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A B S T R A C T   

The accumulation of dust on the surface of photovoltaic modules can reduce their performance and affect the 
cost competitiveness of this technology. This phenomenon is known as soiling and can be mitigated through 
appropriate corrective and/or preventive actions. In order to maximize its effectiveness, it is important to plan 
the soiling mitigation strategy even before the PV system is operational. This is typically done through a nearest 
neighbor approach, by estimating soiling using data from the nearest operational photovoltaic system. This work 
focuses on understanding the uncertainty related to this practice. For this purpose, the semi-variance function is 
used to study the dissimilarity between the soiling losses of two locations in California depending on their 
distance. The results show that, when the soiling loss at a nearby system is used to estimate soiling of a site, the 
uncertainty can be approximated to increase linearly at a rate of 0.08–0.10%/km up to 60 or 80 km. After this 
distance, the use of a nearest neighbor approach is no longer justified, as it produces an uncertainty as big as the 
average soiling loss of the sites in the dataset used in this study. In some conditions, uncertainties > 0% are found 
also for sites located within 25 km, meaning that even close-by systems might soil differently.   

1. Introduction 

The United Nations has included the deployment of affordable and 
clean energy among the Sustainable Development Goals for 2030 [1]. 
Photovoltaic (PV) technologies can directly convert the solar radiation 
into electricity and have experienced one of the most important growths 
among renewable energies in the last decade. Pushed by the low cost, 
the versatility and the easiness of installation, the global PV capacity has 
achieved a significant 1 TW milestone in early 2022, which is expected 
to double by 2025 [2]. 

In addition to installing new PV capacity, the road towards a more 
sustainable society and a cleaner energy market also requires maxi
mizing the performance of the existing PV power plants. Indeed, it has 
been estimated that 3 to 7% of the annual global PV energy production is 
being lost because of soiling, a reversible performance issue affecting PV 
systems worldwide [3]. It consists of the accumulation of contaminants 
on the surface of PV modules, which decreases the amount of sunlight 
converted into electricity. This energy loss directly translates into rev
enue losses, which are even worsened by the increased operations and 
maintenance (O&M) costs needed to cover the required soiling moni
toring and cleaning activities [4]. 

Soiling is commonly tackled by cleaning the PV modules. This ac
tivity, however, comes at a cost that can affect the profitability of the 
power plants. For this reason, it is important to optimize the cleaning 
schedule through appropriate soiling monitoring and/or estimation [5]. 
Soiling mitigation, however, it not just an O&M practice, but can start 
from the PV site selection and the PV system design [3]. Indeed, when a 
new PV site is selected, a correct prediction of soiling can help engineers 
to better design the system and O&M teams to plan an optimal cleaning 
schedule to mitigate these losses with minimum impact on costs [4]. 
Soiling of PV systems is generally monitored through the use of soiling 
stations. These compare the performance of a naturally soiled and a 
manually or automatically cleaned PV device [6]. Innovative optical 
sensors [7,8] have been recently launched in the market to reduce the 
costs of soiling monitoring and, compared to soiling stations, do not 
require any maintenance or reference clean cell to operate. 

Because of the uneven distribution of soiling sources around the 
plant and of the wind patterns, some areas of a PV system might expe
rience stronger soiling deposition than others [9,10]. In order to identify 
this nonuniform accumulation, more than one soiling sensor is typically 
recommended for systems of capacity ≥5 MW expected to experience 
soiling losses > 2%. Despite that, in most cases, soiling is assumed to be 
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uniformly distributed across the strings, and a single soiling loss is 
considered for the whole PV plant. 

Soiling extraction methods can be used as alternatives to sensors to 
estimate soiling trends directly from PV performance time series [11, 
12]. These do not require any specific hardware, as they identify soiling 
accumulation and cleaning events from the analysis of power output, 
irradiance, and, when available, additional parameters such as tem
perature and rain (typically measured by default at utility-scale PV 
sites). 

Nonetheless, when a PV site is not operational yet, monitoring data 
or PV performance time series are not available, and soiling needs to be 
estimated in other ways. In some cases, soiling sensors can be deployed 
at candidate PV locations before the site is selected and the PV plant is 
designed. However, a reliable campaign would require at least 6 months 
of data collection, in order to fully characterize the most soiled months, 
typically in summer. Because of this, and because of the costs associated 
with acquiring, deploying and operating stations and sensors, the 
assessment of soiling is conducted in most cases using the closest 
available data or using soiling models. For example, several authors 
have suggested to estimate soiling from particulate matter, precipitation 
and other environmental parameters [13–16] which are typically 
available in long-term datasets. However, these models have been 
generally developed using data from a limited number of sites and are 
specific to particular regions. Therefore, soiling at a potential PV site is 
still commonly estimated from either measured or extracted data 
available at nearby systems. 

