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Single image super-resolution (SISR) aims to obtain a high-resolution output from one low-resolution
image. Currently, deep learning-based SISR approaches have been widely discussed in medical image
processing, because of their potential to achieve high-quality, high spatial resolution images without the
cost of additional scans. However, most existing methods are designed for scale-specific SR tasks and are
unable to generalize over magnification scales. In this paper, we propose an approach for medical image
arbitrary-scale super-resolution (MIASSR), in which we couple meta-learning with generative adversarial
networks (GANS) to super-resolve medical images at any scale of magnification in (1,4]. Compared to
state-of-the-art SISR algorithms on single-modal magnetic resonance (MR) brain images (OASIS-brains)
and multi-modal MR brain images (BraTS), MIASSR achieves comparable fidelity performance and the
best perceptual quality with the smallest model size. We also employ transfer learning to enable MIASSR,
to tackle SR tasks of new medical modalities, such as cardiac MR images (ACDC) and chest computed
tomography images (COVID-CT). The source code of our work is also public. Thus, MIASSR has the
potential to become a new foundational pre-/post-processing step in clinical image analysis tasks such
as reconstruction, image quality enhancement, and segmentation.
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1. Introduction

Medical images of high quality and resolution are
important in the current clinical process. For exam-
ple, features and biomarkers extracted from func-
tional and structural magnetic resonance (MR)
images play a key role in the diagnosis and
study of Alzheimer’s disease! stroke? autism)® and
Parkinson’s disease # However, the spatial resolution
of medical images is limited by constraints such
as acquisition time and equipment. Thus, super-
resolution (SR) methods, which aim to increase
the spatial resolution of digital images as post-
processing, have the potential to improve the qual-
ity of medical images without additional scanning
costs” SR methods consider low-resolution (LR)
images as the degradation of high-resolution (HR)
images and magnify them by approximating a super-
resolving transformation®® to generate new pixels
based on LR images and prior knowledge. Depend-
ing on the number of input and output images,
SR methods can be briefly classified into single
image SR (SISR) and multi-image SR. In this paper,
we focus on SISR, which recovers one HR image
from its LR version. In recent years, deep learn-
ing techniques have achieved great success in image
processing problems such as human gait recogni-
tion” and image anomaly detection Particularly,
with the rapid development of convolutional neu-
ral networks (CNNs) and generative adversarial
networks (GANs), deep-learning-based SR methods
have achieved remarkable performance ™4 on var-
ious medical image modalities. However, most of
these works are designed for specific magnification
scales and treat SR with different scales as indepen-
dent tasks. Thus, several models have to be trained
and stored for different magnification tasks. Fur-
thermore, it is challenging to collect large clinical
datasets of HR and LR image pairs to train these
SR methods for new applications. The high cost of
training and implementation lead to poor clinical
applicability and limit their application as a result.
In this work, we first seek to apply meta-learning
to GANs to tackle scale-free SR in medical images.
We implement an end-to-end medical image SR net-
work, which takes one LR image as input and gen-
erates corresponding SR images of an arbitrary scale
of magnification. We train this model with pixel-wise
error, perceptual loss and GAN-based adversarial
loss, to improve both the perceptual quality and

fidelity of generated images. Moreover, we overcome
the cost of modifying well-trained models to new
medical modalities using transfer learning. In par-
ticular, we focus on SR tasks with arbitrary scales in
(1,4]. This range is chosen as it is most commonly
used in practice, but larger scales can be tackled
using proper training data. The rest of the paper
is structured as follows: first, we review the state-
of-the-art (SOTA) SISR methods for natural and
medical images; second, we describe the proposed
method in detail; next, we introduce the design of
our experiments, including data, evaluation metrics,
and implementation details; and finally we illus-
trate the results of MIASSR on four medical image
datasets and discuss the influence of each component
of MIASSR.

2. Related Work
2.1. Single itmage super-resolution

Traditionally, SISR methods increase the resolu-
tion of the input LR image using a variety of

13 reconstruction 19

interpolation, neighbor embed-
ding1” and sparse codingl® However, these meth-
ods are incapable of simulating the nonlinear trans-
formation from LR image to HR space and gener-
ate super-resolved images of poor quality. Recent
developments in deep learning have led to dra-
matic improvements. Neural networks such as CNNs
make it possible to learn this nonlinear transforma-
tion from corresponded LR-HR image pairs. Dong
et al. first pioneered SRCNN to solve SR prob-
lems™ with natural images, and achieved supe-
rior performance than traditional methods. Resid-
ual blocks?! were then used to implement a much
deeper network VDSR4 and further improved the
performance. These pre-upsampling methods first
up-scaled the LR image with interpolation meth-
ods and then refined the primary results. How-
ever, processing feature maps in a high-dimensional
space has a high computational and memory cost,
thus limiting the depth of networks. To avoid this
inefficient calculation, post-upsampling architectures
moved to process LR feature maps and reconstruct
SR images by up-sampling these LR features with
transposed convolutions®? and sub pixel layers/??
Meanwhile, various skip-connection strategies were
introduced to stabilize the training of these deep
networks, including residual connections,*! dense
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connections,** and residual dense connections.
Despite the high performance on the peak signal-to-
noise ratio (PSNR) and structural similarity (SSIM)
of these deep networks, their outputs were not photo-
realistic. Thus, SRGAN2Y was proposed to overcome
this gap and generate more photo-realistic images.
Training with VGG-based?? perceptual loss®® and
GANs2Y SRGAN successfully generated perceptu-
ally realistic SR images which achieved compara-
ble mean-opinion-score (MOS) with ground truth
(GT) HR images. Following the same idea, ESR-
GAN=Y achieved superior performance by training
a much deeper network with material recognition
model-based perceptual loss and relativistic dis-
crimination! Additionally, methods with chan-
nel attention *2 unsupervised learning/3® and back
projection®® were also proposed. Most of these meth-
ods were designed for specific magnification SR scales
and are incapable of varying the up-sampling scale.
Thus, MetaSR®? was proposed for scale-free SR
tasks. It introduced a meta-upscale module that pre-
dicted a weight matrix and replaced the up-sample
convolution layers (e.g. sub-pixel) with matrix mul-
tiplication. Instead of learning an up-sample trans-
formation on a specific magnification scale, this new
upscale module learns the relationship between up-
sample transformations and scales of magnification,
thus allowing a single model to super resolve images
with arbitrary scales.

