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Maxwell system with divergence free data. On the scalar permittivity =~ Accepted 13 October 2021
and permeability we impose decay assumptions as |[x| — oo and a
non-trapping condition. The proof is based on smoothing estimates
in weighted L? spaces which follow from corresponding resolvent
estimates for the underlying Helmholtz problem.
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1. Introduction

This article investigates a model for the propagation of electromagnetic waves in con-
tinuous media, the Maxwell equations

D,=VxH-J, B=-VxE V:-D=V.-B=0, (1.1)
on R, x R? with linear inhomogeneous material laws
D = €(x)E, B = u(x)H, (1.2)

and the (divergence free) current density J = J(t,x). Here, E and D are the electric
fields, B and H are the magnetic fields, and the permittivity ¢ and the permeability u
are positive scalar functions on R3. Hence the model is isotropic, i.e., the interaction of
fields with matter depends on the location but not on the direction of the fields
D,H,E,B: R x R*> — R?. We note that the divergence constraints follow from the evo-
lution equations if the initial data D(0) and B(0) and the current ] are divergence free.

The Maxwell system is the foundation of electromagnetic theory so that it is not
necessary to recall the importance of model (1.1) and (1.2) in applications, including
the classical case €, ;t = const. Despite the large literature devoted to the subject, see
e.g., the monographs [1, 2], many important questions are still unclear.

Global well posedness in Sobolev spaces H'® of the Cauchy problem for (1.1) follows
from the general theory of hyperbolic systems, under rather weak conditions on the
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coefficients € and . Here, we are mainly interested in the asymptotic properties of solu-
tions. Besides its inherent importance, information on the decay of the solutions is
essential for the study of the corresponding nonlinear problems. In the constant coeffi-
cient case

Et:VXB—I, Bt:—VXE, VEZVBZO,
with data
E(O,X) = Eo, B(O,x) = B(),

solutions are easily seen to satisfy diagonal systems of wave equations

UE = -], OB=Vx].

Hence, one can apply the well-established theory on dispersive properties of wave equa-
tions. The strongest property is the pointwise decay

ECE ) + B ) = (Vo + VBl ) - [t (1.3)

where we set ] = 0. From (1.3) Strichartz estimates can be deduced. For all couples of
wave admissible indices (p, q) and (r, s), that is to say

1 1 1
4I=Z, pE [2,00}, qG[Z,OO) (1.4)
p q 2

in dimension 3, we have

_2 _2 2
IIDI"7Dy, xE|lsa + [IDI 7 Dr, 5Bl o = [[VEo|| 2 + [[VBoll 2 + 110, ) [l 2 + [IDI"Dy, o |

(see [3, 4]). Here, we are using the notations |D['u = F~'(|&[(¢)), where Fu = i1 is
the Fourier transform, and /L1 = L*(R; L1(R’)). An even weaker form of dispersion is
expressed by the so called smoothing estimates

1) ™2 || page + 16) % Bl g = ||Eoll 2 + [|Bo]l 2 (1.5)

for J = 0. (See e.g., [5] for a comprehensive framework for such estimates.)

Substantial work has been devoted in recent years to extend dispersive estimates to
more general equations, including in particular equations with electromagnetic poten-
tials or variable coefficients, and equations on manifolds (see among many others [6-8]
for the Schrodinger equation; [9-11] for the wave equation; for wave equations with
variable coefficients in highest order, [12-14]; concerning dispersive estimates, [15-20]).

Astonishingly, only little is known about such estimates for the Maxwell system (1.1)
and (1.2). In [21] local-in-time Strichartz estimates were shown for smooth scalar coeffi-
cients € and p being constant outside a compact set. For matrix valued coefficients the
situation seems to be much more complicated, as already for constant matrices € and u
the dispersive decay depends on the multiplicity of their eigenvalues, see [22, 23] and
also [24]. Very recently, local-in-time Strichartz estimates with matrix valued (aniso-
tropic) coefficients were shown in the two dimensional case, [25]. In the present work,
we are concerned with global-in-time Strichartz estimates for scalar ¢ and u in C* under
some decay assumptions as |x| — oo.
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In our arguments, we use a second-order formulation of (1.1) and (1.2). By a compu-
tation similar to the constant coefficient case, any solution D(¢,x) to the problem (1.1)
with (1.2) also solves the system

1 1 1
Dtt+vxva_D:_Jt> VD:O, D(O,x):D(), Dt(O,x):VX;BO—](O)
€

(1.6)

The other fields satisfy similar equations, e.g., B satisfies an analogous system with €
and p interchanged and modified data, namely

1 1 1 1
Bi+VXx-Vx-B=Vx-J, V-B=0, B(0,x)=By, B,(0,x)=—V x-Dy.
€ U € €
(1.7)
The material laws (1.2) then imply
1 1 1 1 1
Ett+7VxﬁVxE:—7L, V- (¢E)=0, E(0)=E, E/(0)=-V xHy—-J0),
€ € € €
(1.8)
1 1 1 1 1
Htt+;VX—VXH:;VX—], V- (uH) =0, H(0)=H,, H,(O):—;VXEO.
€ €

(1.9)

In this work, we focus on (1.6). Equations (1.6) and (1.7) are essentially systems of
wave equations with variable coefficients. Indeed, one can write

1 1
UV x =V x-U=VxVxU-=b(x,0)U
u €

where b(x, d) is the first-order matrix operator

b(x, 0 U=(p+q) x (VxU)+Vx(pxU)—(p+qg) x(pxU) (1.10)
with coefficients

p = Vloge, q = Vlog u.
Here, we heavily use that € and p are scalar. We also denote by b(x,0) the operator as
in (1.10) with p and g interchanged:
b(x,)U=(p4+q) x (VxU)+Vx(gxU)—(p+q)x(qgxU).
Since VX V x D = —AD + V(V - D) = —AD, we see that (1.6) can be written as
euDy; — AD — b(x,0)D = —ep],, V-D=0, (1.11)

and similarly (1.7) is equivalent to
~ 1
€uBy — AB — b(x,0)B = euV x —J, V-B=0. (1.12)
€

In other words, for scalar € and u the divergence constraint allows us to reduce (1.1)
and (1.2) to a wave system with uncoupled principal part (eudy — A)Lzxs.

The main goal of the article is to prove the following estimates, which apply in par-
ticular to the fields solving the Maxwell system (1.1) and (1.2).
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Theorem 1.1. Let e(x), u(x) : R* — R and assume for some & € (0,1/2) that

(1) infep > 0 and (ep) <4(1— 279) Tep(x) 0,

@) le=1l+]p—1/=®)77, Ve + |Vl = (x) 7, and |D?| + |D2u| = (x) 5,

Let Dy = €Ey, Bg = uHy, and J be divergence free. Then, the solution D to (1.6) satisfies
the Strichartz estimate

I1DI"7Dy, D] 10 = VDol 2 + [[VBol| 2 + [7(0) |2 + [[[DITell 1
for all wave admissible (p, q) and (r,s). The solution B to (1.7) fulfill
IID]"*Dy Bl 50 = [ VDol| 2 + [ VBol| 2 + [[[DF V|-
Here, we can replace D by E and B by H, solving (1.8), respectively, (1.9).

We briefly discuss the previous statements. In (1), the symbol (a)’ = max{—0,a,0}

denotes the negative part of the radial derivative, and (x) = (1 + |x|2)1/ *. Wave admis-
sible couples and the notations L’L? and |D|’ have been defined above (see (1.4)).

The second assumption in (1) is our non-trapping condition. Note that this is a one-
sided condition, affecting only the negative part of the radial derivative of ey; it is a
kind of ‘repulsivity’ of the coefficients. It is well known that some hypothesis of this
type is necessary to exclude trapped rays, which are an obstruction to global decay in
time and even to the much weaker local energy decay. Many of our intermediate results
are true under weaker decay assumptions than (2). For instance, our basic smoothing
estimate (5.1) for the wave equation and the corresponding resolvent bound (4.6) are
shown assuming condition (1), the decay

le— 1|+ | — 1| + |DPe| + |D?u| = (x) 27, |Ve| + V| = (x)7"7, (1.13)

and a non-resonance condition for the frequency z=0 stated before Proposition 2.5.
The extra decay in the above hypothesis (2) is needed to remove this non-resonance
condition in Proposition 2.8, and also to establish certain Riesz-type bounds in Lemma
5.3 in (weighted) L? spaces which are crucial to derive the Strichartz estimates.

The proof of Theorem 1.1 is given at the end of the article. It follows the general
principle, pionereed in [7] and further developed in many works (e.g., [13, 14, 26-28]),
that weak decay properties of solutions can be upgraded to much stronger decay, under
suitable regularity and localization information on the coefficients. The main novelty of
our article is that we treat a system with variable coefficients in higher order terms. We
explain our proofs in more detail.

For scalar wave equations, the paper [12] gives global Strichartz estimates if the coef-
ficients are close to constants and decay as |x| — oc. (For derivatives the decay assump-
tions are similar to (1.13).) Moreover, local-in-time estimates are proven without the
smallness condition. As we can put our problem in the form (1.11), we are able to apply
these results after suitable localizations of our solution. Recall that the possibility to
deduce global Strichartz estimates from local estimates combined with global local
energy decay was discovered in [29]. The localization procedure introduces commutator
terms which we must estimate in L?L?. These are controlled using the smoothing esti-
mates in Propositions 5.4 and 5.5 which are based on (4.6). In this analysis, one must



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS @ 5

switch between homogeneous and inhomogeneous estimates; this requires TT* argu-
ments and suitable Riesz-type inequalities, see Lemma 5.3. To prove the latter, we use
crucially the divergence conditions of the Maxwell system. Conversely, we must avoid

2/p

the usual TT* argument since it would need Riesz bounds in H ; which are not

available for our operator.

The necessary smoothing estimates are deduced directly from the resolvent bound
(4.6) for the stationary problem, which also involves weighted L*> norms, via
Plancherel’s Theorem. In principle, here, we follow the general framework of Kato
smoothing (see [5]). However, we cannot apply the general theory since we have to
work with the operator L(z) = euz? + A + b(x, 0) without divergence constraint when
showing the resolvent estimates. Since the operator A + b(x,0) is not self adjoint, the
Kato theory cannot be applied directly.

We prove the resolvent estimates by splitting into three different regimes: bounded
frequencies, which we handle via compactness arguments, see Section 2; large frequen-
ces and large x, via Morawetz type estimates, see Subsection 3.1; and large frequencies
on a compact region of space via Carleman estimates, see Subsection 3.2. In the step for
small frequencies one has to exclude eigenvectors and resonances of L(z). Here, it is
crucial to show that such functions have to be divergence free, which is proved in the
relevant Propositions 2.6, 2.7, and 2.8 using the structure of (1.11).

2. Low frequencies

We first prove a resolvent estimate which is valid for all values of the complex fre-
quency, but with a constant C(z) which may grow as |z| — oco. Hence, we will use this
estimate only for z in a suitably chosen compact region. In the next section, we shall
prove a uniform estimate for large |z|. Except for the final result, in the present section
the space dimension is n > 3, however, in this article we shall only need n=3.

We shall apply a few variations of the following standard argument. Suppose a refer-
ence operator Hy satisfies, for z in an open domain Q C C, a resolvent estimate

IRo(2)Vll5, < C@) IVl  Rolz) = (Ho+2)"",
where By and B, are some Banach spaces. Suppose also that

e H is a relatively compact perturbation of H,, meaning that the operator K(z) =
(H — Hp)Ry(z) extends to a bounded and compact operator on B,
e z+— K(z) is continuous in the operator norm.

Then, we can write
H+z=(H—Hy)+Hy+z= I+ (H—Hy)Ro(2))(Ho + z) = (I + K(2))(Ho + 2).

Let the operator I+ K : B, — B, be injective. Then, it is also bijective since it is
Fredholm. Moreover, the operator norm of (I 4+ K(z))™" is locally bounded for z € Q.
This type of argument is classical on weighted L* spaces, see e.g., theorem VI.14 in [30],
and it holds more generally in Banach spaces (a fact likely rediscovered several times,
see e.g., lemma 3.4 in [31]). As a consequence, we can invert H+ z for all values of z €
Q and the resolvent estimate holds also for H, in the form
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I(H +2)""v]l5, < C'2)|Ivlls,»

with a different C'(z), which is locally bounded for z € Q, but otherwise undetermined.
We first look at the operator without lower order terms b(x,0) starting with a basic
resolvent estimate outside the spectrum for

R(z) = (A+az)", z € C\[0, + 00).

