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Simple Summary: Artificial Intelligence (AI)-driven software that utilizes Computed Tomography
(CT)images has the capability to automatically assess body composition and diagnose sarcopenia. Our
research indicates that combining standardized CT staging methods with sarcopenia analysis could
assist in identifying patients with advanced urothelial tumors who may benefit from customized
nutritional therapies, ultimately resulting in improved outcomes and quality of life. The AI tool
can represent a means to increase the clinical value of CT imaging reports and to promote the
development of precision medicine.

Abstract: Background: Sarcopenia is a well know prognostic factor in oncology, influencing pa-
tients’ quality of life and survival. We aimed to investigate the role of sarcopenia, assessed by a
Computed Tomography (CT)-based artificial intelligence (AI)-powered-software, as a predictor of
objective clinical benefit in advanced urothelial tumors and its correlations with oncological out-
comes. Methods: We retrospectively searched patients with advanced urothelial tumors, treated with
systemic platinum-based chemotherapy and an available total body CT, performed before and after
therapy. An AI-powered software was applied to CT to obtain the Skeletal Muscle Index (SMI-L3),
derived from the area of the psoas, long spine, and abdominal muscles, at the level of L3 on CT
axial images. Logistic and Cox-regression modeling was implemented to explore the association
of sarcopenic status and anthropometric features to the clinical benefit rate and survival endpoints.
Results: 97 patients were included, 66 with bladder cancer and 31 with upper-tract urothelial car-
cinoma. Clinical benefit outcomes showed a linear positive association with all the observed body
composition variables variations. The chances of not experiencing disease progression were positively
associated with ∆_SMI-L3, ∆_psoas, and ∆_long spine muscle when they ranged from ~10–20%
up to ~45–55%. Greater survival chances were matched by patients achieving a wider ∆_SMI-L3,
∆_abdominal and ∆_long spine muscle. Conclusions: A CT-based AI-powered software body com-
position and sarcopenia analysis provide prognostic assessments for objective clinical benefits and
oncological outcomes.

Keywords: Artificial Intelligence software; Sarcopenia; Computed Tomography; Urogenital
Tumors; Oncology

1. Introduction

Cancer cachexia is a complex condition where there is a progressive reduction in
skeletal muscle mass that cannot be fully restored by traditional nutritional intervention,
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resulting in a gradual decline in bodily functions. The loss of muscle mass and malnutrition
are common conditions found in cancer patients, with an incidence ranging from 25% to
60% depending on the type of cancer, stage of disease, and type of treatment [1]. The low
muscle mass represents one of the criteria for malnutrition diagnosis according to Global
Leadership Initiative on Malnutrition (GLIM) guidelines [2]. Despite affecting about half of
patients at diagnosis as described in the PreMIO observational study conducted on over
1000 patients suffering from different solid tumors [3], malnutrition is often underestimated
and not fully considered by urogenital oncologists. Standardization of the sarcopenia
definition is an urgent issue in oncology [4] indeed no screening tests to assess sarcopenia
and/or the risk of malnutrition are usually requested at disease diagnosis. Cachexia
has been shown to be a significant poor prognostic factor for relapse-free survival of
patients affected with urothelial tumors. [5] Currently, there is no standard method for
diagnosing sarcopenia in genitourinary tumor [6] patients, particularly for urothelial
tumors, [7] differently from other diagnostic procedures [8–13]. A Computed Tomography
(CT)-based imaging for the assessment of muscle mass is a very accurate tool for the
detection of sarcopenia in oncological patients. However, the need of tracing manually the
muscle groups to calculate body composition parameters is a costly and time-consuming
limitation [14]. On the other hand, the development and progressive implementation of a
dedicated CT imaging-based artificial intelligence (AI)-powered software has allowed for
automated quantification of muscle mass by assessing skeletal muscle cross-sectional area
(SMA) at the level of the third lumbar vertebra (L3), providing an ease calculation of another
key body composition variable, the skeletal muscle index (SMI) obtained by normalizing
the SMA to the patient’s height (m2) [15]. Indeed, AI gives an opportunity to automate the
process of sarcopenia assessment [16], providing meaningful clinical measurements that
can be considered independent imaging biomarkers for overall survival, as it is carried
out for other tumors [17]. Based on the hypothesis that sarcopenia is associated with
poorer patients’ oncological outcomes, the objective of the study was to verify if sarcopenia,
evaluated using a CT-based AI-powered software, can predict objective clinical benefit in
terms of tumor response rate to systemic chemotherapy, for advanced urothelial tumors.
Additionally, the study aimed, as a secondary endpoint, to establish a correlation between
sarcopenia and cancer outcomes.