2.2. Medical tmage super-resolution

The increasing interest in, and development of, CNN-
based SR algorithms has drastically improved their
performance on medical image SR tasks® In con-
trast to natural image SISR tasks, medical image
SR is often pipelined by applications such as segmen-
tation, classification and diagnosis, so it is required
to preserve sensitive information and to enhance the
structures of interest. Tackling the domain-specific
SR problems, methods for medical image SR solved
practical problems with techniques such as U-Net
architecture, 2% cycle GAN /2 and 3D convolu-
tion 28 Moreover, medical image SR has embedded
benefits for other medical image analysis tasks such

as lesion detection 1H2

and segmentation? How-
ever, most of the current methods have poor clinical
applicability due to two limitations. First, they were
mainly proposed for specific SR scales, which are not

able to meet the range of magnification requirements

Arbitrary Scale Super-Resolution for Medical Images

in medical image analysis tasks and diagnosis. Sec-
ond, modifying the methods designed for one med-
ical image modality to new modalities and tasks is
time-consuming and unreliable. Thus, in this paper,
we propose a medical image arbitrary scale super-
resolution (MIASSR) method, in which we seek to
apply meta-learning to GANs to tackle arbitrary
scale SR tasks. Our main contributions are as follows:

e We first introduce meta-learning to medical image
SR tasks and propose the first scale-free SR
method for medical images with SOTA perfor-
mance. Notably, in this paper, we focus on SR
tasks of up to x4 magnification to meet the most
common requirements of medical image SR in
practice, but the proposed method can also work
for a larger range of SR scales if proper training
data is provided.

e We show that, compared to an existing meta-
learning-based SR method3® MIASSR has fewer
parameters (only 26%), but achieves comparable
fidelity and perceptual quality, due to its use of
adversarial learning and perceptual loss in the
training process.

e We successfully extend the proposed method to
various medical scans of different purposes, such as
single- and multi-modal MR images of the brain,
cardiac MR images, and CT scans of COVID
patients. With transfer learning, the pre-trained
model can be applied to new modalities efficiently.

3. Methods

SISR aims to restore a HR image Iy, from one LR
observation I}, of the same object. Generally, in the
real world, the LR image is modeled as follows’:

Ilr == (Ihr ® K:) ls +7’L, (1)

where I, ® k denotes the convolution between a
blur kernel x and the HR image Iy, |s is the down-
sampling operation with scale s, and n represents the
noise. In SISR, we want to inverse the degradation
mapping of Eq. () to recover a super-resolved image
I, from I,

I, = G(Ilr73§9G)7 (2)

where G is a CNN-based SR image generator and 6
denotes its trainable weights. In each step of training,
errors between the approximation I, and the HR
GT I, are measured by a well-designed loss function
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Lsr, and applied to the whole network using back-
propagation to calculate gradients and update the
weights 05

0 = arg I%iHESR(G(Ilr), L) (3)
G
The SR image generator in our approach consists

of a feature extractor F which extracts the feature
maps of the LR image and a meta-upscale module M

each component of the proposed MIASSR (Fig.[d]) in
detail: firstly the feature extraction, then the meta-
upscale module, and finally the losses for training.

3.1. Feature extraction

We use an Enhanced Residual Block (ERB) Bgrp-
based feature extractor, namely EDSR-lite in

MIASSR. This residual block (Fig. [) is first pro-
posed in EDSRAY which consists of two convolution
layers C, a nonlinear activation layer o, a residual

which up-samples the feature maps with arbitrary
scales:

Iy = G(I) = M(F (1), s)- (4)
Note that the input and output layers that normalize

connection, and no batch normalization layer:

Fout = BERB(-Fin)
= Fi, + C?(U(C;U(En, ¢C2>>; ¢)C1> X @,
¢C1 y ¢C2 € GG, (5)

and convert the images to the feature domain, and
vice versa in the generator, are ignored to simplify
this equation. The rest of this section will introduce

I: images F:Feature maps  s: Magnification scale ~ W: weights Lgg =AXL;+y XL, +n X Lyere

e Feature Extractor 7 [l Meta-Upscale ’—>
_.-=~"" EDSR-lite ; ' .

Fsr=WXFlr Fsr

"] H
' '
] 1 1
[ 1 2 X0 []
' | [
1 ' ]
] 1 1

VGG n * Lperc

I Convolutional layer I Activation Fully-connected layer Normalisation

Fig. 1. The proposed MIASSR consists of an EDSR-lite-based low dimension feature extractor and a meta-upscale
module. The feature extractor comprises 16 enhanced residual blocks, each of which includes two convolution layers and
a nonlinear activation layer. It extracts low dimension feature maps Fj. of the input LR image I},. The meta-upscale
module consists of two fully-connected layers and an activation layer. It predicts a group of weights from the input SR
scale and achieves the feature map magnification with matrix multiplication. A super-resolved image I, is then generated
from the enlarged feature maps Fs;. The whole model is trained end-to-end with a combined loss function including L1
loss, adversarial loss and VGG-based perceptual loss.

o

Residual Block Enhanced Residual Block

Conv layer with kernel size | Activation ---» Hidden layers

E=E

Batch Normalisation 5> Multiplyby @ ——* qyiy connections

&) Concatenation
xﬂj‘” e w@" @ Addition

Residual in Residual Dense Block

Dense Block

Residual Dense Block

Fig. 2. Residual and dense blocks. These blocks consist of convolution layers and activation layers in common but have
various slkzellp connections. They are the basic unit of SOTA SISR networks: Residual Block is used in SRResNet and
SRGAN;*® Enhanced Residual Block is used in EDSR and MDSR,@I Dense Block is used in SRDenseNe‘c}ZI Residual
Dense Block is proposed in RDN Residual in Residual Dense Block is proposed in ESRGAN U Notice that residual
scales o and (3 are introduced to stabilize the training of very deep neural networks (e.g. ESRGAN).
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where Fj, and Fy, are the input and output feature
maps, w presents the width of each convolutional
layer, and {¢c¢,, ¢, } are trainable parameters of the
convolution layers. Padding is applied according to
the kernel size in all convolution layers such that fea-
ture maps maintain their spatial dimensions. Thus,
it becomes very convenient to build deeper neural
networks by simply stacking several residual blocks,
and low dimension feature maps Fj, can be extracted
from the input LR image I};:

B, = F(Ly) = BY(Ly; ¢5), ¢5 € 0c. (6)

In our approach, we use a lite version of EDSR, which
consists of 16 enhanced residual blocks (i.e. Eq. (@),
and 64 convolution kernels with a size of 3 x 3 for
each convolutional layer.

