has become very prominent, causing new risks also to the banking sector. 
This is why regulators in several countries have increasingly emphasised macroprudential 
supervision and control of systemic financial risks, as well as the severe challenge of cli-
mate change.

As loans are one of the most important businesses for commercial banks, innovative 
strategies can lead to the design of a composite bank loan supply for building resilience, 
especially against physical climate risk. Despite its relevance, the literature on the relation-
ship between climate risk and bank loans is scarce (Li and Wu 2023). Some evidence indi-
cates that corporate loans will also be affected by climate risk. It is noteworthy that lend-
ers charge higher interest rates for mortgages that face a greater risk of rising sea levels, 
according to Nguyen et al. (2022). Also in Kling et al. (2021), the empirical findings show 
that climate vulnerability will increase debt costs for firms and limit their access to finance. 
In Li and Wu 2023, physical climate risk could affect leverage via larger expected distress 
costs and higher operating costs or by non-linear relationships.

In this research, the aim is to provide an innovative tool for funding seaside firms. 
Broadly speaking, higher risks for commercial banks correspond to a lower probability of 
access to financing transactions. For firms operating in the seaside industry, climate change 
is most prominent. The extreme and not-extreme adverse climate events involve losses in 
revenues and, accordingly, higher default probabilities. In this framework, we propose a 
pricing model for climate change risk, particularly physical risk, for providing a bancassur-
ance product, a type of climate risk-insured loan, by guaranteeing a decrease in the internal 
rate of return that expresses the cost required by the issuer bank. The cost reduction relies 
on a climate change risk-sharing mechanism in which we develop a bioclimatic composite 
indicator. The fundamental concept behind the proposed bioclimatic index is to model the 
spatial and temporal dependency structure of the phenomenon, given that adverse climatic 
events arise from a combination of interconnected factors. The use of machine learning 
is deemed beneficial for this purpose. The contributions of this study are as follows: first, 
in Sect. 2, we propose the model framework relating to the climate change risk developed 
in an Machine-Learning based environment (from herein ML-based). Section 3 offers the 
main outcome built on the complex pre-processing of the climatic data. Finally, Sect.  4 
concludes.
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2  Model framework

2.1  Climate risk for tourism composite indicator

Climate risk composite indicators can be created by encompassing a range of climate-
related risks of various types. For instance, it involves the development of indicators related 
to specific physical risks for certain crops, e.g., Salgueiro (2009) used a series of indicators 
commonly used in viticulture; indicators assess the relationship between financial risk and 
climate risk (see Bingler et al. 2020 for a review and comparison of major proposed indica-
tors); or indicators that evaluate both physical and transition risks (see, for example, Dolge 
and Blumberga 2021, or Angelova et al. 2023).

In our application, we propose a climate risk indicator that evaluates how physical cli-
mate events can impact business disruptions in the tourism sector. Specifically, considering 
the case of beach resorts, we introduce a weather-related indicator for coastal areas that 
combines the effects of temperature, precipitation, and wind during the operational months 
of the beach resorts, namely from May to September. Our indicator is based on Climate 
for Tourism ( CIT  ) focused on beach tourism proposed by de Freitas et al. (2008), which 
determines an ordinal variable based on the ASHRAE scale of thermal sensation (Morgan 
et al. 2000). To achieve this, significant data preprocessing and the construction of a bio-
climatic indicator to estimate climate risk for tourism are required. Using an ML procedure 
described in the next subsection, this indicator leverages the relationships between biocli-
matic variables in coastal areas.