In order to provide soiling information that could be used in pre
feasibility studies, a soiling map has been presented in recent years by 
the National Renewable Energy Laboratory (NREL), collecting data 
extracted through referenced techniques from 42 PV systems and 41 
soiling stations installed in the USA [17,18]. This map can be a useful 
tool to predict soiling losses at sites where soiling or PV data are not 
available. The study where it was presented showed that, by using 
spatial interpolation techniques, the data on the map can be used to 
estimate soiling at a location with coefficients of determination as high 
as 78% [18]. That study also showed that a simple method as the Nearest 
Neighbor, where the soiling loss of a site is assumed equal to that at the 
closest location with available data, can return good estimations if the 
two sites are within 50 km. Even if mentioned, the study did not detail 
how the soiling estimation quality varies in relation to the distance 
between two sites. In a different work, the correlations between monthly 
soiling accumulation rates, in %/month, at various sites and their dis
tances were extracted [19]. The results are of interest, showing a 
decreasing and non-linear relation between the correlations of the 
soiling profiles and the distances of two sites. That work, which focused 
on monthly soiling rates while the present aims to investigate annual
ized soiling losses, did not provide any quantitative information on the 
relation that could be of use for the community. The aim of the present 
study is to further investigate the uncertainty in soiling estimation based 
on the Nearest Neighbor approach, by investigating the spatial corre
lation between soiling of nearby sites. 

The results of this study can be of interest even when the afore
mentioned models are used to estimate annual, seasonal, and daily 
soiling losses from environmental variables. Indeed, even in these cases, 
experts might make use of data that are not locally sourced. For 
example, data of the MERRA-2 dataset are available on a 0.5◦ × 0.65◦

grid, which corresponds to approximately 55 km × 72 km. Alternatively, 
even ground-monitors, such as the particulate matter sensors of the U.S. 
Environmental Protection Agency (EPA) network [20], can be distrib
uted unevenly over the land and might be located several km away of the 
site of interest. Previous works have already shown that the distance 
between the PV system and the measurement location can impact the 
soiling estimation [9,19]. This work aims to identify the qualitative and 
quantitative correlation between uncertainty and distance between the 
training and the test locations. 

For all the above-mentioned reasons, it is essential to understand the 

soiling estimation uncertainty introduced by non-locally-sourced data. 
In this light, this work analyzes, using a spatial-statistical method named 
semi-variogram, the profile of soiling dissimilarity between two sites as 
a function of their distance. The result of this work is an easy and reliable 
numerical tool that the community can use to calculate the uncertainty 
on the estimation of soiling. 

2. Methodology 

2.1. Soiling data 

Soiling is commonly quantified using the soiling ratio (rs,w), a metric 
expressing the ratio between the electrical output of a soiled PV device 
and that same output in clean conditions [21]. The soiling ratio, which 
corresponds to the difference between one and the fractional power loss 
due to soiling, has a value of 100% in clean conditions and tends to 
decrease with the accumulation of soiling. The methodologies used in 
the present work to extract the soiling ratio, here expressed in terms of 
daily ratios measured over the data collection period, are detailed in 
Ref. [18]. 

Of all the sites available on the soiling map [17], the present study 
considers only the 32 sites (14 soiling stations and 18 PV systems) 
installed in California, the most densely populated region on the map. 
The sites have soiling ratios ranging between 93% and 100%, with an 
average of 96%. The average nearest-neighbor distance is 39 km, while 
the furthest site is 94 km away from its neighbor. 

The histogram in Fig. 1 shows the distribution of the distances be
tween each pair of data points. It should be highlighted that each site is 
used in combination with all the other data points to generate the 
distance-dependent relation. So, the 32 sites produced 992 (32×31) data 
points. The average and median distances between sites in the dataset 
are 339 km and 300 km, with the closest sites being 5 km apart, and the 
maximum distance being 926 km instead. 

2.2. Spatial analysis 

This study is based on the analysis of a semi-variogram, a spatial- 
statistical function that measures the spatial autocorrelation between a 
pair of points located at a certain distance. It compares the similarity 
between pairs of points at a given distance and direction apart (the lag) 
and expresses mathematically the average rate of change of a property 
with separating distance. In simple words, it is assumed that two loca
tions nearby are more likely to have similar features than farther apart 
locations. The difference between the values of a specific feature (the 
soiling loss, in this case) of two given locations is therefore depicted as a 
function that increases with the distance. This function reaches a 
maximum value at a certain distance, above which there is no longer 
spatial autocorrelation. 

The semi-variogram is expressed as the half of the average of the 

Fig. 1. Distribution of the distances between each pair of data points in the 
dataset. A 10 km bin size has been considered. 