3.2. Meta-upscale module

To generate HR output from LR input, the low
dimension feature maps Fi, extracted by F in Eq. (@)
need to be upscaled:

. :us(ﬂr§¢s)a (7)

where Fy, is the super-resolved feature maps, U is
an up-sampler, and ¢; is the group of parameters for
the magnification option with scale s. In comparison
with common single scale up-samplers such as sub-
pixel“? which only learn one group of parameters for
a specific SR scale s, the meta-upscale module? M
in our approach learns to predict a group of param-
eters for each SR scale. Particularly, one pixel (4, j)
of the super-resolved feature maps Fy, is calculated
as a weighted sum of all pixels in Fj;:

Fsr(i7j) = Vi X F‘lra (8)

where Fj, with original shape (Hi,, Wiy ) is flattened
to (Hin X Win, 1) and v; ; is a vector with dimensions
(1, Hin X Wiy). The parameters of v; ; are predicted
by a weights prediction network W in M according
to the scale s and the pixel’s location (i, j):

o[22 ) waer
(9)

Accordingly, all pixels in Fg can be achieved via
matrix multiplication:

Fy =W, x Era (10)

where W = W(s) denotes the magnification matrix
consists of v; ; of all (¢,5) € Fy with scale s. Thus,

Arbitrary Scale Super-Resolution for Medical Images

the meta-upscale module is represented as
Fsr:M(-FlraS) :W(S,¢W) Xﬂra ¢W EHG,
(11)

The weights prediction network W consists of only
three-layers, including two fully-connected layers and
a nonlinear activation layer. This meta-upscale mod-
ule works with any scales, which is quite different
with sub-pixel-based up-samplers. Thus, it becomes
possible to train an end-to-end model for SR tasks
with arbitrary magnification scales.

3.3. Loss functions

We use a combined loss of pixel-wise L1 loss, adver-
sarial loss and perceptual loss as in Eq. (@) to train
our model.

3.3.1. L1 loss

SISR requires predicting the correct value of each
pixel in the super-resolved images. Thus, pixel-wise
errors are important for both evaluation and training
of SR networks. In our work, we used the L1 loss,
also called the mean-absolute-error (MAE) to train
the model for good performance on PSNR and SSIM
scores. It is defined as

1 .. .
HxW Z HIhr[Zaﬂ 7Isr[laj]||a

(i,4)€l

Ll (Isra Ihr) ==

(12)

where H and W are the height and width of the
images. L1 Loss is a typical loss function used to train
SISR networks. However, as this loss leads to over-
smoothing, it has limited ability in generating per-
ceptually realistic textures in medical images, which
are important for human beings for visual under-
standing. Therefore, the perceptual loss and adver-
sarial loss are also introduced to the training of our
method.

3.3.2. VGG-based perceptual loss

The VGG-based perceptual loss Lyerc was first intro-
duced by Johnson et al. 28/ and had been widely used
in SR tasks HH22088U Tt presents the mean-square-
error (MSE) between the super-resolved images and
the HR GT images in the feature domain:

EperC(Isrthr) = ]E(Hvl(jhr) - Vl(Isr)Hz)a (13)
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where V is a pre-trained VGG19 model and ! denotes
the feature maps of the specific layer of V. Follow-
ing the conclusion in ESRGAN " we use the feature
maps before activation of earlier layers to provide
more textural information.

3.3.3. Adversarial loss

To generate more perceptually realistic images, we
apply Wasserstein GAN-based adversarial training
in our method. In addition to the SR image genera-
tor G, a GAN consists of a discriminator D, which
assists the training of G by playing a game: the dis-
criminator aims to distinguish generated fake images
from real GT images, while the generator aims to fool
the discriminator. The networks are trained jointly,
so the discriminator should be able to recognize any
image as real or fake correctly, while the generator
should be able to produce as real as possible SR
images. Thus, the basic adversarial loss function is
defined as follows2%:

Loan = —Ep,, [log D(In)]
—Ep flog(1 — D(G(In)))].  (14)

Whilst this basic version of adversarial loss, so-called
vanilla GAN loss, has been successfully used in nat-
ural image?® and medical image!' SR tasks, it is sus-
ceptible to problems of training instability and mode
collapse. Thus, Wasserstein GAN was proposed by
Arjovsky et al’*l' to resolve these issues. Instead of
the binary classification loss in vanilla GAN, the
Wasserstein distance between the distribution of real
and generated images was introduced as the adver-
sarial loss:

Lwean = Ep, [D(G(Iy))] — Ep, [D(In)].  (15)

One important trick of Wasserstein GAN is to clip all
the weights of the discriminator to a constant range
[—¢, ], to meet the condition of derivable Wasser-
stein distance. However, with the clipping strategy,
weights of discriminator tend to be either the mini-
mum or maximum values. This causes the discrimi-
nator to behave like a binary network, and depresses
the nonlinear simulating abilities of GANs. Thus, the
gradient penalty was proposed to replace the clipping
operation#? The new trick restricts the gradients of
D to not change rapidly, by adding a new term in

the adversarial loss:

Laav = Lwean +Ef[| v D), — 1%, (16)

where || ||, is the p-norm.
In summary, the loss that we use to solve equation
@) is defined as

»CSR =)\ X El + v X »Cadv +n X »Cperca (17)

where A, 7, and 7 are scale factors to balance each
part of the loss function.

4. Experiments

In our simulation experiments, the proposed method
has been successfully applied to four different med-
ical image datasets (Sec. 1) in SR tasks with
arbitrary scales of magnification in (1,4]. HR GT
images and corresponding LR images were gener-
ated from the original slices (Sec. E1)). To evalu-
ate our method, metrics including PSNR, SSIM and
Frechet Inception Distance (FID)*¥ (Sec. EE2) were
used to measure the differences between the super-
resolved images and GT images in the test set. After-
wards, the mean performance over all scales in (1, 4]
was compared with bicubic interpolation and seven
SOTA SISR methods (Sec. A4).

