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A B S T R A C T   

Soiling is a factor that impacts the performance of photovoltaic (PV) modules. Nowadays, the research related to 
PV soiling monitoring is focused on optical sensors, which estimate the soiling loss through a monochromatic 
transmittance or reflectance measurement. However, these typically neglect the spectral profile of soiling 
transmittance, which tends to absorb shorter wavelengths more than the longer ones. This leads to a spectral red 
shift of the light that is transmitted to the PV cells of a module. Therefore, if the spectral component of soiling is 
not considered, the estimated soiling losses are not fully representative of those occurring in the real PV modules. 
This investigation aims to address this issue by modeling the full soiling transmittance spectrum using several 
monochromatic light sources in a new version of a previously presented optical soiling sensor, called “DUSST”. 
Four different combinations of mono-wavelength light-emitting diodes have been used to model the full spectral 
transmittance profile of artificially soiled PV glass coupons and to estimate the electrical losses of distinct PV 
technologies. The results show that the errors in soiling estimation can be minimized by using an appropriate 
wavelength combination. The difference between the measured and the estimated soiling losses can be lower 
than 3% if the most convenient wavelength combination is utilized. In the case of m-Si, which is the prevalent PV 
technology nowadays, the application of the optimum wavelength combination is found to reduce the maximum 
measurement error to 2.6%, from the initial 7.7% returned when a single wavelength was employed.   

1. Introduction 

Soiling consists of the accumulation of dust, dirt and other contam-
inant particles on the photovoltaic (PV) modules surface. Its main 
impact is the reduction of the power output of PV systems, which 
directly translates into energy and economic losses (Ilse et al., 2019). 
Nowadays, the impact of soiling has become one of the principal con-
cerns of the PV community, as evidenced by the large number of pub-
lications in recent years (Costa et al., 2018; Figgis et al., 2017; Song 
et al., 2021). Soiling on PV technology has been already investigated 
from different sides, which include the study of mitigation and cleaning 
strategies (Chanchangi et al., 2021; Eihorn et al., 2019; Ilse et al., 2019; 
Ravi et al., 2019; Şevik and Aktaş, 2022) and their impact on the profits 
(Fathi et al., 2017; Micheli et al., 2020c; Rodrigo et al., 2020). Previous 
research agrees that soiling mitigation has to be tailored to the specific 
conditions of each site, as soiling can vary depending on the location and 
on the season. In addition, one has to consider the angular (Burton et al., 

2016; Martín and Ruiz, 2005; Zorrilla-Casanova et al., 2013) and the 
spectral effects (Burton et al., 2015; Burton and King, 2014; Fernández- 
Solas et al., 2021; John et al., 2015) of soiling on PV modules, which 
vary continuously throughout the day and change depending on the PV 
module. 

For all the aforementioned reasons, soiling has to be tackled on site 
through the implementation of an appropriate monitoring solution 
(Bessa et al., 2021). Different approaches to extract and quantify the 
losses due to soiling have been developed. These include the direct 
extraction of the soiling losses from PV performance data (Deceglie 
et al., 2018; Micheli et al., 2021; Skomedal et al., 2019); methods that 
use as inputs different environmental and meteorological parameters to 
estimate the losses (Javed et al., 2017; Kimber et al., 2006; Micheli et al., 
2020a); and the use of specialized soiling monitoring equipment, such as 
soiling stations (Gostein et al., 2015). These consist of two PV devices 
installed side-by-side within a PV plant: one of them is regularly cleaned 
and the other is left to naturally soil at the same conditions as the 
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modules of the plant (Gostein et al., 2014). The losses are obtained from 
the direct comparison of the power outputs of both modules. Soiling 
stations are the most common solution for monitoring soiling, but they 
are expensive and require careful maintenance. For this reason, one of 
the most recent trends to evaluate the impact of soiling is the use of 
optical soiling detectors, which estimate the losses from optical mea-
surements of a PV glass coupon. These sensors do not require the sun 
radiation to operate as they use independent light sources. So, they do 
not need a reference measurement, because the intensity of the light 
source is known. This way, the soiling losses can be obtained instanta-
neously, being this aspect one of the main benefits of these sensors when 
compared against the above mentioned approaches. 

