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Abstract
Airport runways, radio spectrum, and hospital beds are resources with capacity limits
used to provide multiple services with specific capacity requirements in separate mar-
kets, which contribute to recover capacity investment costs. A welfare-maximizing
and (possibly) budget-constrained firm, whose operating costs significantly increase
as total capacity use presses against capacity, chooses prices and capacity. When the
equilibrium capacity is reached, second-best Ramsey prices must be adjusted, and
mark-ups on marginal costs may be higher for services with higher demand elastic-
ities, if they intensively use capacity. Moreover, for a given output vector, the firm
invests more than in first best. Instead, the equilibrium capacity may be first best
when there is excess capacity to reduce operating costs and thus improve welfare. Our
model can be used as a benchmark to evaluate the efficiency of market mechanisms
for resource allocation and pricing, or when market mechanisms are not adopted.

Keywords Ramsey pricing · Capacity limit · Capacity requirements ·
Capacity investment

JEL Classification L51 · L90 · D42 · D45

1 Introduction

Airport runways, railway tracks, radio spectrum, and hospital beds are notable exam-
ples of resources with alternative uses that may be capacity constrained. This means
that, if capacity is allocated to a given service, then it is not available to others, where
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services have different capacity requirements.1 Moreover, an increase in total capacity
use that presses against available capacity imposes a substantial increase in operating
costs on the resource owner to avoid that (perceived) service quality declines.2 Finally,
deploying these resources, or enjoying rights of use, involves huge investments that
entail fixed sunk costs, and the resource owner may be budget constrained. Capacity
investment costs are recovered by offering various services in separate markets with
different demands.

In this framework, we study two related issues. First, which prices determine the
optimal capacity allocation to each service? Second, what is the optimal capacity level
consistent with such prices?

The main novelty of this paper is that there are multiple services with different
capacity requirements that are competing to use the resource capacity, which may be
limited, and are contributing to recover capacity costs. We develop a simple model
where awelfare-maximizing and (possibly) budget-constrainedfirm invests in capacity
to serve markets with independent demands.

There are two main findings. First, for a given capacity, the equilibrium prices of
services may require combining the logic of the ‘inverse elasticity rule’ typical of
Ramsey pricing (Baumol & Bradford, 1970) with the need to signal that capacity is
fully used. In such a case, second-best Ramsey prices must be adjusted, and (relative)
mark-ups overmarginal operating costsmay be higher for serviceswith higher demand
elasticities, as long as they use capacity more intensively than other services.

Second, for a given (feasible) output vector, when the equilibrium capacity is
reached the firm invests more than in first best, at a level where the marginal cost
of capacity is greater than the marginal decrease in operating costs as capacity rises.
Instead, the equilibrium capacity level may be first best when it is not reached, and
excess capacity serves to reduce operating costs and thus improve welfare.

Our model relies on the principles of Administered Incentive Pricing (AIP), which
has been applied to induce an efficient use of radio spectrum (Ofcom, 2010). AIP calls
for setting regulated charges that reflect the opportunity cost of the scarce resource, by
taking account of alternative uses. To our knowledge, this paper is the first theoretical
attempt to find efficient administered incentive prices.

This paper is organized as follows. Section 2 reviews the relevant literature.
Section 3 presents the model and analyzes the results. Section 4 concludes and dis-
cusses policy implications.

1 At any given time, a capacity-constrained airport runway (railway track) serves one out of many possible
markets (e.g. local versus long-distance trips), where the various aircrafts (trains) employed have different
capacity needs. As to radio spectrum, technological innovation has made it possible for frequency bands
traditionally reserved to terrestrial television to be adopted for delivering wireless broadband services.
Hospital beds can be used for inpatient stays due to different medical treatments (e.g. there are critical care
beds for heart attacks and intensive care beds for respiratory failure).
2 In communications, as traffic grows energy consumption increases considerably due to retransmissions
of lost multimedia packets, and since additional hardware devices must be turned on. Rail operators may
have to add wagons to trains in response to a rise in travel demand. When an increase in hospital stays
insists on intensive care units, extra machines must be rented, and personnel must work more overtime.
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2 Literature review

Ramsey pricing has been widely used to allocate and regulate resources when it is
critical to recover investment costs (i.e. marginal cost pricing creates a deficit), as
in multiproduct natural monopolies (see e.g. Baumol & Bradford, 1970).3 The basic
framework has been extended to study the impact of external effects such as network
externalities in communications (see e.g. Mitchell & Vogelsang 1991) and externality
costs in transport, including congestion (see e.g. Oum & Tretheway, 1988).