4.1. Data and pre-processing

LR-HR image pairs for training, validation and test-
ing were generated from the original slices. HR
images were achieved by removing the pure-black
background margin of original slices, whilst LR
images were generated by down-sampling the corre-
sponding HR images and blurred with a 3 x 3 Gaus-
sian kernel. We focused on the central regions of each
slice as the pure-black background regions has lit-
tle information content and including this area only
slows the training process. In the experiments, a suit-
able margin size for each dataset was carefully chosen
to ensure no nonzero values were removed.

4.1.1. OASIS-brains

The OASIS-brains** dataset consists of a cross-
sectional collection of 416 subjects including indi-
viduals with early-stage Alzheimer’s Disease (AD).
For each subject, 3 or 4 individual T1-weighted
MRI scans obtained within a single imaging session
are included (Fig. [B). For the single modality SR
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I >0.2

0.0

x2.0:39.17/0.9836/21.14  x2.5: 3478/09619/346

x3.5:31.48/0.9171/60.58  x4.0:29.78 / 0.8786 / 74.92 <‘0'2

Fig. 3. An example of super-resolved images with different scales of magnification by our proposed MIASSR. The
slice is randomly selected from the test set of OASIS-brains. Here, we only illustrate SR images with six scales
(1.5,2.0,2.5,3.0, 3.5,4.0), and the method could generate SR images with arbitrary scales in (1,4]. All images are converted
to [0, 1]. Differences between SR images and GT images are rendered with the color-bar and measured by PSNR, SSIM
and FID. Higher PSNR and SSIM indicate better fidelity quality, while lower FID represents better perceptual quality.

experiments, the brain-masked version of an atlas-
registered gain filed-corrected image, namely T88-
111, was used. Due to the limitations of computing
resources, from the whole dataset, we randomly
select 30 subjects for training, 3 subjects for val-
idation and another 9 subjects for testing. Note
that the validation dataset was only used for hyper-
parameters searching. The original size of each sub-
ject was [176 x 208 x 176], and only a central area of
[144 x 180] was used. Our experiments were applied
on the axial plane.

4.1.2. BraTS

The brain tumor segmentation dataset (BraT$ )45 47
provides multi-modal MRI scans of 210 patients
with glioblastoma (GBM/HGG) and the other 75
patients with lower grade glioma (LGG). Each
BraTS multi-modal scan includes 4 MR modali-
ties: native (T1), contrasted enhanced T1-weighted
(T1ce), T2-weighted (T2), and T2 Fluid Attenuated
Inversion Recovery (T2-FLAIR) volumes. We ran-
domly selected 50 scans (35 HGG and 15 LGG) for
training, and 10 scans (7 HGG and 3 LGG) for test-
ing. The original image shape was [240 x 240 x 155].
Slices on axial plane were cropped to [180 x 170] to
focus the training on brain area.

4.1.3. ACDC

The Automated Cardiac Diagnosis Challenge
(ACDC)* dataset includes 1.5T and 3.0T MR, scans
of 150 subjects, including 30 health people and 120
patients with previous myocardial infarction, dilated

cardiomyopathy, hypertrophic cardiomyopathy and
abnormal right ventricle. The whole dataset was ran-
domly assigned to 80 cases for training and 19 cases
for testing. We applied MIASSR on the transverse
plane, where the slices had various shapes from
[174 x 208] to [184 x 288]. To standardize the slice
shapes, only the center areas with a size of [128 x 128]
were cropped and used for training and testing.

4.1.4. COVID-CT

The COVID-CT dataset™ includes CT scans of 632
patients with COVID infections, from which images
of 199 patients were used for training, and images of
another 25 patients were used for testing. The orig-
inal image shape is [512 x 512]. After removing the
background, only the center area of [412,332] was
used for either training or testing.

4.2. Metrics

Three objective image quality assessment methods
were used to measure both the fidelity and percep-
tual quality of the generated SR images in our exper-
iments. First, we use the PSNR, which is defined as
follows®:

PSNR(Iy, In:) = 10 - logy

(remmomon)
LN (e () — Ine(0))2 )
(18)

where L denotes the maximum pixel (L = 1.0 in our
case), and N is the number of all pixels in Iy, and I,;.
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PSNR relates to the pixel-level mean squared error,
and is the most widely used evaluation criteria for
SR models ™ Meanwhile, another popular metric,
structural similarity (SSIM), is also used. It is defined
as follows™:

2
SSIM(./I:, y) — 2Mxﬂy2+ R1 . 20-$y —12_ K2 ,
Myt py + K1 oF o0+ K2

(19)

where z, 3 denote two images, i« and o2 are the mean
and variance, o, is the covariance between x and
y, and Ki1,Kko are constant relaxation terms. SSIM
assumes that the human visual system is highly
adapted to extract image structures, and measures
the structural similarity between images based on the
comparisons of luminance, contrast, and structures.

However, both metrics are limited to measure
the fidelity quality, but cannot evaluate perceptual
quality. Over-smoothed images were reported*225 to
achieve higher PSNR and SSIM scores than texture-
rich images, but they might be less perceptually real-
istic. Thus, we also calculated the Frechet Inception
Distance (FID)*3 which is widely used to evaluate
the perceptual quality of generated images by GANSs.
It measures the difference of high-level global fea-
tures of generated SR images and GT images, by
calculating the distance between the distributions of
both groups of images in the latent space of a pre-
trained image classification model Inception-V352Y
Note that higher scores of PSNR and SSIM rep-
resent better fidelity quality, while lower FID indi-
cates more perceptually realistic images have been
generated.

4.3. Implementation details

We use PyTorch to implement our method, NiBabel
to load medical data, and OpenCV-python for image
resize and blur operations. All experiments were per-
formed on an Nvidia Quadro RTX 8000 GPU. Fol-
lowing the instructions of our open-source imple-
mentation,® researchers could reproduce our experi-
ments and test new experiments easily. The following
hyper-parameters and details of training tricks were
also released as config files.