Proposition 2.1. Assume that a €L>, a>0, limy_ a(x)=1 and z€D=
C\[0, 4+ 00). Then, A+ az : H*> — L? is a bijection and R(z) := (A + az)™" satisfies
IR(2)f [z < C@)IIf 12
for some continuous function C : D — R*.
Proof. Let z € D and Ry(z) = (z+ A)~'. We can write
A+az=A+z+(a—1)z= I+ (a—1)zRy(2))(A + z). (2.1)

The operator K(z) = (a — 1)zRy(z) is bounded and compact on L>. We prove that I +
K(z) is injective for each z € D. Assume that (I + K)u = 0. Setting v = Ro(z)u, we
have v € H? and

(A+za)y =0 which implies ﬁVv|2 — :/:/a|v|2 —0.

If 3z # 0, taking the imaginary part we infer v=0, and hence, u = (A +z)v =0. If
Jz = 0 so that z = —1 € (—00,0), we obtain

ﬁVv|2 + /l/a|v|2 =0
and this implies again v=0.

Thus, by analytic Fredholm theory we can invert I + K(z) on L* and the operator

norm of (I +K(z))™" is locally bounded in z € ). The claim follows writing

(A+az) " =Ro(2)(I+K(z))
and using the elementary estimate
IRo(2)Vl e < C@)IVllzs  Cle) = Cd(zRY) ™,
and the bound on (I + K(z))'. Note that C(z) blows up as z — R*. O

The next step is a limiting absorption principle for R(z), where the limits of R(z) as
+3z | 0 exist in a suitable topology. In the following, we commit a slight abuse of nota-
tion since for A € g(—A) = [0, 4+ c0) there are two extensions Ry(4*i0) of the resolv-
ent, and we shall denote both limits with the same notation Ry(z) for the sake of
terseness. The limiting absorption principle for the free Laplacian is expressed by the
uniform estimate

IRo(=)fllx + 2" |Ro (2)f |y + I VRo(2)f Il < CIIf

valid for all z € C, with a constant independent of z. Here, the norms of X, Y and Y*
are defined as follows: Y* is the predual of Y, while

Y*
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1 2 2 1 2
||v||2 = sup/ |v|°dS, vy :== sup/ |v|“dx.
7 koo (R)* J {1x/=r} Y o0 (R) {Ix|<R}
We shall also need the (stronger) homogeneous norms
1 1
W =swpzs | brds vl —ser[ P @2
R>0 {|x|=R} {IxI<R}

We note the equivalent expressions in terms of dyadic norms

_1 1 _
Vlly = 16e) > vllperes v =1l W= 1) e (23)

writing (using polar coordinates in the last term)

e = sl A= (<1 4= {2 <k <2
IVl = Z HVHLZ IVl pepere = sup ||V||L‘X‘L(2J (4)
j=>0

These norms can be considered as sharp versions of weighted L? norms. Indeed, it is
easy to check the inequalities

1697Vl < CEOMlys  I¥lly- < COIET I
1)l < CEO ML 1) lly < [Ivl

(2.4)

for all 6 > 0.
In the next lemma, we collect the relevant estimates for the free Laplacian. We write
them at the point z* with 3z > 0, thus, covering the entire complex plane for both

sides of [0, + oc). (In later sections, it will be convenient to use z2.) We set X = |x| 'x
for x € R"\{0}.

Lemma 2.2. Let z € C with 3z > 0. Then, we have, with constants independent of z,

IRo(2*)f llxc + 12Ro(z*)f Iy + VRo(2*)f Iy < Clf lly-» (2.5)
I(V = i&z)Ro(2)f |2 < Cll|x[fl] - (2.6)

Moreover, for s € [, 1] we have, with C independent of s and z,
1) = ) Ro()f s < ClHR) Sl @7)

Proof. Estimate (2.5) is essentially the classical Agmon-Hormander estimate, which is
uniform in z in the special case of the operator A. See e.g., [32] for a complete proof.

Consider now (2.6). Take f € L* with |x|f € L?. The restriction that f € L* can be
removed by approximation. Define u = Ro(4 + in)f, so that (A+ A+in)u=f. We
multiply this equation by #, take the imaginary and the real part of the resulting iden-
tity, and integrate over R”. We then obtain (see (3.6) and (3.8) below for a similar com-
putation)

mumw:ﬁﬁa nvw;=zhm;—$ﬁu 28)

, these equations imply
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2 2 _ _
[Vulli: < 2nllullz + (fullp < 3[lfull,

and hence

2 2 — -1

(Il + 12DMullzz + [[Vull = [fallp < [alfllallx ull2-
Using Hardy’s inequality |||x|"u/|;» <||Vu/|;», we conclude
\ 2 2 2
(Il + [ADullzz + Vullz = [[|x[fll-

We write this estimate in terms of z> = 4 +in. Note that if argz € [%,n—%}, then,
7, ie., A < |n|. We have thus, proved

argz® € [,2n — 1

T T
lzRo(2*)f || 2 + IV Ro(2*)f || 2 < |||x|f||; provided argz € {8,71 — 8]' (2.9)
This estimate obviously yields
I(V = i&z)Ro(2*)f I|> = [[[x[f]- (2.10)

for the same values of z. Next, we consider the region argz € [0, ] U [t —%,7], ie.,
argz® = A+in € [0, 5 U [2n — Z,27] or equivalently 0 < || < A. Proposition 3.1 in [33]
shows that
(7 = &V Ro (2 + in)f 1|2 = [x[f], (2.11)

with a constant independent of 7 and /. Setting u = Ro(4 + in)f and v = ¢ V%
have Vv = e‘”"‘ﬁ(v - i&ﬂ)u. By Hardy’s inequality, estimate (2.11) implies

%™ Ro (4 + imfll 2 = lllxl ™l = N2l il = 19912 = [ 1x[fo-
From the first part of (2.8) we then deduce

Il 1Ro (2 im)f I3 < [xlfllpe el el 2 = [lf 7

Observe that for A + in = z* and 0 < || < A we have

Vi— 2 = |(®2)" — 2| < V]nl.

The previous estimates, thus, lead to

I(V = iz0)Ro(2)f 12 < [V = iv/Z&) Ro(Z2)f |, + v/ ]| Ro(2)f 2 = [[[f -

Combined with (2.10), we see that (2.6) holds uniformly in z for all 3z > 0.
For the last assertion, we note that (2.7) for s=1 follows from (2.6). If s = %,
inequalities (2.3) and (2.5) yield

()73 — i%2)Ro () |12 < CI(V = ix2)Ro(Z)fly < Clflly- < ClHR)¥F Lo

Real interpolation between the cases s = % and s=1 then gives (2.7). O

u, we

We now prove the limiting absorption principle for A + az®. As for Ry(z), the two
extensions on the positive reals for 3z | 0 and for 3z 1 0 are different, but for simpli-
city we will use the same notation R(z) for both. The weighted L* space with norm
|| (x)°u| ;2 is denoted by L2.
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Proposition 2.3. Assume (x)*"°(a— 1) € L for some & > 0. Then, R(z) satisfies the
estimate

IRZ*)flx + 12R(2*)f Iy + [VR(Z)f |y < C(2)]If]
for all 3z>0 and for some continuous C(z). Let s’ <s in (1/2,1] and
<x>s+%+5(a — 1) € L. We then have

)™ (V = ix2)R(2)f |12 < (s>, 2) () F | - (2.13)
Moreover, for f € L?* there exists g € L? with R(z*)f = Ry(z?)g.

v (2.12)

Proof. We shall use the inequalities

5 i
r =0 ully, ully = 1160 ully (2.14)

[ul

valid for any & > 0, see (2.4). Let K(z) = (a — 1)z*Ro(z2). The operator (x) > °zRy(z2)
is compact on Y* and bounded uniformly in z, as it follows from estimates (2.5) and
(2.14) (or as a special case of lemma 3.1 in [31]). Writing K(z) = <x>2+5(a— 1)z-
(x) 2 °zRy(22) we see that K(z) : Y* — Y* is also a compact operator for each z € C
whose operator norm is locally bounded in z € C.

We next prove that [+ K(z): Y* — Y* is injective. Thus, assume (I + K(z))v =0
for some v € Y* < L?. Let u = Ry(z*)v so that u€ YNHE_ if z#0, u € XNHZ_ if
z=0, and u satisfies Au + az’u = 0. If z=0 this means that u € X is harmonic, hence,
v=0. If 3z* # 0 or z> < 0, we have u = Ry(z*)v € H?. Proposition 2.1 now yields u =
0 = v. Finally, if z2 = 1 > 0 then u satisfies

(A+2)u+2A(a—1)u=0.

Regarding W(x) = A(a — 1) as a potential with |x|2<x>5/2W € ('L>®, lemma 3.3 in [31]
shows that v=0. Then, (2.12) follows from (2.5) as before by analytic Fredholm theory
and the representation R(z2) = Ro(z2)(I + K(z)) ™"

Consider now the radiation estimate (2.13) assuming <x>s+%+5(a — 1) € L*. We trans-
fer estimate (2.7) for R, to the perturbed resolvent R, using the representation R(z*) =
Ro(z2)(I + K(z))™". In view of (2.3) and (2.7), we only have to prove that I + K(z) is
an invertible operator on the weighted space L? with norm ||(x)’f||,.. Note that we have
already shown that I + K(z) is injective on the larger space Y*. It, thus, it remains to
check that K(z) is compact on L2. We can write

K(z) = (x)7(a — 1)z (x)2 - (x) 2R (2).

Observe that (x)%+5(a — 1)z is a bounded operator from L* to L2 since <x>s+%+5(a —-1)e
L, (x)é is bounded from Y* to L by (2.3), and (x) > °Ry(z) is compact on Y*
because of (2.5) and (2.14). Summing up, K(z) : Y* — Lf is compact and due to the
embedding L? < Y* it is also compact on LZ.

The final claim is a consequence of the representation R(z2) = Ry(z%)(I +K(z)) ™"
and of the bijectivity of I + K(z) on L? for the above values of s. O
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Note that writing AR(z)f = f — azR(z)f, Proposition 2.3 also yields
IARZ)flly < IIflly + 2IC@)Iflly- < Ci(2)]If]

where we used the inequality ||f||y =< ||f||y.» cf. (2.3). This gives the complete estimate
IR 5 + IRy + IVRE) |y + ARG [, < C@fly.  219)
Finally, we consider the case of the full operator
L(z) = A+ a(x)z* + b(x,0).
In the following, we actually treat a more general matrix operator

L(z) = A + La(x)z* + b(x, ).

Y*

Here, I; is the 3 x 3 identity matrix so that the principal part is a diagonal Laplacian
operator. Moreover, b(x,0) is a 3 X 3 matrix first-order operator subject to conditions
as in the scalar case. It will be clear from the proofs that in our setting no change is
required in the matrix case.

In order to perform the usual injectivity step, we shall make the following spectral
assumption saying that L(z) has no resonances or eigenvalues. See Remark 2.4 and
Propositions 2.6, 2.7, and 2.8 below for a closer examination of these conditions. There
we show that these conditions only lead to mild extra conditions when establishing our
main results on the Strichartz estimates for the Maxwell system. Actually, these extra
conditions are only needed to exclude a resonance at z=0, see Proposition 2.8.

Spectral assumption (S). Let 3z > 0. Then, L(z)u = 0 implies u =0, provided

(1) either z ¢ R and u € H? (no eigenvaluefs)
(2) orzeR and u = Ry(2?)f for some (x)>'f € L?> (no embedded resonances).

Note that u € Ry(z?)Y* satisfies Vu,Au €Y and u€X (and u €Y if z#0) by
Lemma 2.2.

We briefly discuss condition (2) for z=0 (no resonances at 0). It is necessary since
the presence of resonances competes with dispersion, a well-studied effect since [34]. If

1 _ o~ 1
(x)7"°f € I* then u = A™'f satisfies (x) > " u € L? for all ¢ > 0, thus, our non-reson-
ance assumption is slightly weaker than the usual one.

Remark 2.4. Assumption (S) is satisfied for z sufficiently large with respect to the coef-
ficients. This is a consequence of estimate (4.6) in the next section.

