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The possible detection of echoes in late gravitational wave signals is the most promising way to test
horizonless alternatives to general relativistic black holes, and probe the physics of these hypothetical
ultracompact objects. While there is currently no evidence for the presence of such signatures, better
accuracy is expected with the growing wealth of data from gravitational waves observatories. So far, several
searches for these specific signals have been performed considering equidistant intervals between
consecutive echoes, i.e. quasiperiodic waveforms, and ignoring possible backreaction effects of the
incoming waves. Here we study scalar perturbations in exotic compact object scenarios that account for
possible backreaction phenomena. In particular, we find that if one considers the increase of the central
object mass due to the partial absorption of the energy carried by the perturbation, the echo signal can be
quite different and nonperiodic. Apart from this simple scenario, we also consider the case in which, in
order to preserve its compactness above the black hole limit, the compact object absorption shuts down in a
finite amount of time or leads to an expansion. In both these cases we find interesting new features that
should be taken into account in future searches.
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I. INTRODUCTION

Horizonless black hole mimickers are foreseen from
quantum gravity theories (e.g. fuzzballs [1], gravastars
[2,3]) and beyond standard model physics (e.g. boson stars
[4]). Being able to distinguish such exotic compact objects
(ECOs) from classical black holes (BHs) and to obtain
information about their structure would hence allow us to
probe new physics and possibly give us hints about the
quantum gravitational effects behind the regularization of
general relativistic singularities.
Presently, the most powerful way to do so, is through

gravitational wave (GW) signals from the coalescence
of BH candidates. In particular, a proof of the presence/
absence of an event horizon could come from the ringdown
phase of these events. This phase is caused by the
oscillations of the final perturbed object formed in the
coalescence and it is governed by a series of damped
oscillatory modes. In the high-compactness limit, the
ringdown signal of an ECO is initially almost identical
to that of a BH with the same mass, but then it is followed
by a series of secondary pulses [5,6].
To understand the origin of these pulses it is sufficient to

analyze the field equation of a perturbation in the BH and
ECO spacetimes, characterized by the same Arnowitt-
Deser-Misner (ADM) mass M. Consider for definiteness
spherical symmetry. In both cases, the wave encounters a
potential barrier peaked at the photon sphere r ≈ 3M. For a

BH spacetime, the event horizon behaves as a perfectly
absorbing surface, while for an ECO spacetime, the key
difference is the presence of another barrier at the location of
its surface r0, which can in principle reflect incoming
radiation. The presence of this cavity between the ECO
surface and the photon sphere can create quasitrapped modes
that can tunnel through the photon-sphere potential and travel
towards infinity in the form of secondary pulses with smaller
and smaller amplitude and frequencies. For these reasons,
these subsequent and similar signals are called echoes [7–9].
Usually echoes are studied in linear perturbation theory,

neglecting the possible backreaction of the ECO. This is
justified because the energy in the ringdown is small (from
two to three orders of magnitude with respect to the mass of
the object [10,11]) and diffused on a wavelength of the
order or larger than the ECO radius. However, it can be
argued that this linear approximation is actually dangerous
since for good BH mimickers the surface of the ECO is
very close to the would-be horizon [12]. Indeed, the peeling
of geodesics will cause an accumulation of light rays and
so a large increase of the perturbation energy density near
the surface. Actually, it can be shown that GW fluxes can
even lead to the violation of the hoop conjecture [13] and
the collapse of the ECO into a BH [14–16]. Thus it seems
clear that nonlinear interactions between the ECO and the
GW flux must be considered.
The scope of this work is to study possible effects on the

echoes waveform due to backreaction and in particular we
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shall focus on the effect of the echo absorption on behalf of
the ECO. A perfectly reflecting surface is in fact just an
idealization, we expect instead that part of the radiation can
be absorbed by the object through effects of dissipation or
viscosity [17]. The introduction of an absorption coefficient
for the ECO surface is not only physically reasonable, but
it also allows to circumvent some instabilities of ECOs
connected to the presence of a stable light ring [18,19] and
of an ergoregion [20–22]. Indeed, it makes the timescale for
the onset of these instabilities very long and it can even turn
it off [23,24].
However, until now, the only considered effect of