In particular, the CIT  indicator is defined as

where T  is the thermal, A is the aesthetic, and P is the physical variable determining the 
heat perception. de Freitas et al. (2008) detected the heat perception feature variables as 
temperature, precipitation, wind speed and cloud percentage. CIT  computed as a daily 
ordinal indicator ranged from 0 to 7, where the greater the indicator, the more comfort-
able the heat conditions are. The indicator is aggregated at monthly granularity in terms 
of the number of days with favourable condition, namely faCIT  , CIT ≥ 5 , number of day 
with acceptable conditions, acCIT  , CIT = 4 and number of days with adverse conditions, 
unCIT  , CIT < 4 . For our analysis, the monthly indicator is taken into account, for this rea-
son, the magnitude of the risk is measured as the number of days at risk, in temrs of both 
acCIT  and unCIT  . To improve the forecast of future behaviour of acCIT  and unCIT  , we 
consider a Random Forest (herein RF) model instead of a merely time series approach. In 
the next subsection, the adopted analysis strategy is shown in detail.

2.2  Development of climate risk composite indicators using temporal dynamic 
random forest

The fundamental concept behind the proposed bioclimatic index is to model the spatial and 
temporal dependency structure of the phenomenon, given that adverse climatic events arise 
from a combination of correlated factors. The use of ML is deemed beneficial for this pur-
pose. However, it is important to note that certain models, such as tree-based algorithms, 
might not fully capture the temporal relationships within the data. To address this, the con-
struction of the bioclimatic indicator relies on time series data and employs a rolling win-
dow approach. This involves specifying the features of a regression tree and using both the 

(1)CIT = f [T ,A]P



 M. Carannante et al.

lagged target variable and present/lagged feature variables, as defined in Eq.  (2). As a 
result, each regression tree functions as a distributed lag model preserve the temporal order 
between observations. This tree restructuring ensures the maintenance of temporal order, 
even when working with training or validation sets. The estimator of the target variable for 
a single tree ŷRj

 is defined as follows

where (L) is the lag operator, ŷRj
 is the acCIT  or unCIT  indicator defined in SubSect. 2.1, 

and xRj
 the temperature, precipitation, wind and cloud conditions determining acCIT  or 

unCIT  . At the individual tree level, the forest can be aggregated through bagging, creating 
a Temporal Dynamic Forest, or boosting, producing a Temporal Dynamic Boost. This 
approach showed improved forecast performance compared with other models largely used 
to model data dependence structures, such as LSTM, under specific conditions such as the 
use of incomplete yearly data or a dynamic risk threshold (Carannante et al. 2023). The 
core idea of the Temporal Dynamic ensemble method is to mimic time series behaviour 
while not strictly adhering to chronological sequence, which bypasses the necessity to pre-
serve the non-random nature of the partition as basic RF does. For simplicity, in this work 
we only use bagging as ensemble method, estimating a Temporal Dynamic Forest. To bet-
ter understand how our proposal works, we present the basic RF model. The RF algorithm, 
proposed by Breiman (2001), is a robust nonparametric ML technique employed for regres-
sion and classification tasks. It comprises multiple individual trees that expand through 
recursive binary splits on the training dataset. Each decision tree typically showcases pre-
dictors with low bias and high variance. In the RF methodology, predictions are averaged 
over a considerable number of trees to diminish the overall variance of the resultant predic-
tor, even when the bias is minimal. To achieve variance reduction, randomness is incorpo-
rated into the tree-growing process by opting for diverse bootstrap samples from the origi-
nal training dataset and randomly selecting a subset of explanatory variables for each split.

Consider the training set 
[(
x1, y1

)
,… ,

(
xn, yn

)]
 which represents a sample of independent 

random variables distributed as pairs (X, Y) from an unknown distribution. The algorithm 
predicts the target variable Y  by estimating the regression function m(x) = E[Y|X = x] . The 
mean-squared error for a numerical predictor h(x) is defined as follows:

The RF predictor is the results of averaging across k = 1,… , n trees (Breiman 2001). As 
outlined in Breiman (1996), the ensemble method employed to combine predictions from 
multiple machine learning algorithms, leading to more precise projections than individual 
models, is bagging (bootstrap aggregation). Bagging involves creating numerous bootstrap 
samples and averaging the predictors. The bootstrap mechanism introduces perturbation in 
the learning set by randomising the predictor, thereby enhancing accuracy. The estimator 
for the target variable ŷRj

 is a combination of regression tree estimators

1{.} denotes an indicator function and (Rj)j∈J denotes the collection of regions within the 
predictor space. These regionslabelled as R1,R2,… ,RJ , are unique and do not overlap, 
estimated through the minimisation of the residual sum of squares.