Moreover, the non-resonance assumption is generic in the following sense. We take a
parameter » € R\0 and consider the modified operator A + wb. Under the previous
assumptions on ¢ and g, then, the set of values @ such that A + wb has a resonance at
0 is discrete. Indeed, one easily checks that 0 is a resonance for A 4+ wb if and only if
! 1

is an eigenvalue for the compact operator b(x,d)A™" on the weighted L* space

1
sto

with weight (x)

Proposition 2.5. Let L(z) = LA + La(x)z* + b(x,8) with |x|*(x)°(a—1) € L* and
b(x,0) a first-order matrix differential operator satisfying

|b(x, O)v] < Cp((x) 2|y + (x) 0| V|) (2.16)
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for some Cp,d > 0. Assume L(z) satisfies the spectral assumption (S). Then, for 3z >0
we have

luall + llzully + [[Vully + [[Aully < C@)IIx)"L(z)ull.- (2.17)

Proof. As before we write
L(z) = (I+K(2))(A + az®), K(z) = b(x, 0)R(z%), (2.18)

where R(z) = (A +az?)”' is the operator constructed in Proposition 2.3. Estimates
(2.4) and (2.15) and the assumptions on the coefficients imply the compactness of K(z)
as an operator on L? e and the continuity of the map z — K(z) in the operator norm.

To prove injectivity of I + K(z), assume f + K(z)f = 0 for some f € Lf/2+. Let u =
R(Z*)f so that u solves L(z)u = 0. Note that by the final claim of Proposition 2.3 we
also have u = Ry(z?)g for some g € L%/2+' If z€ R, assumption (S) yields u=0, and
hence, f = (A +az*)u =0. If z ¢ R, since Y* C L? and R(2?) : L> — H?, we see that u
is actually an eigenfunction of L(z), and again by (S) we deduce u=0. The rest of the

proof is similar to the previous ones. O

The spectral assumption (S) holds if 4 and b have some additional structure that is
present in our main goal, the Maxwell system in the second-order form (1.11). We first
consider part (1) of (S) and exclude eigenvalues in the next result. Observe that the
Assumptions (2.19) and (2.25) imply condition (2.16) from Proposition 2.5, cf. (1.10).
This fact is used below several times.

Proposition 2.6. Assume that the coefficients in Proposition 2.5 have the form

a(x) = G(X)N<x), b(x, 8)u =VxVxu-— 5(x)u(x)v % <$v > $u>,

(2.19)

where € and | are bounded and uniformly strictly positive. Then, property (1) in the spec-
tral assumption (S) is satisfied.

Proof. In the present case, the equation L(z)u = 0 can be rewritten as
1 1
Zepu+ Au+V x V x u—euV x <—V><—u) =0
u €
or equivalently
, 1 1_ 1
Zu+—V(V-u)—Vx[-Vx-u]=0. (2.20)
e U €

Assume that z ¢ R and u € H? is a solution of (2.20). By taking the divergence of the
equation, we see that the function ¢ = V - u satisfies

2o+ V- (iV(]S) =0.
€t
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As z ¢ R, this equation implies ¢ =0 (i.e, u is divergence free) since the operator

V- (Elﬂ V(j)) is selfadjoint and non negative as soon as the (real valued) coefficient ey is

bounded and strictly positive. Thus, the equation L(z)u = 0 reduces to
1 1
22u=V x <—V><—u>, V-u=0, u € H>. (2.21)
u €

It is now convenient to set
E=u/e, H=—(iuz)"'V xE, (2.22)
so that (E,H) are H' solutions of the stationary Maxwell system
izE=V xH, iuzH=-VxE, V:(E)=V-:(uH)=0. (2.23)
We integrate the identity
x x E[* + [H> — | x E+ H]> = —2R(x - E x H)

over a sphere |x| = R. The divergence theorem then yields

/ (& x BP + [HP — [# x E+HPdS = —2%[ V- (E x H)dx.
|x|=R [x|<R
Writing

V- (ExH)=H-(VxE)—E-(VxH) = —izuH[” + ize|E|%,

we deduce

/ [|& x E[* + |H|*|dS + zSZ/ e|E* + u[H|?]dx :/ |x x E4+H[’dS. (2.24)
[x|=R |x|<R |x|=R

If we integrate in R from 0 to +oo, the RHS gives a finite contribution since E,H € L2
As a consequence the second integral on the LHS must be 0 (recall that 3z > 0). We
have proved that E = H = 0 and in particular u =0. O

We next treat resonances at z2 > 0 which requires more sophisticated tools.

Proposition 2.7. Assume that the coefficients in Proposition 2.5 have the form (2.19) and
satisfy €, u > 0 as well as

(x)*"(le = 1| + [ — 1| + [De| + [D*p]) + (x)' (| Ve| + [V]) € L. (2.25)
Then, also property (2) in the spectral assumption (S) is satisfied if z € R\{0}.

Proof. Let z € R\{0} so that A = z2 > 0. We take a solution u of L(z)u = 0 of the form
u = Ro(A)f for some f € L?,, < Y*. In particular, from (2.15) with a=1 we know

1/2+
that u, Vu,Au c Y.
Proceeding as in the previous proposition, we see that ¢ = V - u € Y satisfies

I+ V- (iw)) =0
i

which can be written as
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(A+A)p—VB-Vo+ Alen—1)¢p =0, f = In(eu).
Setting ¢ = /ey, this equation is transformed into

A+ +cxy =0,  cx) = %Aﬂ - % VAP + A — 1), (2.26)

Condition (2.25) for some &' > & implies that |x|*(x)’°c(x) € #'L™ and ¢y € Y*. Lemma
3.3 in [31], thus, yields iy =0, and hence, ¢p = 0.

We next show some decay of u. Since u is divergence free, as in Proposition 2.6 the
equation L(z)u = 0 is reduced to (2.21) with z2 = 1. Defining (E,H) as in (2.22), with
V2. in place of z, we see that (E, H) satisfy the Maxwell system (2.23) with z = v/4 > 0.
Since 3z = 0, Eqgs. (2.24) and (2.22) imply

/ | x E[* + [H|*|dS _/ |* x E + H|*dS
|x|=R |x|=R

:/ |V 2|V x E — in/7% x E[*dS.
|x|=R

Multiplying both sides by the (radial) function (x)*' and integrating in the radial vari-
able, we arrive at

)% x Bl + 100 Ml < 0022 x)* " (¥ % B — i/ x B
Now, the radiation estimate (2.7) with s = %—l— yields

1)+ (V — VA Ro(A)f 2 < )T o (227)

By means of E = u/e, we write

VxE—i,u\/zchEz (Vl> Xu—o—l—ﬂ(l—u)&xu—i—l(Vxu—i\/Achxu). (2.28)
€ € €

We know that u = Ry(4)f for some f € Y*, so that u € X and Viu €Y by (2.5).
Condition (2.25) and (2.4) then imply that the first two terms on the RHS of <x>_%+
times (2.28) are bounded by ||(x>%+f||L2. Using also (2.27), we derive

7% x Bl + @) Hll < Cle s Al Sl < oo
This proves that <x>7%+H, and hence, (x)f%v x E are contained in L. Conversely,
E = 'Ry(A)f satisfies (x)'/*"E € L? by (2.4). The condition V- (¢E) =0 and the
decay of Ve, thus, give <x>_%+v -E € L%, It follows that <x)_%+VE is an element of L7,
which leads to (x) "Vu € 12 and the estimate
1)+ Vulzz < Cle o Al fllze < o0,
Recalling the original equation satisfied by u, we have
A+ Nu=—g

with ¢ =A(a —1)u+ b(x,0)u and a = ep. Since u,Vu € Y, the decay Assumption
(2.25) and (2.4) yield (x>%+g € L%. By the radiation estimate (2.7) for Ry(4), we obtain
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that (x) " (Vu — iv/Zku) € L? and in conclusion (x) *"u € L2. Note that also |x| " u
belongs to L*.
To prove that u=0, we use a Carleman estimate from proposition 5 of [35] for the

special case of the operator A+ 4 and of a function with |x|71/ **u € I, There it is
shown that
|x|wp .
woul| + || A VU S |w(x A+ 2)u
ool + | e ¥ = o8 +

In |x)

where w(x) = e , & 171 > 0 are small but fixed, and

2 '(In |x (In 1) 1/4
W =+ (e =) p<x|>=<h(1 - (uh“ : ')>> |

72 + get’ |x|? |x

The estimate is uniform in 7 > % for some 7 > 1. We further set ¢(r) = h(Inr) and
note

p(r) = ¢/ (r) + ¢' (1)),
We can write
1 R _
WwaA+iﬁMp5HWV*Q$A+%>MMr+MWpl&u—lﬁMU

and also

1 1 1

———Au=Vx-Vx-u+LOT.=u+LO.T.
eu u €

Here, the lower order terms are bounded by (x) > °|u| + (x) ' °|Vu| due to (1.10) and
(2.25). We obtain

|x|wp

——  V
W(n ) +

< [lwp™ (L.O.T.) 2 + Allwp ™ (e — Lyul
12

me+\

To absorb the RHS by the left, we have to prove that the functions m; = ,0_2<x)727(3

and m, = p~2(1+ ¢)(x) "' are smaller than a certain constant 1 > 0 uniformly in x
for a fixed large 7. This will yield u=0, and thus, the result. Let r = |x|. We first
observe that

W(lnr) < +ter

¢ = o Rrden

mi(x) < ()20 (1) + @' (1)) < () 700 (1) T < () 0 (n)

my(x) < (x S Lol ¢'(r) == (x 04 r)_% < C{x _%_07”% +82rf =: m(x)
= (@'(r) + @' (r))? e = @+ (ry6)rk

Let r > ry for some ry > 1 to be fixed below. We compute
1
r i
m(x) < 1

= (rig)

i

_1 -5
=T 2471 .

ol—
W=

r
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uniformly for T > 1 and r > ry. We can fix 7y > 1 and 19 > 7 such that m(x) < 5 for
all T > 79 and |x| > ro. Let now |x| = r < ry. In similar way we estimate

1 13
Tri + & 1l 31
m(x)<7<‘[2r4+fzz
— 3 1L — 0
72+ (118)7r1

St

Fixing a large t > 19, we conclude that m(x) <# and hence m;(x),my(x) <n for
all x. 0

It is possible to exclude also a resonance at z> = 0, provided the first derivatives of
the coefficients decay a bit faster. We now use that the space dimension is n =3 which
did not play a role so far.

Proposition 2.8. Assume the real-valued coefficients ¢, ;i > 0 satisfy (2.19) and
le— 1| + | — 1| + |D?u| + [D2| = (x) 2%, |Ve| + |Vp|= (x)F° (2.29)

for some 6 € (0,1). Let L(0)u =0 for some u=A"'f and f € L}/, Then, u=0, so

that spectral assumption (S) is true in view of Propositions 2.6 and 2.7.

Proof. 1) We have Au=f € Lf/2+ < Y*, and hence, D*u € L*. Moreover, Lemma 2.2
yields Vu € Y and u € X. As before, we first consider the function ¢ = V - u which
now fulfills the equation

V. (iw) =0, ie, Ap=VH-Vp,  p= In(en).

Starting from V¢ € L?, we get A¢ € L?, and then, V¢ € H, so that ¢ € C'. By
(2.29),

g=Vp-V¢ satisfies ge L;g, Vg € L%2+5.
Note that this implies <x>%+‘sg € L% because of
345 346 Lis 345
1 glle = 19 (057l = 1 0¥l + 1 ()0 Vgll < o

Since ¢ = A~'g, we can estimate

1/2
- 80| - 3-5/2 dy [ 14/2
91 = [B2 dy < () ﬂb(ﬂwqujy> <

e =yl
using the standard inequality

dy - < |x|n—a—b
R (y)"x =y

for a,b € (0,n) with a + b > n. In a similar way we obtain

5/6
lg»)| ) dy -1-5
|v¢v»sjgjﬂyWSww gmsfvwﬂmﬁu_ﬂws <.