L. Micheli and M. Muller                                                                                                                                                                                                                      



e-Prime - Advances in Electrical Engineering, Electronics and Energy 3 (2023) 100120

3

square differences between each pair of points separated by a distance h, 
and can be experimentally calculated by using the following expression: 

γ(lag) =
1

2⋅N(lag)
⋅
∑N(lag)

i=1

[
rs,w,i1 − rs,w,i2

]2 (1)  

where rs,w,i1 and rs,w,i2 are the soiling ratios of each pair of data points 
located at a distance within lag − h

2 and lag + h
2 of each other. N(lag) is the 

number of pairs of data points in this distance range. The lags are 
incremented at intervals of fixed dimension (lag size, expressed in km), 
whose value will be discussed in the next section. The semi-variance is 
calculated for each lag considering all the pairs of data points located at 
distances falling within the range lag − h

2 to lag+ h
2. The ±h

2 tolerance 
allows to use in the calculation all the available pairs of data points, and 
to employ each pair once and in only one lag. The first data point is 
calculated in the range from 0 km to lag size. 

A semi-variogram of the Californian soiling data collected in the 
NREL soiling map is shown in Fig. 2. In this case, the data points, plotted 
as black markers, are calculated for lag sizes of 25 km, up to a maximum 
distance of 450 km, which corresponds to about half of the maximum 
distance between a pair of data points in the dataset. The 25 km lag size 
makes it possible to include at least 10 data points per lag. 

The experimental semi-variograms can be modelled by using 
different equations [22]. In the present work, three common fitting 
functions have been considered, expressed by the equations reported in 
Table 1: Exponential, Gaussian, and Spherical, all plotted in Fig. 2. Each 
semi-variogram can be described through certain characteristics, 
labeled in the right plot of Fig. 2:  

• Sill (c + c0): maximum value approached by the semi-variogram.  
• Practical Range (a95): the distance at which the function achieves 

95% of the sill.  
• Actual Range (a): the distance at which the function reaches the sill. 

This is not available for asymptotical functions (i.e., the exponential 
and the gaussian models).  

• Nugget (c0): the value of the function when it intercepts the y-axis. 

In this work, the curve fitting has been performed through the cur
ve_fit function in the SciPy library for Python 3 [23]. The initial guesses 
at each minimization have been set as shown in Table 2, and only values 
≥ 0 have been accepted for each variable. 

The quality of the fit of each model has been assessed by calculating 

the coefficient of determination (R2) and the root-mean-square-error 
(RMSE) of the experimental and modelled semi-variance. The coeffi
cient of determination has a value of 100% if a linear relation, with no 
error, exists between the modelled values and the experimental values. 
The root-mean-square-error represents the square root of the quadratic 
difference between each pair of measured and modelled values, and it is 
expressed in the same units as the soiling ratio (%). 

3. Results and discussion 

3.1. Experimental semi-variogram 

The equations describing the three functions used to model the semi- 
variograms in Fig. 2, as well as the values of each parameter, are re
ported in Table 1, along with the R2 and RMSE describing the quality of 
the fit. The models return R2 between 48 and 55% (and p-value < 0.05), 
with the best results achieved with the gaussian and spherical models. 

All the models tend to a maximum value (sill, labeled as c + c0) of 
4.3%. The spherical model reaches it at a distance of 72.5 km (actual 
range, labelled as a). The exponential and the gaussian models, which 
are based on asymptotical functions, reach 95% of the sill at a distance 
named practical range, here labelled as a95. In order to consistently 
compare the models, the practical range of the spherical model, corre
sponding to the distance at which the model achieve 95% of the sill, has 
also been studied. All the models achieve the practical a95 at distances 
between 58 km and 77 km. This means that, if the closest data point is 
located further than this practical range, the estimation of soiling would 
be subject to the highest uncertainty and would return non-trustworthy 
results, as the uncertainty would be as big as the average soiling loss. For 
this reason, the application of other spatial interpolation methods 
should be preferred in these cases [18]. 

In addition, it is of interest to evaluate the value of the nugget for the 
various functions. It should be reinstated that the fitting procedure is 
allowed to return c0 ≥ 0 for all the functions. As it can be seen, however, 
while the exponential is fitted to start from zero, the gaussian and 
spherical experimental semi-variograms are fitted to start from a nugget 
(c0) of 1.0% and 0.2% respectively. This suggests that even two systems 
located close-by may soil differently, because of local tilling, harvesting 
or building activities, or because of the emissions of factories or other 
pollutant sources that might affect only PV modules located in proximity 
[9,19]. Moreover, different geometries or orientations of the modules 
within the same site can lead to different accumulations of soiling. Also, 

Fig. 2. Semi-variograms of the data points located in California collected on the NREL soiling map, obtained for lag intervals of 25 km and a maximum distance of 
450 km (left plot). On the right, a zoom of the same semi-variograms is reported. The continuous lines represent the best fit returned by the three models. The dashed 
lines show the 95% of the sill (i.e., 95% of the maximum value approached by the function) and the practical range (i.e., distance at which the function reaches the 
95% of the sill) for each model. The green dotted line shows the sill (i.e., maximum value achieved by the spherical model) and the actual range (i.e., distance at 
which the function reaches the sill) of the spherical model. 
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the nugget probably accounts for the uncertainty in extracting soiling 
and some potential non-uniform soiling distribution across the PV plants 
[9,19]. Therefore, system designers and O&M teams should always 
consider a minimum uncertainty when estimating soiling for a site even 
if using data from remarkably close and similar locations. The limited 
number of sites available for this study does not allow further investigate 
the spatial correlations of soiling at the shortest distances. 

