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A non-classical computational method for modelling functionally graded porous planar 1 

media using micropolar theory 2 

 3 

 4 

Abstract 5 

The current study proposes a computational-based method to employ the non-classical micropolar 6 

continuum for modelling plates with in-plane functionally graded porosities. Initially, a 7 

homogenisation method is developed to derive the micropolar parameters of porous heterogenous 8 

plates based on strain energy equivalence in various designed deformations simulated via finite 9 

element analysis. The modelling procedure is further augmented to accommodate structures with 10 

functionally graded porosities. The established method offers an effective framework for studying 11 

the mechanical behaviour of porous plates with various porosity distributions and a wide range of 12 

aspect ratios. Results indicate that the micropolar theory-based modelling surpasses traditional 13 

Cauchy theory in accurately predicting the stiffness and displacement distribution of the FG porous 14 

structures. The novelty of this study lies in the integration of micropolar theory with the 15 

homogenisation of graded porosity patterns, offering enhanced predictions for materials with 16 

microstructural features. Additionally, a custom finite element formulation is developed in 17 

COMSOL to implement micropolar elasticity, significantly improving the computational 18 

efficiency to account for complex geometry, loading, and boundary conditions. To show the 19 

applicability of the method, the modelling is used to design a dental implant with its functional 20 

property mimicking that of the natural bone to avoid stress-shielding while ensuring proper 21 

occlusivity. 22 

 23 

 24 
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1 Introduction 27 

The customisable properties [1], high specific surface area, and lightweight nature of porous 28 

materials have made them key elements in various engineering applications. In recent decades, 29 

porous materials have been widely used in many industrial sectors, including aerospace, civil 30 

engineering, and biomedical applications such as porous implants and meshes for guided bone 31 

regeneration [2], [3], [4]. Particularly, functionally graded porous structures [5], characterised by 32 

a graded distribution of porosity, can provide customised mechanical properties along spatial 33 

gradients [6], [7]. The mechanical behaviours of porous FG structures are of interest in the current 34 

literature in terms of static, vibration, and buckling problems, specifically in beams, plates, and 35 

shells [8], [9], [10], [11], [12].  36 

The thermo-mechanical behaviour of two-directional functionally graded porous-auxetic 37 

metamaterial has been the topic of a study by Behravanrad and Jafari [10], where, through a 38 

numerical finite difference scheme, the effects of porosity and auxeticity have been investigated. 39 

Li et al. [9] studied the mechanical response of porous FG plates based on first-order shear 40 

deformation theory and isogeometric analysis. Gao et al. [13] developed a mathematical model to 41 

study wave propagation in graphene platelets-reinforced porous FG plates integrated with 42 

piezoelectric actuators and sensor layers. Akbas et al. [14] analysed the dynamic response of thick 43 
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FG porous sandwich beams using the 2D plane stress finite element method. Ramteke et al. [15] 44 

investigated the nonlinear eigenfrequency characteristics of the doubly curved multi-directional 45 

FG porous panels by using the finite element method (FEM). Wu et al. [16] analysed the free and 46 

forced vibrations of porous beams using FEM. Chen et al. [17] studied the static and dynamic 47 

properties of a porous beam. 48 

Besides the FEM approaches, isogeometric analysis (IGA), originally established by Hughes et al. 49 

[18], is also used to study FG porous structures, especially when dealing with complex geometries 50 

such as “triply periodic minimal surface (TPMS)”. In IGA, the same non-uniform rational B-51 

splines (NURBS) basis functions that are used to model the exact geometry will be implemented 52 

to approximate the FE solution.  53 

Nguyen-Xuan et al. [19] proposed an approach based on IGA and higher-order shear deformation 54 

theory (HSDT) to study the functionally graded TPMS plate. The use of higher-order shear 55 

deformation theories is to capture the nonlinear distribution of shear terms through the thickness 56 

of the plate and satisfy the zero-shear strains/stresses without using shear correction factors. 57 

The approach is further extended to study graphene platelets-reinforced FG TPMS [20]. In another 58 

recent work, Nguyen et al. [21] have integrated non-local strain gradient with IGA to enable the 59 

consideration of softening and hardening and size-dependent phenomena in micro/nanostructures. 60 

Another approach to increasing the accuracy of the results and the ability to capture microstructural 61 

features is to use generalised continua where additional degrees of freedom are endowed to each 62 

material point in addition to the standard displacement. In micropolar theory as an important 63 

category of generalised continua, the rotation of the material point is introduced as the additional 64 

degree of freedom, which is called microrotation to be distinguished from macro-rotation (local 65 

rigid rotation). Micropolar theory, also known as Cosserat, represents a significant advancement 66 

in the field of continuum mechanics, particularly in the modelling of materials that exhibit complex 67 

behaviours not adequately described by classical theories. This theory was first introduced by E. 68 

and F. Cosserat [22] and has since evolved by C. Eringen [23], [24], and W. Nowacki [25] to 69 

address various applications in engineering and materials science. W. Nowacki and C. Eringen 70 

have significantly shaped the understanding of this advanced theoretical framework. Eringen’s 71 

work explored the concept of micro-polar elasticity and provided a robust mathematical 72 

framework that has been widely adopted in various fields [26]. Nowacki further enriched this 73 

theory by studying its implications in dynamic systems and wave propagation [27]. Elastic 74 

micropolar theory has been successfully used in many applications [28], [29] to describe 75 

heterogeneous materials [30], such as porous materials [31], [32], [33], [34], [35], cellular 76 

materials [36], composites [37], [38], lattices [39], foams [40], [41], [42], and even nanostructures 77 