The generator consists of d = 16 enhanced resid-
ual blocks, in which each convolution layer has w =
64 feature maps. A residual scale a = 1.0 was used

#https: //github.com/GinZhu/MIASSR.

for the residual connections in ERB. The discrimina-
tor is similar as in DCGAN®4 and SRGAN 29Tt con-
sists of 4 down-sample blocks, each of which has one
convolution layer with stride = 1 for feature expand-
ing and one convolution layer with stride = 2 for
down-sampling. No batch normalization layers were
used in either the generator or the discriminator,
while leaky-ReLU with negative-slope = 0.2 was cho-
sen as the nonlinear activation function. In the exper-
iments without transfer learning, both networks were
initialized with Kaiming-uniform >3

During training, LR and HR images were ran-
domly cropped into sample patches. The original
path size was set to H,, W, = (96,96) for HR
patches, but either the size of LR patches or the size
of the HR patches were adjusted to match the mag-
nification scale s:

Hie, Wie = L%J ’ {%J ; (20)

Hhra Whr = I_SleJ 3 I_SVVlrJ .

For each training step, a batch of 16 random
patches, with the same SR scale was fed to the model.
Initially, in pre-training, the generator of MIASSR
was trained with only £; for 1 x 10° steps, because
this ‘warm-up’ has been found to stabilize the train-
ing of GANsY Then we train both generator and
discriminator with A = 1, v = 0.001 and n = 0.006
for 1 x 10° steps. Adam optimizer>® with an initial
learning rate [, = 0.0001, momentum m = 0.9, and
betas b = (0.9,0.999) was used for backpropagation.
Every 5 x 10* steps, the learning rate was halved. To
avoid a gradient explosion, losses above 1 x 108 were
discarded.

All the above hyper-parameters were chosen
based on the validation performance in our exper-
iments on the OASIS-brains dataset. In the trans-
fer learning experiments of ACDC and COVID-CT
datasets, the model which had been pre-trained on
OASIS-brain was fine-tuned for 1 x 10* steps with
Lsr. Meanwhile, to make MIASSR work with multi-
modal scans in the experiments with the BraTS
dataset, the single-channel input and output layers
were modified to 4-channel. Particularly, the four
modalities of BraTS, Tlce, T1, T2 and Flair, were
stacked during both training and testing, and the loss
function Lggr was first calculated on each modality
independently and then averaged.
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4.4. Comparison with SOTA methods

We compared the proposed method with the
bicubic interpolation and 7 SOTA SISR meth-
ods: SRGAN 2% EDSR/A” SRDenseNet,*¥ RDN /2
MDSRAY ESRGAN-L15Y and MetaRDN52 All
these methods were designed for natural images,
which have much bigger dimensions than the medical
images we used. To make them work well with our
experiments, we retrained the models with the med-
ical image datasets with smaller patches. All models
were trained with the same steps and learning rate
decay policy, without model embedding and data
augmentation for a fair comparison. We used the
original loss functions to train most of the models,
but the material recognition-based®? perceptual loss
in ESRGAN hindered training with medical images,
so we used the Ll-loss-based ESRGAN (so-called
ESRGAN-L1) for our comparison.

All these SISR methods (except MetaRDN) were
designed only for specific integer magnification scales
(%2, x3, and x4). To evaluate their performance
on SR tasks with arbitrary scales, we used an up-
and-down strategy, consisting of two steps: in the
up-sampling step, the well-trained model with the
ceiling scale [s] is used to infer an over-magnified
SR image; then, in the down-sampling step, the
over super-resolved image was resized correspond-
ingly using the bicubic interpolation.

5. Results and Discussion

In this section, we first present the results of MTASSR,
with four datasets, and compare the performance
with SOTA SR methods. Then, we systemically ana-
lyze the influence of each component of the model.
The ablation study is important to understand the
how the hyper-parameters and model architecture

Arbitrary Scale Super-Resolution for Medical Images

affect the final SR performance, as in other image
processing tasks .29

5.1. MIASSR performance

First of all, in the experiments with the OASIS-
brains dataset (Fig. Bl), MIASSR was compared with
SOTA methods with arbitrary SR scales. On aver-
age, it achieved the third-best mean PSNR and SSIM
scores, and the best FID with the fewest parameters
(Fig.d and Table[I]). Particularly, with all SR scales,
MIASSR generated images with comparable fidelity

- — Methods with Sub-Pixel Methods with Meta Learning

" @ MetaRDN: 5.8m

@ MDSR: 6.7m " Ours: 1.5m

~ e, .
N

~N
36.2 N

PSNR

N

~_ ESRGAN_L1: 30.2m

36.0 6 - =
~

-

358 p EDSR: 127.5m

o
35.6 SRDenseNet: 30.4m — Q

60 50 45

aRDN: 17.2m

55
FID

Fig. 4. Performance and model size of our method com-
pared to SOTA methods. Mean PSNR and mean FID
on SR scales between (1,4] are used to evaluate both
the fidelity and perceptual quality of generated images.
The bubble size denotes the number of parameters of
each model. SRGAN is not plotted because it has much
worse performance (meanPSNR = 28.15, meanFID =
128.21) compared to all other methods. Higher PSNR
scores denote better fidelity quality, and lower FID rep-
resents better perceptual quality. Our proposed method
has achieved the best FID and the third-best PSNR with
the smallest model size. Perception-distortion trade-off 51
is reflected in both groups: methods with meta-learning,
and methods with sub-pixel. High fidelity and percep-
tual quality are at odds, and impossible to be improved
simultaneously.

Table 1. Comparing our method with SOTA methods in SR tasks with arbitrary scales in (1,4] on the OASIS-brains
dataset. Higher PSNR and SSIM denote better fidelity quality, while lower FID means better perceptual quality. The
best performance is in bold. The unit of the number of parameters of each model is million. Along with the smallest
model size out of all CNN-based methods, our proposed method achieves the best FID and comparable PSNR/SSIM.

BiCubic SRGAN?® EDSR*? ESRGAN(L1)*Y MDSR*! RDN2® SRDenseNet** MetaRDN®?  Ours

PSNR 31.32 28.79 35.71 36.11
SSIM 0.8600 0.6380 0.9541 0.9568
FID 144.9 117.7 44.00 54.36
Params — 4.5M 127.5M 30.2M

36.63 35.95 35.83 36.84 36.46
0.9595  0.9574 0.9548 0.9627 0.9576

58.95 49.37 50.90 51.36 39.85
6.7M 17.2M 30.4M 5.8M 1.5M
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Fig. 5. Comparing our proposed method with bicubic
interpolation and SOTA methods in SR tasks with arbi-
trary scales in (1,4]. Higher PSNR and SSIM denote
better fidelity quality, while lower FID represents bet-
ter perceptual quality. Results of bicubic interpolation
and SRGAN are not fully plotted because of their poor
performance. Our proposed method has achieved com-
parable performance with SOTA methods with all SR
scales.

and perceptual quality with SOTA methods (Fig. [).
Considering the balance between cost and perfor-
mance, the mean PSNR score and FID were plot-
ted with the number of parameters of each model.
Particularly for SISR methods which only supported
one SR scale (i.e. EDSR, RDN, SRDenseNet and
ESRGAN), the model size denoted the number of all
parameters in three models x2, x3, and x4, because
they were all required in inference. Methods designed
for multi-scale (i.e. MDSR) and arbitrary scales (i.e.
MetaRDN and Ours) greatly decreased the effective
model size by reducing the required models to one.