While these generalizations relate to the demand side, we study how the Ramsey
rule must be adjusted due to imperfections on the supply side (such as inelastic supply)
to allocate resources with capacity limits to multiple services with different capacity
requirements.4

Classical peak-loadmodels consider capacity-constrained resources, but production
takes place under constant marginal costs (see e.g. Crew et al., 1995). Mohring (1970)
assumes increasing returns and finds Ramsey-like equilibrium prices in each demand
period. Bailey and White (1974) show that the Ramsey peak price may be less than
the off-peak price. Jordan (1983) finds that users with different capacity needs should
pay specific capacity charges independent of the demand period. Despite apparent
similarities, the peak-load problem is inherently different fromours, since peak andoff-
peak demands are not competing for available capacity.5 As such, peak-load models
ignore the issue of alternative uses of the capacity-constrained resource, which is the
focus of our analysis.

Finally, a long-standing question in road pricing and investment (see e.g. Lindsey
2012) is that efficient road usage calls formarginal-cost pricing, while paying for roads
requires pricing at average cost. Mohring (1970) notes that, with a deficit constraint
and a single toll for road users, the equilibrium capacity might be a level at which
marginal benefits are greater than marginal costs of capacity. Generally, in this litera-
ture the resource is not capacity constrained. We add to these papers by including an
endogenous capacity limit.

3 Model and results

Consider a resourcemanaged by a public (regulated private) firm that provides services
in n (n > 1) markets with independent demands.6 Let pi (qi ) be the inverse demand
curve in market i (i � 1, . . . , n), where pi and qi are respectively the price and
quantity of service i . Let S(q) be the gross consumer surplus for the output vector
q � (q1, . . . , qn), with ∂S(q)/∂qi � pi .

3 The theory of public enterprise pricing has also been used to determine optimal prices for hospitals (see
Harris, 1979).
4 Likewise, Holguin-Veras and Jara-Diaz (1999) deal with priority systems in seaports, but they abstract
from capacity investment.
5 Indeed, there is one capacity constraint on the output level produced in each demand period, instead of a
single capacity constraint on the total output produced in both periods.
6 See e.g. Mohring (1970) on the form of utility functions that are consistent with the assumption of
independent demands.

123



Optimal pricing and investment for resources with... 225

We assume that each service makes a constant marginal use of resource capacity
K . Let φi (φi > 0) be the marginal capacity use by service i (i � 1, . . . , n), namely,
the capacity units needed to obtain one unit of service i . Thus,

∑n
i�1φi qi is the total

capacity use to supply the output vector q.7 There is a capacity limit (endogenously
determined) for capacity use, so that

∑n
i�1φi qi ≤ K . When capacity is reached, the

resource is capacity constrained.
Let C(q, K ) � C I (K ) + C

O
(q, K ) be the total cost of providing the output vector

q with capacity K , which is additively separable in two terms, namely, capacity invest-
ment costs C I (K ) and operating costs CO(q, K ).8 Let MCI � ∂C I (K )/∂K be the
marginal cost of capacity investment, with MCI > 0. Let MCO

i � ∂CO(q, K )/∂qi
be the marginal operating cost of service i , with MCO

i > 0.
We posit that an increase in total capacity use (due to a higher volume of services),

which presses against available capacity, imposes significant additional operating
costs on the firm to avoid that (perceived) service quality declines.9 It follows that
∂CO(q, K )/∂K < 0. Moreover, the higher the total capacity use relative to avail-
able capacity, the larger the decrease in operating costs as capacity rises. A sufficient
condition for this to occur is ∂2CO(q, K )/∂K∂qi < 0 (i � 1, . . . , n).10