2. Materials and Methods
2.1. Study Design

This was a retrospective single-center observational study that received formal ap-
proval from the Institutional Review Board, with a waiver of informed consent. The study
was conducted in accordance with the guidelines for good clinical practice with ethical
principles as reported in the latest version of the Declaration of Helsinki.

The medical records data were collected for 97 patients with a histologically confirmed
diagnosis of urothelial tumors before the initiation and after 4–6 cycles of chemotherapy
(at the first oncological reassessment) from January 2018 to January 2021 at our institution.
The data collected included gender, age, height, weight, body mass index, number of drugs
taken (not related to cancer treatment), ECOG Performance Status (PS), and clinical- and
radiological stages.

Inclusion criteria were the following: age > 18 years, diagnosis of advanced urothe-
lial tumor, availability of CT scan before and after treatment, and follow-up of at least
60 months.

Exclusion criteria were as follows: Patients with a life expectancy lower than 3 months
or affected by any chronic inflammatory pathology in active status, with no long-term
clinical information available, unsuitable for chemotherapy treatment, or with any con-
traindication to perform CT examinations.

As per institutional protocols, the staging CT scans were performed at both baselines
and after 6 months of treatment.
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2.2. Image Acquisition and Analysis

Images were acquired on a multidetector CT scanner (Somatom Sensation 64; Siemens
Healthineers, Erlangen, Germany). Scanning parameters were as follows: tube voltage,
120 kVp; tube current, 100–250 mAs; pitch, 1.2; and collimation, 0.625–0.75 mm. Images
were reconstructed using a 1-mm slice thickness on axial, coronal, and sagittal planes, using
both soft tissue kernel (B31f) and lung kernel (B75f) reconstruction.

The CT acquisition protocol used was the standard for urothelial tumors and it in-
cluded: A pre-contrast phase, a corticomedullary phase (data acquisition 25–35 s after
contrast media injection); a nephrographic phase (80–100 s); an excretory phase (10–16 min).

The Quantib body composition® software (Rotterdam, Netherlands) was used to mea-
sure body composition quantitatively [18]. This software analyzed CT images of patients
taken during staging CT examinations stored in our institutional picture archiving and
communication system (PACS) selecting just the non-contrast phase. The software focused
on the L3 vertebral body level and automatically segmented the images to determine the
areas of the abdominal, psoas, and long spine muscles. Finally, the software generated in a
few minutes a form displaying the relevant values, as shown in Figure 1.
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L3 vertebra level

Fat
Subcutaneous Visceral

124.8 cm² | 16.5% | -99.8 HU 291.6 cm² | 38.5% | -103.0 HU

Muscle
Psoas Abdominal Long spine

21.9 cm² | 2.9% | 36.0 HU 109.8 cm² | 14.5% | 22.5 HU 58.8 cm² | 7.8% | 28.6 HU

Total
Slice area Slice circumference

756.5 cm² 105.8 cm

Ratio
Visceral to subcutaneous Total fat to muscle

2.35 2.19

Figure 1. Case example of the automatic segmentation performed by the software at the level of the
third lumbar vertebra.

Manual corrections were not made, and patients with grossly incorrect segmentations
were excluded from the study. There was no specific definition for what constituted an
incorrect segmentation; all segmentations were considered either of high quality or had only
a small portion of the muscle volume accurately delineated. Minor errors were permitted
without any additional correction.

2.3. Sarcopenia and Response to Therapy Definition

The SMA was obtained by summing the muscle areas of the psoas muscle, abdominal
muscle, and long spine muscle.