Together we have proved the decay
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[$E)I= 07 Vo)< )7 (2:30)
Let i be a radial cutoff function equal to 1 on B(0, 1) and with support in B(0, 2). Set
1r(x) = z(R7'x) for R > 1 and ¢y = yz¢. We compute

V(aVeg) =2aVyg - Ve + Voo Vi + 0pAy, o= ()™
Multiply by ¢y and integrate by parts. The above estimates then imply

| s
|x|<R

(we used again (2.29)) and we deduce that for R — oo

V¢R|2 S/R<| |<2R(R71<x>—2—5/2 + <x>—1—5R71<x>—2+5 + <x>—2+5R72)

/ | o| Vg =R /% — 0. (2.31)
x|<R

We conclude that V¢ = 0, and by the decay of ¢ we have V- u = ¢ = 0.
2) Using V - u = 0, as in Proposition 2.6 the equation L(0)u = 0 is reduced to

1 1
V x (—V X —u) =0 or equivalently Au = —b(x,0)u =: F. (2.32)
U €

We can write
|F| = [bu| = (|Vul* + |Ve* + [D?€|)|u] + (|Ve| + | Vu])[Vaul. (2.33)
We have Vu e Y C I? Lo WEXC I? Y (see (2.4)), and by assumption Au €

L /2 .o for some ¢ > 0. Hypothesis (2.29) then yields that

()70 Al = ()] + (%) 7|V € L2

(Actually, we only use condition (1.13) here.) We fix numbers g >y >y>a. By
Holder’s inequality, Au = F belongs L? with

1 1 3+y -0

S22 L <
p 273
Sobolev’s embedding, thus, implies that
1 1 h— 1 1 h—
Vuell with-=-+2"2<_ wel with==2"2
qg 3 3 2 r 3

We infer (x)" " 3Vu € I* and (x)'""u € L2, so that (x)**7"Au € 2 by (1.13).
We can repeat the argument replacing 1 — o4+ by 3 — 0+ 7+ 9, and derive that

<x>27'_a_%Vu and (x)7° “y belong to L. This procedure can be started as long as 1 —
o+ky+y <2.Ifl—0o+ky+7 >1 we obtain Vu € L* where the improvement stops

for Vu. For u we can achieve <x>7%7§u €L
Assumption (2.29) now gives F € L%a +6)/2 and
(<) 1F] = () F[u] + | Vul

The second term at the right belongs to L° since ||Vul|;s < ||Aul|,. and Au € L?,,. . For

1/2+4"
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the first term we have
e Hulye = 19 ()20 1 = 1140) a2 + 114) #9702 < o

by the above decay properties. We infer that <x>%+‘SF € LS. Thus, we can repeat the
argument in Step 1 and we obtain

lu(x)| = ()72 [ Vu(x)| = ()70 (2.34)

For yp as above, the map ug = ypu satisfies

1 1 1 1 1
V x <—V><—uR) =V x <—VXR>< u) +—Vyr % (Vx—u)
U € a u €

because of (2.32). Similar to (2.31), we conclude that

1,1 -
/ IV x LugPLax= o
|x|<R € u

and hence, V x %u = 0. The Helmholtz decomposition, thus, yields %u = V¢ with the
potential
1 1
p=A"'V-—u=A" (V—-u),
€ €
where we employed again V - u = 0. Estimates (2.29) and (2.34) imply
dy 19 dy )
0l = [P = Vel = [ <
0 lx =yl O x =yl
Conversely, we have 0 = V- u = V - (¢V¢) which leads to

/ 6|V(p|2dx = ‘/ €pXx - V(pdS' <RRTIRIEI=<R.
[x|<R |x|=R

As R — oo, we infer that u = eV = 0. O

3. High frequencies

In the high frequency regime |z| > 1 we can prove more precise estimates, with the
correct dependence on z of the constants. This will require a splitting of space variables
in two domains: for large x we can use a Morawetz type estimate since lower order
terms are small there, while for bounded x a modified Carleman estimate is sufficient.
This kind of splitting has been used by several authors (see e.g. [36]).

3.1. Morawetz estimate
Assume a(x) > 0 and let
f=Av+ zza(x)v, 22 =) +in. (3.1)

Here, we may assume # > 0 since the case # < 0 is reduced to the first one by conju-
gating the equation. Then, for all real valued ¢ and y we have the well-known
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identities
RV -{Q+P} = - %A(Alﬁ + @)V + 200000p 07 — da(x)P|v[* + AV - Valv|?
+ ¢|Vv)* 4 20a(x)I[vVY - V] + R([A ] + ¢)vf],
(3.2)
VP = ¢V — 2a(x)|v2 + 7 — %A¢|v|2 +iS3EVY- V) (33)
for the functions
Q = Vv[A Y]y — %vmpw ~ VY|V + Via(x) AP,
P =Vvpv — %V¢|v|2.

The quick way to check these identities is by expanding the derivatives of P and Q at
the left-hand side. In these computations we assume that the functions are sufficiently
regular, and below we also need some integrability; these technical assumptions can be
removed by approximation arguments. We rewrite (3.2) in the form

RV{Q+P}+1,+ I =Iy, +1, (3.4)
where
Iy, =20 (Q0)) v + IV, I, = —SAAY + @)|v* — Za(x)p|v[* + AVY - Valv|,
Iy = =R(f [AY]v+f v @), I, = —2na(x)3(v Vi - Vv).

N —

1) We first deduce from (3.3) some easy estimates, where we now work in three
space dimensions for simplicity. We take the imaginary part in (3.3) and integrate on
R?. Tt follows

r//a(x)|v|2q5 = “/qub + S/vvv V. (3.5)
Choosing ¢ = 1, we infer
nlla'/v|* = 3 [fv. (3.6)
Similarly, the real part of (3.3) yields
[oIvvt = 2falvfe — % v+ 5 [aglvP 67)
and with ¢ =1
|Vv|]> = Alja"?v|* — 9{/fv. (3.8)

In order to estimate the term I, in (3.4), we use (3.6) and (3.8) to deduce

1/2 1/2
ﬁmwmwwmw%mmmsww(w>Owwmﬁﬁﬂ
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with C = 2[|a"/2Vy/||;~. Equation (3.6) then leads to

1/2 1/2
fr=c(fivt) (it it )
and we arrive at the estimate
[ < 220 2+ 1) P51 69
2) In (3.5) we choose ¢ as
B =1if [t <R d(x) =2~

We compute

if R<|x|<2R, ¢(x)=0if [x] >2R. (3.10)

_ 1
il alv g/ vl +§/ VIV
|x|<R |x|<2R R<|x|<2R

(3.11)
S/ v+ RV Vvl
[x|<2R

Observe that we have used the homogeneous norms (2.2). Dividing by R and taking the
supremum over R >0, we obtain the estimate

Inllla* (I3 = [[1x]~foIl5 + vl + 19I5 (3.12)

Next, take ¢p = Ix\ﬁ and note that

1
Ap = _ﬁa‘x‘zR,
For this ¢, Eq. (3.7) implies
|Vv| —)a|v| 1 5 / ld L
Rz ds < | —— < . 3.13
[Fae )R o), TS e < IS (3.13)

To proceed, we have to distinguish three cases for /. First, let 1 < 0. We deduce

1
—/ (|Vv| + alAl]v| )dx+
x|

2 —1 /=
x ras < v,
[x|<R

and thus, taking the supremum over R >0,
IV + 1201a V5 + (V1% = (1%l
Combined with (3.12), this relation shows
IVVI3 + llza'>v[l5 + Iz < lixl7'fvll for 2 <. (3.14)
If 2 > 0, with a similar computation, from (3.13) we infer the inequality

197+ I < oIl folls + 120l vE)  for 20

for a suitable constant Cy > 0. Let now 4 < (2Co) '|y|. As || - |ly > |- |ly» the above
estimate, (3.12) and (3.14) imply
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IV + llza'2vl5 + VIl = 1%l foll for A< Culnl (3.15)

where C; = (2C,) .

Recall now that f = (A + z%a)v. In the desired result we also have a first-order oper-
ator b = b(x, 0) satisfying (3.27) below, with a sufficiently small constant ¢. To include
this term, we write f = (A 4+ z%a + b)v — bv. We can control the new term with bv via

11~ 7b(x, )il < alllx] ™) 21T + all ()P [ ) "R
so that (a variant of) (2.4) shows
1]~ 9b(x, )Vl = allv[I5 + ol VY5

These terms can be absorbed at the left if ¢ >0 is small enough. Inserting f =
(A + z*a + b)v — by in (3.15), we conclude

VI3 + llza vl + v < |lx 7 9(A + Za + b)v]|,,  for 2 < Cilnl. (3.16)
Observe that

x| lly = gl

x|~ gl < lglly- vl Vil

again by a variant of (2.4). Absorbing a ||v||} term, we conclude

IVVlly + llza'2v]ly + [Ivllx = (A +2%a + b)v]

- for 1 < Cinl. (3.17)

3) It remains to consider the case 0 < C;|n| < 4, for which we need (3.4). For arbi-
trary R > 0, we now employ the functions

V= RZ%RMZWSR + X[ lyspe = _%l\x\gk (3.18)
One calculates
= |x| > //:llx<R>
’ |x|ZVR R , (3.19)
Aw+¢:|x|—vR’ A(AY + ) :_ﬁé\x\:R-
We assume
0<a<a) <M [ a . <5
Using these relations and the inequality
/w Va2 —la !l = —2lla 2Vl (xala g
cf. (2.3), we derive
sup [, I + 5 a2 (320)
R>0 2

(Recall (2.2).) Since y is radial, we can write
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/
_ 2
20 (9000) Oy = 20"[% - Vv + 2"”7' INA R NI TR
so that
sup/Ivv > ||VV||%, (3.21)
R>0
Integrating (3.4), the lower bounds (3.20) and (3.21) show
V1 + 2 v + 1915 = sup i+ sup [ 6.22)
R>0 R>0

In view of |AY + ¢| < 2/|x| and |Vy| < 1, we have
[ < 2lla 91 + 20991
Because of 0 < C;|n| < 4, estimate (3.9) for the above  yields
/L, < (M), (3.23)
for every R > 0. We, thus, arrive at
V1% + Ala 215 + 19I5 = el 77l + Vol + (MA) Pl for 4> Cilnl.

We now use the inequalities

I~ foll < IIf

as well as || < Cll/l and a > o, to obtain

X Hf‘_’HLl < HfHYHVHY

vVl

IVI% + llzvlly + 19V < C, 9)|IF5- (3.24)

Recall that f = (A + z%a(x))v. As in (3.16), in (3.24) one can now add and subtract
the term bv on the right-hand side and absorb error terms for a small ¢ > 0 (w.r.t. o
and M). We conclude that

IVl +ll2v3 + VI3 < ol M)[(A + 22a + b)v[5.. (3.25)

Putting the pieces together, (3.17) and (3.25) we have proved the following uniform
resolvent estimate under a smallness condition on the coefficients of b(x, ).

Proposition 3.1. Let z € C with 3z > 0. Assume that for some M, o > 0
1

a<a(x) <M, [(x)a="a" || < 7 (3.26)
while the first-order operator b(x, 0) satisfies for some 7,0 > 0
[b(x,0)v] < a((x)7> "] + (x) 77V, (3.27)
Let o be sufficiently small with respect to o and M. We then have
IVllx + llzvlly + I VYlly < clow M, 0,8)||(A+ z%a + b)v||y-. (3.28)



22 @ P. D'ANCONA AND R. SCHNAUBELT

We now localize estimate (3.28) to a region |x| > S, where S>1 is fixed but arbi-
trary. We shall assume that condition (3.27) is satisfied only in this region:

b(x,0)v| < o((x) || + (x) " °|Vv|) for |x| >S. (3.29)

Let yo be a real valued radial cutoff equal to 0 for |x| <1 and equal to 1 for |x| > 2,
with a non negative radial derivative y; > 0. Set y(x) = y,(x/S) with the parameter
§$> 1. Note that

IVl =S "ges, Ay =81 pys

where |x| ~ S is a shortcut for S < |x| <2S. We consider w = yv, L = A+ az? + b,
z?2 = /. +in, and

f =1Ly, g=Lw=yf +[L x]v, [L,y]v=2Vy-Vv+ Ay +[bylv.
Assumption (3.29) yields
[b(x,0), 77| < [vlo(x) ™'Vl = 68 [y|1jues,
where we can assume w.l.o.g. ¢ < 1. We, thus, obtain
L vl < eS7H(V]+ [V 1iges (3.30)

for some constant ¢ = ¢(g, M). We now prove a version of (3.28) for vg = yv.
1) It is sufficient to consider # > 0 as the case # < 0 follows by conjugation. First, let
—00 < A < C1n < +00. We can here apply estimate (3.16) with w in place of v, i.e.,

2 2 2 -1
IVwlly + llzwlly + [[wllg < clllxl " wlw].