DustIQ (Korevaar et al., 2017) and MARS (Gostein et al., 2018) were 
the first optical soiling sensors to be developed. DustIQ (Korevaar et al., 
2017) is based on reflectance measurements. It calculates the trans-
mittance loss of a soiled glass coupon by using a light-emitting diode 
(LED) and the signal received by a photodiode adhered to the glass 
surface. A linear correlation between the photodiode voltage, which 
represents the amount of reflected light from the soiled glass, and the 
transmittance loss is established. This way, the transmittance loss is 
indirectly obtained. The value of the slope varies with the color of the 
soiling, but is independent of the grain size. MARS (Gostein et al., 2018) 
estimates the soiling loss using a microscopic imaging approach. The 
manufacturer states that, differently from the DustIQ sensor, MARS 
provides results with a negligible dependence on dust color. Another 
optical soiling sensor, called DUSST (Fernández-Solas et al., 2020; 
Fernández et al., 2020) and developed by some of the authors of this 
study, estimates the soiling losses by measuring the monochromatic 
light (530 nm) that is transmitted through a naturally soiled glass 
coupon. The main benefit of this sensor is that it directly estimates the 
losses from the reduction of the transmittance caused by the presence of 
soiling on the surface of a PV device. The choice of the monochromatic 
light was accounted by a previous study (Micheli et al., 2019), which 
analyzed the possibility of correlating the soiling losses with trans-
mittance measurements at a single wavelength. That work found that 
the soiling losses can be accurately estimated (values of coefficient of 
determination (R2) higher than 0.9 were returned) for transmittances 
measured at wavelengths between 500 nm and 600 nm for various PV 
technologies. Despite the different efforts to develop soiling optical 
sensors, none of the currently available monitors takes into account the 
dependence of the spectral transmittance of soiling (Smestad et al., 
2020), specially towards the blue and the ultraviolet (UV) ranges of the 
spectrum, where soiling causes higher transmittance drops (Qasem 
et al., 2014). The study presented by John et al., 2015 demonstrated that 
most of the soiling losses occur at the shorter wavelengths, especially 
those that belong to the UV and blue regions of the incident spectrum. 
This fact causes a red-shift of the transmitted light that reaches the PV 
cells. This is a key aspect as PV materials are spectrally selective and 
their response is known to depend on the input spectrum (Fernández 
et al., 2016) and on the spectral nature of soiling (Fernández et al., 
2019). 

To address this issue, the possibility of using several transmittance 
measurements at different wavelengths was theoretically analyzed by 
the authors in a previous study (Micheli et al., 2020b). In that work, 
combinations of measurements at 2 or 3 specific wavelengths were used 
to model the full soiling spectral transmittance profile (TPR). The pre-
sent investigation aims to bring into reality the novel optical soiling 
sensor concept theoretically investigated in our early work. The findings 
of this study are here extended through an experimental investigation, 
conducted in a laboratory using various LEDs radiating at different 
wavelengths to improve the design and the performance of the 

previously presented DUSST sensor. Different combinations of mea-
surements taken by commercial high power LEDs are investigated and 
used to model the soiling TPR through an empirical equation already 
described in (Smestad et al., 2020). Differently from previous works, the 
present paper makes use of commercial LEDs, and therefore handles 
with actual limitations that the previous theoretical work did not 
contemplate. Among these limitations, one can list: (i) the use of non- 
strict monochromatic LEDs, as actual commercial ones are character-
ized by a narrow spectral distribution around a peak wavelength; (ii) the 
limited variety of high power monochromatic LEDs in the market, 
especially of those emitting in the UV region of the spectrum due to their 
low efficiency, which is an issue that is still under investigation (Amano 
et al., 2020; Susilo et al., 2020); (iii) the influence of the different 
thermal drifts of LEDs within the same combination on the results, as 
each LED is manufactured with a different semiconductor material; and 
(iv) the impact of differences in the light collimation of the different 
LEDs due to variations in the optical refractive index with the wave-
length (Saura et al., 2021). These aspects, which are expected to alter the 
theoretical results, can play a vital role when deciding future design 
improvements of the sensor, and therefore, they are the target of the 
present research. 