absorption on the echoes waveform is the decreasing
of echoes amplitude and energy [24,25] or the changing of
their frequency content in the case of frequency-dependent
absorption coefficient [26,27]. Yet, it should also imply an
increase of the central object ADM mass and consequently
a change of the spacetime in which echoes are propagating.
Similar considerations were done in Ref. [28] in the context
of BH ringdown, showing how the change in the BH mass,
due to the absorption of a mode excited at early times,
causes a shift in the mode spectrum and thus the excitation
of additional modes.
In the first part of this work, we consider the simple

instructive case in which we have no other backreaction
effects apart from absorption. We show that this leads to a
nonconstant time delay between echoes and thus the loss
of the typical quasiperiodicity predicted for these signals.
This is particularly interesting if we think that the
strategies used in the searches for echoes in the GW
ringdown [29–31] are usually based on the aforemen-
tioned quasiperiodicity. Indeed, in Ref. [32] it was shown
that applying a template with constant time interval
between echoes may significantly misinterpret the
signals if the variation of this interval is greater than
the statistical errors.
In the second part of this investigation, we take into

account that, for sufficiently compact central objects, the
absorption of part of the GW flux can increase the mass of
the object over the hoop limit 2M ≥ r0. Thus, assuming the
stability of these ECOs, some backreaction mechanism
must be present so to prevent the formation of a horizon; we
consider a scenario in which the absorption coefficient
depends on the compactness, and a scenario in which the
ECO expands. In both cases we show the effects on the
echoes waveform and time delay.

II. SETUP

As a proxy to the more general case of gravitational
perturbations, here we study the evolution of a minimally
coupled massless scalar fieldΦ propagating in a spherically
symmetric ECO spacetime. As commonly assumed, the
scalar field does not couple directly to any form of matter
that might be present within or outside the ECO. Its action
reads

S ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
gμν∇μΦ∇νΦ: ð1Þ

We do not assume any specific form for the gravitational
action and the ECO spacetime is characterized by its
initial ADM mass M0 and radius r0 greater than its
Schwarzschild radius. We define the compactness param-
eter of the object as

σ ≡ r0
2M0

− 1; ð2Þ

which is always positive and goes to zero in the BH limit,
i.e. σ → 0 as r0 → 2M0. Independently of the specific ECO
model, the spacetime outside its surface is Schwarzschild.
For r > r0 we have

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2θdφ2Þ;

fðrÞ ¼ 1 −
2M0

r
: ð3Þ

Because of spherical symmetry, the Klein-Gordon equa-
tion in this spacetime is separable thus we can decompose

the field asΦðt; r; θ;φÞ ¼ P
lm

Ψlmðt;rÞ
r Ylmðθ;φÞ, where Ylm

are the scalar spherical harmonics. Then the field equation
for each mode Ψlmðt; rÞ is (to avoid cluttering, in what
follows we drop the lm indexes):

∂
2Ψ
∂t2

− f2
∂
2Ψ
∂r2

− ff0
∂Ψ
∂r

þ VðrÞΨ ¼ 0; ð4Þ

where a prime represents derivative with respect to the
radial coordinate r and

VðrÞ ¼
�
1 −

2M0

r

��
2M0

r3
þ lðlþ 1Þ

r2

�
: ð5Þ

A. Energy of the perturbation

To compute the energy of the scalar perturbation, we
start with the stress-energy tensor stemming from the action
in Eq. (1)

Tμν ¼ ∇μΦ∇νΦ −
1

2
gμν∇αΦ∇αΦ: ð6Þ

We consider the conserved current Jμ ¼ kνTμν, where kν is
the timelike Killing field of the Schwarzschild spacetime.
The conserved energy in a three-dimensional hypersurface
Σ is then

E ¼
Z
Σ
d3x

ffiffiffi
γ

p
Jμnμ; ð7Þ
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where γ is the induced three-dimensional metric on the
hypersurface and nμ is the normalized vector field orthogonal
to Σ. In our case Σ is the hypersurface at t ¼ const and thus
nμ ¼ ∇μt=j∇μtj ¼ kμ=

ffiffiffiffiffiffiffiffiffi
fðrÞp

. From this, integrating in the
angular part, we obtain, e.g. in Schwarzschild coordinates

E ¼ 1

2

Z
dr
fðrÞ

��
∂Ψ
∂t

�
2

þ fðrÞ2
�
∂Ψ
∂r

�
2

þ VðrÞΨ2 − fðrÞ ∂

∂r

�
fðrÞ
r

Ψ2

��
: ð8Þ

These coordinates might look not suitable, as the factor
1=fðrÞ gets divergent as we approach the event horizon.
However, the fieldΨ—seen by a static observer at infinity—
moves slower and contracts as it approaches the horizon,
reaching it in an infinite amount of time, while the region Δr
in which the field is diffused shrinks. The two effects
compensate each other, and the energy remains constant.