Let B represent the number of bootstrap samples. The RF can be defined as follows:

(2)ŷRj
= (L)xRj

+ (L)yRj

(3)EX,Y = (Y − h(X))2

(4)f̂ tree(X) =
∑

j ∫ J

ŷRj
1{X ∫ RJ}
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The future behaviour of the nCIT  indicator will be determined on the basis of the previ-
ous behaviour of the same indicator, and the contemporary and previous behaviour of the 
feature variables from May to September.

2.3  Climate‑insured loan proposal description

The basic idea of the climate-insured loan is that if the climate risk is properly insured, it 
should reduce the internal cost rate associated with the financing required by the lending 
bank. For this reason, we assume a scenario where the bank performs an accurate financial 
analysis of beach resorts, based on the historical past performance and financial health. 
The bank sets this financing at a particular interest rate, which we will denote as i , repre-
senting the internal cost rate for the beach resort, and it can be split into the sum of two 
components: the risk-free interest rate irf  , and the spread s , that quantifies risk, expressed 
in terms of internal costs rate. In tourism business, a significant quote of the risk measured 
by s derives from climate risk. For this reason, beach resorts could benefit from insurance 
coverage against potential revenue losses caused by adverse weather conditions. On the 
other hand, bank needs to determine correctly the insurance strategy for climate-related 
risks, which allows reducing the bank spread s for the insured beach resorts. For this rea-
son, it is necessary pricing a model for climate risk that, when adequately insured, will lead 
to a reduction in the internal cost rate of a loan. The advantages of a climate-insured loan 
are twofold: for beach resorts, insurance hedging provides a financial safety net, compen-
sating for the loss of income due to unfavorable weather conditions, and for the banks, the 
counterparty risk is reduced, since beach resorts have a lower risk failing to meet its loan 
obligations. As a consequence, a climate-insured loan is a type of risk-sharing between 
the insurance company and the bank. More formally, the beach resorts has two option: the 
former is requesting for financing from the bank and paying an interest rate i = irf + s1 ; the 
latter is requesting for financing from the bank and obtaining climate risk hedging from the 
insurance company, paying the bank an interest rate i = irf + s2 , (with s2 < s1 ) and paying 
the insurance company a premium P . The second option has the typical structure of a ban-
cassurance product, combining a single product financial and insurance solutions jointly. 
The climate-insured loan proposed represents a hybrid bancassurance product, where the 
financial part is the loan and the insurance part is the climate risk hedging. The insurance 
hedging has the following characteristics: The fair premium ( FP ) is equal to the expected 
value of the income loss, which is �[S] ; The pure premium ( PP ) is equal to the sum of the 
fair premium and the safety loading

where � is the safety loading using the percentile calculation principle; The Expenses-
loaded premium ( LP ) is the sum of the pure premium and the loading for commissions and 
expenses

(5)f̂ RF(X) =
1

B

B∑

b=1

f̂ tree(X|b)

(6)PP = �[S] + �

(7)LP =
PP

(1 − � − �)
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being � is the loading percentage for management expenses, in our case, 5%, � is the load-
ing percentage for commissions to be decreased to the distributor of the insurance product, 
in our case, also 5%.