2. Materials and methods 

The prototype of the DUSST sensor described in (Fernández-Solas 
et al., 2020) and experimentally investigated in outdoors in (Muller 
et al., 2021) is used in this study (see Fig. 1). Originally, DUSST was 
designed to estimate the soiling losses through a single wavelength 
measurement, by correlating the current loss measured by the light 
detector with the transmittance loss at that specific wavelength. Herein, 
DUSST operates with several monochromatic high-power LEDs with 
distinct peak wavelengths (see Table 1) in the visible (VIS) region of the 
spectrum. It should be noted that the LEDs used in this study are not 
strictly monochromatic, as these present a narrow normal spectral dis-
tribution around the peak wavelength. 

Following the same procedure employed in (Fernández-Solas et al., 
2020), the first step is to calibrate the response of the sensor with the 
different LEDs. The transmittance loss is then converted into an elec-
trical loss thanks to conversion factors that were obtained by using a set 
of screening masks with different shades of grey printed on polyester 

Fig. 1. DUSST prototype used in this work.  
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films. The hemispherical transmittance of the masks is measured using a 
Tungsten-Halogen light source and a Stellar Net Black-Comet spectro-
photometer within the wavelength range 380 nm to 1080 nm. 

Once electrical and transmittance losses have been calculated, linear 
correlations between them are found by using the linregress function in 
the SciPy library for Python 3.7 (Virtanen et al., 2020). The fitting is 
performed forcing the intercept to zero, under the assumption that no 
current would be produced if the soiling losses reach 100%. It should be 
noted that the values of the r coefficient for all the correlations are 
higher than 0.98, thus signifying the reliability of the fits. The values of 
the slopes, along with those of the r coefficients are shown in Table 1. 

After obtaining the transmittance losses at the different wavelengths 
shown in Table 1 through the DUSST measurements and the above 
mentioned correlations, the empirical equation (1), introduced for the 
first time in Smestad et al., 2020 and based on the Angström turbidity 
formula (Ångström and Angstrom, 1929), is used to model the spectral 
TPR of soiling. This equation is here called the Three-variable single 
exponential (3v1e) equation: 

T(λ) = e− β•λ− α
+ γ (1) 

where T(λ) is the hemispherical transmittance at a wavelength λ (in 
µm) and α, β and γ are wavelength independent variables. α relates to the 
size of the particles and β to the density of particles and to the strength of 
their forward scattering. γ is a factor needed to consider the different 
mechanisms taking place when particles are deposited instead of sus-
pended. In the original work, the authors were able to correlate β, γ and 
the area covered by soiling. However, investigations are still ongoing to 
find a correlation for α. 

In lack of this correlation, this work identifies the values of the three 
variables in Eq. (1) by fitting the function through the measurement of 
transmittance at three distinct wavelengths. Three is the minimum 
number of measurements needed to determine the values of the three 
variables. These have been extracted through the curve_fit function in the 
SciPy library for Python 3.7, which uses non-linear least-squares to fit 
the experimental data to a function. The initial guesses and the bounds 
for the variables α and β were the same as those reported in the work of 
(Smestad et al., 2020). On the other hand, slightly variations were 
established for γ, being the initial guess set to 0, and the boundary 
conditions set to − 1 ≤ γ ≤ 1. 

In this study, 4 different 3-wavelengths combinations, which are 
detailed in the flowchart presented in Fig. 2, are analyzed to model the 
soiling TPR. To evaluate their accuracy, the modeled profiles are 
compared with the ones that have been measured using the spectro-
photometer, and the error is quantified through different metrics that 

are presented below. 
The mean absolute error (MAE) quantifies the average magnitude of 

the errors in a set of predictions, regardless of their direction. It is a 
negatively oriented metric, which means that the lower the better, so a 
value of 0% reflects that all the modeled data equals the measured ones. 
The MAE is calculated by the following equation: 

MAE [%] =
100
N

•
∑N

i=1

⃒
⃒Zmod,i − Zmeas,i

⃒
⃒ (2) 

where Zmod,i and Zmeas,i are the ith-pair of modeled and measured data. 
N is the total number of pairs. 