[43], [44].  78 

In the current literature, to study the structures with FG porosities, classical Cauchy continuum 79 

and non-local higher-order theories such as strain gradient theory are implemented. In these 80 

studies, the relative density is commonly taken as the dominant factor, and the relation between 81 

the elastic modulus and the density originally stems from a direct FEM calculation [45] or a 82 

micromechanics estimation [46], such as the modified rule of mixture [47] and Halpin Tsai [48] 83 

or available experiments [49].  84 

In the present study, we advance this field by integrating non-classical micropolar theory to model 85 

porous plates that have in-plane functionally graded porosities. Compared to classical Cauchy 86 

theory, micropolar theory can better contemplate the internal structure of cellular solids [50] as it 87 
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uses field description at the coarse level and preserves the memory of the material underlying 88 

structure at the fine level through internal scale parameters [44], [51], [52]. In this study, a 89 

homogenisation scheme is proposed based on the strain energy equivalence to determine the 90 

material constants of the equivalent continuum where the material parameters can consider the 91 

effect of both the size and shape of the pores. The collected data for various porosities determines 92 

the function for each material parameter in terms of the pore dimensions. Further, using the 93 

established homogenised model, the mechanical response of porous plates with various porosity 94 

distributions and a broad range of aspect ratios is investigated. 95 

From a computational perspective, this study contributes by implementing a custom finite element 96 

method using the weak form of partial differential equations (PDE) in COMSOL Multiphysics to 97 

solve the micropolar elasticity problem. This is a notable advancement, as commercial FEM 98 

software typically does not support micropolar elasticity by default. Our custom formulation 99 

allows for the simulation of complex boundary conditions and loading scenarios, offering more 100 

precise predictions of mechanical responses. Additionally, the homogenisation scheme employed 101 

reduces computational complexity, enabling the study of large-scale porous structures without the 102 

burden of directly simulating their intricate microstructures. The combination of micropolar theory 103 

with advanced FEM not only enhances the computational efficiency but also provides a more 104 

accurate comparative analysis with classical Cauchy models, further underscoring the advantages 105 

of non-classical theories for FG porous materials.  106 

To show the applicability of the proposed framework, it is implemented to design a biomedical 107 

prothesis used in dentistry called guided bone regeneration (GBR) mesh. GBR meshes are used in 108 

dentistry as mechanical barriers to isolate and protect the area of bone loss from the surrounding 109 

tissue while allowing new bone growth (Fig. 1a). While various types of barriers have been used 110 

for GBR, the design and mechanical properties of the GBR mesh can greatly influence its 111 

effectiveness in promoting bone growth [53]. GBR meshes are designed to be porous to facilitate 112 

the diffusion of fluids, oxygen, nutrients, and bioactive substances for cell growth, and an 113 

appropriate pore size can ensure the desirable occlusivity of the GBR membrane [54], [55].  114 

To implant GBR meshes, they are fixed to the underneath mandible bone using biocompatible 115 

screws (Fig. 1b). Since these screws are located in critical loading areas, higher stiffness is required 116 

in the corresponding locations on the GBR mesh, and therefore, smaller pore sizes are more 117 

desirable. The importance of improving stiffness near fixing areas becomes more crucial when 118 

using biodegradable resorbable materials made of natural or synthetic polymers [56], such as PLA 119 

[57] or PLA composites [58]. The stiffness of these materials is much lower than that of metals 120 

like titanium alloy (Ti6Al4V) that are widely used in dentistry [59]. However, the use of 121 

bioresorbable materials is receiving great attention as it mitigates the need for a post-surgery to 122 

remove the GBR mesh after the bone regeneration process [60]. 123 
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   a.      b.  124 
Fig. 1a. Implementation of a porous GBR mesh b. Fixing GBR mesh to the underneath mandible bone using biocompatible 125 

screws 126 

  On the other hand, bone has a heterogenous porous structure with microstructural features, for 127 

which non-classical micropolar models are proven to better describe microstructure-related scale 128 

effects on macroscopic effective properties [61], [62]. Lakes and co-workers [63], [64], [65], [66], 129 

[67] also conducted a series of experiments and studies on bones and found that micropolar theory 130 

provides better predictions of bone response than Cauchy elasticity. Such scale effects are most 131 

pronounced near bone-implant interfaces and in areas of high strain gradients [68]. In the current 132 

work, based on the developed framework, a design is suggested for the GBR mesh that can mimic 133 

the natural FG structure of the bone. 134 

The remainder of this paper is structured as follows: Section 2 presents the homogenisation 135 

procedure implemented for extracting the equivalent material parameters for both micropolar and 136 

Cauchy continua. Section 3 describes the developed mechanical models for plates with an in-plane 137 

FG distribution of porosities.  In Section 4, the obtained models are used to study the mechanical 138 

response of FG porous plates with different distributions of porosities. The findings are compared 139 

to the response of the detailed porous structure for a wide range of aspect ratios. The approach is 140 

used to propose an FG design for a dental GBR mesh in Section 5. Finally, Section 6 summarises 141 

the key findings and outlines future research directions in the field of porous FG structures. 142 