Let W (q, K ) and π(q, K ) respectively be the social welfare and profit functions.
The firm chooses capacity and output levels to maximize welfare, subject to a budget
and a capacity constraint:

max
q,K

W (q, K ) � S(q) − C(q, K )

s.t . π(q, K ) �
∑n

i�1
pi (qi )qi − C(q, K ) ≥ 0

∑n

i�1
φi qi ≤ K

(1)

Let λB and λK (λB ≥ 0, λK ≥ 0) be the Karush-Kuhn-Tucker multipliers for the
budget and capacity constraints, respectively. The first-order conditions for (1) are
(i � 1, . . . , n):11

pi − MCO
i + λB

(
pi +

∂pi (qi )
∂qi

qi − MCO
i

)
− λKφi � 0 (2)

7 This assumption simplifies the analysis but is not essential when capacity use is separable in outputs,
namely, the total capacity use for providing q can bemeasured as

∑n
i�1Ki (qi ), where Ki (qi ) is the capacity

amount needed to produce qi .
8 This is a common assumption in the relevant literature (see e.g. Jordan, 1983).
9 An increase in the volume of services may sometimes create congestion, which affects the demand side
by reducing consumers’ utility (e.g. transport users are delayed by a traffic growth). For simplicity, we do
not consider this issue.
10 An operating cost function with these properties is CO (q, K ) � c

∑n
i�1qi + α

(∑n
i�1φi qi /K

)
, where∑n

i�1qi is the total output (different from the total capacity use), and α > 0. Thus, operating costs approach
a finite (arbitrarily large) value when the total capacity use approaches the capacity limit, and this limit may
be reached in equilibrium.
11 We assume that the second-order conditions for a maximum are satisfied.

123



226 A. Avenali et al.

(1 + λB)

(

−∂CO(q, K )

∂K
− MCI

)

+ λK � 0 (3)

Let εi � −(∂qi/∂pi )(pi/qi ) be the own price elasticity of demand for service i .
From (2), we find:

pi � (1 + λB) MCO
i + λKφi

1 +
λB
|εi | (|εi | − 1)

(4)

Then, from (4), for any given pair of services i and j (i, j � 1, . . . , n, i �� j), we
find:

pi −
(

MCO
i +

λK
1+λB

φi

)

pi
|εi | �

p j −
(

MCO
j +

λK
1+λB

φ j

)

p j

∣
∣ε j

∣
∣ � λB

1 + λB
(5)

As to the capacity choice, from (3) we have:

MCI − λK

1 + λB
� − ∂CO (q, K )

∂K
(6)

Clearly, the equilibrium prices and capacity level depend on the shadow prices of
the constraints. In what follows, we focus on the role played by the capacity limit.12

The benchmark case is the first-best outcome, which occurs when λB � λK � 0
holds at the optimum and (1) reduces to an unconstrained welfare maximization. From
(4), first-best prices equalmarginal operating costs. From (6), first-best capacity is such
that the marginal cost of capacity investment equals the marginal value of capacity,
which is reflected in lower operating costs as capacity rises. Note that the capacity level
is efficient even if there is excess capacity at the optimum. Indeed, the social planner
decides to hold idle capacity to reduce operating costs and thus improve welfare.

Assume that only the capacity constraint is binding in equilibrium (i.e. λB � 0,
λK > 0). Inserting for λB � 0 in (4), we find that, despite cost recovery is not
an issue, welfare maximization does not yield marginal-cost prices. Indeed, for such
prices, the demand for services would exceed the capacity limit. Thus, equilibrium
prices must include a mark-up over marginal operating costs. Ceteris paribus, the
higher the capacity use by a service, and the higher the shadow price of the capacity
constraint, the higher themark-up, since the higher is the benefit of reducing the service
volume.