The SMI was obtained by normalizing the SMA by the patients’ squared height.
According to the literature, an SMI cut-off value for the sarcopenia definition was set at
<55 cm2/m2 for men and <39 cm2/m2 for women [19]. The body mass index (BMI) was
calculated as generally obtained (weight/height2) before and after therapy.

The RECIST 1.1 criteria [20] were used to identify and classify patients’ responses to
therapy. Complete response (CR) was defined as the disappearance of all target lesions
for a period of at least one month; partial response (PR) as at least a 30% decrease in the
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sum of the maximum diameter of target lesions, taking as reference the baseline sum of
the longest diameter (LD); stable disease (SD) as neither sufficient shrinkage to qualify for
PR nor sufficient increase to qualify for PD, taking as reference the smallest sum LD since
the treatment started; progressive disease (PD) as at least a 20% increase in the sum of the
LD of target lesions, taking as reference the smallest sum LD recorded since the treatment
started or the appearance of one or more new lesions. Overall survival (OS) was defined as
the time between diagnosis and last contact or date of death. Clinical benefit rate (CBR)
was defined as the percentage of advanced-stage patients who achieve complete response,
partial response, or at least six months of stable disease as a result of therapy [21].

2.4. Statistical Analysis

Statistical analyses along with reporting and interpretation of the results were con-
ducted according to the previously described methodology [22] and consisted of four
separate analytical steps [23,24].

Initially, descriptive statistics were used to summarize pertinent study information.
The association between sarcopenia and clinical variables was tested by Fisher’s exact test
or Mann–Whitney U test.

Second, a set of regression analyses was performed to assess the initial degree of
correlation between CT scan AI-based Quantib Body Composition® SMI-L3 and each single
anthropomorphic sarcopenia-related measures (i.e., CT-defined subcutaneous and visceral
fat as well as psoas, abdominal and long spine muscle). This was tested both at baseline and
repeated with the same data after the first cycle of systemic chemotherapy administration.
Moreover, a multivariable linear regression model was developed including those clinic-
demographic and tumor-related features commonly associated with clinical and survival
outcomes (i.e., age at diagnosis, gender, ECOG performance status, number of medications
taken unrelated to cancer therapy, as well as tumor location and stage) in order to identify
which association was more significantly correlated with the computed SMI-L3 and the
sarcopenia pre-established cut-off criteria [25].

Third, the clinical benefit outcome measured at the end of the systemic therapy
was defined by the presence of partial/complete radiological response (RaR) as well as
the confirmation of the stable disease in contrast with the documented progression of
advanced urothelial carcinomas. Given the known association of sarcopenia status with
male or female gender, a set of bivariable logistic regression was modeled between each
computed sarcopenia-related feature adjusted for gender status and the dichotomized
clinical benefit outcome. Additionally, a multivariable logistic model by clinical and
demographic confounders was further performed to identify sarcopenia-related predictors
independently associated with clinical benefit endpoint.

As the fourth analytic step, we investigated the association of SMI-L3 both as a
continuous and dichotomized covariate with OS using univariable Cox regression analysis.
Univariable survival estimates were plotted using the Kaplan–Meier method. The log-rank
test was used to assess the difference in OS between sub-groups. A multivariate Cox
proportional hazards model was also developed by adjusting for previously mentioned
confounders also associated with survival outcomes. Finally, sarcopenia status variation as
a function SMI-L3 variation (∆_SMI-L3) as well as any AI-computed subcutaneous/visceral
fat or muscular anthropometric variations were forced, using locally weighted scatter plot
smoother (LOWESS) function, against the multivariable-adjusted predicted probability
models for clinical benefit and survival assessment. This was meant to graphically depict
the influence of body composition variations on the pre-established endpoints at the
moment of primary disease diagnosis. Statistical analysis was performed using Stata
version 17.1 (Stata Corporation, College Station, TX, USA) with statistical significance set
as p < 0.05.
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3. Results
3.1. Demographic, Tumor- and Sarcopenia-Related Characteristics of the Study Population

We retrospectively reviewed the medical records of 97 patients with a histologically
confirmed diagnosis of an advanced urothelial tumor of the upper urinary tract (33; 34.1%)
(Figure 2) and urothelial tumor of the urinary bladder (64; 65.9%) (Figure 2) [26].
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Figure 2. (A) Computed tomography (CT) image of a 75-year-old men with advanced right Upper
Tract Urothelial Tumor (SMI value = 40.54 cm2/m2; (B) CT image of 72-year-old men with advanced
Bladder Tumor on left posterior wall. (SMI value = 44.86 cm2/m2).