(Since w=0 for |x| <SS, it is sufficient to assume the localized condition (3.29) on the
lower order terms.) Writing Lw = yLv + [L, x|v and using the estimate (3.30), we compute

-1 1 _
Il wyLwll s < lllx| ™ wyLvll s+ eSTHI(v] + VYDV s

for some ¢ = ¢(o, M). The space {*°L°L? was introduced after (2.3). Analogously, we
define #'L'L? and control its norm by

1 1
2/t z . 3
v =3 [ ([ luas ) ar <32 [ ) =
2072 |x|=r =0 4

employing (2.3) in the last step. By means of a variant of (2.3), we, thus, obtain

Y*>

—1- -1
Il waLvll e < M1l Wl pepa LV g2 = Wl Vs

We conclude

2 2 2
IVwlly + llzwlly + [[wllx < ¢

ALV + STV + VYDV sy (3.31)

for —o0 < 4 < Ciyp < +00.
2) Let now 4 > Cyn > 0. For this case we resort to (3.22) with w = yv in place of v
and h = (A + z%a(x))w in place of f which gives

1wl + Al + w3 = sup /fh ©sup /1,7 (3.32)
R>0 R>0
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where  and ¢ are given by (3.18) as well as
I, = —R(2VYy - Viw + Ayiw + pw)h), I, = —2na(x)3(w Vi - Vw).
By (3.19) we have V| <1 and hence

[ < ptnlvly <20 M Py 339
for all R > 0. Next, identities (3.6) and (3.8) imply the estimates
2 . 2 _
vl <o fvll, (1YY < 1
where || - || = | - || ;.. Taking into account $>1 and /4 > Cy#, we infer

— 2 _ .
1S~ [ Lesvll® < oI,
nl[PVvll <22 P 40272 IOvP <o R M2 R )P 4 0
< (o7t + Mo+ G0 A

So (3.33) leads to

/jn < Clo M)(1+ ) 2ol < Clon M, p) | Lv|[2. + p2(1+ A)|v]|> (3.34)

for all p > 0. Conversely, I, can be written as

D= —( (27, + 29/ + (A + $)w) - (22, + Mgy + 7Ly — 7b(x, 0)v))
=N+I+I+II+1V

for the summands

N = —477¥/ v, [,
I= RV + (A + )w) - 21 v,,
II = —R(2VY - Vw + (AY + ¢)w)Ayv),
I = —R(2Vy - Vw + (AY + ¢)w)yLv),
IV =R(2VY - Ve + (AY + ¢)w) (b(x, d)w — [b, 1]v)).
The term N is negative and can be dropped. For the remaining terms, we recall from

(3.19) that |Vy| <1 and |Ay + ¢| <2/(x) on the support of y, independently of
R > 0. Moreover, the definition of y yields

¥ < cS*IIMNS < c<x>71 and

~s < C<x>72
for S > 1. We, thus, obtain
I+ 1I=S2W|(|VY] + [V]) L gess
11 = [ (I9w] + () ),
2 1 12, 1 2
b+ 21607l 4 9w

wlly <|wllg, cf. (2.4). For IV we use (3.29) and get

11|, <

Note that ||(x)
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v < c(19w] + ) ) ()70 1]+ (72wl 87 v 1)
1 _ 2
< cal) " (V] + ()7 W)+ eaS P Ty,
estimating [b, ] as in (3.30). Invoking (2.4), it follows
2 2 -
11Vl = allwll + ol Vwlly + 0872Vl yys)-

Thus, if ¢ is small enough we derive
/j n < cl|lyLv

Plugging this estimate and (3.34) in (3.32) and absorbing some terms at the LHS, we
arrive at

_ 1 1
v A SNV + DVl ges) + 2 W5 + S TV

[y

(3.35)

W% + 2wy + Vw3 < CllLv

v+ CSTHIV + IV sy + 97 (14 2)

By the condition 0 < 5 < C;4 we can replace 1 by |1+ iy| = |z|> on the LHS of the
inequality. Combining (3.31) and (3.35), we have proved the following uniform resolv-
ent estimate for functions localized outside a ball, provided that the lower order coeffi-
cients are small in that region.

Proposition 3.2. Let M,a, 0,0 > 0 and S> 1. Assume that a(x) satisfies (3.26), while the
first-order operator b(x, ) satisfies

b(x, 0)v] < o((x) 2 °v| + (x) " |VY])  for all |x| > S. (3.36)

Let ¢ > 0 be sufficiently small with respect to o and M. Then, for all z € C the function
vs = Vl|y>2s satisfies

+ 2 vlly

(3.37)
for all p > 0, where 2 = Rz%, L(z) = A + Z%a(x) + b(x,0) and C = C(a, M, 3,3, p).

e
lvsllx + llzvslly + [Vvslly < ClILy]ly. + <l (vl + IVV|)V||L1 (xes) T P(1

3.2. Carleman estimate

We shall combine estimate (3.37) with a Carleman estimate in a compact subset of R3,
in order to handle coefficients which may be large on a bounded subset of R’. Our
goal is an estimate for (large) frequencies z2 = A + i belonging to a suitable parabolic
region, which is needed for our later investigations. In the following computations we
consider functions u € H* which decay fast enough, actually the result will be applied
to functions with compact support.

First, let Rz?> = A < 0. Integration by parts yields

ﬁVv|2 - ‘ARzZ/a(x)|v|2 = —‘R/((Av + Zav)v), Szz/a(x)|v|2 =3 [((Av + Z*av)v).

These identities lead to
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14
1991 + 1lla 2w < [|Av + 2avl ool < 5o 1Y+ vl + 2l V215

2]

1/2 1/2

14l
nllla?vll> < |;|IIAV+ZOW|IL2 la*/2 v/

Using o < a(x), we obtain the elliptic estimate

1 C)
V712 + llavlize < Iz + llza vz < T I(A + 22 a)v]].

For any first-order operator b(x,0) with bounded coefficients, the above inequality
implies
IVVIIZ: + ll2vllZ: < Clon 20) (A + 2%a + b(x, 8))VI 2,

(3.38)
W% + VI + [l2v]3 < Clon Ao)II(A + 2% + b(x, 9))v

2
Y*

for all Rz* < —Ay(a,b), where A9(a,b) > 0 depends only on o = inf a(x) and the supre-
mum of the coefficients of b(x,d). In the second line we employ (3.18) from [37]
and (2.3).

We, thus, focus on the case 4 > 0, starting with the main part A + az?. We use the
notations

r=|x|, x=—, 0, =%V, Q=1rV —x0,, Q=Q-2;.

As above, we denote the radial derivative of a radially symmetric function with an apex,
ie, ¢'(r) = 8,¢. The vector fields Q and Q satisfy the relations

x-Q=0, /Qfds—o
SZ
and we have
2 2, 2 1 2 2, 1 2
Q" = Ag, A=0+-0,+=Q°, IVv|” = [0 + = |Qv|".
T oor r2 r2

Fix two radially symmetric, real valued functions ¢ and y. We introduce the trans-
formed operator

Q = re? (A + Z2a(x))e ?r 7}, Z=,+in ALneER,
or more explicitly
Q=+ rizszz +2a(x) + ¢'2 — ¢ — 240,
It is straighforward to check
O {pAc} + Q- {720} =2y - R[Qv- 7] + 2yna(x)I(v - %)

/!

O+ ) - (l P + [(a(x) + ¢'2 — ¢")3] WP

(3.39)

<

where 4 = Rz%, n = 322 and
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1
= [0v]* — o Qv + (Ja(x) + ¢'2 — ") V], Zy = 2R(r Qv - v;).

Lemma 3.3. Assume a(x) satisfies
0<a(x) <M, (v+r)d_ <2a-v, (3.40)

for some M >0 and v € (0,1]. Let A =Rz*, n=3z% vi>2n? and © > M* + 4. Then,
we have the estimate

||e‘7’<x>71/2Vu||iz + (R22 + ) |e?ull?. < 1007407 (v + 1) (A + za)u|)? (3.41)
where ¢(r) = t(r* +r).

Proof. Identity (3.39) implies
O{rAo} + Q- {120} + 71| Qv

> (7 4 (49" — t)y — M) |, > — (%) Qv + [(Za(x) + ¢'2 — ¢")y) P — 2]

We make the choices

pr) =+’ ) =1 +1)
with the parameters t > M* + 4 and v € (0, 1]. We obtain

~ _ vV +r
L= 0,0} + @ 120} + 7 Q= 2x(r + 1yl + 24D

LY
S

Condition (3.40) yields (ay)’ > vy'2, and vi —n? > 1va follows from the assumption
on z. We can, thus, continue the previous inequality as

2 1
0> 2t(r + Dyn 2 + w Qv + <§ Vv + 1)+ P+ r)3> 2.

Now, we integrate over the cylinder IT = [0, 4+ c0) x S* and use the notation

+00
|v||H —/ / |v| dSdr.

So the above lower bound leads to

SO+ AR+ 22+ i < 2+ Qv

vl + |

Setting v = re®u, we have
Il = lle®ull 2 g, Ir="2 Q| = (|7~ Qul| 2 g
(v + Qi = lle? (v + r)(A + Za(x))ull 2 g2),

which implies the first partial estimate
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2
Qu|| |+ lleullyz + 22| (v + r)e’ully;

tlvlin + H 372 (3.42)

<202 Y|e? (v + 1)(A + Zalx))ul)%.

In order to handle the v, term, we first define v = rw, i.e., w = e®u. Observe that

2 2 _
vl :/ WHFK‘ dx:/(lwrl2 +|W|+2mw,w>dx,
.

/29?wr¥dx:/%5c-V|w|2dx: —ﬁw| V- < > /|W|

Vel = Iwell 2oy = 1€ (e + Q)| ooy ¢ (r) = (2 + 1).
We deduce

and hence

2 2 - 2
le?urll72sy < 201vellTy + 80727 [l (v + r)ullgs)-

So estimate (3.42) gives

le?u |}, + Qu (4 ) |le?ull?, < 1007407 [e? (v + 1) (A + 22a)ul|%.
L L L

3/2
Inserting |Vu|* = |u,|* +4% |Qu| the assertion (3.41) follows. O
We now take a first-order operator b(x,d) and let L = A + z?a + b. Note that
le? (v + (A + 22 a)ullx < [le? (v + r)Lull 2 + [le? (v + r)bul| 2.
Assume that u has support in the ball |x| < K for some K > 1 and that b(x, 0) satisfies
(b O < N(jv| + (x) 2|V, (3.43)
We can then estimate
le? (v + bulZ: < 2N*(K + 1)*(le?ullf: + [le? ()2 Vulf).
Taking a large parameter v > 1, the lower order terms on the RHS of (3.41) can be
absorbed yielding our Carleman estimate.
Proposition 3.4. Assume a(x) satisfies (3.40) and b(x, 0) satisfies (3.43). Take z € C with
i =Rz, n =23z and vi > 21 Let ¢(r) = 1(r* + ), u € H* have support in |x| <K
for some K > 1, and 1 > max{4 + M?,80v *N2(K + 1)*}. Then, the following estimate
holds
lle? (x) "2V u|2, 4 (R22 + ) ||eul|?, < 400411 ||e? Lul%,. (3.44)

Since (x)~' > (2K)™' on the support of u, choosing 7 sufficiently large we deduce
from (3.44) the estimate

lull + llzully + [ Vully < (K, M,N,v)[[(A+2%a(x) + b)u

(3.45)

provided u is supported in |x| < K and z> = A + in lies in the parabolic region vA > 2.
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4. The complete resolvent estimate

We are ready to patch the previous estimates and deduce a global one valid for all fre-
2 = /. +in in a region of the form

Q=Q(w, 1) ={A< 42 U{Z+n* <2Yu{vi>2p*) (4.1)
for suitable v, A; > 0. Recall that

quencies z

o if Rz? < — ), for a sufficiently large /o > 0, we can use the elliptic estimate (3.38);
e if 22 belongs to an arbitrarily large (but fixed) ball |z2| < 1;, we can use Proposition 2.5.

Thus, to cover the entire region Q(v,/;) it remains to consider frequencies z* =
J+in in the parabolic region given by 1> 4, and vi>2ny* for a sufficiently
large 4, > 0.

To this aim, we combine estimates (3.37) and (3.44) for functions vanishing inside,
resp. outside, balls. The assumptions on a(x) are

0<a<alx)<M, [(xyata || < (v+rd <2a-v (4.2)

o |

for some v € (0,1]. For b(x,0) we require
|b(x, 0)v] < Co((x) > |v] + (x) 77| Vv]) (4.3)

for some Cy, 0 > 0, which is the same as (2.16) in Proposition 2.5. Note that (4.2) con-
tains both (3.26) and (3.40), and (4.3) implies (3.43) (after possibly increasing N).
Conversely, if we take Syp > 1 sufficiently large (and possibly decrease J), we see that
(4.3) implies (3.36) for |x| > S for any S > S;. From now on, S, is fixed. Thus, the
assumptions of both Propositions 3.2 and 3.4 are verified.