3  Numerical application

3.1  Data sources and pre‑processing

Building the acCIT  and unCIT  bioclimatic risk indices and thier forecasting based on 
satellite data requires different sources of data. In particular, we use two datasets of the 
NASA MERRA-2 satellite warehouse, the Single-Level Diagnostics dataset (M2SDNX-
SLV version 5.12.4), containing daily temperature and precipitation data for two-dimen-
sional pixels (latitude and longitude) and the Assimilated Meteorological Fields dataset 
(M2T3NVASM version 5.12.4), containing 3-hourly data of cloud fraction and wind speed 
for three-dimensional pixels (latitude, longitude and altitude) (see Bosilovich 2016 for 
more details about data). Specifically, Each NASA MERRA-2 dataset collects data with a 
full horizontal resolution spatial grid, for 576 longitude and 361 latitude values, for a total 
of 213′696 pixels of the Earth’s surface of about 50 km × 50 km each one and, in the case 
of 3D-level data 72 levels of altitude, measured in hPa. It is possible to store the variables 
of interest for each latitude, longitude, altitude, and day of fraction. The native dataset is in 
raster format, so it is necessary to convert data into useful arrays containing the variables, 
time and space IDs with the following steps. Once obtained a 2D-array, with IDs and bio-
climatic variables, we created the lagged target variable and the lagged feature variables. 
To do this, it is necessary to reduce the data granularity to daily for all the features, and 
then calculate the CIT  indicator according to the reference scheme defined by de Freitas 
et al. (2008) showed in Fig. 1

The next step is to build the monthly risk days indicator, namely unCIT  and acCIT  , 
also aggregating the other bioclimatic indicators at the monthly granularity. Then, we cre-
ate lagged variables (L)unCIT  , and (L)acCIT  choosing the order of lag operator (L) . Since 

Fig. 1  Composition of CIT indicator.  Source: de Freitas et al. (2018)
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bioclimatic phenomena are strongly subject to seasonality, we choose order 12, which cor-
responds to one year. In this way, all months are well represented in the model, respect-
ing the temporal structure of the data. For the same reason, we construct the lagged fea-
ture variables (L)x of temperature, precipitation, wind and cloud fraction by applying a 
lag operator of order 12, for a total of 60 covariates to estimate the future behaviour of 
unCIT  , and acCIT  . In particular, we estimate a Temporal Dynamic Forest for each month 
of interest, composed by 500 trees to forecast unCIT  , and acCIT  respectively, for a total of 
ten forests nested in two Temporal Dynamic Forests. We selected pixels that included all 
the coastal areas of insular and peninsular Italy for a total of 18 values of latitude and 15 of 
longitude combined in 110 pixels, 2-m of altitude, and a time range from 2009 to 2022. the 
ratio between training set and validation set is 70:30 and 2023 is used as the test set.

Data about beach resorts are not directly available, while the prototypes can be built 
starting from aggregate data. To create a prototype of an Italian beach resort for the year 
2023, we consider the unit revenues from two main activities, namely, rental and food and 
beverage activities, representing almost three-quarters of their revenues, and the unit cost 
is computed proportionally to the total revenue and the tourist presences of the month and 
subsequently the loss relating to adverse climate events (see Istat data for presences and 
Nomisma report for beach resorts revenues and activities). The acCIT  and unCIT  values 
are obtained as the average of the pixels for the test set, which collects the observations of 
the year 2023.

3.2  Numerical results

Figure 2 shows the forecasting error of the Temporal Dynamic forest compared to a tradi-
tional time series approach in terms of RMSE for both acCIT  and unCIT

Fig. 2  RMSE for temporal dynamic forest and traditional time series
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As Fig.  2 shows, the Temporal Dynamic Forest performs better for both climate risk 
indicators, with an average error lesser than 5 days compared to an average error between 
10 and 15 days of a time series approach. The improvement depends on two factors: the 
former is the use of covariates, which provide a greater information basis on which to make 
predictions, and the latter is that the Temporal Dynamic Forest as structured is not time-
dependent, therefore its ability to forecast does not decrease as the lag increases. In this 
sense, Fig. 2 shows that the best performance is not necessarily in the months closest to the 
last observed value (December), with a lower error in July and August for unCIT  and in 
August and September for acCIT .