2 Homogenisation 143 

For modelling the FG porous plates with different microstructures (pore patterns), a multiscale 144 

approach [5] is proposed in which an equivalent homogenised material represents the porous 145 

heterogeneous structure. The equivalent model is described in the framework of both micropolar 146 

and classical (Cauchy) continua.  147 

For the determination of the constitutive parameters of the equivalent models, the primary 148 

hypothesis is that the strain energy stored in the heterogeneous porous structure (micro-level) 149 

under prescribed boundary conditions is equal to that of the homogenous equivalent continuum 150 

description (macro-level). In the current work, at the micro-level, the classical Cauchy continuum 151 

is used, while at the macro-level, two different continuums (micropolar continuum and Cauchy 152 

continuum) are implemented, and the results are compared in describing FG porous structure (Fig. 153 

2). 154 
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 155 
Fig. 2 The homogenisation procedure from classical Cauchy continuum at the micro-level to micropolar continuum and Cauchy 156 

continuum at the macro-level 157 

The homogenisation procedure has been applied and thoroughly described before in [2]. For the 158 

sake of completeness, only the major equations are reported below. The homogenised constitutive 159 

parameters are further used in Section 3.2 to model functionally graded porous structures. 160 

2.1 Homogenised Micropolar and Cauchy models 161 

2.1.1 Micropolar Theory 162 

The micropolar theory is governed by the following linearised kinematic equations: 163 

,ij i j ijk ku e = +
 

, =kj k j  

(1) 

where iu  and k  stand for the components of displacement and micro-rotation vectors, ij  and kj  164 

denote the components of strain and curvature tensors with ijke  being the usual third-order 165 

permutation symbol. 166 

If body forces ( ip ) and body couples ( kq ) are also considered, the equilibrium equations take the 167 

following form: 168 

, 0ij j ip + =
 

, 0kj j ijk ij ke q − + =
 

(2) 

Where ij and kj are the components of the non-symmetric stress and couple-stress tensors, 169 

respectively. 170 

In the linearised 2D framework, there are two displacements and one rotational component that 171 

can be collected in the two following vectors: 172 

 T u v=u  

 =  
(3) 

and the strain and curvature vectors will be: 173 
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 11 22 12 21

T    =ε  

 1 2

T  =  
(4) 

Where 11 22 12 21, , ,     are the in-plane normal and shear strains, and 1 2,   are the micropolar 174 

curvatures.  175 

The stress and couple stress vectors are also represented as: 176 

 11 22 12 21σ σ σ σT =σ  

 1 2

T  =  
(5) 

where σij  (i, j = 1,2) represents the normal (i = j) and shear stress (i≠j) components, and 1 , 2  177 

are the couple stresses or micro-couples.  178 

The micropolar anisotropic constitutive equations can be represented as: 179 

   
=   

   

σ 

 
C  (6) 

where C is the constitutive stiffness matrix, which due to hyperelasticity is symmetrical [69].  180 

The geometries considered here for the 2D periodic porous model (such as the one shown in Fig. 181 

2) are symmetric with respect to a 90° rotation. These symmetries in the 2D model imply a special 182 

kind of orthotropic structure named “ortho-tetragonal” [37]. For the equivalent homogenised 183 

ortho-tetragonal material, the constitutive equations can be presented in Voigt’s notation as: 184 

1111 1122

1122 1111

1212 1221

1221 1212

11 11

22 22

12 12

21 21

111 1

112 2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

A A

A A

A A

D

D

A A

 

 







 







   
   
   
     

=     
    
    
    

            

(7) 

2.1.2 Identification of Equivalent Micropolar Material Parameters 185 

Since micropolar and Cauchy continua use different degrees of freedom, a kinematic map is 186 

required to link the two levels of description. Here, we followed the mapping proposed by Forest 187 

and Sab [30] for a square representative volume element (RVE). 188 

* 2
1 2

2 3 2

11 12

10
( )3

2

SYMu x xy y y yy x
L


  + −−−= −  

* 1
22 2 2

2 3 2

12

10
( )3

2


   + + − −= +SYMv y x xy x xyx

L  

(8) 

Eq. (8) expresses the approximate microscopic displacement field within the RVE (
* *,u v ) as a 189 

function of the macroscopic strain measures ( 11 22 12 1 2, , , , ,SYM      ) at the material point on the 190 

macro-level. 191 

After determination of the kinematic map, to find the micropolar material parameters in Eq. (7), 192 

first we calculate the response of the porous plate subjected to various loadings using FEM. In 193 

each case, the corresponding micropolar material parameters are found so that the equivalent 194 

material stores the same strain energy density when subjected to the identical loading, i.e., 195 
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FEM MicropolarU U=  (9) 

Where 
MicropolarU  is the strain energy density of the equivalent micropolar continuum calculated 196 

using the following relation: 197 

1111 1122 1122 1111

1212 1221 12

11 11 22 22 12 12 12 1 1 2 2

11 11 22 22 11 22
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     

   

   

 = + + + 

+
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= +

+
+
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−

 (10) 

And FEMU is the strain energy density of the porous plate calculated using the finite element 198 

method: 199 

1

2
FEM ij ij

RV

pp

E

U dV =   (11) 

Where p

ij  and p

ij are stress and strain in the porous structure. 200 

To evaluate the components of the micropolar stiffness tensor ( 1111 1122 1 1212 1221 1, , , ,A A DA A ), 201 

different boundary conditions are designed to represent uniaxial, biaxial, symmetric shear, 202 

bending, and rotational deformations. The applied tests, the corresponding material parameters 203 

obtained from each test, and the applied boundary conditions are described in Fig. 3. The boundary 204 

conditions to create each test are obtained using the micro-filed descriptions 
* *,u v in terms of 205 

macro-field strain measures presented in the kinematic map, i.e., Eq. (8). 206 

  207 
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Test 1 

Uniaxial 

Test 2 

Biaxial 

Test 3 

Symmetric Shear 

Test 4 

Rotation 

Test 5 

Curvature 

 
    