Fix a radial cutoff function y, such that y, = 0 for |x| < 1 and y, = 1 for |x| > 2. Set
S =28, and y(x) = 70,(S"'x). We then decompose

ullx + lzully +[[Vuly <IT+1I (4.4)
with

+ lzully + 1V G llys
= [[(1 = 2ully + 11 = zully + VA = 2)u)lly-

Writing L = L(z) = A+ z?a + b, we can apply (3.45) to II since (1 — y)u is compactly
supported in |x| < 2S, obtaining

I =L = Qwlly = [[Lully. + [[[u] + [Vulll 2 (s<p<a)

The last term at the right is supported in |x| > 2S,. It can, thus, be estimated via (3.37)
in Proposition 3.2 with S, instead of S, and hence

1/2

I < C[Lully. + p(1 + [2])lully + CII([| + [Vul)eell 3101,

where p > 0 is arbitrarily small and C = C(o, M, 6,9, p,Sp). We next treat I again using
(3.37) with S, instead of S (recall that we have S = 2S,), which yields

1<C||Lu

v+ oL+ D llully + Cll(lul + [Vulull 12, ..
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Summing up, we get

I+1I < C|Lu

v+ p(U+ 2D lully + Cll(lul + [Vu)ull s,
For every p > 0, the last summand is bounded by
Il + [VuDyull} 2y, < pIuly + C(Sorp) [l (45)
leading to
[ullx +[lzully +[[Vully < CliLully. + p(llzully + [ Vully) + Cllully-

Here, p > 0 is arbitrary and C = C(a, M, 7,0, p,Sp). Taking p = 1/2 and absorbing two
terms by the LHS, we infer

[ullx + llzully + IVully < CllLully- + Cllully
If we assume |z| > 2C, we can also absorb the last summand and we obtain

[ullx + llzully + [Vully < C||Lu

Y*

for all z in the region |z| > 2C(x, M, 0,9, o) such that v4 > 25#*. We now choose a suf-
ficiently large 4; > 0 in the definition (4.1) of Q and employ (3.38) and Proposition 2.5
as indicated after (4.1). In this way, the following main resolvent estimate is proved.

Proposition 4.1. Assume a(x) and b(x,0) satisfy (4.2), (4.3), Ix*(x)°(a — 1) € L, and
the spectral assumption (S). Then, we can find /., > 0 such that for all z2 = A+ ine€ C
in the region Q = Q(v, /) defined in (4.1), the operator L(z) = A + z%a(x) + b(x, 0) sat-
isfies the estimate

[ullx + llzully + IVully = |[L(z)u

v (4.6)

with a constant uniform in z.
The same proof applies to a matrix operator of the special form

L(z) = LA + La(x)z* + b(x,0).

Remark 4.2. The last condition in (4.2) is implied by

a 1

— <
a v+r

(provided v is small enough). Thus, we see that the following assumption

—1-0

a (x) < voa(x)(x) (4.7)

implies the last two conditions in (4.2), provided v, is small enough.

5. Smoothing estimates

We shall now convert estimate (4.6) into a smoothing estimate for the wave equation.
First, we repackage (4.6) in a weaker form in terms of weighted L* norms, in order to
apply the Laplace transform. Recall from Propositions 2.6-2.8 that hypothesis (S) is
valid for our Maxwell system, under mild extra decay conditions.
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Corollary 5.1. Let L(z) = ;A + La(x)z* + b(x, J) be a matrix operator such that
(1) a=infa(x) >0, (x)*°(@a—1)€L®anda <1(1-279)"a(x)"
@) b0 = ) ]+ () v,

(3)  the spectral assumption (S) holds

for some & > 0. Then, there exists 4; > 0 such that for any z with z2 € Q(1 Aa, 4;) we
have

||v|\L273/27 + ||zv||inl/27 + ||VV||L271/27 = ||L(z)v||L§/2+ (5.1)
where we use the notation [ul|> = [[(x)"ul|12g3)-

Proof. It is easy to check that assumption (1) implies (4.2), with v =1 Aa. In view of
(2.4), estimate (4.6) implies (5.1). O

Let u: R, x R? — C’ be a function with u(t,x) = 0 for <0 and such that the maps
Ofu : R — H*¥(R’) are continuous and grow sub-exponentially for k=0, 1, 2. For z =
o+ if in the upper half plane 3z > 0, then, the ‘damped’ Fourier transform

v(z,-) = /+Ooeitzu(t,-)dt

—0o0

is defined in L?(R?). It satisfies

+00 +00
—2*v(z, ") :/ e"“u(t,-)dt, (A+b)v(z,-) :/ (A + b)u(t,-)dt

—00 —00

so that

—+00
(A + az* + b)v(z, x) :/ (A + b — ad?)u(t, x)dt

—00

for a.e. x € R®. Plancherel’s formula, thus, yields
ﬁ(A + (e +if)’a+ b)v(a + if, x)[*de = 2 /ezﬁ’|(A + b — ad?)u(t,x) | dt.

We multiply by the weight (x)* and integrate also in x, obtaining
1A+ (- +if)’a+ OV a2y = le (A +b— aatz)uHLz(dt)Lf(R3)
for any s € R, though the norms could be infinite. In a similar way we deduce
V(- + iB) | 2 a2y = |\67ﬁt“||L2(dt)Lg(R3)’
V(- + iB) | a2 ey = e Varll gz oy
l2l|[v(- + iB) || 2 (a2 me) = |\€7ﬁt5t“||L2(dt)Lg(R3)~

Note that if z = « + i with B > 0 sufficiently small, then, z> = 1 + iy lies in the para-

bolic region Q. We assume that G = (A + b — ad})u belongs to L’L} ,, . Estimate (5.1),

thus, implies that
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||e_ﬁtu||L2(dt)L{3/2, + ||€_ﬁtaru||L2(dt)Li]/2, + ||€_ﬁtVUHL2(dt)LZ,1/2— (5.2)
<lle (A +b— ﬂaf)”“LZ(dt)Lf/H'

for sufficiently small > 0. (In particular, the involved norms are finite.) Here, the
implicit constant does not depend on f, so that one can let § — 0 by Fatou’s lemma.
As usual, no modification is necessary in the matrix case.

We apply (5.2) to a solution of the problem

(ad} — A — b(x,0))U = G(t,x), U(0,x) = 0,U(0,x) = 0. (5.3)

Proposition 5.2. Let U(t,x) : R, x R} — C® be a solution of the Cauchy problem (5.3)
subject to the above growth conditions, where a(x) and b(x,0) are as in Corollary 5.1

and (x)"** G € I212. Then, the following estimate holds:
g
Vs, +10Uls | +190Nss =[Gl - 6

Proof. Assume G=0 for t <0, so that U=0 for t < 0 and we can apply (5.2). Letting
p | 0 we obtain (5.4). The same estimate is valid if G=0 for t > 0 (just by time reversal
t — —t). By linearity, estimate (5.4) holds for arbitrary G. O

We next focus on the actual Maxwell equations
83E+§V xiv xE=0, V-(E)=0,
or equivalently (with D = €E)
83D+V><%V><ED—0, V-D=0.
Let H be the Hilbert space

H={ucl*(R>C?):V -u=0} (5.5)

endowed with the scalar product (u,v),, = [e¢ 'u-vdx and the corresponding norm

lulls = (u, u)%z, and let H = H(x, ) be the operator

1 1

which is selfadjoint and non negative on . The spectral theorem implies that the flow
eVH is well defined, bounded and continuous on H. Let U(t, x) be the solution to
9?U + HU = F(t,x), U(0,x) = 0, 0:U(0,x) = 0, (5.7)
where F is H-valued and hence
V-F=0.
By Duhamel’s formula U is given by

U(t,x) = /0 H12 i ((t — s)V/H)F(s)ds.
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We, thus, have

x/ﬁU:/

0

t t

sin ((t — s)VH)F(s)ds, QU= / cos ((t — s)V'H)F(s)ds. (5.8)

0
Note that also U is divergence free, and hence, HU is given by
1 1 1 1
HU = -—AU+VXx-Vx-U-—VxVxU.
e poe e

Therefore, problem (5.7) can be written in the form (5.3) with the choices

1 1
a= ey, b(x,a)U:VxVxU—equ;ngU, G = aF. (5.9)

We collect in the next lemma some basic estimates involving Vv/H and H. Observe that a
map u € H’ satisfies Vu € LS and |u| < (x)'/?. Hence, H : H® — L2 is bounded if

Vel + |V = (x) 772, D% < (x)>7°. (5.10)

Lemma 5.3. Let H be the operator in (5.6) and c¢,d > 0. Assume that the coefficients €, u
and their first and second derivatives are bounded and that €,y > c. We take divergence

free functions f from H' in (i) and (ii), from H? in (iii), and from H* in (iv). Then, the
following estimates hold.

() If|Ve|= (x)7'7, then
IVHf |2 < VS| - (5.11)
(i) If
Vel + Vi = (x) 270 D= (x) ", (5.12)
then
IVEHf |2 = IVl - (5.13)
(iii) We have
166 Af 2 = 1| () H [l + 11 (6) 7 F 20 (5.14)
1166) 2 He |2 = 1(x) " Af 1 + [1(6) 7 °F || (5.15)
(iv)  If (5.12) is true, then, for o € (0,9)
1600 Af [l = [1(x) ™" Hf |- (5.16)

Proof. Proof of (5.11). Integrating by parts we have
1 1

IVHFIIL = IVHS I3 = (Hf )y = [~ [V x —fPdx= |V x fl|7> + | Ve x £
U €

=< IVAIIZ: + 167" 1% = IVFIE: + IF I3 = VA1
(5.17)
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This computation is valid for f€ H*NH, and extends to f ceH' NH by
approximation.

Proof of (5.14) and (5.15). Integration by parts yields (all norms are L*)
1) VAP < 1) AFIIG)™F Il + 2501 ) VAl )~ f |

for every s> 0. By the Cauchy-Schwarz inequality and absorbing one term at the right,
we obtain

1) VI < 20160 AfllI )+ 220
and then, for arbitrary p > 0,
16V < pllx)AfIl + Clos $)lI () S I
Since V - f =0, we can write Hf in the form
euHf = Af + by (x) - Vf + bo(x)f
for suitable bounded matrices b;. Taking p small in the previous estimate, we deduce
1 Hf > = 116~ Afllz — 108"Vl — 1)
= (160 Al = Cllx) " f e

The proof of (5.15) is similar.

Proof of (5.16). 1) Assume by contradiction the existence of a sequence (f,) such that

Vfo=0, [(x)"/*°Af,ll,, =1 and [|{x) > °Hf,||, — 0. (We may assume that f, is
a Schwartz function vanishing at 0 together with its derivatives.) By compact embedding
we can extract a subsequence (again denoted by f,) which converges in H}_to a limit
function f such that V- f =0, ||(x) "> Af]||,, < 1 and ||(x)""/*"Hf||, = 0.

We first prove that f # 0. Note that for this step it is enough to assume (5.10).
Recalling (2.33), for a sufficiently regular v we have

|V x V x v|<|Hv| + |b(x,0)v]|,
[b(x, O)v| = (IVul* + |Ve* + [DPel)[v] + (IVel + [Vul)[Vv].
The decay of the coefficients, thus, implies (all norms are L%
1(2) =V % ¥ x || = ([0 T H + [1(x) = V| ) T
for s =14 0. As in the proof of (5.14), we integrate by parts and get
1) =0V < 1) T A1) T+ Cls ) ) T Ol T

Cauchy-Schwarz allows us to absorb a term at the left and hence

1) =717V < pllx) T AY] + Clp)lI ) |
where p > 0 can be taken arbitrarily small. In conclusion we obtain

1) =V % ¥ x vl| < pll ()™ Av]| + Cll ()" H + Cll ) )
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Now take yp(x) = y(x/R) as above and suppose v = (1 — yz)w, with w divergence free.
Then, we have

1) A1 = zR)w) | = 166) 7V X Vs (1= g W)+ 1wl + [VWI |2 (re g <am) -

We combine this inequality with the previous one. For sufficiently small p we can
absorb a term at the left and derive, for v = (1 — yz)w with V- w =0,

(=)~ Av|| = ClI(x)~H]| + ClIx) =77V + [[[w] + [Vl 2o <a)- (5.18)

Now, we split

L= [16e) 7 Afull < 160 AGA | + 1166 A = 2z)fu) -

For the first term we write

1) AGwf) | < [1Ge)HGrrfa)[| + 1) b (%, 0) (fu)l
= 116 Hfull + Ifal + [Vulll 2 <2m)-

For the second one we use (5.18) with w = f,,. Summing up, we infer

1= [|(x) " Hfall + Ifal + 1l |2 ey <amy + R 1) ™71 = )l (5.19)

We recall the Allegretto—Rellich inequality

|—a—2

™ a2 = Nl ™" Al 2, (5.20)

if infren, |4k(k + 1) — (2a 4 3)(2a + 1)| > 0 which can be applied to functions that van-
ish in a neighborhood of 0 and decay fast enough at co. (See theorem 6.4.1 and remark
6.4.2 in [38].) Then, the last term can be estimated by

CR|| () AL = zp)f) 2 = R N4x) “Afullp + RNl + IV fall 12 <o) -
Using ||(x) "Afull;> = 1 and fixing a large R, we arrive at
L= Hfull + Ifal + IV fall 12 <or) + R
1= [0 " Hfull + [Ifal + [Valll 2 <2n)-

Since ||(x) "Hf|| — 0 and f, — f in H},_as n — 0o, we conclude that f # 0. Moreover,
Af belongs to L?