Notably, MIASSR had the fewest parameters
which were only 26% of the existing meta-learning-
based method (i.e. MetaRDN) and fewer than 1%
of EDSR. Interestingly, multi-task methods (i.e.
MDSR, MetaRDN, our MIASSR) achieved much
better PSNR scores than single-scale SR methods,
although they were learning more challenging trans-
formations. Instead of approximating one mapping
with a certain SR scale, their parameters were
shared in approximations of mappings with various
SR scales. However, the parameter sharing between
tasks and the diversity of LR-HR image pairs with
different magnification scales helped the models con-
verged better in the training process. Interestingly, if
we divided all the methods into two groups — meth-
ods with meta-learning and methods without meta-
learning — the perception-distortion trade-off>l was
clearly observed in each group. We found that the
stem of workflow determined the overall perfor-
mance, while the details of architectures only affect
the balance between fidelity and perceptual quality.

The proposed method has also performed well
with various medical image modalities (Table [2).
Transfer learning, which helps to decrease the train-
ing cost on medical data processing®? also helped
to modify the OASIS-brains pre-trained model to
new single-modality medical image datasets effi-
ciently and effectively. Compared to the bicubic
interpolation method, the proposed MIASSR signif-
icantly improves performance in experiments with
ACDC and COVID-CT. Comparing with EDSR and
MetaRDN, MIASSR generated images of compa-
rable fidelity and better perceptual quality, with
only one-fifth of the training steps. Indeed, trans-
fer learning reduced the required training steps from
1 x 10° to 2 x 10*. Besides, MIASSR is straightfor-
wardly extended to multi-modality images: by sim-
ply modifying the input and output layers, it suc-
cessfully worked for the cross-modality SR task of
the BraTS dataset. Comparing with SOTA methods
that work for a single modality, it achieved compa-
rable performance on all four modalities (T1, T2,
T1lce and Flair). The additional visualization results
of ACDC, COVID-CT and BraTS§S are attached in
the appendix.

In summary, the proposed method has good clin-
ical applicability. In our experiments, it has been
successfully applied to various medical image SR
tasks, with different situations of modalities and
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Table 2. Comparing MIASSR with EDSR, MetaRDN, and bicubic interpolation on multi-modal brain images
(BraTs), cardiac MR scans (ACDC), and chest CT images of COVID patients (COVID-CT). Higher PSNR
represents better fidelity quality of SR images, while lower FID denotes better perceptual quality. The best
performance is in bold. Notice that MTASSR requires only one fifth training steps of EDSR and MetaRDN with
transfer learning. Moreover, unlike EDSR and MetaRDN which only work with a single modality, it works with

multi-modality data in a single model and further reduces the cost of extending to new SR tasks.

PSNR / FID BraTS-T1 BraTS-T1ce BraTS-T2 BraTS-Flair ACDC COVID-CT
BiCubic 32.83/151.6 33.13/139.7 29.87/125.1 31.52/145.8 27.42/267.7 38.62/141.0
EDSR#0 36.54/76.42 36.34/74.18 33.69/51.93 35.27/79.32 30.82/179.3 46.75/39.53
MetaRDN=5 37.27/78.16  37.22/72.93  34.76/53.55  36.05/78.88  31.27/154.7  43.27/38.96
MIASSR(ours)  36.89/62.28  36.86/61.06  34.28/46.74  35.91/68.45  30.94/153.5  43.21/37.66
diseases. It works with the brain and cardiac MR MetaRDN: 5.5m@®
images (i.e. OASIS-brains, ACDC), chest CT images * Me‘:e;:;::;;‘
(i.e. COVID-CT), and cross-modality scans (BraTs). 3 Meta-SRDenseNet: 30.4m
Comparing with SOTA methods, MTASSR can gen- "
erate SR images with comparable fidelity and bet- %3}
ter perceptual quality with much smaller model size.
Additionally, with transfer learning, MIASSR can be 2 0‘1’51 T o SRResNel: 1.5m
extended to new datasets effectively and efficiently. 311 o @ Vota EDSR: 127.5m
140 120 FID 100 80 60

5.2. Generator architectures

Referring to Eqgs. (@) and (6), the SR image generator
is influenced by three factors: the block structure B,
the number of blocks (namely the depth d), and the
number of convolution kernels of each layer (namely
the width w). Broadly, the width and depth of the
network determine the size of the network, while the
block structure represents the connection of these
layers. They resolve the capability of feature extrac-
tion jointly. To understand how each factor influences
the final performance, we have designed an ablation
study of generator architectures.

First, we have compared a wide range of archi-
tectures for LR feature extraction in MIASSR. Six
SOTA networks, which have been widely used in
computer vision and achieved high performance on
SISR tasks, were tested. These networks, SRResNet,
EDSR, MDSR, SRDenseNet, RDN and ESRGAN,
were built with various residual and dense blocks
(Fig. B)) and behaved differently on simulating the
LR-to-HR transformation. To match MIASSR, we
replaced their scale specific up-samplers with the
meta-upscale module, as in MetaSR,%? and kept the
original settings (i.e. depth and width). To compare
the performance of these generators, we trained them

Fig. 6. Comparison of SR image generators in MIASSR
(training with £;). Higher PSNR indicates better fidelity
quality, while lower FID represents more perceptually
realistic SR images. Bubble size denotes the number of
parameters. The basic block design, such as skip con-
nections, rarely affects the final performance, but the
depth of networks impact the performance a lot. Deeper
networks (MetaRDN, Meta-MDSR, Meta-ESRGAN, and
Meta-SRDenseNet) perform better.