The mean error (ME) also calculates the average value of the errors 
between the modeled and the measured data. In contrast to the MAE, its 
value can be either positive if the modeled data overestimates the 
measured ones, or negative otherwise. However, although a value of 
zero indicates no systematic bias, it does not necessarily mean that the 
modeled data perfectly fit the measured ones. The ME can be obtained 
by means of the following expression: 

ME [%] =
100
N

•
∑N

i=1

(
Zmod,i − Zmeas,i

)
(3) 

Last, artificially soiled PV glass coupons are utilized as samples to 
check the validity of the aforementioned methodology. Soiling deposi-
tion is achieved using a self-designed soiling chamber. The procedure of 
this artificial soiling deposition along the materials employed are 
detailed in the Appendix. 

3. Results and discussion 

The results of this study are divided into two sections. The first one 
covers the modeling of the soiling TPR, whereas the second one presents 
the estimation of the soiling losses in PV devices of different technolo-
gies using these modeled TPRs. 

3.1. Soiling transmittance modeling 

Spectral hemispherical TPRs have been measured and modeled for 
each of the soiled glass samples. It should be highlighted that all the 
TPRs shown in this work refer to relative hemispherical transmittance 
and express the ratio of the transmittance of the soiled sample to the 
transmittance of a reference clean sample. Due to this fact, these relative 
TPRs are called soiling TPRs, as they quantify only the hemispherical 
attenuation of soiling. Below, the results of using DUSST with different 
combinations of 3 monochromatic LEDs to model the soiling TPR are 
presented. Fig. 3 shows the fits for three representative soiling TPRs of 
samples with different dust accumulations, and the absolute errors be-
tween the measured and the modeled profiles as a function of the 
wavelength. Also, the errors between the measured profiles and two 
cases of flat profiles, which are generated by assuming that the trans-
mittance does not vary with the wavelength, are included. Furthermore, 
the modeled flat TPRs returned by combination 4 should be mentioned. 
This is an expected output and can be accounted for the LEDs mea-
surements of that combination, which are concentrated in a tiny region 
of the spectrum (448 nm to 591 nm) in comparison with the measure-
ment wavelength range of the spectrophotometer (380 nm to 1080 nm). 
These modeled flat profiles indicate that combination 4 is not suitable to 
model the spectral profile of soiling and that should be discarded. 

Table 1 
Results of the calibration of the DUSST output for the different LEDs.  

LED color Peak wavelength [nm] Linear Correlation (Transmittance loss =
Slope × Electrical loss) 

Slope r 

Blue 448 1.598 0.986 
Green 530 1.265 0.995 
Amber 591 1.349 0.992 
Far Red 720 1.373 0.988  

Á. Fernández-Solas et al.                                                                                                                                                                                                                      



Solar Energy 241 (2022) 584–591

587

The accuracy of the different 3-wavelength combinations to model 
the soiling TPR is assessed through the statistical metrics described 
before. Fig. 4 compares the measured and the modeled soiling TPRs. It 
can be clearly appreciated that the magnitude of the MAE for all the 
models increases with the soiling transmittance losses, as the lower the 
average transmittance the higher the error. Besides, as it was expected 

and with the exception of combination 4, which is the only one that does 
not include a measurement at 720 nm, the values of the MAE with three 
monochromatic measurements are significantly lower than those 
returned by assuming a flat profile (higher than 4.5% for transmittance 
losses greater than 60%). Focusing on the different 3-wavelength com-
binations, it can be noticed that those that do not include the minimum 

Fig. 2. a) Flowchart of the calibration of the sensor response. b) Flowchart of the soiling TPR modeling.  
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or the maximum available wavelength, i.e. a measurement at 448 nm 
(combination 3) or at 720 nm (combination 4), return higher errors. As 
an example, for the soiled sample after 2 cycles that presents a dust 
density of 2.2 g/m2 and an average transmittance loss of 28.8%, the 
MAE, which is shown in Fig. 4a, returned by combinations 1 and 2 is 
0.7%, whereas the values associated to combinations 3 and 4 are 1.3% 
and 2.1% respectively, which are almost double and triple. These dif-
ferences can be explained by the different distribution of the LEDs’ 
wavelengths across the spectrum, as combinations that cover a wider 

range of the spectrum, such as combinations 1 and 2, are expected to fit 
better the TPR than those combinations whose LEDs are concentrated in 
a narrower range, such as combinations 3 and 4. For the three samples 
with a highest dust density, similar MAE values, between 2.8% and 
3.9%, are provided by combinations 1, 2 and 3. This may be due to the 
synthesis of two factors: (i) the change in the shape of the measured TPR 
as it can be appreciated in both plots b and c of Fig. 3, being this fact 
more accentuated in Fig. 3c, and, (ii) the very similar modeled TPRs 
returned by these combinations because they all include the 