B. Varying mass and moving surface

If the object absorbs energy from the scalar field, we
have to take into account that its mass can change in time.
We assume that at each instant the spacetime can be
described by the Schwarzschild metric with a different
massM0→MðtÞ and fðrÞ → Fðt; rÞ ¼ 1 − 2MðtÞ=r. Then
the Klein-Gordon equation, written in terms of the “initial”
tortoise coordinate r� ¼ rþ 2M0 ln ðr=2M0 − 1Þ, becomes

∂
2Ψ
∂t2

−
F2

f2
∂
2Ψ
∂r2�

−
F
f

�
∂F
∂r

−
Ff0

f

�
∂Ψ
∂r�

þ Vðr; tÞΨþ 1

F
∂F
∂t

∂Ψ
∂t

¼ 0; ð9Þ

where the potential V has been promoted as a function of t
and r, and r itself is interpreted as a function of r�.
In one of the models that we consider the surface of

the object moves, and thus the point at which we impose
our boundary conditions, i.e. r0 → r0ðtÞ. Thus to solve the
scalar field equation with a time-independent boundary
condition we need to choose a coordinate in which the
surface of the object is fixed in time. For example, if the
object expand in order to stay at constant compactness
then x ¼ M0 ln ðr=2MðtÞ − 1Þ is a good choice. In these
coordinates the Klein-Gordon equation reads

∂
2Ψ
∂t2

−M2
0

�
1

r2
−

r2 _M2

M2ðr − 2MÞ2
�
∂
2Ψ
∂x2

−
2 _MM0r

Mðr − 2MÞ
∂
2Ψ

∂t∂x

þM0

�
1

r2
−
2M
r3

−
rM̈

Mðr − 2MÞ þ
rðr − 4MÞ _M2

M2ðr − 2MÞ2
�
∂Ψ
∂x

þ Vðr; tÞΨ ¼ 0; ð10Þ

where the time dependence of M is implicit, and r is
interpreted as a function of x.

In these coordinates the surface, at which we
impose the boundary condition, is always at x ¼ x0 ¼
M0 ln ðr0=2M0 − 1Þ. Another way to simulate a moving
surface is to simply change, at each time step, the point of
the numerical grid at which we impose the boundary
condition, the two methods bring to the same results.

C. Numerical setup

In the numerical simulation reported in the next sections
we always consider an l ¼ 2 quadrupolar mode and we use
as initial condition for Ψ a Gaussian pulse,

∂Ψðr; 0Þ
∂t

¼ Ψ0 exp

�
−
ðr� − rcÞ2

2s2

�
; Ψðr; 0Þ ¼ 0; ð11Þ

with central value rc ¼ 11M0 and width s ¼ 2M0; different
initial values lead to similar results. The pulse is initially
centered outside the potential barrier VðrÞ, whose peak is at
approximately 3M0, and it is moving inward. The ampli-
tude Ψ0 is chosen in order to obtain an impulse with energy
of order of the one we expect to be contained in the echoes
signals, roughly from two to four orders of magnitude
smaller than the mass of the central object [29].
We evolve Ψ in the time domain using a fourth-order

Runge-Kutta integrator and computing spatial derivatives
with finite-difference approximation of second-order
accuracy [33]. A convergence test of the code is shown
in Fig. 5 and discussed in Appendix A. The nontrivial
boundary conditions that we have imposed for our numeri-
cal simulations are described in Appendix B.
During the simulations the mass of the central object

increases because of the energy absorbed from the field, at a
given time step, by an amount

κΔEðtÞ; ð12Þ

where κ is the absorption coefficient (see definition below)
and ΔEðtÞ is the field energy present, at time t, in the last
spatial bin of our computational domain corresponding to
the location of the surface of the central object. The method
with which we estimate ΔEðtÞ at each instant is explained
in Appendix C.