with the L1 loss £ for 1 x 10° steps with the same
training settings. Both fidelity and visual qualities of
the generated SR images were evaluated (Fig. [B).
When training with only fidelity loss £;, we found
it very interesting that these variations could be
divided into two groups. Methods with more layers
always performed better, because the deeper struc-
ture provided stronger ability in simulating non-
linear transformations. Other structures, such as
skip connections in dense blocks and the width of
models, made no big differences. However, suitable
structures for minimizing pixel-wise errors might
not fit the needs of generating perceptually realistic
textures. Thus, we further compared RDN, EDSR
and EDSR-lite with adversarial learning (Fig. [1).
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Fig. 7. The sensitivity analysis of SR image genera-
tors to GAN-based adversarial learning. Three networks,
EDSR-lite (ours), EDSR and RDN are trained with £;
only, and with additional £,q, and Lperc, and compared.
Low FID represents good perceptual quality of generated
images, while high PSNR and SSIM indicate good fidelity
quality. Adversarial learning has significantly improved
the performance of EDSR-based methods.

Although MetaRDN achieved the best performance
with L1 loss, it was not improved with further adver-
sarial learning. Oppositely, the other two were dis-
tinctly benefited by the adversarial and perceptual
loss. However, comparing the original EDSR with
the EDSR-lite, extra feature maps of each convolu-
tion layer only slightly improved the performance,
although nearly one hundred times more parameters
were used.

Additionally, we investigated the influence of
the width and depth of the network over the final
SR performance. Technically, deeper and wider net-
works should have more capability of approximation,

which would result in better SR performance. How-
ever, more trainable parameters also led to more
challenging optimization of Eq. (@) and over-fitting.
Meanwhile, the cost and performance balance should
also be considered, because the number of param-
eters grows linearly with the depth and quadrat-
ically with the width. In our experiments of the
width of the network, the model that consisted of 64
convolution kernels in each layer achieved the best
PSNR and FID (Table ). Wider networks did not
improve the performance (e.g. w = 128), and the
optimization in networks training even failed to con-
verge when w = 256. Similarly in the experiments of
the depth of the network, additional residual blocks
over 16 rarely helped (Table [).

Network architectures, such as skip connections,
depth and width have significant impacts on the final
performance of medical image SR tasks. First of all,
extra skip connections are a double-edged sword.
These connections in dense blocks such as RDB and
RRDB add more pathways in the networks. With
these highways of loss information, gradients could
be passed more efficiently and effectively to each
layer during backpropagation. Thus, the model (e.g.
RDN) could easily achieve a very good performance,
especially for minimizing simple and clear errors such
as L1 loss. However, the structure of the dense con-
nections also made the model liable to getting stuck
in certain points, and made the model insensitive to
uncertain losses such as GANs. As a result, smaller
models with fewer connections, such as EDSR-lite,
could be comparable with them. Second, wider mod-
els are not necessary for medical images. Both RDN
and original EDSR had many more feature maps
than EDSR-lite in each convolutional layer, which
made them more powerful in simulating and extract-
ing features of nature images in SR tasks. However,
for medical images with limited size and relatively
lower contrast information, too many feature maps
tended to be overqualified. In summary, we decided
to use EDSR-lite, consisting of 16 residual blocks
and 64 convolution kernels in each layer, because it
had the fewest parameters and achieved equal per-
formance with bigger models.

5.3. Loss functions

Referring to [B]) and ([I7), the joint loss function Lgr
plays an important role in the training of MIASSR.
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Table 3. Effects of the width of the network w, which represents the number
of convolution kernels in each layer. Increasing width leads to additional param-
eters quadratically. Higher PSNR, SSIM and lower FID denote better performance.
Bold texts represent the best performance, and the grey column denotes the hyper-
parameter of our method. We finally choose w = 64 because it has achieved the best
PSNR and FID.

w = 4 8 16 32 64 128
PSNR 34.58 34.83 35.22 35.89 36.46 36.44
SSIM 0.9346 0.9399 0.9469 0.9542 0.9576 0.9592
FID 84.17 73.49 58.23 49.57 39.85 43.84
Params 0.016M 0.041M 0.12M 0.42M 1.5M 5.8M

Table 4. Effects of the depth of the network d, which represents the number of
residual blocks in the network. The unit of the number of parameters is million.
Higher PSNR, SSIM and lower FID denote better performance. Bold texts repre-
sent the best performance, and the grey column denotes the hyper-parameter of
our method. We finally choose d = 16, because extra blocks rarely improve the
performance, but lead to more parameters linearly.

d= 2 4 8 16 32 64
PSNR 35.09 35.48 36.03 36.46 36.73 36.46
SSIM 0.9438 0.9490 0.9549 0.9576 0.9622 0.9621
FID 62.47 54.44 49.61 39.85 37.46 37.39
Params 0.48M 0.63M 0.93M 1.5M 2.7TM 5.1M

Table 5. Effects of perceptual loss. In this experiment, we set A = 1 and
v = 0.001, and test different values of 7. Particularly n = 0 means no perceptual
loss, while 7 = co means only perceptual loss is used for training. Higher PSNR,
SSIM and lower FID denote better performance. Bold texts represent the best
performance, and the grey column denotes the hyper-parameter of our method.

n= 0 0.006 0.01 0.1 1 00
PSNR 36.52 36.46 36.64 36.34 36.11 34.94
SSIM 0.9611 0.9576 0.9607 0.9583 0.9554 0.9532
FID 47.87 39.85 40.61 43.59 45.79 46.61
Table 6. Effects of adversarial loss. In this experiment, we set A = 1 and

n = 0.006, and test different values of . Particularly, v = 0 means no adversarial
loss, while v = co means only adversarial loss is used for training. Higher PSNR,
SSIM and lower FID denote better performance. Bold texts represent the best
performance, and the grey column denotes the hyper-parameter of our method.

N = 0 0.001 0.01 0.1 1 00
PSNR  36.60 36.46 35.74 36.26 30.92 30.52
SSIM 0.9592 0.9576 0.9555 0.9540 0.8798 0.8768
FID 41.94 39.85 37.47 44.17 114.9 103.1
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In the three components, £ represents the pixel-
wise errors, while L,erc and L,q4v denote the visual
dissimilarity of the entire images. Particularly, the
perceptual loss Lperc considers the general visual fea-
tures of images, because it is based on a well-trained
VGG network with big plenty of normal images. In
contrast, the adversarial loss L,qy is trained with
the model, so it focuses on the inner features of the
training dataset more. To achieve the best perfor-
mance and to understand each component well, we
have tested various weights of each loss. We first
set A = 1, then tested different values of v and
7. Regarding the perceptual loss, we have tested
n = (0,0.006,0.01,0.1, 1) and infinity (Table[]). Par-
ticularly, » = 0 means no perceptual loss, while
7 = infinity means only perceptual loss is used.
Similarly, v = (0,0.001,0.01, 0.1, 1) and infinity were
tested for the adversarial loss (Tabldf).