 
    

1111A  1122A  1212A , 1221A  11D  

*u x=  

* 0v =  

*u x=  

*v y=  

*u y=  

*v x=  

( )* 3 2

2

10
3u y yx

L
= −  

( )* 2 3

2

10
3v xy x

L
= −  

*u x y= −  

2
*

2

x
v =  

Fig. 3 Designed FEM tests for finding micropolar material parameters. 208 

More details on how to apply the boundary conditions and calculate each parameter can be found 209 

in [2]. 210 

To find the homogenised Cauchy model, an analogous approach is followed in the framework of 211 

Cauchy theory, which requires the definition of only three constitutive components. In this case, 212 

the homogenisation is straightforward because there is no need to define a kinematic map. 213 

Alternatively, such properties can be deducted from the micropolar one [70]. 214 

2.2 Finite Element Model 215 

The finite element implementation at both macro (micropolar) and microlevels (Cauchy) is 216 

described in this section. Since commercial FE codes do not yet support the micropolar continuum, 217 

we implement the weak form of partial differential equations (PDE) numerically in COMSOL 218 

Multiphysics. By using PDE modelling in COMSOL instead of traditional FE modelling, no user 219 

subroutines are required and various complex geometries, boundary conditions, and loadings can 220 

be applied in a user-friendly graphical interface.  221 

Regarding meshing and discretisation, the porous structure was discretised using first-order 222 

(linear) triangular elements. The thickness of the plate was assumed to be W/100, and therefore a 223 

2D plane stress formulation for linear elastic media was adopted. The mesh of homogenous 224 

equivalent models is made of structured quadrilateral first-order (linear) elements. Note that the 225 

same approximation order for both displacements and micro-rotation were used.  226 

The weak form is formulated based on the virtual work principle for a micropolar continuum with 227 

u and  as a set of kinematically admissible displacement and rotation fields, such that: 228 
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, ,T T T T T T

B B

d d d dB d dB       
   

+ = + + +            q mu upu t  (12) 

Where   is the entire computational domain,  denotes the variational operator with t and m229 

the traction and couple-traction vectors applied on the boundary B. 230 

Displacement and microrotations are approximated by interpolating the nodal values u  and , 231 

considered primal unknowns, using the shape functions as follows: 232 

,  u = = u N u N  (13) 

For quadrilateral elements, with first-order (linear) discretisation for both displacements and 233 

micro-rotation, the shape function matrices will be: 234 

 

3 41 2

3 41 2

1 2 3 4

0 00 0

0 00 0
u

N NN N

N NN N

N N N N

 
=  
 

N

N =

 (14) 

Also, the micropolar strains and curvatures given in Eq. (1) can be written as: 235 

     

  

= +

=

 

 

Lu M


 (15) 

Where   is the gradient operator in the 2D framework, and L  and M  are: 236 

0
0 0

0
,

1
0 0

1

T

x y

y x

   
   
  = =
   + 
    −   

L M  (16) 

By substituting Eq. (13) in Eq. (15), we have: 237 

     =   

  0  

u u  

  

 
 = + =  

 

 
 = =  

 

 


  =


u
LN u MN LN MN B d

u
N N B d 

 (17) 

Where d is the unknown vector of nodal displacements and the matrices B and B contains the 238 

derivatives of shape functions.  239 

The constitutive matrix for 2D ortho-tetragonal micropolar material in Eq. (7) will then become: 240 

  = =σ d DB BD d  (18) 
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Where: 241 

1111 1122

1122 1111

1212 1221

1 1

11

11

221 12 2

0 0

0 0 0
,

0 0 0

0 0

A A

A A

A A

A A

D

D
 

 
 

  = =     
 
 

D D  (19) 

In the absence of body forces and couples, the algebraic finite element problem reads: 242 

) ,

T

uT T T T

T

B

d dB   



  


 
+  =  

  
 

K F

t
dD

m

N
d (B B B B d

N
D  

(20) 

Where K and F indicate the elemental stiffness matrix and the nodal force vector.  243 

The elemental stiffness matrix K is then assembled into the global stiffness matrix, GlobalK , by 244 

summing contributions from all elements and aligning the global degree of freedoms: 245 

 Global

   
=   

   
K

U T

M
 (21) 

Where U  and   are the global displacement and microrotation vectors, and T and M are the 246 

global force and moment vectors. 247 

For the benefit of readers, we also present how to practically implement the weak form of the 248 

equations in the COMSOL PDE framework. 249 

We start from the balance equations and multiply each of them by its corresponding test functions, 250 

denoted here as test

iu and test

k , and integrate over the entire computational domain D.    251 

,,( ( ) 0)test test test

i i i kj j ijk ij kij j kp u d eu dq   
 

+ + − + =   (22) 

It should be noted that the test functions are inherently the virtual displacement introduced 252 

previously in Eq. (12). 253 

By applying the divergence theorem and considering B as the surface boundary, the weak form 254 

equations can be defined: 255 

,

,

( )

( ) 0

test test test

i j i i i

test test test test

kj k j kj k

i

B

ijk

j

ij k k

j

k

j i

B

j

n dB p

n dB e q

u d u u d

d d d

 

     

 

  

− + + +

− + − +



=



 

  

   
 (23) 
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 Where the domain and surface contributions can be rearranged as: 256 

, ,(

( ) 0

)test test test te

ij

ij j

st test

i j i i kj k j ijk ij k k k

test test

i k

B

j jk

p e q

n n

u

u dB

u d    

  