III. ECHOES: ABSORPTION BEYOND
THE TEST FIELD LIMIT

In our first scenario, we evolve Ψ according to Eq. (9),
taking into account that the mass of the compact object
can increase during the evolution as a consequence of the
energy absorbed from the scalar field. In fact, whatever is
the mechanism responsible for absorption, the energy of the
field is converted in some other kind of energy inside the
object, e.g. thermal energy in the case of dissipative/viscous
effects, and since all energy “gravitates”, this absorption
will increase the ADM mass of the object.
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We define the absorption coefficient as the fraction of the
incoming energy Ein that is lost inside the object as

κ ¼ 1 −
Eout

Ein
: ð13Þ

Given a certain compactness and absorption coefficient,
there exists a maximum flux of energy that the object can
sustain without overcoming the hoop limit and collapse
into a BH. It follows that if the energy in the GW flux is
bigger than this maximum, the collapse will delay part of
the echoes signal. In the examples shown here, we have
chosen compactness and absorption coefficients in order to
always remain below this limit.
In linear approximation, the time delay between echoes

is the time that light takes to travel from the potential
barrier centered around rpeak ≈ 3M0 to the ECO surface
r0 ¼ 2M0ð1þ σÞ and back,1 as follows:

Δtecho ¼ 2

Z
rpeak

r0

dr
fðrÞ ≃ 2M0½1 − 2σ − 2 lnð2σÞ�; ð14Þ

where σ is the compactness parameter defined in Eq. (2).
Nonetheless, if the ECO absorbs a small quantity of

energy ΔE from the first echo, increasing its mass as

M0 → M ¼ M0 þ ΔE but remaining with the same radius
r0, the ECO compactness parameter for the first and second
echoes is different

σ1st echo ¼
r0
2M0

− 1;

σ2nd echo ¼
r0
2M

− 1 ¼ r0
2ðM0 þ ΔEÞ − 1 < σ1st echo: ð15Þ

As a consequence, also the time delay of the second echo
will be different. We give some numerical examples in
Fig. 1 and Table I for selected values of the compactness
and absorption parameters.
In these examples and in the plots that we show across

the article, it is clear that even very small absorption
coefficients (of order 0.1%–0.01%) lead to significant
changes of the signal. This can seem counterintuitive,
given the small amount of energy present in the echoes.
The point is that, although the change in the mass is
actually small, for very compact objects it is sufficient to
cause a big change in their compactness if the radius
remains fixed. Consider for definiteness an ECO with
initial compactness parameter σ0 ¼ 10−7; the absorption
of the amount of energy 5 × 10−8M0 is sufficient to halve
its compactness parameter and, as a result, to significantly
change the spacetime in which the field is propagating. In
this example, the time delay between echoes that depends
logarithmic in the compactness parameter, roughly changes
from Δtecho=M0 ≈ −4 lnð2σ0Þ ≈ 61.7 to Δtecho=M0 ≈ 64.5.
In Fig. 2 we plot the typical waveform for a Gaussian

pulse scattered off an ECO with a small absorption
parameter, compared with a perfectly reflecting ECO.
We observe a considerable difference in phase between

the two cases due to the aforementioned non-negligible

FIG. 1. Time delay between echoes for fixed position of the surface r0 and variable mass. The vertical lines represent the asymptotic
value of ΔM=M0 for which the BH limit r0 ¼ 2M0 is exceeded. All values are reported in units of the initial mass of the object M0.

1In reality, it should be taken into account the interaction
time Δtint during which the field travels inside the interior of the
object and it is partially absorbed. Here, we assume it to be of
the order of the radius of the object and thus negligible with
respect to Δtecho. However, there exist models in which the
interior spacetime is such that Δtint becomes dominant [34,35],
but it also depends on the compactness parameter. The precise
dependence on σ is however model dependent and generically not
logarithmic.
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change in the time delay among echoes, in agreement with
the analytical estimate of Eq. (14).
We also note a difference in the amplitude of the signal.

The absorption coefficient is too small to produce a visible
decreasing of the echoes amplitude, yet the first echo has a
smaller amplitude with respect to the perfectly reflecting
case, while the subsequent echoes have even bigger ampli-
tudes. To understand this redistribution of energy is con-
venient to look at the field equation in ðt; rtÞ coordinates,
where rt is the “time-dependent” tortoise coordinate
rt ¼ rþ 2MðtÞ ln ðr=2MðtÞ − 1Þ, in which the Klein-
Gordon equation remains a simple wave equation apart
from some negligible terms proportional to _M and M̈.
Nevertheless, the position of the surface in the rt coordinate
changes with time and gets more negative as the mass
increases, since the object is becoming more compact. This
means that while the first echo is reflecting on the central
object surface, this surface is moving away from it. Since we

are in a reference frame in which the field equation is a
simple wave equation, a movement of the surface causes a
Doppler effect, i.e. a decrease of the frequency content of the
field. For this reason, a smaller fraction of the first echo will
pass through the high-pass filter potential centered at rpeak,
while a greater fraction of it will be bounced back forming
the subsequent echoes that therefore will have a greater
amplitude with respect to the perfectly reflecting case. Also
the absorption of the second and third echoes causes an
increase of the mass and thus a movement of the surface
during the reflection, but the effect is quite negligible with
respect to the previous increase of amplitude.