3.2. Limits and confidence interval 

The reliability and the shape of the semi-variogram can be affected 
by a number of factors [22], such as the modeling method, the lag size, 
the maximum distance, and the number of points. All these factors are 
the focus of the present section where we aim to discuss how their 
variation might affect the semi-variogram. 

First, it is worth discussing the modeling techniques used to fit the 
experimental variogram. The results reported in Table 1, obtained by 
modeling a semi-variogram produced for lags of 25 km and a maximum 
distance of 450 km, showed that the gaussian and the spherical models 
return the best curves, with the highest and similar R2. The exponential 
model is instead the worst performing approach, because it seems to 
overestimate the semi-variance at shorter distances and to underesti
mate it at higher distances, returning the longest practical range among 
the three models. The exponential and the gaussian models return the 
same errors. The main difference between the two models is the profile 
at extremely low distances, with the gaussian model slowly rising at 
short distances. 

In order to understand the reliability of the three models, the same 
analysis conducted previously has been repeated by using shorter 
maximum distance (100 km) and lag interval (20 km) to highlight the 
behaviors of the three curves at short distances. The results of the 
analysis are shown in Fig. 3 and reported in Table 3. The three models 
return good fits, with R2 > 97%. The spherical model is still found to be 
slightly better performing than the gaussian one. Therefore, all the re
sults reported in the rest of this paper are those obtained using the 
spherical fitting. 

In addition to that, it is interesting to note that, within the practical 
range, the shape of the semi-variograms in Figs. 2 and 3 can be 
approximated with a straight line (Fig. 4). The slope of the line quan
tifies the raise in uncertainty in the estimation of soiling depending on 
the distance between the investigated site and the known data point. If 
available, the community could use that slope to easily determine the 
uncertainty in the estimation of soiling when the nearest neighbor 
approach is used. For the experimental variogram in Fig. 2, the slope of 
the best fitting line for the points within the actual range of the spherical 
model (72.5 km) is 0.08%/km, with R2 of 87%. This means that, within 
the practical range, the uncertainty on the estimation of soiling increases 

Table 1 
Equations used to model the semi-variogram in Fig. 2, for lag size of 25 km, maximum distance of 450 km. The results of each model are also shown and are expressed 
through the actual range (a), the practical range (a95), the nugget (c0), the sill (c + c0), the coefficient of determination (R2) and the root-mean-square-error (RMSE).  

Model Equation a [km] a95 [km] c0 [%] c + c0 [%] R2 [%] RMSE [%] 

Exponential c⋅(1 − e− 3⋅h/a95 )+ c0 N.A. 76.8 0.0 4.3 48.5 0.705 
Gaussian c⋅(1 − e− 3⋅h2/a2

95 )+ c0 N.A. 66.5 1.0 4.3 54.0 0.664 
Spherical 

c⋅
(3⋅h

2⋅a
−

1
2

⋅
(

h
a

)3
)

+ c0 if h ≤ a 

c + c0 if h>a 

72.5 58.4 0.2 4.3 55.0 0.656  

Table 2 
Initial guesses for minimization of a, a95, c and c0.  

a [km] (Spherical) 
a95 [km] (Exponential, Gaussian) 

c [%] c0 [%] 

Lag size 4.0 0.5  

Fig. 3. Semi-variograms of the data points on the map, obtained for lag in
tervals of 20 km and a maximum distance of 100 km. 

Table 3 
Results from modeling the semi-variogram, for lag of 20 km, maximum distance 
of 100 km.  

Model a  
[km] 

a95 [km] c0 [%] c + c0 [%] R2 [%] RMSE 
[%] 

Exponential N.A. 249.4 1.1 6.6 98.4 0.135 
Gaussian N.A. 84.8 1.7 4.7 97.6 0.166 
Spherical 110.1 85.7 1.3 4.9 98.1 0.145  

Fig. 4. Line fitting for the semi-variograms within the practical range. On the 
left, the semi-variogram shown in Fig. 2 obtained by considering lags of 25 km 
and a maximum distance of 450 km (slope: 0.08%/km, R2: 87.4%). On the 
right, the semi-variogram shown in Fig. 3 obtained by considering lags of 20 km 
and a maximum distance of 100 km (slope: 0.04%/km, R2: 96.5%). 
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by 0.8% for each 10 km of distance from the closest available data point. 
For the experimental variogram in Fig. 3, instead, the slope is 0.04%/ 
km, with R2 of 97%. 