The median age of non-sarcopenic vs. sarcopenic patients was 73 (Interquartile range
[IQR], 64–76) vs. 69 (IQR, 64–74) before and 73 (IQR, 66–76) vs. 68 years (IQR, 64–74) after
therapy.

There were no differences in the distribution of the clinical and demographical factors
among the non-sarcopenic and sarcopenic patients both at baseline and after therapy.

The SMI-L3 variable (cm2/m2), as well as the additional variables, were significantly
different before and after therapy (p < 0.001) (Table 1).

Table 1. Patients’ population demographic characteristics and disease outcome according to the body
composition status at baseline and after systemic chemotherapy.

Variables

No Sarcopenic
Status,

Baseline
(By SMI-L3

Cut-Off)

Sarcopenic
Status,

Baseline
(By SMI-L3

Cut-Off)

p-Value *

No
SARCOPENIC

Status, after
CHT

(By SMI-L3
Cut-Off)

Sarcopenic
Status,

after CHT
(By SMI-L3

Cut-Off)

p-Value *

Sample size, n (%) 46 (47.4) 51 (52.6) 45 (46.4) 52 (53.6)

Demographics and tumor-related features

Age y, median (IQR) 73 (64–76) 69 (64–74) 0.414 73 (66–76) 68 (64–74) 0.126

Age y, n (%)

<70 y 19 (41.3) 30 (58.8)
0.105

17 (37.8) 32 (61.5)
0.025

≥70 y 27 (58.7) 21 (42.2) 28 (62.2) 20 (38.5)

Gender, n (%)

Male 36 (78.3) 34 (66.7)
0.259

11 (24.4) 16 (30.8)
0.506

Female 10 (27.7) 17 (33.3) 34 (75.6) 36 (69.2)
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Table 1. Cont.

Variables

No Sarcopenic
Status,

Baseline
(By SMI-L3

Cut-Off)

Sarcopenic
Status,

Baseline
(By SMI-L3

Cut-Off)

p-Value *

No
SARCOPENIC

Status, after
CHT

(By SMI-L3
Cut-Off)

Sarcopenic
Status,

after CHT
(By SMI-L3

Cut-Off)

p-Value *

ECOG PS, n (%)

<2 39 (84.8) 40 (78.4)
0.447

38 (84.4) 41 (78.8)
0.603

≥2 7 (15.2) 11 (21.6) 7 (15.6) 11 (21.2)

n. of Medications, n
(%)

<6 36 (78.3) 42 (82.4)
0.620

34 (75.6) 44 (84.6)
0.311

≥6 10 (21.7) 9 (17.6) 11 (24.4) 8 (15.4)

Primary location n (%)

BCa 24 (52.2) 37 (72.5)
0.049

24 (53.3) 37 (71.2)
0.096UTUC 21 (45.7) 12 (23.5) 20 (44.4) 13 (25.0)

Concomitant 1 (2.2) 2 (3.9) 1 (2.2) 2 (3.8)

Oncologic stage, n (%)

III 22 (47.8) 17 (33.3)
0.155

22 (48.9) 17 (32.7)
0.146

IV 24 (52.2) 34 (66.7) 23 (51.1) 35 (67.3)

Anthropometric measures

Height, m 1.70 (1.66–1.75) 1.70 (1.62–1.75) 0.753 1.70 (1.64–1.73) 1.70 (1.64–1.75) 0.677