IV. ECHOES: ABSORPTION AND
BACKREACTION SCENARIOS

In realistic situations, the energy absorbed from the
ringdown signal might be enough to cause the collapse of

TABLE I. Given an initial compactness parameter σ0 we report the expected time delays between echoes Δtecho in
the case of a perfect reflecting ECO and the true time delay between the first and the second echo Δt1 and between
the second and third echo Δt2 in the case of an ECO with absorption coefficient κ. These last two time delays are
different to respect to Δtecho because the partial absorption of the energy contained in the first and second echo
changes the compactness of the central object. We assume that the energy in the second echo is approximately a
quarter of that of the first one. All values are reported in units of the initial mass of the object M0.

σ0 Δtecho=M0 κ E1st echo=M0 Δt1=M0 E2nd echo=M0 Δt2=M0

10−3 26.85 6% 10−2 30.54 0.25 × 10−2 32.43
10−4 36.07 6% 10−3 39.74 0.25 × 10−3 41.62
10−5 45.28 6% 10−4 48.94 0.25 × 10−4 50.82
10−5 45.28 0.06% 10−2 48.94 0.25 × 10−2 50.82
10−6 54.49 0.06% 10−3 58.15 0.25 × 10−3 60.03
10−7 63.70 0.06% 10−4 67.36 0.25 × 10−4 69.24

FIG. 2. Quadrupolar waveform extracted at r� ¼ 30M0. The initial Gaussian pulse has energy E ¼ 4.4 × 10−3M0 and it is scattered
off an ECO with initial compactness parameter σ ¼ 10−7, i.e. r0 ¼ 2.0000002M0. The red dashed line shows the case of a perfectly
reflecting object, while the purple solid line shows the case in which the surface of the object absorbs incoming radiation with an
absorption efficiency of 0.01%.
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the ECO into a BH. Thus, if we want the object to be stable,
we have to take into account some mechanisms that prevent
the collapse, whose details depend obviously on the
physics of the object and the specific gravitational field
equations. To have a glimpse on the possible effects on the
signal, while remaining agnostic about the novel physics
supporting the ECO, we consider here some simple model-
independent scenarios.

A. Asymptotic compactness

As a first scenario, the object is allowed to absorb energy
varying its compactness up to a certain limit, say until its
surface is at a Planck length from the would-be horizon.
This corresponds to a compactness parameter of order of
σPlanck ≈ 10−40 for stellar mass objects (M ≈ 102M⊙). This
situation is particularly reasonable because the ringdown
signal comes from objects that have just been formed in a
binary coalescence, thus it is not obvious that they are
already in their definitive stable configuration.
Technically, this situation can occur when the ECO

absorption coefficient depends on its compactness and goes
to zero as σ → σPlanck. The effects on the echoes waveform
will depend on the initial value of the absorption coef-
ficient, on the velocity with which it goes to zero and on the
value of the asymptotic compactness. If the absorption
coefficient varies very slowly, we obtain the same results
of constant absorption, analyzed in the previous section,
and no other backreaction. When instead the absorption

coefficient goes rapidly to zero, only the first echo will be
partially absorbed and the time delay will soon stabilize to a
constant value. Among several possible choices, in our
computations we have considered this functional form for
the absorption coefficient

κðσÞ ¼ α

�
1 − tanh

β

σ − σPlanck

�
; ð16Þ

which varies slowly when the compactness is far from the
Planck value, and goes smoothly to zero for σ → σPlanck.
The parameters α and β represent, respectively, the initial
value and the velocity with which κ goes to zero. At each
step of the simulation

