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Abstract

We present Lemming – a visualization tool for the interac-
tive selection of plans for a given problem, allowing the user
to efficiently whittle down the set of plans and select their
plan(s) of choice. We demonstrate four different user experi-
ences for this process, three of them based on the principle of
using disjunctive action landmarks as guidance to cut down
the set of choice points for the user, and one on the use of lin-
ear temporal logic (LTL) to impart additional constraints into
the plan set using natural language (NL) instruction.

1 Introduction
The use of AI often requires a human-in-the-loop compo-
nent so that users are able to make informed decisions. One
such decision is identifying and choosing the best plan for a
particular user. It is possible to elicit the user preferences
(Das et al. 2019; Mantik, Li, and Porteous 2022) and/or
specify these preferences in a language that a planner can
reason about, such as PDDL3.0 (Gerevini and Long 2005)
and then let the planner select an optimal plan. However,
this solution is not practical, especially in cases where not
all preferences and constraints are known (or can be mod-
eled) upfront. To this end, there is a long history of work
on generating multiple plans for a planning problem, either
in the form of top-k planning (Riabov, Sohrabi, and Udrea
2014; Katz et al. 2018), top-quality planning (Katz, Sohrabi,
and Udrea 2020), or diverse planning (Srivastava et al. 2007;
Nguyen et al. 2012; Vadlamudi and Kambhampati 2016;
Katz and Sohrabi 2020; Katz, Sohrabi, and Udrea 2022).

Recently, there have been several applications in which
first multiple plans are generated and then the users are in-
volved in the selection process. Some of these applications
are in the area of patient monitoring (Sohrabi, Udrea, and
Riabov 2014), enterprise risk management (Sohrabi et al.
2018), conversational systems (Chakraborti et al. 2022; Rizk
et al. 2020; Sreedharan et al. 2020b), and web service com-
position (Brachman et al. 2022). However, the user inter-
faces for interacting with such systems has received little at-
tention. For example, in (Chakraborti et al. 2021), all plans
were shown to the user as separate sequences to select from
– an approach that of course does not scale to a larger sets of
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plans, while in these other applications (Sohrabi et al. 2020,
2018; Feblowitz et al. 2021) a custom user interface solu-
tion was implemented. In this paper, we present Lemming,
a tool for providing a domain-independent approach to the
plan disambiguation and selection problem by 1) using land-
marks to help the user focus on a particular component of the
search space; or 2) allowing the user to provide, in natural
language, additional constraints to enforce on a set of plans.

Existing tools There are several tools that help with the
specification (Muise 2023) and visualization of plans (Mag-
naguagno et al. 2020). While these tools visualize plans in
various forms, their focus is on helping domain experts cre-
ate planning models rather than guiding an end-user in the
selection of the plans. On the other hand, while the notion
of imprecision and uncertainty (Zhang and Huang 1994) or
allowing easier comparison of plans by using a query space
and clustering (Ghosh et al. 2002), or allowing some form
of automated plan selection (Aha, Molineaux, and Ponsen
2005) is explored in the literature, none of these make the
connection to the visualization and/or the human in the loop
component of the selection process.

Landmarks have an enormous history of use in speed-
ing up the combinatorial search process for planning (Hoff-
mann, Porteous, and Sebastia 2004) as well as in planning-
adjacent tasks like plan recognition (Pereira, Oren, and
Meneguzzi 2020). In the past, landmarks have also been
used to summarize plans (Chen and Mooney 2011; Grover
et al. 2020; Sreedharan et al. 2020b) to the end-user and de-
bug plans (Sreedharan et al. 2020a) for the developer in com-
plex real-world domains such as in the authoring of goal-
oriented conversational agents (Muise et al. 2019), as well
as for localization in path planning settings (Mataric 1992).
To the best of our knowledge, this is the first attempt at using
landmarks for plan disambiguation with end users.