Weight, kg 77 (70–85.25) 70 (60–75) 0.001 77 (70–80.25) 70 (60–80) 0.005

BMI, kg/m2 26.3
(24.85–27.75) 24.2 (21.9–26.5) 0.001 26.3 (25.3–29.3) 23.5 (21.7–26.4) 0.007

SMA, cm2 179.7
(167.8–194)

135.8
(114.8–155.2) <0.0001 173.1

(157.2–193)
133.7

(116–154.4) <0.0001

SMI-L3, (cm2/m2) 62 (57.8–67.1) 48.6 (43.1–53) <0.0001 59.9 (57.3–63.8) 47.9 (43.4–50.9) <0.0001

Subcutaneous fat,
(cm2/m2)

184.2
(133.6–221.8)

135.2
(108.4–178.6) 0.003 178.7

(130.7–215.1)
143.1

(108.4–183.2) 0.002

Visceral fat, (cm2/m2)
207

(153.7–255.7) 103 (67.9–175.7) <0.0001 182.6
(140–218.4) 137 (64.5–181.6) <0.0001

Psoas muscle,
(cm2/m2) 21.7 (19.4–24.6) 16.5 (13.3–20) <0.0001 20.8 (18–22.8) 16.1 (13.5–19) <0.0001

Abdominal muscle,
(cm2/m2)

100.6
(89.6–109.2) 71.5 (59.1–82.2) <0.0001 93.4

(86.6–106.9) 71.6 (59.7–80.9) <0.0001

Long spine muscle,
(cm2/m2) 60.3 (54.8–64.1) 45.5 (40.8–55) <0.0001 57.9 (51.4–62.8) 46.4 (40.7–55.2) <0.0001

∆_SMI-L3, mean (SD) −1.86 (5.78)

∆_Subcutaneous fat
mean (SD) 0.25 (24.93)

∆_Visceral fat, mean
(SD) −4.93 (42.17)

∆_ Psoas muscle,
mean (SD) −0.85 (2.56)

∆_ Abdominal
muscle, mean (SD) −3.02 (10.74)
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Table 1. Cont.

Variables

No Sarcopenic
Status,

Baseline
(By SMI-L3

Cut-Off)

Sarcopenic
Status,

Baseline
(By SMI-L3

Cut-Off)

p-Value *

No
SARCOPENIC

Status, after
CHT

(By SMI-L3
Cut-Off)

Sarcopenic
Status,

after CHT
(By SMI-L3

Cut-Off)

p-Value *

∆_ Long spine muscle,
mean (SD) −1.06 (3.39)

Clinical outcomes

Clinical Benefit, n (%)

SD/PR/CR 30 (65.2) 25 (49)
0.151

29 (64.4) 26 (50.0)
0.217

PD 16 (34.8) 26 (51) 16 (35.6) 26 (50.0)

Survival n (%)

Deceased 37 (80.4) 23 (45.1)
0.001

35 (77.8) 25 (48.1)
0.003

Survivors 9 (19.6) 28 (54.9) 10 (22.2) 27 (51.9)

* p-values according to Fisher’s Exact test or Mann-Whitney U test when appropriate (bold p-value means that it
is statistically significant). CHT, chemotherapy; PS, performance status; BCa, bladder cancer; UTUC, Upper tract
Urothelial Carcinoma; BMI, body mass index; SMA, skeletal muscle area; SMI, skeletal muscle mass index; SD,
stable disease; PR, partial response; CR, complete response; PD, progression disease.

3.2. Correlation between AI Skeletal Muscle Index (SMI-L3) and Anthropomorphic
Sarcopenia-Related Variables Pre-/Post-Systemic Treatment

At baseline, out of 97 patients, 34 (66.7%) males and 17 (33.3%) females met the
definition criteria calibrated on the CT-defined AI software SMI-L3 and were considered as
affected by sarcopenic status.