σðtþ ΔtÞ ¼ r0
2MðtÞ þ κðσðtÞÞΔEðtÞ − 1; ð17Þ

such that as σðtÞ → σPlanck, we have κðσÞ → 0 and thus
σðtþ ΔtÞ ¼ σðtÞ.
In Fig. 3 we plot the typical waveform for a Gaussian

pulse scattered off an ECO with a compactness-depending
absorption parameter, compared with a perfectly reflect-
ing ECO.
The top and middle panels show our results for,

respectively, α ¼ f0.05; 2 × 10−4g and β ¼ σ0 × 10−3,
with σ0 ¼ 10−7. In the first case the initial absorption
coefficient is κ0 ≈ 5%. With an incoming Gaussian pulse of
energy E ≈ 10−3M0, this κ0 is sufficient to reach a very high
compactness, and thus a negligible absorption coefficient,

FIG. 3. Quadrupolar waveform extracted at r� ¼ 30M0. The initial Gaussian pulse has energy E ¼ 4.4 × 10−3M0 and it is scattered
off an ECO with initial compactness parameter σ ¼ 10−7, i.e. r0 ¼ 2.0000002M0. We show results for a compactness-dependent
absorption parameter (top and middle panels, for selected values of the parameter α introduced in Eq. (16) and β ¼ σ × 10−3) and for a
perfectly reflecting ECO (bottom panel).
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already during the absorption of the very first part of the
first echo. For this reason, we observe that the time delay
among the echoes is approximately constant even if it is
larger than in the perfectly reflecting case shown in the
bottom panel. In the second case, the absorption coefficient
is approximately constant and κ0 ≈ 0.02% during the
absorption of the first echo, while it becomes negligible
only during the absorption of the third echo. This leads to
nonconstant time delays among the first echoes.
We want to mention another possible scenario in which

the change in the compactness stops when the object
reaches a limiting value; the absorption coefficient is
constant but, once the asymptotic compactness is reached,
the ECO starts expanding to remain in the same equilibrium
configuration. In this case, the first part of the signal will
have larger time delays but this increment of Δtecho will
stop once the expansion starts. The reason for this will be
clear in the next section.

B. Expansion

In another backreaction scenario, to remain stable, the
ECO compensates the absorption by expanding. A reason-
able way to model the expansion is to assume that its radius
moves in order to maintain the same initial compactness,
according to the following prescription (in Schwarzschild
coordinates)

r0ðtþ ΔtÞ
2ðMðtÞ þ ΔEÞ¼

! r0ðtÞ
2MðtÞ ¼ σ0 þ 1; ð18Þ

where ΔE is the amount of energy absorbed from the scalar
field in the time interval Δt.

In this case, the sole dependence on time in Eq. (14) is a
linear dependence onMðtÞ and thus the time delays among
echoes will be approximately always the same, as in the
perfectly reflecting case. Obviously, this is true only if
the expansion happens fast enough for the object to be
approximately at the same constant compactness at each
instant—note that this could even require superluminal
expansion [14].
Alternatively, there might be a transient phase through-

out the object has already absorbed energy but has not
expanded enough to reach the original compactness. The
duration τ of the transient phase is crucial to determine the
effect that it produces on the signal. If τ is much smaller
than the light crossing time between the surface and the
potential, i.e. τ ≪ Δtecho, when the second echo arrives on
the surface, the object will have already recovered its initial
compactness and thus no visible shift in the time delay will
be produced. On the other hand, when τ > Δtecho, the time
delay between the first and the second echo will be longer
than in the perfectly reflecting case because the second
echo will arrive on the surface when the compactness is
still different from the initial one. Then, while the object
continues to expand, it also continues to absorb small
amounts of energy from subsequent echoes, thus it will
reach its initial compactness only when the energy of these
echoes will become negligible. However, we expect its
compactness to become closer and closer to the initial one,
and thus the time delay among these subsequent echoes to
become smaller and smaller until it reaches the value
corresponding to the initial compactness. In Fig. 4 we plot
the waveform for a Gaussian pulse off an ECO whose
surface expands linearly, compared with a perfectly

FIG. 4. Quadrupolar waveform extracted at r� ¼ 30M0. The initial Gaussian pulse has energy E ¼ 4.4 × 10−3M0 and it is scattered
off an ECO with initial compactness parameter σ ¼ 10−7, i.e. r0 ¼ 2.0000002M0. The red dashed line shows the case of a perfectly
reflecting object, while the purple solid line shows the case in which the surface of the object absorbs incoming radiation with an
absorption efficiency of 0.015% and it expands to achieve the initial compactness in a finite amount of time.
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reflecting ECO. In this example we have chosen the
expansion rate v such that the surface moves as r0ðtÞ ¼
r0 þ vΔt and the compactness is modeled as