2 Lemming Overview
The user interaction with Lemming begins with a domain-
problem pair and optionally with an already generated set of
plans. Users can also generate plans using any planner that
produces a set of solutions. We use (Katz et al. 2018) for
this purpose, with the exception of (Speck, Mattmüller, and
Nebel 2020) for the use case in Section 2.2 which requires
support for domain axioms (Speck et al. 2019).
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(a) SELECT (b) NL2LTL (c) BUILD Forward (d) BUILD Backward

Figure 1: Different modes of plan disambiguation in Lemming. The green highlight indicates the next choice point for the user.
Notice that LTL injection can lead to a new plan set (1b) while the other modes lead to successive reduction of the graph.

2.1 Landmark Guided Plan Selection
Disjunctive action landmarks are actions that one or more
of which must be present in a plan – for example, if A or
B are disjunctive action landmarks then either A or B must
be present in a plan that solves a given planning problem.
Thus, they represent the choice points or points of ambiguity
in how to solve a planning problem. For the disambiguation
or selection problem, these naturally provide a hint on what
information a user must navigate in order to make a selection
of their preferred plan. We optimize for two objectives and
end up with three ways to visualize a set of plans:

1. Size of visualization: The visualization of the entire set
of plans can be impractical depending on its size. For
the user to make informed choices, they must be able to
interact with a tractable representation of the plans.

2. Number of choices: As the size of the plan set grows,
so does the number of choice points if the user is left to
select options in the visualization without any guidance.
The novelty of Lemming is in the use of landmarks to
minimize the number of choices the user has to make.

Disambiguation Graph The first item of interest is a dis-
ambiguation graph that greedily partitions the set of plans
into a sequence of most disambiguating partitions. While
this might not be most useful to the user as a visualization
by itself, it is key to the other modes of visualization e.g. as a
means of proactively surfacing the next choice points to the
user either graphically or through language.

BUILD Experience In a “build experience” the user can
progressively build their plan a few steps at a time, starting
from the goal (or initial) state and using maximal suffixes
(or prefixes) to choices of only the plans that the user has
selected at any moment. An incremental build experience
means that the user does not see the full picture upfront. This
can lead to a loss of situational awareness and the user may
end up pruning plans they might have been interested in.

SELECT Experience Contrary to BUILD, here we start
with the full picture – where we show all the plans of in-
terest and what states they traverse – and allow the user to
select one (or more, in “commit mode”) landmarks and whit-
tle down to their plans of choice. Thus, this view shows the
full space of interesting solutions for the user to select from.

2.2 Natural Language Guided Plan Selection
The final view presents an integration of Lemming with
a package NL2LTL (Fuggitti and Chakraborti 2023), pre-
sented at AAAI 2023, that helps translate natural language
(NL) instruction to linear temporal logic (LTL) formulas.
Natural language input is a key enabler of sequencing pat-
terns in the industry (Chakraborti et al. 2022). While the
package serves the general-purpose NL to LTL translation
use case, in Lemming we demonstrate how it impacts the
plan selection process in particular (and in contrast to the
landmark-guided approach). In this mode, while still in the
SELECT mode, the user imparts new rules to further con-
strain the set of plans instead of interacting graphically.
These instructions are first translated into LTL formulas and
then compiled into a new planning problem to produce a
new set of plans. This has two implications compared to
landmark-based selection: 1) the new plan set is not con-
strained to be a subset of the previous one, 2) we do need to
call a planner after every new input. For the LTL to PDDL
compilation, we use (Bonassi et al. 2023) but any existing
approach (Bacchus and Kabanza 2000; Baier and McIlraith
2006b,a; Torres and Baier 2015) will suffice.

Limitations While landmarks make for a natural ally sur-
facing the most necessary (and potentially important) parts
of the planning task: 1) the worst-case (although unlikely)
number of choices the user has to make is the same with or
without landmarks; 2) the greedy disambiguation graph may
end up missing the preferred plan (especially in the BUILD
experience); and 3) a collection of plans disambiguated with
landmarks is not expressive enough to capture arbitrarily
complex user preferences not modeled in the domain.

2.3 Resources
A video illustrating the interactions in Figure 1 is available
here: https://youtu.be/LnUJwA027O0.

Lemming is built on top of the Reagraph library (Good
Code 2023b) which, along with the Reaflow library (Good
Code 2023a), provides a powerful set of features for building
interfaces to planners and planning applications.

Code https://github.com/IBM/lemming
https://github.com/IBM/nl2ltl
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