Fig. 3. Plots of the first row: Measured and modeled soiling TPRs using Eq. (1) and the different wavelength combinations shown in Fig. 2. Flat TPRs considering the 
average (broadband) transmittance (τb), and the measured transmittance at 550 nm (τ550) are also included. Plots of the second row: Absolute error for each 
wavelength between the measured and the modeled transmittance. Three representative samples are shown: (a) and (a’): light soiled, (b) and (b’): moderate soiled, 
(c) and (c’): heavily soiled. The plots on each column have the same x-axis scale. 

Fig. 4. (a): Mean absolute error (MAE) and (b): mean error (ME) for the different 3-wavelength combinations. Also, the errors associated to the comparison of the 
measured TPR of the samples with the flat TPRs considering the average (broadband) transmittance (τb), and the transmittance at 550 nm (τ550) are included. 
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measurement at the maximum available wavelength (720 nm). 
Regarding the mean error, which is plotted in Fig. 4b, a clear over-

estimation of the transmittance losses (high negative ME values) can be 
seen if only a single wavelength measurement, 550 nm in this case, is 
considered. This fact is also reflected when combination 4 is applied, 

because its three measurements are concentrated in a narrow wave-
length range (448 nm to 591 nm), where the soiling impacts more the 
transmittance and the PV performance. The other three combinations 
return ME values (less than 3%) that do not indicate the presence of 
systematic bias. 

Fig. 5. Normalized spectral response of different PV technologies and normalized AM 1.5G reference spectrum. The PV technologies are: monocrystalline silicon (m- 
Si), polycrystalline silicon (p-Si), amorphous silicon (a-Si), cadmium-telluride (CdTe), copper-indium-gallium-selenide (CIGS) and perovskite. The normalized 
spectral response data were sourced from a recent study (Fernández-Solas et al., 2021). 

Fig. 6. Difference between the soiling ratio, SRatio, calculated with the measured soiling TPRs and the SRatio obtained through the different modeled profiles 
presented in Section 3.1 for six different PV technologies. The plots on each row have the same y-axis scale. 

Á. Fernández-Solas et al.                                                                                                                                                                                                                      



Solar Energy 241 (2022) 584–591

590

3.2. Photovoltaic soiling losses estimation 

Herein, the modeled soiling TPRs presented in the previous section 
are used to estimate the electrical losses of PV modules of different 
technologies. Due to the differences in the spectral response of the 
distinct PV technologies, which can be appreciated in Fig. 5, the same 
transmittance losses do not necessarily translate into identical electrical 
losses for all of them. The soiling losses have been quantified through the 
soiling ratio (SRatio) metric, which represents the ratio of the short- 
circuit currents (Isc) of a soiled to a clean reference PV device. The 
lower its value the higher the soiling losses, as these are given by 1 – 
SRatio. The following equation is used to calculate the SRatio: 

SRatio =
Iscsoiled

Iscref
=

∫ λmax
λmin

EG(λ) • τ(λ) • SR(λ) • dλ
∫ λmax

λmin
EG(λ) • SR(λ) • dλ

(4) 

where EG(λ) is the standard air mass (AM) 1.5 global spectrum (W 
m− 2 nm− 1) (NREL, n.d.), τ(λ) is the soiling hemispherical transmittance, 
and SR(λ) is the spectral response of the PV cells that comprised the 
module and that varies with the PV material. λmax and λmin are, 
respectively, the longest and the shortest wavelengths (nm) of the de-
vice’s spectral response. It should be noted that due to the restrictions in 
the wavelength measurement range of the hemispherical transmittance, 
the lower and the upper limits are restricted to be ≥ 300 nm and ≤ 1080 
nm, respectively, in this study. 