Table 1 shows the prototype of an Italian beach resort of medium-large size. The acCIT  
and unCIT  values are obtained as the average of the pixels for the test set.

Table  1 shows that the total revenues of a prototype beach resort are 400,550 euros 
without climate risk and 357,540 euros with a climate risk. In other words, the model esti-
mates a decrease of 40,945 euros, about 10.74% of the total. On the basis of this scheme of 
estimation, we perform 500 simulations of the number of days at risk acCIT  and unCIT  per 
each pixel, 55,000 in total for the Italian coastal areas, to estimate the probability distribu-
tion of revenue loss, denoted as S.

Table 2 shows the summary statistics of S
From results shown in Table 2, we can determine the Fair premium ( FP ), the Pure pre-

mium ( PP ), the Expenses-loaded premium ( LP ) and the Solvency Capital Requirement 
( SCR ) for an insurance contract to hedging climate-related risk for the tourism sector. 
Table 3 shows the results.

To determine the cost of a loan for a beach resort, we consider the following assump-
tions: loan amount ( A ) 1,000,000 euros; interest rate i = irf + s1 = 1% + 7% = 8% ; French 
amortization schedule of n = 10 years; and annual instalment. In other words, without a 
climate risk hedghing product, the interest rate cost ( IRC ) of the beach resort is exactly 
equal to the interest rate return ( IRR ) of the bank, that is s1 = 8% . To determine the spread 
s2 and the IRC for a beach resort in case of climate-insured loan, we consider an insur-
ance product with the following characteristics: time horizon T = 1 , that implies the deal 
of n annual insurance contracts, with starting premium LP = 48,854 euros, and annually 
adjusted for inflation at 2% ; Expected loss ratio ( P∕L ) for the insurer, i.e., the ratio between 
E(S) and LP , is 69.9% ; management and commissions loadings due to bank are both 5% 
of the LP ; SCR = 6% ; capitalisation rate of 3% , adjusted net of the cost of capital. The 
scheme of insured loans described above implies that profits are evenly distributed between 
the insurer and the bank, net of the commissions for the loan. On the contrary, losses are 
entirely incurred by the insurer, and the bank will receive no commissions for the insurance 
contract.

To make the climate-insured loan affordable for the bank, it is necessary to determine 
IRC and s2 to maintain the IRR at 8% as in the baseline loan. That is, the interest rate linked 
to the loan amounts to IRC = 7.15% , s2 = 6.15% , with a decrease of the interest rate of 
0.86%.

Table 4 shows the amortization schedule embedding the cash flows related to insurance 
premiums.

Table  4 shows several differences of climate-insured loan with respect to traditional 
loans. In particular, at time 0, the beach resort does not receive 1,000,000 euros, but an 
amount reduced by the insurance premium; during times 1,…, 9, the beach resort pays 
another nine increasing premiums adjusted for inflation rate; at time 10, the outgoing cash 
flow embeds only the last instalment of the French amortisation schedule because the last 
premium was paid at time 9.
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Table 5 describes the development of insurance cash flows and net profit adjusted for 
the cost of capital for the company.

Table 5 shows, among other things, the additional cash inflow that the bank receives due 
to commissions annually. Considering a safety loading in the calculation of PP , the insurer 
realises profits to which must be subtracted the Cost of Capital ( CoC ). For this reason, the 
insurer annual revenue is given by the P∕L net to CoC . At time 10, the insurer calculates 
the amount of profits and commissions paid to the bank, assuming a capitalisation rate of 
3% . Based on these assumptions, it determines the potential extra commission to be paid to 
the bank, showed in Table 6

Table 7 summarise the total profit or loss account of the bank and the insurer for the 
climate-insured loan.