At univariable linear regression modeling, we found an increasingly positive and
constant association between SMI-L3 and each anthropometric sarcopenia-related feature.
The coefficient correlation of determination (r2) was especially relevant when assessing
SMI-L3 and the abdominal muscle area (r2: 0.726, d.f.: 95, value: 0.450, 95% CI: 0.394–0.507,
p < 0.0001), followed by the long spine and psoas area (r2: 0.599, d.f.: 95, value: 0.740,
95% CI: 0.617–0.863, p < 0.0001 and r2: 0.463, d.f.: 95, value: 1.471, 95% CI:1.149 –1.794,
p < 0.0001). At multivariable linear regression, the goodness of fit statistics for the SMI-
L3 model reached the highest degree of correlation (r2: 0.857) and the correlations were
confirmed with the visceral fat area as well as with the psoas, long spine, and abdominal
muscle area (cm2/m2) independently from demographic and clinical confounders (Figure
S1A,B).

After the first cycle of systemic therapy administration, the observed correlations
remained stable and highly significant at both unilinear regression with the muscle-skeletal
components (i.e., abdominal, psoas, and long spine muscle area [cm2/m2]) reaching the
highest degree of correlation with SMI-L3 also when adjusted with clinic confounders
(r2: 0.874) (Figure 2A,B).

3.3. Baseline and Early Predictors of Clinical Benefit Measured at the Completion of
Systemic Therapy

In total, all patients received a median number of 5 cycles of platinum-based chemother-
apy which was mainly represented by Gemcitabine plus Cisplatin (GC) (53, 54.6%) or
Carboplatin (44, 45.4%) for patients with renal insufficiency or frailty. The CT scan per-
formed after 4–6 cycles, at the first oncological reassessment, revealed that the overall
number of subjects with SMI-L3 defined sarcopenia status was 52 (53.6%). Among these,
sarcopenic patients who exhibited disease progression were 26 (50%) while the remaining
was associated with both complete/partial RaR (26, 50%). Among the non-sarcopenic
group, after chemotherapy, 16 (35.6%) had progression of disease while 29 (64.4%) had
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complete/partial response. At univariable logistic regression adjusted by gender, baseline
predictors for clinical benefit outcomes were represented by the sole abdominal, psoas
muscle area, and subcutaneous fat area (aOR: 0.97, 95% CI: 0.95–0.99, aOR: 0.90, 95% CI:
0.82–0.99 and aOR: 0.99, 95% CI: 0.98–1, respectively). However, although not statistically
significant, both SMI-L3 and its derived sarcopenia-related cut-off demonstrated an overlap-
ping trend toward significance in line with the other individual aforementioned predictors
(aOR: 0.96, 95% CI: 0.92–1.1 and aOR: 2.33, 95% CI: 0.99–5.52) (Table S1A). Notably, at this
baseline assessment, none of these anthropometric features resulted independently able
to induce relevant clinical benefit outcomes except from some expected clinical variables.
Interestingly, after the first oncological reassessment of disease sarcopenic status both
by SMI-L3 coefficient and its standardized cut-off, was found independently predicting
clinical benefits (OR: 0.93, 95% CI: 0.88–0.98 and OR: 2.31, 95% CI: 1.15–5.78) (Table S1B).
Finally, the trajectory of the LOWESS functions depicting the predicted probability for RaR
clinical benefit outcomes showed an almost linear positive association with all the observed
body composition variables variations between pre-/post-systemic treatment. (Figure 3).
This was especially true for ∆_SMI-L3 (Figure 3A) and ∆_psoas (Figure 3C) and ∆_long
spine muscle area (cm2/m2) (Figure 3F) where the chances of not experiencing disease
progression increased from the ~10–20% up to ~45–55%.
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3.4. Baseline and Early Determinates for Overall Survival

Within a median follow-up time of 17.43 months (IQR 1.6–80.9), months, 37 (38.1%)
subjects were deceased by any cause. In the sarcopenic cohort, 28 patients (75.8%) were
recorded as having passed away, while 9 patients (24.3%) were recognized as survivors.
SMI-L3 variation (∆-SMI-L3) was significantly discordant across the two sub-groups rang-
ing from a median value of −1.857 (standard deviation [SD] 5.784), respectively. The
univariable effect of sarcopenia and other subgroups on OS has been depicted in Kaplan–
Meier plots shown in Figure 4.
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As expected, at univariable Cox regression modeling before and after chemotherapy,
higher registered values of sarcopenic and anthropometric measures had been associated
with reduced OS. This was also independently true at multivariable assessment for SMI-L3
and the subsequent sarcopenia definition at baseline (HR: 0.95, 95% CI: 0.92–0.99 and HR:
3.80, 95% CI: 1.72–8.41) (Table S2A). and after the first cycle of therapy (HR: 0.94, 95% CI:
0.91–0.98 and HR: 3.29, 95% CI: 1.51–7.17) (Table S2B).