As shown, the results of the fit can change depending on the pa
rameters in input. So, in order to understand the robustness of the pa
rameters found in Table 1 to the user-inputs, these have been 
recalculated by varying the lag size from 15 to 30 km, at steps of 5 km. 
The results are listed in Table 4. It can be seen that the sill is found to be 
steady at 4.2% to 4.3%. The curve always reaches the actual range be
tween 72 and 83 km and the practical range between 54 and 65 km, 
keeping a slope between 0.04 and 0.08%/km before that. 

The fit for a lag size of 30 km each has a R2 of 100% (Table 4) because 
there are only two data points available for the line fit (the practical 
range is less than twice the distance of the lags). For this reason, lags of 
30 km and above have not been further considered. The 25 km lag has 
been preferred, as it is the maximum lag size with at least three data 
points within the practical range (12.5 km, 37.0 km, and 62.5 km). 
Ideally, however, if more points were available, it would be important to 
further decrease the lag size in order to model even better the shorter 
distances. 

If the variation in the lag interval is found to have a limited effect on 
the shape of the curve, changing the maximum distance does vary the 
value of the sill, making it range between 4.2 and 5.0% (Fig. 5). The 
most consistent R2 are obtained for maximum lag distances between 150 
and 450 km, where the sill is limited between 4.2 and 4.5% and achieved 
at an actual range between 71 and 75 km (with a95 of 57 to 60 km). On 
the other hand, the slope of a linear approximation is found to be 
consistent across the maximum distance range, with a value of 0.08%/ 
km, while the nugget ranges between 0.1% and 0.3%. 

So far, the analysis has shown that both the lag size and the 
maximum distance can have an effect on the shape of the semi- 
variogram. The maximum distance seems to have mainly an effect on 
the sill value, which we also expect to change with the addition of new 
data points with higher soiling losses. On the other hand, the lag interval 
seems instead to have a limited, but still visible, impact on the nugget 
and on the slope of the curve, which we believe are the parameters of 
most interest for the community. 

One of the main limits of the current investigation is represented by 
the sample size, which consists of 32 data points. In order to investigate 
the impact of the number of data points on the results, we repeated the 
analysis by considering subsets containing only 28 randomly selected 
sites (87.5% of the total). The analysis was repeated 35,960 times, to 
allow for all the combinations of sites to be accounted at list once. For 
each lag, the median and the extremes of the confidence interval (set at 
5% and 95%) have been calculated. The best fits of the median and the 
extreme data series have then been calculated. As it can be seen in Fig. 6, 
the sill strongly changes depending on the data in input, while the actual 
and the practical ranges are fairly insensitive to them (60 km to 63 km, 
and 74 km to 78 km respectively). The nugget is 0.0% and the slopes 
ranges between 0.08% and 0.12%. 

The results shown in Fig. 6 suggest that the addition of more sites to 
the map might vary the values of the sill and might also have an effect on 
the nugget and on the slope. The results of this work should therefore be 
considered valid for the current set of data points, located all in Cali
fornia and available on the NREL soiling map, and should be repeated in 

future with a larger number of sites and for different regions. For the 
current dataset, an uncertainty of 0.10% per km of distance from the 
closest data point should be considered when soiling at a site is esti
mated using a nearest neighbor approach. The maximum uncertainty is 
achieved at 74 km – 78 km and 95% of the sill at 60 km – 64 km. This 
confirms that, if no soiling data are available within these radii, other 
spatial interpolation techniques should be taken into consideration [18]. 

Overall, the results of this work show how the uncertainty increases 
with the distance from the soiling measurement. They also warn PV 
owners, designers, and operators that nearby sites might soil differently 
and establish preliminary boundaries for a reliable application of a 
nearest neighbor approach. However, even if the present dataset is one 
of the largest available on PV soiling, it is limited from a statistical point 
of view both in terms of population and covered area. For this reason, 
more studies are strongly recommended in order to (i) increase the 
number of data points and (ii) diversify the investigated climates and 
conditions. Moreover, a larger number of data will allow filtering sites 
by specific characteristics, such as tracking mechanism or land cover for 
example. Previous works have shown indeed that the accuracy of soiling 

Table 4 
Results obtained for different lags at a maximum distance of 450 km. The coefficients of determination marked with an asterisk (“*”) are those obtained by fitting only 
two data points and therefore should be discarded.  