+ − +−

+ + =

−


 (24) 

In PDE COMSOL, the domain contribution specifies the governing equations, while the surface 257 

contribution should be defined in weak form as the boundary conditions. This is the main leverage 258 

of implementing micropolar theory through the PDE framework developed in the current work: 259 

By properly defining the weak form of governing equations and boundary conditions, constitutive 260 

equations, and kinematic relations, one can benefit from the developed capacity of COMSOL for 261 

discretisation, definition of shape functions, as well as derivation and assemblage of stiffness 262 

matrix.  263 

3 Functionally graded porous plates 264 

3.1 Geometrical Modelling  265 

Consider a porous rectangular plate with length L, width W, and height (thickness) h, as presented 266 

in Fig. 4.  267 

 268 
Fig. 4 The coordinates and geometry of the porous rectangle plate and the 2D model 269 

The Cartesian coordinates (x, y, z), located in the mid-plane, are used to define the displacements 270 

u, v, and w in the length, width, and thickness directions. The porosity distributions can occur in 271 

the in-plane directions, such as x-direction and y-direction, as well as the thickness [71]. Four 272 

different kinds of porosity distributions in the y-direction (Types ‘V’, ‘A’, ‘X’, and ‘O’, see Fig. 273 

5), which are standard in the literature [48], are used here to study the mechanical behaviour of the 274 

FG porous plate. 275 
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 276 
Fig. 5 Four different types of porosity distribution through the in-plane y-direction 277 

For type ‘V’, the porosity distribution is linearly varied in the y-direction from a small pore size 278 

of 0.01 W at y = 0 to the pore size of 0.09 W at y = W. Therefore, the maximum and minimum 279 

values of effective stiffness parameters correspond to the bottom and the top surfaces, respectively. 280 

For type ‘A’, the porosity distribution linearly varies in the y-direction from a pore size of 0.09 W 281 

at y = 0 to the pore size of 0.01 W at y = W. Therefore, contrary to the type ‘V’, the minimum and 282 

maximum values of effective stiffness parameters correspond to the bottom and the top surfaces, 283 

respectively. Type ‘X’ consists of two piecewise linear parts where the smallest pore size is located 284 

on the midline and the largest size on the top and bottom parts. Reversely to type X, for type ‘O’, 285 

the largest pore size is located on the midline and the smallest size on the top and bottom parts.  286 

Various porosity distributions can be considered as a function of vertical location (y). The variation 287 

of the pore size through the FG structure for the four porosity distributions in the current work is 288 

represented in Fig. 6.  289 

 290 
Fig. 6 The variation of pore sizes through height for each porosity distribution 291 

Based on the distribution of porosity, the variation of the pore size (
pl ) along the y direction can 292 

be described as *( )pl g y=  where the subscript * refers to the type of porosity distribution. 293 

Considering the minimum pore size as 0.01 W and the maximum as 0.09 W, the functions for each 294 

type of porosity distribution are as follows: 295 
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l g y y V
W

l g y y A
W

l g y y X
W

l g y y O
W

= = +

= = − +

= = +

= = − +

 (25) 

In which y  is the absolute (positive) value of the vertical position (y), and y origin is located at 296 

/ 2W . 297 

3.2 Equivalent homogenised models for FG porous plates 298 

Fig. 7 shows how the equivalent homogenised FG porous structure is derived by considering the 299 

homogenisation procedure developed for unit cells with uniform porosity [2]. First, a parametric 300 

study is conducted to find the equivalent mechanical parameters (Cauchy and micropolar) of 301 

uniform porous plates with various pore sizes. In the parametric study, the pore density (i.e., the 302 

number of pores per unit length) is kept constant and the pore sizes are changed from 0.01 W to 303 

0.09 W to find the required equivalent parameters for each section of FG porous structure.  304 

 305 

Fig. 7 A graphical abstract of the methodology for developing equivalent homogenised models of FG porous plates 306 

The flowchart in Fig. 8 shows the overall algorithm and workflow of the present work. 307 
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 308 

 309 
Fig. 8 The flowchart for the implementation algorithm of the present work 310 

For studying the FG patterns, we choose the pore size to vary in the range of 0.01L to 0.09L. When 311 

the pore size exceeds 0.09L, the reduction of material thickness between the pores can lead to local 312 

buckling or instability under loading, which may not be fully captured by the homogenised model. 313 

Also, very small pore sizes less than 0.01L can pose challenges related to meshing and 314 

discretisation, particularly near the discontinuities, which may reduce the numerical accuracy. 315 

In the applications, we consider polylactic acid (PLA) as base material of the porous plate. PLA is 316 

a biodegradable and non-toxic material that is approved by the FDA for bioresorbable medical 317 

implants and therefore is widely used in the biomedical sector [58], [72]. The material properties 318 

considered for PLA are listed in Table 1. 319 

Table 1 Material properties of the base material (PLA) [57], [73] 320 

Properties Value Unit 
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Young’s Modulus 3.775 GPa 

Poisson Ratio 0.3 - 

Density 1120 kg/m3 

In Fig. 9, the equivalent micropolar and Cauchy parameters for the pore sizes ranging from 0.01W 321 

to 0.09W are presented.  322 

These data are then utilised to find curve-fitted functions, ( )i pf l , for each material parameter with 323 

respect to the pore size, 
pl .  324 

The obtained functions for equivalent constitutive parameters (in Pa) are as follows: 325 
4 3 2