Then, inserting for λB � 0 in (6), we find that the equilibrium capacity level is such
that the marginal cost of capacity investment is greater than the marginal decrease in
operating costs as capacity rises. Thus, for a given (feasible) output vector, the capacity

12 Numerical simulations for the cases considered in this section are available from the authors on request.
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level is higher than in first best,13 and the opportunity cost of the capacity limit dictates
how much capacity (and prices) must be raised to minimize the deadweight loss.

Assume now that both constraints are binding in equilibrium (i.e. λB > 0, λK > 0).
Due to the need for cost recovery, for a given capacity level equilibrium prices are
higher than marginal operating costs. Since the capacity limit is also an issue, then
second-best Ramsey prices must be adjusted to signal that the resource is capacity
constrained, so as to restrict the demand for services. From (5), ceteris paribus, equi-
librium prices decrease with demand elasticities, but increase with marginal capacity
uses, depending on the relative weight of the constraints (i.e. the opportunity costs of
the capacity limit and budget threshold). We therefore obtain the following result.

Remark 1 Assume that both the budget and the capacity constraints are binding in
equilibrium. Then, second-best Ramsey prices must be adjusted, and (relative) mark-
ups may be higher for services with higher demand elasticities, if they use capacity
more intensively than other services.

As to the capacity choice, from (6), the need to expand capacity is mitigated by the
opportunity cost of the budget threshold, and thus by the parallel increase in prices
(that reduces the demand for services) to satisfy the profit constraint, whileminimizing
the deadweight loss. For a given output vector, the capacity level is higher than in first
best. We therefore obtain the following result.

Remark 2 For a given output vector, when the capacity constraint is binding in equi-
librium the public (regulated private) firm invests more than in first best. Instead, when
the capacity constraint is not binding in equilibrium, the capacity level may be first
best, and the firm invests in excess capacity to reduce operating costs and thereby
improve welfare.

4 Conclusions and policy implications

Resources with capacity limits are often used to providemultiple services with specific
capacity requirements in separate markets with different demands, which contribute to
recover capacity investment costs. Furthermore, operating costs significantly increase
as the total capacity use presses against available capacity.We have developed a simple
model for allocating and pricing resourceswith these features, such as airport runways,
railway tracks, radio spectrum, and hospital beds.

We have found the equilibrium prices and capacity level of a welfare-maximizing
and (possibly) budget-constrained firm, when multiple services compete for the same
resource. We have shown that, when both cost recovery is an issue and the resource
is capacity constrained, second-best Ramsey prices must be adjusted, and (relative)
mark-ups overmarginal operating costsmay be higher for serviceswith higher demand
elasticities, if they use capacity more intensively than other services.

We have also shown that, for a given output vector, when capacity is limited in
equilibrium the firm invests more than in first best, at a level where the marginal cost

13 Indeed, we have assumed that ∂CO (q, K )/∂K < 0 and MCI > 0.
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of capacity is greater than the marginal decrease in operating costs as capacity rises.
Instead, when the equilibrium capacity is not reached it may be first best, and excess
capacity reduces operating costs thereby improving welfare.

Our model can be used to support existing resource allocation and pricing methods
when market mechanisms are not implemented, such as for hospital services.14 It
suggests that, when different diseases and treatments compete for hospital beds with
limited capacity (e.g. during a pandemic), prices for hospital services should be related
to demand factors such as disease severity and treatment urgency (as proxies for
demand elasticities), rather than simply reflect the supply side.

Our results also provide a benchmark to evaluate the efficiency of market mecha-
nisms for allocating and pricing resources involved in the deregulationwave in network
industries. Market mechanisms yield benefits relative to traditional grandfather rights
(for airport slots) or beauty contests (for radio spectrum), but have been criticized
on efficiency grounds (Avenali et al., 2015; Esö et al., 2010).15 Our model pursues
the optimal allocation of such resources, given that: (i) there is excess demand for
alternative uses, but secondary market trading is not mature enough to secure effi-
cient reallocation; (ii) coordination of multiple users is required, and the costs that
would arise if these parties attempted to trade directly would be prohibitive; (iii) for a
given capacity, sunk costs and/or regulatory provisions imply that changes of use are
restricted in the short run.16

We have considered a vertically integrated monopoly that manages the resource
and offers retail services. This assumption fits hospital beds, which are often ruled by
a local authority. Airports and railway tracks are natural monopolies typically run by a
public or regulated private firm, while radio spectrum is managed by the government.
These entities usually offer resource access to downstream firms such as airlines or
mobile companies that, in turn, deal with the end users of services.