Lag  
[km] 

R2 

[%] 
RMSE  
[%] 

a 
[km] 

a95 

[km] 
c0  
[%] 

Sill  
[%] 

Slope of line fit  
[%/km] 

R2 of line fit  
[%] 

15 21.5 1.29 82.6 65.2 0.8 4.3 0.05 76.5 
20 25.5 0.98 79.3 61.7 1.2 4.2 0.04 94.9 
25 55.0 0.66 72.5 58.4 0.2 4.3 0.08 87.4 
30 51.5 0.67 66.9 54.0 0.2 4.3 0.07 100.0*  

Fig. 5. Spherical semi-variograms for different maximum distances at lags of 
25 km and a maximum distance of 450 km. 

Fig. 6. Spherical models of the median and the confidence interval semi- 
variograms at lags of 25 km of 87.5% of the sites after 35,960 iterations. 
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estimation through spatial interpolation increases if only sites with 
similar features are considered [18]. For this reason, one can expect the 
uncertainty rate to decrease if only similar PV systems are employed for 
the estimation. 

4. Conclusions 

A statistical analysis of the spatial correlation of the Californian 
soiling data points collected on the NREL soiling map is presented here. 
A semi-variogram function is computed to understand the accuracy of 
estimating the soiling at a site through the nearest neighbor approach (i. 
e., assuming the soiling loss equal to the closest soiling measurement) 
depending on the distances between the sites. 

It is found that the experimental semi-variogram of the 32 PV soiling 
data investigated can be modelled using a spherical function that ach
ieves a maximum value of 4.4% (sill) after 74 km (actual range). The 
curve rapidly grows until a distance of 60 km at which it achieves a value 
equal to 95% of the sill (practical range). Within that distance, the semi- 
variogram can be approximated to a line of slope 0.08%/km. After that 
distance, the estimation is exposed to the maximum uncertainty. This 
means that, in lack of soiling data available within 60 km of the inves
tigated site, the estimation of soiling should not be conducted by using 
the nearest neighbor approach, but potentially through an alternative 
spatial interpolation method. Although, even if available, it should be 
noted that, for a group of sites with an average soiling loss of 4%, esti
mating soiling from a single site located at 25 km or 50 km would be 
subject to absolute uncertainties of 2% or 4% respectively. 

In some cases, the semi-variogram intercepts the y-axis at a value 
greater than 0%, suggesting, in agreement with previous literature, that 
PV systems, even if located within the same sites, can soil differently due 
to the exponential spatial decay of pollutants emitted from local sources 
or to different geometries and orientations of the modules. 

The experimental equation used to fit the semi-variogram is reported 
in the text, in order to help PV investors and O&M teams to better un
derstand the uncertainty in their soiling predictions. It is important to 
highlight that the study also shows how the choice of the input data 
might slightly affect the results of the analysis. Despite that, the actual 
and the practical ranges are found to be consistent if only randomly 
selected subsets of the data points are considered, with values between 
60 and 65 km, and between 74 and 80 km, respectively. The slope of the 
line fit is found to vary between 0.08 and 0.12% per km depending on 
the data in input. This suggests that the addition of new sites might lead 
to a variation of the results and therefore, the conclusions of this work 
should therefore be considered valid only for the investigated dataset, 
restricted to only Californian sites. The analysis should be repeated 
when more data points from climatically different locations are 
available. 

CRediT authorship contribution statement 

Leonardo Micheli: Conceptualization, Methodology, Software, 
Investigation, Visualization, Formal analysis, Writing – original draft. 
Matthew Muller: Conceptualization, Methodology, Validation, Writing 
– review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data are available on the NREL soiling map (https://www.nrel.gov/ 
pv/soiling.html) 

Acknowledgments 

The work of Leonardo Micheli was supported by Sole4PV, a project 
funded by the Italian Ministry of University and Research under the 
2019 «Rita Levi Montalcini» Program for Young Researchers. 

This work was in part authored by Alliance for Sustainable Energy, 
LLC, the manager and operator of the National Renewable Energy 
Laboratory for the U.S. Department of Energy (DOE) under Contract No. 
DE-AC36-08GO28308. Funding provided by the U.S. Department of 
Energy’s Office of Energy Efficiency and Renewable Energy (EERE) 
under Solar Energy Technologies Office (SETO) Agreement Number 
38258. The views expressed in the article do not necessarily represent 
the views of the DOE or the U.S. Government. The U.S. Government 
retains and the publisher, by accepting the article for publication, ac
knowledges that the U.S. Government retains a nonexclusive, paid-up, 
irrevocable, worldwide license to publish or reproduce the published 
form of this work, or allow others to do so, for U.S. Government 
purposes. 

References 

[1] Department of Economic and Social Affairs, The sustainable development goals 
report, New York, NY, 2016. 10.1177/000331979004100307. 