Moreover, when implementing the LOWESS function to model ∆-SMI-L3 on the pre-
dicted survival probability derived from the multivariable Cox regression model (Figure 5),
greater survival chances were matched by those patients achieving wider ∆_SMI-L3 over
the course of follow-up (10–20% vs. 50–60%) (Figure 5A). This was noted especially for
∆_abdominal (Figure 5D) and long spine muscle area (Figure 5F) (cm2/m2) which varied
from ~20–30% up to ~50–55% when a consistent muscular mass was gained.
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4. Discussion

Accurate prediction of individual cancer patient’s response to chemotherapy remains
a goal in the field of oncology.

The development of sarcopenia is a result of tumor progression and systemic inflam-
mation caused by the tumor, so its presence indicates tumor aggressiveness. In addition,
sarcopenic patients are characterized by poor general health and physical performance,
which can contribute to a worse prognosis for cancer-bearing patients. The effectiveness of
sarcopenia as a prognostic biomarker can be attributed to its distinctive hybrid nature [27].
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Several studies have investigated the association between sarcopenia, assessed by
AI tools and oncological outcomes, [28]; including patients with breast, [29] gastric [30],
endometrial [31] and cervical cancer [32]. Focusing on genitourinary tumors [33], Wu et al.
(2019) [34] used transfer learning to train a convolutional neural network (CNN) model on
a then expanded dataset of pre- and post-treatment CT scans of 123 bladder cancer patients
undergoing neoadjuvant chemotherapy; in another study [35] sarcopenia in metastatic
renal carcinoma, according to SMI thresholds after segmentation by the deep learning
algorithm, had statistically significant correlation with lower overall survival compared to
non-sarcopenic patients [36].

However, to date, there are no studies that have analyzed sarcopenia in advanced
urothelial tumors through artificial intelligence software. In this setting, our primary
endpoint was to confirm the role of sarcopenia, assessed using a CT based AI-powered
software, as a prognostic predictor of objective clinical benefit in terms of tumor response
rate to systemic therapy, in advanced urothelial tumors and correlate sarcopenia status
with oncological outcomes. As anticipated, we discovered a strong connection between
sarcopenia and aging, which is widely recognized as a current health concern among older
adults [37,38]. Our results also showed that the number of drugs taken (unrelated to the
cancer treatment) and consequently the presence of comorbidities in patients were not
statistically significant factors. This finding is in contrast with previous research; Pacifico
et al. [39] in a systematic review discovered that individuals with multiple comorbidities,
such as cardiovascular diseases, dementia, diabetes [40], and respiratory diseases, had the
highest prevalence of sarcopenia [41]. Our outcome is likely a result of the insignificant
impact of comorbidities on the sarcopenia status of patients who have advanced cancer.

In this study we found that sarcopenia, assessed by the CT-based AI-powered software
is a negative prognostic factor in advanced urothelial cancers; indeed, overall survival
was significantly different between the sarcopenic and non-sarcopenic groups. Our data
are in line with Yumioka’s and Shimizu’s studies, which demonstrated how sarcopenia
is a predictive factor of overall survival in patients affected by urothelial carcinoma and
treated with gemcitabine and cis-/carbo-platin [42,43]. Results also confirm recent findings
concerning the association of sarcopenia in patients affected by genitourinary tumors and
oncologic outcomes [44]. Specifically, sarcopenia has been correlated to a worse prognosis
in patients with urothelial carcinoma, including muscle-invasive bladder cancer [45,46]
and upper tract urothelial carcinoma by Fukushima et al. in a systematic review of the liter-
ature [27]. The findings on genitourinary tumors align with those from systematic reviews
and meta-analyses on other types of tumors. It has been shown that pre-treatment sarcope-
nia is a separate risk factor for both lower overall survival and decreased compliance with
adjuvant therapies in pancreatic [47], gastrointestinal [48,49], breast [50], gynecological [51],
and hematological [52] cancers. In these prior studies, the presence of sarcopenia was
evaluated using commonly accepted methods, such as manually tracing the areas of all
muscle groups on CT scans.