Fig. 6 shows the difference between the SRatio values calculated 
with measured soiling TPRs and the values obtained with the different 
modeled profiles presented in the previous section. It can be appreciated 
that the highest underestimations of the SRatio, i.e. overestimations of 
the soiling losses, occur when a flat profile with a value equal to the 
measured transmittance at 550 nm is considered for all the PV tech-
nologies, with the exception of amorphous silicon (a-Si) and perovskite, 
as it can be appreciated in Fig. 6e and in Fig. 6f, respectively. With these 
technologies, the largest errors (overestimations of the SRatio) are 
returned if the measured average transmittance (i.e., a flat profile) is 
utilized in the calculations. It can also be noticed that the use of a flat 
profile with the value of the average soiling transmittance returns 
negligible differences (less than 0.01) for monocrystalline silicon (m-Si), 
polycrystalline silicon (p-Si) and for copper-indium-gallium-selenide 
(CIGS) technologies. This fact may be accounted for the combination 
of three factors: (i) the overestimation of the soiling transmittance in the 
blue and VIS regions of the spectrum, (ii) the underestimation of the 
transmittance in the infrared region, and (iii) the wide spectral response 
of these materials. Thus, the excess of losses in the infrared region of the 
spectrum offsets the losses underestimation in the blue and VIS regions. 
In this way, the modeled SRatios match the measured ones for the set of 
samples utilized in this study. However, this cannot be considered al-
ways valid, as slight variations in the shape of the TPRs may significantly 
impact the results. On the other hand, if only the results provided by the 
use of 3-wavelength measurements to model the transmittance are 
compared, combinations 1 and 2, which both includes measurements at 
the shortest (448 nm) and longest wavelength (720 nm) available, 
returns in average the best results for all the PV technologies. Combi-
nation 3, which does not include a measurement at the shortest wave-
length, provides also accurate results with differences between the 
modeled and the measured values less than 0.03, even for the most 
heavily soiled samples, for those PV technologies with a wide waveband 
that have their maximum spectral response in the infrared region of the 
spectrum (m-Si, p-Si and CIGS). As commented above, the use of com-
bination 4, which does not include a measurement in the infrared re-
gion, to calculate the SRatio should be avoided because it produces flat 
soiling TPRs. 

4. Conclusions 

In this work, the possibility of modeling the spectral profile of soiling 

transmittance using multiple monochromatic measurements has been 
experimentally investigated. For this purpose, the DUSST sensor has 
been modified to measure transmittance at distinct wavelengths. Arti-
ficially soiled PV glass coupons with different values of dust density have 
been used to compare the results returned by four different 3-wave-
length combinations. Three of the combinations significantly reduce 
the error between the measured and the modeled TPRs (MAE less than 
4% for all the coupons) when compared to the use of a single wavelength 
(MAE from 4.5% up to 8.1% for the most heavily soiled samples). The 
combination that does not include a measurement at the longest 
wavelength returned major errors, especially in the infrared region of 
the spectrum, where it significantly overestimated the transmittance 
losses (errors higher than 15% for transmittance losses of 65%). Also, 
the electrical losses were estimated for different PV technologies using 
the modeled soiling TPRs with the different combinations. The results 
indicate that the best combination of wavelengths depends on the 
spectral response of the PV technology. This should be taken into ac-
count to choose the optimal combination of monochromatic light 
sources to estimate the soiling losses with the highest accuracy. The 
results show that for all the examined PV technologies, the use of the 
most suitable three-wavelength combination significantly improves the 
SRatio estimation, as no differences between the measured and the 
modeled SRatio values higher than 0.03 are returned. These errors are 
significantly lower than those obtained if only a single wavelength 
measurement at 550 nm is applied. These are indeed greater than 0.05 
for the most heavily soiled samples in the case of silicon and thin-film 
(CdTe and CIGS) technologies. 

Future works should consider a wider variety of wavelengths, 
including measurements in the UV and in the infrared regions of the 
spectrum, to complement the results presented in this paper. In addition, 
this innovative optical soiling detection approach should be validated 
outdoors, under real operation conditions of soiling, by modifying the 
current version of the DUSST prototype. 
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