In our experiments, none of these values
could lead to the best PSNR, SSIM and FID
simultaneously, but when v = 0.001 and 7 = 0.006, it
performed well on both fidelity and perceptual eval-
uations.

Regarding the variations of adversarial loss, we
also compared four popular GAN variations, which
had been successfully used in SOTA SISR stud-
ies: vanilla GAN 20529 RaGAN BOBLUWGAN 1241 ang
WGANGP 1242 They were trained with the same
hyper-parameters from the same start point of a
pre-trained generator, but with different designs of
Lady. Vanilla GAN is using Eq. ([[4); WGAN is using
Eq. (I3); WGANGP is using Eq. (I6); RaGAN is
using the following equation:

Lracan = Ep [log D(Iy:) — Ey,, [log D(G(Iy))]]

+Er, [log(D(G(Ir))) — Ex,, [log D (Inr)]]-
(21)

In our experiments (Fig. B), WGANGP helped
MIASSR achieve the best performance with all met-
rics. Therefore, we choose WGANGP in MIASSR.

5.4. Training tricks

We also found tricks of data processing that can
affect model training with significant impacts on

> RaGAN Vanilla GAN < WGAN — WGANGP
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RaGAN Vanilla GAN WGAN WGANGP
PSNR 3472 35.82 36.06 36.46
SSIM 0.9422 0.9412 0.9564 0.9576
FID 53.34 53.27 46.15 39.85

Fig. 8. Comparing GAN variations in MIASSR. Higher
PSNR and SSIM indicate better fidelity quality, while
lower FID denotes more perceptual realistic images have
been generated. WGANGP has not only achieved the
best mean performance (the table at bottom) but also
performed the best with almost all SR scales.

the final performance. First, to transfer the well-
trained model on the OASIS dataset to new datasets
could accelerate the training process, although it
could not improve the final performance. Second,
the networks, including both the generator and dis-
criminator, must be initialized by a variety of uni-
form function (e.g. Kaiming-Uniform®®) when they
are trained from scratch. In our experiments, ini-
tializing networks with a normal distribution (e.g.
Kaiming-Normal®®) crashed the training process.
Third, batch normalization®® should not be used,
although it has succeeded in a wide range of
image processing tasks. SRGAN, as the only method
with batch normalization, performed poorly in the

2150037-14



Int. J. Neur. Syst. 2021.31. Downloaded from www.worldscientific.com

by UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA on 09/24/24. Re-use and distribution is strictly not permitted, except for Open Access articles.

patient-wise experiment (Table [I). This is because
the normalization operation distorted the patient-
wise contrast information during training, and led
to poor performance on the test set. Finally, hyper-
parameters such as patch size and image size can
influence the final performance. In Fig. B although
all methods tended to perform better with smaller
magnification scales than larger ones in general,
the best PSNR and SSIM scores always appeared
with the x1.5 SR task. This is probably because
1.5 is the smallest SR scale to fit both the train-
ing patch size [96 x 96] and testing image shape
[144 x 180].

5.5. Future work

MIASSR can be extended in several potential
directions. First, we believe that MIASSR can be
extended to a wider range of medical image modal-
ities and data types. In this work we focus on 2D
slice SR because it is more general. In the future,
to modify MIASSR with techniques, 3D convolu-
tion and recurrent networks may extend it to 3D
images,® temporal scans? and other 3D data such
as mesh® and point cloud®! Second, we have had
a taste of cross modality with naive transfer learn-
ing (ACDC and COVID-CT) and multi-task training
(BraT$S), and it would be interesting to investigate
MIASSR further with more specific cross-modality
applications. Thirdly, the ablation study of SR image
generators and the adversarial learning help us to
understand each component of MIASSR, well, and
the conclusions and findings may also benefit other
medical image analysis research studies, such as
synthesis, reconstruction and segmentation. Finally,
Fig. @ has reflected the balance between percep-
tion and distortion in either the sub-pixel-based SR
methods and meta-upscale module SR methods. Fur-
ther research of this trade-off will be useful in both
research and clinical application development. Fur-
thermore, to find a more straightforward measure-
ment of medical images in SR tasks is also desired.
For example, instead of measuring the quality of gen-
erated images, to evaluate the images in specific tasks
such as AD diagnosis! and Parkinson disease identi-
fication®? could be a potential way.

Arbitrary Scale Super-Resolution for Medical Images

6. Conclusions

In this paper, we have proposed MIASSR for med-
ical image SR tasks with arbitrary scales. To our
best knowledge, this is the first attempt to develop
a meta-learning scheme for this problem. We have
first reduced the model size (only 26% parameters
as compared to existing meta-SR methods) by using
a lite EDSR model as the LR image feature extrac-
tor and achieved comparable fidelity quality of SR
images with SOTA methods. Moreover, we have
introduced GANs to meta-learning to improve the
perceptual quality of the generated images. The pro-
posed method has obtained good practical appli-
cability. In our experiments, we have successfully
applied MIASSR with T1-weighted brain MR images
and multi-modal brain MR scans. Furthermore, with
transfer learning, the pre-trained model on brain
images has been fine-tuned to cardiac MR scans and
CT scans. We have also discussed our findings and
understanding of model architecture design, train-
ing tricks, and adversarial learning in the comparison
studies.
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Appendix A. Extend MIASSR to Various Medical Image Modalities
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Fig. A.1. With transfer learning, MITASSR can be applied to new medical image modalities conveniently and effectively.
We have extended it to cardiac MR images (top), and CT images of COVID-CT patients (bottom). GT image is plotted
on the left, while SR images with various magnification scales and the pixel-wise errors are on the right.
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Fig. A.2. MIASSR has successfully worked with multi-modal brain MR image dataset BraTS. All images are converted
to [0, 1]. Differences between SR images and GT images are rendered.
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