[2] SolarPower Europe, Global market outlook for solar power 2022-2026, 2022. 
[3] K. Ilse, L. Micheli, B.W. Figgis, K. Lange, D. Daßler, H. Hanifi, F. Wolfertstetter, 

V. Naumann, C. Hagendorf, R. Gottschalg, J. Bagdahn, Techno-economic 
assessment of soiling losses and mitigation strategies for solar power generation, 
Joule 3 (2019) 2303–2321, https://doi.org/10.1016/j.joule.2019.08.019. 

[4] R.K. Jones, A. Baras, A. Al Saeeri, A. Al Qahtani, A.O. Al Amoudi, Y. Al Shaya, 
M. Alodan, S.A. Al-Hsaien, Optimized cleaning cost and schedule based on 
observed soiling conditions for photovoltaic plants in Central Saudi Arabia, IEEE J. 
Photovolt. 6 (2016) 730–738, https://doi.org/10.1109/JPHOTOV.2016.2535308. 

[5] E. Urrejola, J. Antonanzas, P. Ayala, M. Salgado, G. Ramírez-Sagner, C. Cortés, 
A. Pino, R. Escobar, Effect of soiling and sunlight exposure on the performance 
ratio of photovoltaic technologies in Santiago, Chile, Energy Convers. Manag. 114 
(2016) 338–347, https://doi.org/10.1016/j.enconman.2016.02.016. 

[6] M. Gostein, T. Duster, C. Thuman, Accurately measuring PV soiling losses with 
soiling station employing module power measurements, in: Proceedings of the 
42nd IEEE Conference on Photovoltaic Specialists, 2015. 

[7] M. Korevaar, J. Mes, P. Nepal, G. Snijders, M.X. van, Novel soiling detection system 
for solar panels, in: Proceedings of the 33rd European Photovoltaic Solar Energy 
Conference and Exhibition, 2017, https://doi.org/10.4229/EUPVSEC20172017- 
6BV.2.11. 

[8] M. Korevaar, T. Bergmans, J. Mes, X. van Mechelen, A.A. Merrouni, 
F. Wolfertstetter, S. Wilbert, Field tests of soiling detection system for pv modules, 
in: Proceedings of the 36th EU PVSEC, Marseille, France, 2019. 

[9] M. Gostein, K. Passow, M.G. Deceglie, L. Micheli, B. Stueve, Local Variability in PV 
Soiling Rate, in: Proceedings of the 35th European Photovoltaic Solar Energy 
Conference and Exhibition, Bruxelles, Belgium, 2018, pp. 1979–1983. 

[10] V. Etyemezian, G. Nikolich, J.A. Gillies, Mean flow through utility scale solar 
facilities and preliminary insights on dust impacts, J. Wind Eng. Ind. Aerodyn. 162 
(2017) 45–56, https://doi.org/10.1016/j.jweia.2017.01.001. 

[11] A. Kimber, L. Mitchell, S. Nogradi, H. Wenger, The effect of soiling on large grid- 
connected photovoltaic systems in California and the Southwest Region of the 
United States, in: Proceedings of the IEEE 4th World Conference on Photovoltaic 
Energy Conference, 2006, pp. 2391–2395. 

[12] A. Skomedal, M.G. Deceglie, Combined estimation of degradation and soiling losses 
in photovoltaic systems, IEEE J. Photovolt. 10 (2020) 1788–1796, https://doi.org/ 
10.1109/jphotov.2020.3018219. 

[13] M. Coello, L. Boyle, Simple model for predicting time series soiling of photovoltaic 
panels, IEEE J. Photovolt. 9 (2019) 1382–1387, https://doi.org/10.1109/ 
JPHOTOV.2019.2919628. 

[14] S. You, Y.J. Lim, Y. Dai, C.H. Wang, On the temporal modelling of solar 
photovoltaic soiling: energy and economic impacts in seven cities, Appl. Energy 
228 (2018) 1136–1146, https://doi.org/10.1016/j.apenergy.2018.07.020. 

[15] M.H. Bergin, C. Ghoroi, D. Dixit, J.J. Schauer, D.T. Shindell, Large reductions in 
solar energy production due to dust and particulate air pollution, Environ. Sci. 
Technol. Lett. 4 (2017) 339–344, https://doi.org/10.1021/acs.estlett.7b00197. 

[16] W. Javed, B. Guo, B. Figgis, Modeling of photovoltaic soiling loss as a function of 
environmental variables, Sol. Energy 157 (2017) 397–407, https://doi.org/ 
10.1016/j.solener.2017.08.046. 

[17] National Renewable Energy Laboratory, Photovoltaic modules soiling map, (2018). 
https://www.nrel.gov/pv/soiling.html (accessed May 18, 2018). 

[18] L. Micheli, M.G. Deceglie, M. Muller, Mapping photovoltaic soiling using spatial 
interpolation techniques, IEEE J. Photovolt. 9 (2019) 272–277, https://doi.org/ 
10.1109/JPHOTOV.2018.2872548. 