It is important to mention that other anthropometric measurements may not be reliable.
Indeed, using BMI alone to assess obesity and evaluate outcomes and prognosis in cancer
patients is inaccurate since it cannot distinguish between fat and lean mass or between
visceral and subcutaneous fat [53].

Although traditional methods of evaluating body composition, such as anthropo-
morphic measurements, bioelectrical impedance, and dual-energy X-ray absorptiometry,
have some drawbacks, computed tomography and magnetic resonance imaging are the
benchmark techniques for analyzing body composition. Nevertheless, also these imaging
methods demand manual segmentation by an expert reader, which is a time-consuming
and labor-intensive task. Consequently, their application in large-scale studies and regular
clinical practice is limited [54].

In the present study, we found that integrating a fully automated AI-powered tool
into radiological practice, provides an opportunity for innovation to effectively investigate
sarcopenia status facilitating the detection of muscle loss and it allows to reduce operator-
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dependent bias of segmentation in the set of scans routinely acquired for staging and
follow-up purposes.

The ability of AI models to analyze large sets of data and extract high-level abstractions
beyond manual skills provides impactful information and greatly refines the standard for
assessing the risk of muscle depletion in patients with urogenital cancers [55,56] as well as
in non-oncological and pediatric patients [57].

This study has several limitations, including its retrospective design and small sample
size. Another limitation is the lack of correlation with the patient’s nutritional status.
Furthermore, this study, like the other retrospective studies previously described, was not
designed to show whether sarcopenia is treatable.

Even though our work is focused on advanced-stage urothelial tumors treated with
platinum-based systemic chemotherapy, it would be interesting to evaluate how body
composition affects other subtypes of urogenital tumors treated with different therapeu-
tic regimens. Finally, the AI tool’s performance was not compared to manual muscle
area segmentation, as the accuracy of the method has already been established in other
studies [58].

Despite its limitations, this study marks the first use of CT AI-based body composition
measurement in patients with advanced urothelial tumors. Our findings, supported by
further evidence, could lead to the development of standardized pathways that link the
radiological staging of cancers with sarcopenia assessment and personalized nutritional
therapy. This has the potential to enhance both quality of life and cancer outcomes.

5. Conclusions

The utilization of an easy-to-use CT-based AI tool allowed us to assess the sarcopenia
status of patients with advanced urothelial tumors. Indeed, routine CT scans represented
an important imaging biomarker on body composition status, which correlated with poorer
oncological outcomes. The AI tool can represent a means to increase the clinical value of
CT imaging reports and to promote the implementation of precision medicine [59].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15112968/s1, Figure S1: Univariable linear regression
plots depicting AI-based Quantib Body Composition® Skeletal Muscle Index (SMI-L3) and anthropo-
morphic sarcopenia-related variables at baseline (A). Multivariable linear regression model assessing
SMI-L3, clinic-demographic and anthropomorphic sarcopenia-related variables at baseline (B). Figure
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Muscle Index (SMI-L3) and anthropomorphic sarcopenia-related variables after fist therapy cycle (A).
Multivariable linear regression model assessing SMI-L3, clinic-demographic and anthropomorphic
sarcopenia-related variables after fist therapy cycle (B). Table S1: Bivariable and Multivariable ad-
justed Cox regression modeling for anthropometric measures assessing the Odds Ratio for overall
survival at baseline (A) and post-systemic treatment (B). Table S2: Bivariable and Multivariable
adjusted Cox regression modeling for anthropometric measures assessing the hazard for overall
survival at baseline (A) and post-systemic treatment (B).
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