As long as our results are referred towholesale prices, they still holdwith a vertically
separated resource owner and a downstream market where firms do not have market
power. The same results also hold with a regulated downstream monopoly, such as
for rail services. In future work, we may study how downstream market power affects
resource capacity allocation and pricing.

We may also study the effects of technological innovation on capacity investment.
On the one hand, after innovation takes place, new services may compete for the
resource (as for radio spectrum), which then becomes or remains capacity constrained
over time. On the other hand, innovation may induce more efficient capacity uses by
existing services.

14 Hospital services are usually priced through the ‘diagnosis-related group’ (DRG) system, which deter-
mines hospital reimbursements based on estimated (average) treatment costs. If the hospital treats a patient
for less (more) costs than the fixed amount it is paid for the patient’s DRG, then it saves (loses) money on
that hospitalization.
15 In this framework, the equilibrium prices of our model could serve as reservation prices to run (simul-
taneous) auctions.
16 For instance, mobile broadband access may suffer from scarcity of spectrum available for that use, while
a similar portion of spectrum, which has been reserved for broadcasting television services in the same area,
may be partially used.

123



Optimal pricing and investment for resources with... 229

Acknowledgements We received funding from Sapienza University of Rome – Progetto Ateneo
RP11916B7A9EF5DB. We thank the Editor and an anonymous reviewer for helpful comments and sug-
gestions on an earlier version of the manuscript.

References

Avenali, A., D’Alfonso, T., Leporelli, C., Matteucci, G., Nastasi, A., & Reverberi, P. (2015). An incentive
pricingmechanism for efficient airport slot allocation inEurope. Journal ofAir TransportManagement,
42, 27–36

Bailey, E. E., & White, L. J. (1974). Reversals in peak and offpeak prices. The Bell Journal of Economics
and Management Science, 5, 75–92

Baumol,W. J.,&Bradford,D. F. (1970).Optimal departures frommarginal cost pricing.AmericanEconomic
Review, 60, 265–283

Crew, M. A., Fernando, C. S., & Kleindorfer, P. R. (1995). The theory of peak-load pricing: A survey.
Journal of Regulatory Economics, 8, 215–248

Esö, P., Nocke, V., &White, L. (2010). Competition for scarce resources. RAND Journal of Economics, 41,
524–548

Harris, J. E. (1979). Pricing rules for hospitals. The Bell Journal of Economics, 10, 224–243
Holguin-Veras, J., & Jara-Diaz, S. (1999). Optimal pricing for priority service and space allocation in

container ports. Transportation Research Part B: Methodological, 33, 81–106
Jordan,W. J. (1983).Heterogeneous users and the peak-load pricingmodel.Quarterly Journal of Economics,

98, 127–138
Lindsey, R. (2012). Road pricing and investment. Economics of Transportation, 1, 49–63
Mitchell, B., & Vogelsang, I., I (1991). Telecommunications Pricing. Cambridge University Press
Mohring, H. (1970). The peak load problem with increasing returns and pricing constraints. American

Economic Review, 60, 693–703
Ofcom (2010). SRSP: The revised framework for spectrum pricing, available at: http://stakeholders.ofcom.

org.uk/binaries/consultations/srsp/statement/srsp-statement.pdf
Oum, T. H., & Tretheway, M. W. (1988). Ramsey pricing in the presence of externality costs. Journal of

Transport Economics and Policy, 22, 307–317

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://stakeholders.ofcom.org.uk/binaries/consultations/srsp/statement/srsp-statement.pdf

	Optimal pricing and investment for resources with alternative uses and capacity limits
	Abstract
	1 Introduction
	2  Literature review
	3 Model and results
	4 Conclusions and policy implications
	Acknowledgements
	References