On the basis of these calculations, we can compute the bank’s cash flow net to addi-
tional commissions, shown in Table 8

Table 2  Main Statistics on 
revenue loss

Statistics Value (euros)

�(S) 34,154
VAR(S) 187,303,237
P
75
(S) 43,969

P
99.5

(S) 78,646

Table 3  Insurance economic 
components of innovative 
insured loans, (values in Euro)

Actuarial measure Value (euros)

FP 34,154
PP 43,969
LP 48,854
SCR 34,677

Table 4  Amortization schedule of climate-insured loans by embedding insurance premiums

Time Installment (euros) Interest por-
tion (euros)

Capital por-
tion (euros)

Remaining 
debt (euros)

Insurance pre-
mium (euros)

Cash flows 
beach resort 
(euros)

0 1,000,000 48,854 951,146
1 143,300 71,400 71,900 928,100 49,831 −193,132
2 143,300 66,266 77,034 851,066 50,828 −194,128
3 143,300 60,766 82,534 768,532 51,84 −195,145
4 143,300 54,873 88,427 680,104 52,881 −196,182
5 143,300 48,559 94,741 585,364 53,939 −197,239
6 143,300 41,795 101,505 483,858 55,018 −198,318
7 143,300 34,547 108,753 375,105 56,118 −199,418
8 143,300 26,783 116,518 258,588 57,240 −200,541
9 143,300 18,463 124,837 133,751 58,385 −201,686
10 143,300 9,550 133,751 0 0 −143,300
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From Table 8, it can be noted that the criterion of maintaining the IIR at 8% has been 
met.

Table 6  Bank account 
commissions

Time P/L net COC at maturity 
(euros)

Bank commission 
at maturity (euros)

0 3,283
1 11,908 3,251
2 11,860 3,219
3 11,771 3,188
4 11,657 3,157
5 11,544 3,127
6 11,432 3,096
7 11,321 3,066
8 11,211 3,036
9 11,102 3,007
10 10,994

Table 7  Bank and insurance profit or loss account

Total profit or loss Value (euros)

Financial value of bank commissions 31,430
Financial value of insurance profit 114,799
Additional commissions 41,684
Financial value of insurance profit net additional commission 73,115
Financial value of bank commisions net additional commission 73,115

Table 8  Bank cash flows net 
additional commissions

Time Bank cash flow net 
additional commission 
(euros)

0 −997,557
1 145,792
2 145,842
3 145,893
4 145,944
5 145,997
6 146,051
7 146,106
8 146,162
9 146,220
10 184,985
IIR 8.00%
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4  Concluding remarks

The adverse effects of climate change risk on bank loan availability could significantly 
impact the resilience of commercial banks. As they commonly offer business loans, which 
are particularly vulnerable to climate risk, especially physical risks, their stability may be 
compromised. Research, such as that by Nguyen et al. (2022), suggests that lenders tend 
to impose higher interest rates on mortgages located in areas facing increased risks of ris-
ing sea levels. In our study, we propose an innovative financial contract, potentially facili-
tated by bancassurance, to address this challenge. The financial instrument we investigate 
is founded on a climate change risk-sharing mechanism, leveraging a ML climate risk for 
tourism composite indicator. This approach offers advantages for all involved parties: by 
paying a premium, the beach resort can transfer climate risk to the insurance company 
while simultaneously receiving a discount on the loan interest rate. This enables the busi-
ness to better manage its exposure to climate-related risks, enhancing its financial stability; 
implementing this contract allows the bank to mitigate counterpart risks associated with 
potential climate-related damages to the business. Furthermore, the bank can generate 
additional revenue by acting as a distributor for the insurance product; by leveraging ML to 
price climate risk, the insurance company can realize expected profits through the sale of 
insurance products tailored to climate-related risks for tourism. This innovative approach 
allows the insurance company to accurately assess and address climate risks, thereby con-
tributing to its financial success.

In summary, our proposed financial contract presents a mutually beneficial solution, 
promoting risk-sharing among businesses, banks, and insurance companies. By effectively 
managing climate-related risks, this approach enhances the resilience and stability of all 
involved parties in the face of climate change challenges.
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