1111 1

4 3 2

1122 2

4 3 2

1212 3

1221 4

41264  11339  1107.1  4.4412   4.1318

1152  2240.8  357.8  3.1343   1.2268

21.30  3013.50  506.03  2.26   1.94

7501

( )

( )

( )

( )

p p p p p

p p p p p

p p p p p

p

A f l l l l l

A f l l l l l

A f l l l l l

A f l

− + − + +

− + − + +

− + − + +

= =

= =

= =

= = 4 3 2

4 3 2

11 5

.8  926.53  281.96  2.2673   0.9298

3355.3  879.59  83.344  0.2526   0.3249( )

p p p p

p p p p p

l l l l

D f l l l l l= =

+ − + +

− + − + +

 (26) 

And the functions for equivalent constitutive parameters for Cauchy theory are those described in 326 

Eq. (13) for 1111 1111C A= , 1122 1122C A=  and 1212 1212 1221( ) / 2C A A= + . 327 

a. 

 

b. 

 
c. 

 

d. 
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e. 

 

f. 

 
Fig. 9 The equivalent micropolar (a.-e.) and Cauchy (a., b., and f.) material parameters for pore sizes ranging from 0.01W to 328 

0.09W. 329 

Now, by considering the relationship between homogenised material parameters and pore sizes  330 

( ( )i pf l ) as well as the functionality of pore sizes versus locations ( *( )pl g y= ) in each FG porous 331 

pattern, it is possible to determine the constitutive functions for each FG structure by employing 332 

the composition operator: 333 

#### *( ( ))iA f g y=  (27) 

Where ####A  represents the constitutive parameters of the homogenised micropolar/Cauchy model 334 

(see Eq. (26)). 335 

4 Numerical Results and Discussion 336 

4.1 Geometry, loading, and boundary conditions 337 

The usefulness of micropolar model is more evident when concentrated forces are applied and/or 338 

geometric discontinuities are present [38]. Also, micropolar theory is more effective compared to 339 

the Cauchy theory when structures are intended to withstand shear loads as normal stiffness 340 

properties are the same between micropolar and Cauchy theories 1111 1111C A=  and 1122 1122C A= . 341 

Therefore, to evaluate the effectiveness of micropolar theory and its proficiency to Cauchy theory 342 

in describing the mechanical performance of FG porous structures, two loading scenarios are 343 

considered: a distributed shear load and a vertical indentation load. The distributed shear load is 344 

applied on the top surface of the porous plate/beam (p = 1000 N/m), while the bottom surface of 345 

the structure is fixed. Various length scales (L/W) were investigated for four types of porosity 346 

distributions by comparing the results for L/W < 1, L/W = 1, and L/W > 1 (Fig. 10). In all the 347 

structures, L is fixed as 1. 348 
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 349 
Fig. 10 The geometry and loading considered for evaluation of the mechanical response of porous plates. L is the length 350 

(horizontal length) and W is the width (vertical length). 351 

4.2 Comparison of displacement distribution for porous and homogenised models 352 

To get insight into the mechanical response within the plate, the normalised displacement on the 353 

midline (y = W/2) is compared for the porous model versus homogenised models while considering 354 

various porosity distributions. The effect of the three aspect ratios L/W = 0.55, L/W = 1, and L/W 355 

= 1.55 is also studied. All the displacements are normalised by L. The results are summarised in 356 

Fig. 11 for four types of porosity distributions: Types A, V, X, and O, respectively. Here, "DT", 357 

"MP" and "CHY" denote detailed porous models, micropolar homogenised models, and Cauchy 358 

homogenised models, respectively.  359 
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Fig. 11 The comparison of the normalised displacement magnitude on the midline for the porous model versus homogenised 360 

micropolar and Cauchy models for FG porous structure with porosity distribution of a. Type A, b. Type V, c. Type X, d. Type O 361 
with aspect ratios of L/W = 0.55, L/W = 1, and L/W = 1.55. 362 

The results for the studied cases show that micropolar homogenised models can better predict the 363 

displacement distribution of the FG porous structure compared to the Cauchy homogenised model 364 

for all porosity patterns. The advantage of micropolar to Cauchy theory is more prominent in the 365 

case of A and X patterns.   366 

In Fig. 12, the normalised displacement contour lines are compared for the case of L/W = 1 for all 367 

the four porosity patterns of types A, V, X, and O, respectively. 368 

 369 

a. 

 
b. 
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c. 

 
d. 

 
Fig. 12 Comparison of normalised displacement contours of the porous model versus homogenised micropolar and Cauchy 370 

models for FG porous structure with porosity distribution a. Type A, b. Type V, c. Type X, d. Type O, and L/W = 1. The values of 371 
contour lines are reported in a. for better presentation of the differences. 372 

As shown in Fig. 12, both homogenised models can follow the displacement contours of the 373 

detailed porous model. In Fig. 12a, the arrows show the distance between the displacement iso-374 

lines in the porous model and the corresponding predicted iso-line by each homogenised model. 375 

As it can be seen, the performance of the homogenised micropolar model is better as the 376 

displacement iso-lines are closer to the porous FG structures for the micropolar homogenised 377 

models compared to Cauchy ones. 378 

4.3 Aspect ratio effect 379 

To evaluate the aspect ratio effect on the stiffness of the porous structures and the capability of the 380 

homogenised models in predicting stiffness, the maximum deflection (normalised displacement at 381 

point A in Fig. 10) is compared for porous and equivalent micropolar and Cauchy models for 10 382 

aspect ratios and the four FG patterns. 383 

The results are presented in Table 2 and Fig. 13. Overall, the obtained results for homogenised 384 

micropolar and Cauchy models are consistent with the porous model. However, according to Table 385 