σðtþ ΔtÞ ¼ r0 þ vΔt
2MðtÞ þ κðσðtÞÞΔEðtÞ − 1; ð19Þ

such that the initial compactness is reached after a transient
phase τ ≈ 65M0 ≥ Δtecho with respect to the beginning of
the absorption.
Before closing a final comment is in order. In the

previous scenario we have assumed a BH-like relation
between the instantaneous radius and mass, i.e. a direct
proportionality r0ðtÞ ∝ MðtÞ. However, the relation
between the radius and the mass of starlike compact objects
can be more involved, implying that the compactness of
these objects can be different for different values of the
mass—see e.g. Fig. 1 of Ref. [35]. Nonetheless, we are here
considering ultracompact objects which are good BH
mimickers and as such they are expected to be charac-
terized by a BH-like behavior. It is however worth
mentioning that assuming r0ðtÞ to be a more general
function of MðtÞ would imply that the expanding ECO
would experience a change in its compactness parameter.
This, in turn, would lead to a variation of the time delay
among echoes, and to a breaking of the aforementioned
degeneracy with the perfectly reflecting case.

V. CONCLUSIONS

In this paper we have analyzed the response of an ECO
against scalar perturbations to discuss possible effects of
nonlinear interactions on the echoes signal. In the first part,
we have let the central compact object absorb part of the
incoming radiation, resulting in an increase in its ADMmass
and leading to changes in the spacetime in which the scalar
field propagates. The most important effect of this on the
echo waveform is the loss of the quasiperiodicity of the
signal. In fact, the absorption of each echo changes the mass
and thus the compactness of the object, and as a result, it
increases the time delay among echoes which depends
logarithmically on the compactness. If the absorption con-
tinues without any other backreaction of the object, the time
delay will continue to increase. However, the energy of the
nth echo is smaller than the previous ones, hence the change
in the time delays becomes more and more negligible and it
stabilizes to a constant value, unless the ECO collapses into a
BH and no other echoes are produced.
In the second part we have considered some possible

model-independent scenarios in which the object reacts to
the absorption to prevent its collapse into a BH. In the first
scenario, the ECO can increase its compactness only up to a
certain limiting value. This can happen in at least two
different ways: (i) the ECO absorption coefficient decreases
for increasing compactness, going to zero when the asymp-
totic compactness is reached: (ii) the absorption coefficient is

constant but once the asymptotic compactness is reached
the object starts to expand in order to remain in the same
equilibrium configuration. The characteristic feature of this
scenario is that the time delay between echoes gets longer
and longer until it stabilizes to a constant value correspond-
ing to the time delay of an object with the asymptotic
compactness. In the second scenario, the ECO expands
instantaneously in order to prevent the collapse. If the
expansion rate maintains the same initial compactness, the
resulting signal will have constant time delays among echoes
like in the case of a perfectly reflecting ECO. However, this
type of expansion is an idealization and physically we expect
that the original compactness is not recovered instantly but
only after a transient phase. When the transient phase is
much shorter than the time delay between echoes, the effects
on the waveform are negligible; while when it is comparable
or greater than the time delay, the interval among echoes in
the resulting signal is initially bigger than in the perfect
reflecting case but then gets shorter, until it reaches the value
corresponding to the time delay of the object at its initial
compactness. It might also be possible that the mass-radius
relation for these objects is not linear as for BHs, and that
stable configurations have different compactness for differ-
ent values of the mass. In this case, the object will not expand
at constant compactness, breaking the degeneracy with the
perfectly reflecting case.
At this point, one can wonder whether these changes in

the time delay are actually detectable, or whether the signal
can still be approximated as quasiperiodic. First of all, we
emphasize that in all cases analyzed here the change in the
time delay is a feature of the first part of the signal. The
number of echoes interested by this effect depends on
the initial compactness, the absorption coefficient and the
damping factor between echoes, i.e. the difference in
amplitude among subsequent echoes. Anyway, thanks to
its bigger amplitude, it is the first part of the signal that is
more likely detectable.
The time delay between the signal and the first echo is

subjected to more uncertainties because it can be affected
by nonlinear physics during the merger. Thus the observ-
able for which the effect of absorption might be more
important and non-negligible is usually the difference
between the first two time delays; Δt2 between the first
and second echo and Δt3 between the second and third
echo. As an example, consider an ECO with mass M0,
initial compactness σ ¼ 10−5, an absorption coefficient
κ ¼ 0.06% and assume that the energy carried by the
first echo is Eecho ≈ 10−2M0 with a damping factor
between the first and second echo γ ¼ 0.35; the resulting
relative difference in the time delays turns out to be
Δt12 ¼ ðΔt2 − Δt1Þ=Δt2 ≈ 5.7%.2 Note that in this