-1/2—0"

2) We finally prove that f=0 and so deduce the required contradiction. To this aim
we use that Af = —b(x,0)f =: F since V- f =0 and Hf=0. We want to proceed as in
Proposition 2.8 for which we will need to establish F € L3 /2+¢- The above argument
shows that the functions (1 — y;)f, are uniformly bounded in L? /2—o» and so f belongs
to L, 2o Interpolation yields Vf € L2, /2o We now use the additional decay (5.12)

of the coefficients to deduce that
()77 |Af = ()7 |F| = ()N + () OS] € L (5.21)

We take numbers § > 7' >y > g, where we may assume that § < 1. Setting

Y—a 1
- +_<1)
P1 3 2
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Holder’s inequality implies that Af € L”*. From Sobolev’s embedding we then infer

Vf € L7, L1 1 yoell
q1 P 3 3 6

as well as
(x)"*f e L, azzfizlfy’+a>0.
po 2
The functions (x)’ """ *f and (x)""" 'Vf are, thus, contained in L? due to Holder’s
inequality. Assumption (5.12) then yields

()77 A = ()7 ]+ ()70 VA e 1
As a result, Af is an element of L with

1 Y+y—0+35 1
A AL AS FE3!
D2 3 2

Employing Sobolev’s embedding again, we obtain

Vf € L% with i:er}e(}’}), f € L? with i:V/jbﬁ.
9> 3 3 3°2 72 3
Hence, <x>27707%f € I? and (x)?7°7IVf € 2 so that (x)°"7"TAf € L2 by (5.12).
Repeating these steps, we gain another factor (x)”%. We, thus, obtain f € L? |, Vf €
L* and Af =F € L3 J21s also interpolating with Vf € L%. Moreover, we have Vf € LS
since Af € L%, as well as

V()" OI= (0 VA + ()] € L
so that (x)~'f € L. Using (5.12) once more, we derive
(147 = (07 + Vf] €1,

The argument used in Proposition 2.8 now leads to f=0.

Proof of (5.13). The converse inequality is proved by interpolation with the inequality
1Af 1|2 = [[Hf ] 2- (5.22)

for divergence free f € H ?_ One shows (5.22) by contradiction, assuming the existence
of (f,) with V- f, =0, ||Afull;- = 1 and ||Hf,||;» — 0. Here, we may assume that f, is a
Schwartz function vanishing at 0 together with its derivatives.

We proceed as the Proof of (5.16) above. As in step 1) of this proof we deduce that
f» tends in H} _to a function f # 0 with V-f =0, Hf=0 and ||Af]|;» < 1. One only

loc
has to modify the last summand in (5.19) with s=0 to R‘g||<x>_%_2(1 — yg)full, in order
to use the Rellich-Allegretto inequality (5.20) with a = 6/2. As in step 2) of the Proof
of (5.16), one also sees that f belongs to szzfa and Vf to L2717(; for some o > 0. Just
using assumption (5.10) we deduce (5.21) and can proceed as before to conclude the
contradiction f=0. O
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We are now in position to apply Corollary 5.1, combined with Propositions 2.6-2.8
concerning hypothesis (S).

Proposition 5.4. Let €, i : R*> — R and b(x,d) as in (5.9). For a 6 > 0 assume that
. —5\— —1-5

(1) infeu > 0 and (en)” < (1 -2 N eu(x) 0 ‘

() |Vel+ Vi = ()77 and |e = 1] + |u = 1] + |D?e| + |D2pe| = (x) 7,

(3) either 0 is not a resonance (i.e., if (A+ b)u =0 with u = A"'f for some <x)%+5f €
L* then u = 0) or we strengthen (2) by

Ve + V| = (x) 7372, (5.23)
Then, for any divergence free forcing term F € Lsz/2+ we have
t
||<x>7/0 cos ((t —$)VH)F(s)ds]| gy = [1(0)* Fll g, (5.24)
||<X>T/]R cos ((t = $)VH)E($)ds]| (a1 = [1(x)' > Fll oo (5.25)

Proof. We check the hypotheses in Corollary 5.1 on the coefficients. Assumption (1) in
the corollary follows from conditions (1) and (2) here, and assumption (2) in the corol-
lary is an easy consequence of (2) here (compare with (2.25)). The spectral assumption
(S) reduces to (3) here in view of Propositions 2.6-2.8.

We can approximate F in L’L},, by divergence free functions F, € C'L},, with
compact support in time. The corresponding solutions U, to (5.7) then satisfy the con-
ditions of Proposition 5.2. By density we can, thus, assume that U has the required
regularity and growth. Since for divergence free solutions the wave equations euUy, =
(A4 b)U + euF and Uy = HU + F coincide, we can apply estimate (5.4). Hence, the
solution U of problem (5.7) satisfies

1) > Ullage + 11{x) > VUIlpe + [[(x) 70Ul e = [ {x)* Fll 2o
Because of (5.8), we obtain
t
||<9€>T/0 cos ((t = s)VH)F(s)ds|| 22 = [|(x)7"Fl 212

i.e., (5.24). By time translation invariance, we can replace the integral fé with [. ; for an
arbitrary T <0, where the implicit constant does not dependent of T, and hence with

/ ioo by letting T — —oo. By time reversal, the estimate is then valid also with the inte-

gral fioo replaced by |, f °°. Summing the two, we arrive at (5.25). O

By a modification of the standard TT* method we obtain the corresponding homoge-
neous estimates.

Proposition 5.5. Under the assumptions of Proposition 5.4 we have for any divergence
free data f in the respective spaces

1) ™2™ |l aae = Wl 11027 0™ H ] o = I1F (5.26)
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1602V Af | e = Wl 160 ™2 A E | oo = If - (5.27)

Proof. 1) By the change of variable s — —s, estimate (5.25) implies
)~ /R c0s (¢ + )V )Pz = 16)'* Flpepe
Summing the two inequalities, we get

||<x>1/2/ cos (+V/H) cos (S\/H)F(s)dsHLZ(dt)Lz < [|(x)"*"F| o0 (5.28)
R

By subtraction we obtain this estimate with sin (t\/ﬁ) sin (sx/ﬁ) instead of cos (t\/ﬁ)
cos (s\/ﬁ )

To exploit the above bounds, we consider the duality

(F,G)) = / (E(t), G(1))dt = / / F(t,x)G(t x)edt
R RJ R’
and the weighted space Z* of divergence free F with finite norm
1Elz: = 166)"*" Fll -

Define (Tf)(t) = cos (tv/H)f for f € H and t € R, as well as T*F = [ cos (svH)
F(s) ds € H at first for F € Z* with compact support in time. (Recall H is selfadjoint
for the e-product.) We obtain

TT*F = /cos (t\/ﬁ) cos (sm)F(s)ds,
as well as ((F,Tf)) = (T*F.f);, and ((TT*F,G)) = (T*F,T*G),, for such f, F and G.
Estimate (5.28) yields
((T"E. T°G)| = ()™ TT°F, () G)) | < |F - |Gl -
Taking F= G we deduce
IT*FI3 < IFlZ = 1160 P20
By density, the operator T* : Z* — H is bounded. Duality implies
)72 cos (tVE)fllop = ITfll, = sup (BTl = sup (T°E.f)y = g

[IFl+ <1 [[Fll <1

where the suprema are taken over F with compact support in time. A similar argument
gives

116~ sin ((VH)f | 212 = If [

Combining the two estimates we get the first of (5.26). By the estimate already proved
and (5.11) we have

1) ™2 0™ f|| g = |1 ()2 @ VIVES| g = |VESf |2 = VS |2
and this concludes the Proof of (5.26).
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2) Applying (5.14) to u = ei“/ﬁf and using the first inequality in (5.26) we have
1607127 Al oy = 1160072 Hutlagp + 160072 oo
IR PR [C R
= [[Hfllzz + Ifllz-

and by (5.15) we obtain the second part of (5.27). The first estimate in (5.27) then fol-
lows by complex interpolation of weighted Sobolev spaces with the first inequality in
(5.26). O

Under more restrictive decay conditions on the coefficients, we can prove a variant
of (5.27) in homogeneous norms that is needed below.

Proposition 5.6. Let ¢, it : R* — R and b(x, d) as in (5.9). For some § > 0 assume that
(1) infep > 0 and (en) < i(l _ 2_5)_1€M<X>_1_6, 3 5
() le—1+|p—1]+|Dul= <x)_2_6, Vel + |Vu| = <x>_5_5, and |D?e| = <x>—z—5.

Let f be divergence free. Then, in addition to (5.26) and (5.27), we have the estimates

1) Ve f | aaye < IVFlls 1) 2 AT < 1HF Il (5.29)

Proof. Note that under these assumptions, the spectral condition (S) is satisfied due to
Propositions 2.6-2.8. By (5.16) in Lemma 5.3 combined with (5.26) we have

i

166) 75 A TE | g < [1() 7 He™f 1oy = [1x) 2 VP H | oo < (| HS ] -
This proves the second estimate in (5.29). Complex interpolation with (5.26) then yields
1)+ Ve Tf | opa < [IVHS |2

and recalling (5.11) we obtain also the first estimate. O

6. Strichartz estimates

We first deduce from the results in [12] a conditional Strichartz estimate for the wave
equation

(ad? — A — b(x,0))U =F, U(0,-) = U, o:U(0,-) = U,. (6.1)

Recall that a couple (p,q) € [2,00]" is wave admissible in dimension n =3 if

L il el qel)
- - = » OQ], q , OQO).
p q 2

We often use that multiplication by €, €~
spaces, as shown in the next lemma.

I, pwor u! is continuous on the Strichartz

Lemma 6.1. Let m € W be positive with L € L and |Vm| < (x)"'" and let (p, q) be

wave admissible. Then, the operator f — mf is bounded on spaces H;,/P, H;Z/P and
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H;fz/P. In addition, assume that |D*m|<(x)">". Then, f+— mf is also bounded
n H.

Proof. Observe that | |D|2/pm| = <x>_2/p_ by interpolation so that |D|2/pm belongs to

L¥/2, Letl= i % € [3» 7] Sobolev’s inequality yields H Z,/ P L*. We, thus, obtain

| P (mf)lgo = Nl I 1DPf o+ Dl 1l = 1 -
q

—2/p
g

| ID]'*?m| < (x)*/%" and H;_z/p < L*. As above, one now shows that f — mf is

. < 1-2
continuous on H q /P .

Duality then implies the boundedness on H We  further have

For the last claim, let f € H;,H/p . The first step allows us to bound | D‘Z/P(me) in

L7. For the term |D|*?(Vmf), we note that H;,H/P 3 =—L and

q q
that |D[*?Vm € L39/? since (1+%>37(1/:3. Hence, |D[*’Vmf belongs to L7 by

— L3 since 1 —|—% —

Holder’s inequality. The remaining summand Vm|D|*?f is contained in L? because
: T

Vm € L* and H;, < 7. O

Proposition 6.2. Assume that the coefficients a(x) > 0 and b(x, ) satisfy

(1) (x)***|D%a| + (x)"**|Da| + (x)°|a — 1] € L%,

@ b0 = ()7 W+ (x) 70V

for some 6 > 0. Let (p, q) and (r, s) be wave admissible. Then, there exists Ry > 0 such

that, for any R > Ry and any solution U of problem (6.1), we have the estimate

_2 2
IIDI"?Dt, Ul = [1D1,xU(0) |2 + [[[DIF|

' T ||Dt>xU||L2L2(\x\§R+1) (6.2)

with an implicit constant depending on R.