[19] M. Gostein, K. Passow, M.G. Deceglie, L. Micheli, B. Stueve, Local variability in PV 
soiling rate, IEEE (Ed.), in: Proceedings of the 7th World Conference on 
Pholtovoltaic Energy Conversion, Waikoloa, HI, 2018, pp. 3421–3425. 

L. Micheli and M. Muller                                                                                                                                                                                                                      

https://doi.org/10.1016/j.joule.2019.08.019
https://doi.org/10.1109/JPHOTOV.2016.2535308
https://doi.org/10.1016/j.enconman.2016.02.016
http://refhub.elsevier.com/S2772-6711(23)00015-3/sbref0006
http://refhub.elsevier.com/S2772-6711(23)00015-3/sbref0006
http://refhub.elsevier.com/S2772-6711(23)00015-3/sbref0006
https://doi.org/10.4229/EUPVSEC20172017-6BV.2.11
https://doi.org/10.4229/EUPVSEC20172017-6BV.2.11
http://refhub.elsevier.com/S2772-6711(23)00015-3/sbref0008
http://refhub.elsevier.com/S2772-6711(23)00015-3/sbref0008
http://refhub.elsevier.com/S2772-6711(23)00015-3/sbref0008
http://refhub.elsevier.com/S2772-6711(23)00015-3/sbref0009
http://refhub.elsevier.com/S2772-6711(23)00015-3/sbref0009
http://refhub.elsevier.com/S2772-6711(23)00015-3/sbref0009
https://doi.org/10.1016/j.jweia.2017.01.001
http://refhub.elsevier.com/S2772-6711(23)00015-3/sbref0011
http://refhub.elsevier.com/S2772-6711(23)00015-3/sbref0011
http://refhub.elsevier.com/S2772-6711(23)00015-3/sbref0011
http://refhub.elsevier.com/S2772-6711(23)00015-3/sbref0011
https://doi.org/10.1109/jphotov.2020.3018219
https://doi.org/10.1109/jphotov.2020.3018219
https://doi.org/10.1109/JPHOTOV.2019.2919628
https://doi.org/10.1109/JPHOTOV.2019.2919628
https://doi.org/10.1016/j.apenergy.2018.07.020
https://doi.org/10.1021/acs.estlett.7b00197
https://doi.org/10.1016/j.solener.2017.08.046
https://doi.org/10.1016/j.solener.2017.08.046
https://www.nrel.gov/pv/soiling.html
https://doi.org/10.1109/JPHOTOV.2018.2872548
https://doi.org/10.1109/JPHOTOV.2018.2872548
http://refhub.elsevier.com/S2772-6711(23)00015-3/sbref0019
http://refhub.elsevier.com/S2772-6711(23)00015-3/sbref0019
http://refhub.elsevier.com/S2772-6711(23)00015-3/sbref0019


e-Prime - Advances in Electrical Engineering, Electronics and Energy 3 (2023) 100120

7

[20] US Environmental Protection Agency, Air quality system data mart [internet 
database], (n.d.). https://www.epa.gov/airdata (accessed June 1, 2021). 

[21] International Electrotechnical Commission, Photovoltaic system performance – 
Part 1: monitoring (IEC 61724-1, Edition 1.0, 2017-03), (2017). 

[22] M.A. Oliver, R. Webster, A tutorial guide to geostatistics: computing and modelling 
variograms and kriging, Catena 113 (2014) 56–69, https://doi.org/10.1016/j. 
catena.2013.09.006. 

[23] E. Jones, E. Oliphant, P. Peterson, et al., SciPy: open source scientific tools for 
python, (2001). http://www.scipy.org/.  

Dr. Leonardo Micheli is a “Rita Levi Montalcini” Assistant 
Professor (RTDB) at Sapienza University of Rome, Italy. He 
graduated in 2015 with a PhD in Renewable Energy from the 
University of Exeter, UK. His current research interests include 
the monitoring, the analysis and the prediction of photovoltaic 
(PV) performance, and the optimization of PV loss mitigation 
strategies.  

Dr. Matthew Muller is an Engineer within the Photovoltaic 
Performance and Reliability group of the National Renewable 
Energy Laboratory (NREL), CO, USA. In 2021, he graduated 
with a PhD in Renewable Energy from the University of Jaén, 
Spain. He has 15 years of experience working on photovoltaics 
and concentrator photovoltaics. 

L. Micheli and M. Muller                                                                                                                                                                                                                      

https://www.epa.gov/airdata
https://doi.org/10.1016/j.catena.2013.09.006
https://doi.org/10.1016/j.catena.2013.09.006
http://www.scipy.org/

	On the uncertainty of estimating photovoltaic soiling using nearby soiling data
	1 Introduction
	2 Methodology
	2.1 Soiling data
	2.2 Spatial analysis

	3 Results and discussion
	3.1 Experimental semi-variogram
	3.2 Limits and confidence interval

	4 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