2, compared to Cauchy theory, the micropolar model better predicts the mechanical behaviour of 386 

porous structures, especially for very small aspect ratios such as AR = 0.55. As aspect ratio 387 

increases, the difference between the porous response and micropolar prediction decreases. 388 

  389 
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 390 

Table 2 Comparison of the normalised displacement magnitude (in μ) obtained from the porous model and predicted by 391 
homogenised micropolar and Cauchy models for the loading and geometry demonstrated in Fig. 10. (% error) shows the 392 

difference between values resulted from the homogenised model and the detailed porous model. 393 

Distribution L/W Porous Micropolar  (% error) Cauchy  (% error) 

A 

0.55 10.50 11.20 (6.67) 11.50 (9.52) 

1.00 5.04 5.34 (5.95) 5.51 (9.33) 

1.55 3.58 3.76 (5.03) 3.95 (10.34) 

2.00 3.20 3.33 (4.06) 3.55 (10.94) 

X 

0.55 12.61 13.14 (4.18) 13.53 (7.27) 

1.00 6.98 7.17 (2.65) 7.47 (7.00) 

1.55 5.53 5.56 (0.67) 5.91 (6.88) 

2.00 5.16 5.11 (-0.85) 5.51 (6.80) 

V 

0.55 6.93 7.12 (2.70) 7.33 (5.77) 

1.00 4.29 4.31 (0.36) 4.47 (4.09) 

1.55 3.63 3.56 (-2.10) 3.75 (3.18) 

2.00 3.47 3.34 (-3.74) 3.56 (2.53) 

O 

0.55 10.07 10.42 (3.44) 10.58 (5.02) 

1.00 5.58 5.69 (1.94) 5.78 (3.46) 

1.55 4.45 4.46 (0.35) 4.56 (2.51) 

2.00 4.16 4.13 (-0.74) 4.25 (2.16) 

   394 

 395 

a. 
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c. 

 

d. 

 
Fig. 13 Comparison of maximum normalised displacement (normalised displacement at Point A in Fig. 10) in the porous and 396 

homogenised models for different aspect ratios and porosity distribution of a. Type A, b. Type X, c. Type V, d. Type O 397 

4.4 The effect of different porosity distributions 398 

To study the effect of different porosity distributions, the maximum deformations of the 399 

homogenised models for four types of porous FG structures are compared. 400 

 401 
Fig. 14 Comparison of the maximum normalised displacement (normalised displacement at Point A in Fig. 10) of the FG porous 402 

plate for porosity distribution Type ‘A’, Type ‘V’, Type 'X', and Type ‘O’ for various aspect ratios. 403 

As can be inferred from Fig. 14 for aspect ratios less than approximately 1.5, it is important to take 404 

functional porosity into account when predicting the plate's mechanical response; however, in 405 

higher aspect ratios, the overall porosity plays a more important role. This becomes clearer by 406 

comparing the maximum displacement for two distribution types A and V reported in Table 3, 407 
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with the overall same porosity. As shown in the table, the difference between maximum 408 

displacement is high for L/W=0.5 and decreases for L/W=1.5 and 2. 409 

Table 3 Comparison of the maximum normalised displacement (normalised displacement at Point A in Fig. 10) for porosity 410 
distributions Type ‘A’ and Type ‘V’. The values in the parentheses show the difference between the A and V distributions for each 411 

AR. 412 

Distribution Porosity 
Volume 

Fraction 

Max Normalised Displacement 

L/W=0.5 L/W=1.5 L/W=2.0 

Type A 20.14 % 0.79858 10.50 
(52%) 

3.58 
(1%) 

3.20 
(7%) 

Type V 20.14 % 0.79858 6.93 3.63 3.47 

 413 

 414 

4.5 Indentation of a Vertical Load 415 

To provide further evaluation of the proposed model, another loading scenario is studied in this 416 

section for all the FG patterns. Fig. 15  shows the loading and boundary condition on an FG plate 417 

with the O pattern as an example.  418 

 419 

Fig. 15 The geometry, loading, and boundary conditions for the vertical indentation on an FG porous structure with porosity 420 
distribution Type O 421 

The maximum normalised displacement observed in the FG porous structures with different 422 

patterns and the predicted values by the micropolar and Cauchy continua are compared in Fig. 16. 423 

This figure shows that in all the patterns, the prediction of the micropolar theory is closer to the 424 

real porous structure compared to the Cauchy predictions. 425 

 426 
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 427 
Fig. 16 Comparison of maximum normalised displacement resulted from the vertical indentation in the porous and homogenised 428 

models for different porosity distributions of Type A, Type X, Type V, and Type O. 429 

Besides in Fig. 17, the contour of the normalised displacements for the FG porous structure with 430 

V pattern and the homogenised micropolar and Cauchy models are compared. As can be seen, the 431 

load penetration reflected in the displacement contours is better captured by the micropolar model 432 

compared to the Cauchy one. 433 

 434 
 Fig. 17 Comparison of normalised displacement contours of the porous model versus homogenised micropolar and Cauchy 435 

models for FG porous structure with porosity distribution Type V 436 

5 Case Study: FG porous design in GBR dentistry meshes 437 

From a mechanical and physiological perspective, it is important that bone scaffolds mimic the 438 

mechanical characteristics of the host bone to prevent a phenomenon known as stress shielding. 439 