Proof. Let R be a large parameter to be chosen below and y(x) = yz(x) be a smooth
cutoff equal to 1 on a ball B(0, R) and vanishing outside B(0,R + 1), whose derivatives
are bounded independently of R. We decompose U =v+w with v= U and w=
(1 —y)U. Let (p, q) and (r, s) be wave admissible.

1) The piece w is supported in |x| > R and solves the problem

(a0f = A= b(x,0))w =G+ (1= F w(0,) = (17U w(0,-)= (-1,
where G is the commutator G = [y, A+ b]U. Note that G is supported in R < |x| <
R + 1 and satisfies, for some constant depending on the coefficients,

1G] < C(IU] + DU L. (63)
Moreover, by choosing R large enough, we see that in the region |x| > R the coefficients

fulfill assumptions (8), (9) and (10) of [12] (modified as in remark 1 of that paper) with
a constant ¢ > 0 which can be made arbitrarily small as R — oc.
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We want to apply theorem 2 of [12] with s=0 for R > R, and some sufficiently large
Ry > 2. However, this theorem does directly apply to zero-order terms in our situation.
So we use it with the modified inhomogeneity G+ (1 — y)F + byw, where bw =
by - Vw + bgw. We combine theorem 2 with estimates (12) and (16) of [12], all for
s=0. These estimates allow to bound the X° and Y° norms of [12] from below and
above, respectively, by weighted L*-based norms. Using also Lemma 6.1, it follows

]Slljlz H<x>_§vw||L2L2(Aj) + 11D Dy xwll 14

= [1De,xw(0) |2 + [[[DI((1 = 2)F)

1
'y T Z [[{x)*(G + bOW)HLZLZ(Aj)
jZir
1 —3-5
= [Dew(O) 2 + IDPFll e + 167 Gllgagz + D 160 ™ Wil agagas
jZir
where R=2k, g = —2,p=% and A;= {27! <|x| <2/}. Holder’s and Sobolev’s
inequalities imply
_i_" s S i N
Z [[(x)2 OW”LZLZ(Aj) = ZZ J<1/2+s)||w||L2L5(Aj) = ZZ J(I/HO)HVWHLZLZ(AJ»)

J2jr J2jr jZir

P 1
=R,’ sup [|{x) VW[ g2 4 -
jZir

Taking a large Ry, we infer
1
e+ 107 Gl

Since G is compactly supported in R < |x| < R+ 1, we can bound

I1DI" Dy Wl 5 = 1Dt xw(0) [ 2 + [[|DI”F|

160 Glyzgz = Gl
with an implicit constant = R'/?*, and Sobolev’s embedding further yields
[De,xw(0) |2 < C(R)[[Dr,xU(0) ] 2
Recalling the definition of G, the previous estimate can, thus, be simplified to

11DI” Dyl o = [, xU(0) | 2 + 1D Fllprre + [I1U] + ID<Ul 2 p2repuicriny: (64)

2) Next, we consider the remaining piece v supported in |x| < R + 1, which solves
(a0} — A= b(x,0))v = —G + 4F, v(0,x) = % Uy, o (0,x) = yUj.

In the region |x| < R+ 1 the coefficients satisfy assumptions (8), (9) and (10) of [12]
(again modified as in remark 1 of the paper) but with a possibly large constant e there.
We want to apply theorem 3 of this article. As above, we have to generalize this result
to the case of potentials. Moreover, in this theorem only treats inhomogenities in Y°

and not in Lr/HS_,Z/r +Y°, as needed by us.

We first extend this result to a forcing term of the form f +g € L'H S_,Z/y + L?L2 4

using the parametrix K from theorem 3 of [12]. (We note that L*L? ny < Y? by (16) of

this article). Let P = ad} — A — b, - V. We consider a function u with Pu = f + g. Set
it = u — Kf so that Pii = (I — PK)f + g. (See the proof of lemma 9 in [12].) We restrict
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the time interval to t € [0,1] for some 7 € (0,2] and let L} = Ll(’o’T
(25) of [12] then yield
I1DI™* Dt x| s + | 1DI” D, ctal |
< IDI™" Dy, xiil| s + IDI™" Dt xKf [l + [[1DI° Dy, ctd
= 1Dt = Kf )| oz + [|(I = PK)f +gllyo + [IIDI"f
< IDesttllpers + IIDP Sl + lgllye-

) Estimates (24) and

121 + [[1DI" Dy Kf

P14

L;, LS/

Here, we also use that, on (0,7), the X° norm (modified as in remark 1 of [12]) is con-
trolled by the L*°L? norm. The implicit constant is uniform in t <2, but depends
on R.

Let t € [0,7] and Dy ,u(0) = 0. A standard energy estimate yields

t
Do) = [ [ (11+1gl+ VaDlow] ds ds

=|IIDI’f

1D

t
'y vt ||g||L}L2 Hat”HLngz +/;) ||Dt,x”(5)||i2d5-

By means of Gronwall’s inquality we infer
HDLX“HL?OLZ < [IDgxu(0) |2 + x|[|D]"* Opu
+ ()P f iy re + 116x)
We can absorb the second and third term on the right choosing a small x > 0 so that

11 Dy, x14(0)][ 2 + [[[D|"f]| 't ||<x>1/2+g||L§L2' (6.5)

|L;Ls + K||atu||L‘~;°L2
1/2+

gl

L%LZ) :

[1D)" Dy, 1|

3) We put the term —byv to the RHS as before, now applying (6.5) with f = yF and
g = byv — G. To deal with the zero-order part, we also involve the trivial Strichartz pair
(00,2), obtaining

1
IVl 2 + DI De sl 10 = [1Dexv(0) ]z + N1DI (4F)llpy e + [1x)7" Gll 2y
+ 160 vl2pe

Employing Holder’s and Sobolev’s inequalities as in step 1, we control the last sum-
mand by

_3_ 1
160 2 Vil e = Vil < 2Vl

For a fixed small 7 > 0 we can absorb this term by the LHS. As before we then simplify
the estimate to

I1DI” De,svll 210 = Dy v (O)l 2 + DI Fllype + 1IGll 2o
This inequality is invariant under time translations. By a finite iteration, we conclude

|||D|0Dt,xv||L}[’0’2,L‘1 = || Dy, xv(0)]| 2 + |||D|pF||L[’é 2]LS’ + ”GHL[ZO’Z]LZ (6.6)

controlling the initial values by means of the Strichartz pair (c0,2). Observe that this
estimate is valid on any time interval of length 2.
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We now use a reduction which (to our knowledge) originates in [29]. Let Z be the
sequence of intervals I = [k,k + 2] for k € Z and {¢; },.; be a smooth partition of unity
adapted to Z. The cutoffed function v; = ¢;(t)v(t,x) solves

(a@f —A—b(x,0))vi = F + Gy, vi(k,x) = Ovi(k,x) = 0,

where F; = y¢,F and G; = a[9?, ¢;]v — ¢;G are supported in {|x| <R+ 1,t€I}. We
have

|G1(t, x)| < C(|U| + |Dr,xU|)1|xj<ps1 (%) 11(2). (6.7)
Estimate (6.6) on the time interval I yields
I1DI° Dy vl gz o = DI Full 1o + Gl 2o

||Dt,th||L2inl/27 + ||D,,th||L2inl/27. We now raise both sides to the power p >2 and

sum over I € 7, obtaining

DI Dy crlfe = D IDIDyvillfyy, = 3 DI E], o+ > 1GHlTo-
I 1 I

Since - < (30 c’f)p/K for x € [1,p], we deduce

/ p/r p/2
1D Dy 10 = (Z IIDIEy ) + (Z ||GI||i§L2> -
1 1

Inquality (6.7) then leads to
DI Dt ¥l = 1DV ()1 + U]+ De Ul g o<1y

We also use Sobolev’s inequality to estimate U by D, U with a constant depending on R.
Together with Lemma 6.1 and (6.4), the assertion follows. O

Using estimate (19) of [12] one checks easily that the results in this article, and hence
Proposition 6.2, are valid more generally for the system of wave equations

(al;07 — LA — b(x,0))U = F, U(0,-) = Uy, o,U(0,-) = Uy, (6.8)

with diagonal principal part, where b(x,0) is a matrix first-order operator which
satisfies decay assumptions as in Proposition 6.2. We now apply (6.2) to the Maxwell
system

1 1
8[2D+V><;V><—D:F, D(0,-) =Dy, ;D(0,-)=D;, V-Dy=V-D; =V -F=0.
€

(6.9)

Recall that the solution to the above problem is given by

D(t) = cos (tv/H)Dy + sin (tvVH)H /2D, + H™'/> tsin ((t — s)VH)E(s)ds.  (6.10)

We denote by D" the solution to the problem with F=0 and by D' that one
with Dy =D; = 0.

For F=0, the conditional Strichartz estimate in Proposition 6.2 and the smoothing
estimates in Propositions 5.5 and 5.6 easily yield the Strichartz inequality for D". The
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usual TT* argument then allows us to bound 9,D' and VHD! in [’H ;2/‘[) . To replace

-2/p

here v/H by V, one would need a variant of Lemma 5.3 in H g which should require

a substantial effort. We by-pass this difficulty by means of a modified TT* argument
that also uses ideas from Proposition 5.5. This is possible since we only have to control
an error term in L?L* /. arising from Proposition 6.2. Here, it turns out to be enough

to estimate VH™'/2 in L2 J» just using Lemma 5.3.

Theorem 6.3. Under the assumptions of Proposition 5.6, Then, the solution D(t,x) to
problem (6.9) satisfies for any wave admissible (p, q) and (r, s) the estimate

_2
IIDI77Dt,xD| 10 = [V Do[ 2 + D1 |2

(6.11)

Proof. As in the Proof of Proposition 5.4 we can recast (6.9) in the form (6.8). Since the
conditions in Proposition 6.2 are satisfied, estimate (6.2) yields

_2 2
[ID]"?Dy,xD|| 14 = [[VDoll 2 + [[D1l 2 + [|DIFll 10 + ||Dt,xD||L2L2(\x\§Ro+1)'
for some fixed radius Ry > 1. The last term is bounded by a constant times

||Dt,th ||L2L271/27 + ||Dt’xDi||L2L271/2—

In view of (6.10), Propositions 5.5 and 5.6 and (5.13) yield
DD gz = [VDols + 1D

We, thus, have shown (6.11) for F=0.
Consider now the case F # 0. To complete the proof it is sufficient to prove the estimate

t
1Dus| H IR, <

where F is divergence free and we set E= L'H ;2/T and Z = L[*L* ), First, we notice

that by the Christ-Kiselev Lemma this estimate follows from the analogous unretarded
one (since r>2)

1Dy, [H 2 VIE(5)ds||,, <

Next, we split D; ,H 2 [ ¢lt=VHE(s)ds = D, e VAH1/2 fe’is‘/ﬁF(s)ds and we recall from
Propositions 5.5 and 5.6 the inequalities

] P i P v P
Combined with (5.13), these estimates yield

HDL X /H “1¢it-9)VHE (s)ds e sVHE (s)ds

+ "VH_%/e_is‘/ﬁF(s)ds
12

ot oo

z L (6.12)

12
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In the first part of the proof we have seen
1D H Esin (VA= [l [IDeecos (VB Il = [V
Considering only D,, the first inequality implies
| cos (VA1 = [
while the second one gives
I sin (VA |5 = [1Dr cos (WHH [ = [ VH ], = Il

using again (5.13). Applying the dual estimates we see that both terms in (6.12) can be
estimated by ||F||;., and this concludes the proof. O

The above theorem now easily implies our main result.

Proof of Theorem 1.1. In view of (1.6), the main results for D is an immediate conse-
quence of the above theorem. The magnetic field B solves (1.7) which is of the same
form as Eq. (1.6) for D except that € and p are interchanged. So Theorem 6.3 is true
with B instead of D if we replace the condition on second derivatives in (2) of
Proposition 5.6 by

1

D% =< (x) 7% D= (x)

Theorem 1.1 for B again follows easily taking into account (1.7) and Lemma 6.1.

By Lemma 6.1, we can replace D by E in Theorem 1.1, with the divergence condi-
tions V- (¢Eg) = V - (¢E;) = 0. One can pass from B to H in same way as from D
to E. O
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