Stress-shielding happens when an over-rigid implant reduces the stress in its adjacent bone. Since 440 

loading is necessary to promote bone remodelling, this could prevent bone regeneration and result 441 

in bone resorption. Conversely, an extremely flexible implant may cause undue stress on the bone, 442 

impairing the consolidation of the bone-implant interphase and ultimately resulting in the death of 443 

bone cells [74]. Therefore, based on the developed framework in the current work, the following 444 

design is suggested for the GBR mesh made from bioresorbable PLA.  445 
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By mimicking the FG natural structure of the bone, an FG structure of type O is suggested, as 446 

shown in Fig. 18, so  that the central part of the GBR mesh possesses mechanical properties close 447 

to cancellous (trabecular) bone while providing a proper occlusivity and the part near fixing areas 448 

(the screw’s location) as near as possible to cortical (compact) bone to provide required load-449 

bearing capacities.  450 

a.              b  451 
Fig. 18 a. The usual porous GBR meshes implemented with uniform porosity b. FG porous structure (Type O) design  452 

However, the experimental micropolar parameters for mandible cancellous bone are not available 453 

in the literature. Also, it should be noted that these parameters can vary depending on different 454 

factors such as the patient’s age, gender, and health status [75]. 455 

An estimate of the mechanical parameters of mandible cancellous bone is reported in Table 2 456 

retrieved from [75], [76], and considering 1111

(1 )

(1 )(1 2 )

E
A



 

−
=

+ −
 and 1122

(1 )(1 2 )

E
A



 
=

+ −
from 457 

linear elasticity for isotropic materials [77]. 458 

Table 4 Mechanical parameter data available for mandible cancellous bone adapted from [75], [76] 459 

Parameter  Value Unit 

Young’s Modulus E  0.907 GPa 

Poisson Ratio   0.3 - 

1111A   1.84 GPa 

1122A   0.79 GPa 

According to the studied configurations in the current work, pore sizes of 0.075W can provide 460 

mechanical parameters near those of the cancellous bone in Table 4. This is suggested as the pore 461 

size in the middle of the GBR mesh.  462 

For the GBR parts around the fixing area, a minimum pore size of 0.01W is suggested to allow for 463 

enough permeability for the nutrients. Considering that W is around one centimetre for dental GBR 464 

meshes, the pore size of 0.01W is in favour with the experimental observation of Gutta et al. [55], 465 

where they reported that macro-pores of more than 1 mm promote better bone regeneration [60]. 466 

However, it should be noted that the micropolar parameters corresponding to the pore size of 0.01L 467 

in a PLA porous plate are lower than that of the cortical bone. The micropolar parameters of the 468 

compact bone retrieved from an experimental report [78], [79], are presented in Table 5. However, 469 

this can be remedied by locally reinforcing the base material in these areas; a suggestion is to use 470 

nano-reinforcements such as silver nanoparticles. Introducing a nano-reinforcement like silver 471 
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nanoparticles into PLA [80] will enhance its mechanical properties [81] and endow antimicrobial 472 

features to the material, which is of great interest in GBR meshes [82]. For instance, as reported 473 

in [81], adding 21.8% weight fraction of silver nanoparticles to PLA will improve the Young’s 474 

modulus by 2.75 times, and this will roughly increase all the parameters with the same order, thus 475 

making the parameters of the porous structure with 0.01L close to the ones reported in Table 5. 476 

The full investigation of the effect of nano-reinforcement and the design of functionally graded 477 

materials (FGM) in conjugation with functionally graded porosities can be the topic of future 478 

investigations. 479 
 480 

Table 5 Micropolar stiffness matrix components for bone extracted from experimental data [2] 481 

Parameter Unit Value 

1111A  GPa 12.00 ~ 43.43 

1122A  GPa 4.00 

1212A  GPa 21.10 ~ 36.77 

1221A  GPa -13.05 ~ 2.67 

11D  kN 3.24 

 482 

6 Conclusions 483 

In the current work, non-classical micropolar and Cauchy continua are proposed to model porous 484 

plates with functionally graded distribution of porosities within the plane. A multiscale approach 485 

is developed based on the equivalence of strain energy to find the material properties of 486 

homogenous continua equivalent to heterogenous FG porous structures. To evaluate the 487 

effectiveness of the method, the mechanical response of FG porous plates with diverse porosity 488 

distributions, 'V', 'A', 'X', and 'O', and a broad range of aspect ratios is compared to the prediction 489 

of the equivalent models. To show the applicability of the developed framework, it is used to 490 

design a biomedical prothesis used in dentistry called guided bone regeneration (GBR) mesh. 491 

The main findings are summarised as follows: 492 

• The micropolar theory-based modelling can better predict the displacement distribution of 493 

the FG porous structure for all porosity patterns compared to the Cauchy-based modelling. 494 

The competence of micropolar to Cauchy theory is more prominent in case of A and X 495 

patterns.  In all cases, the prediction of micropolar theory becomes closer to the porous 496 

structure as the aspect ratio increases. 497 

• For aspect ratios less than approximately 1.5, it is important to take functional porosity into 498 

account when predicting the FG plate's mechanical response; however, in higher aspect 499 

ratios, the overall porosity plays a more important role.  500 

• As a biomedical application of the proposed modelling, it is used to suggest a GBR mesh 501 

that tries to mimic the FG natural structure of the bone. The FG porous configuration is 502 

suggested so as the central part possesses mechanical properties close to mandible 503 

cancellous (trabecular) bone to provide the proper occlusivity and the part near fixing areas 504 

provides higher stiffness.   505 

 506 

 507 
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