2Taking into account the interaction time Δtint ≈ 4M0 during
which the field travels inside the interior of the object, modifies
the relative difference as Δt12 ≈ 5.3%.
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example, since the total absorbed energy is Etot ¼
κ
P∞

n¼0 γ
nEecho, the hoop limit r0 ¼ 2M0 is never reached.

Obviously, the difference Δt12 can be larger if we choose
parameters that do not prevent the overcoming of the hoop
limit after the absorption of some of the first echoes.
Finally, in this work we have not considered the possible

effects of a frequency-dependent absorption coefficient.
As subsequent echoes contains smaller frequencies to
respect to the previous ones, if the ECO absorbs only
higher frequencies than a given critical energy scale, like in
the case of Boltzmann reflectivity [26], subsequent echoes
will be less absorbed and the absorption can even become
negligible after some echoes. However, excluding a pos-
sible expansion of the object, it seems that the above
described mechanism would additionally require a non-
trivial dependence of the critical energy scale on the
compactness of the object in order to avoid the formation
of a horizon. We leave this to future investigations.
In conclusion, we think that the possible phenomenology

exposed by this investigation should be taken into account
in future searches for echoes in ringdown signals. In fact,
the strategies adopted in these searches are usually based on
the quasiperiodicity of the echoes signal [29,30], a feature
that we showed can be partially lost in more realistic
scenarios. This seems to indicate that future generic
searches for echoes, agnostic to any specific model of
BH mimickers, should give way to more model-dependent
analyses which would take into account the stability, or

meta-stability, of such objects. Last but not least, the
relevance of such findings appears to deserve an extension
to gravitational perturbations, and possibly even more
relevantly, to rotating geometries. We hope that this study
will then stimulate further investigations in the theory and
phenomenology of ECOs and help elaborate a more refined
searching strategy for such objects.
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APPENDIX A: NUMERICAL IMPLEMENTATION

In our simulations we have evolved the scalar field using
a fourth-order Runge-Kutta integrator and computing
spatial derivatives with finite-difference approximation of
second-order accuracy [33]. To validate our code we have
checked the conservation of the energy and the matching
with the time delays computed analytically. We have also
performed a convergence study to guarantee that the
numerical resolution is high enough. In the left panel of
Fig. 5 we observe that, until the mass of the central object is
constant, we find the expected second-order convergence.
However, the right panel of Fig. 5 shows that as the field

FIG. 5. Left: Convergence study of the evolution of the scalar field at time t ¼ 30M0, when the mass parameter is still constant. The
purple line shows the difference between results obtained with low (Δt ¼ Δr� ¼ 0.04M0) and medium (Δt ¼ Δr� ¼ 0.02M0)
resolutions, while the red line shows the difference between results obtained with medium and high (Δt ¼ Δr� ¼ 0.01M0) resolutions
multiplied by 4, the expected factor for second-order convergence. Right: Convergence study of the evolution of the scalar field at time
t ¼ 100M0, when the mass is changed discretely at each time step, introducing a linear error. The purple line shows the difference
between results obtained with low (Δt ¼ Δr� ¼ 0.04M0) and medium (Δt ¼ Δr� ¼ 0.02M0) resolutions, while the red line shows the
difference between results obtained with medium and high (Δt ¼ Δr� ¼ 0.01M0) resolutions multiplied by 2, the expected factor for
linear convergence. In our simulations we always use higher resolution, i.e. Δt ¼ Δr� ¼ 0.001M0.
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arrives at the surface and absorption is taken into account,
the discrete linear increase of the mass parameter at each
time step introduces a dominant linear error.

APPENDIX B: BOUNDARY CONDITIONS

The boundary conditions for the scenarios investigated
in this work are nontrivial. As usual, we impose purely
outgoing (i.e. perfectly absorbing) boundary conditions at
the outer boundary. This is because in real physical systems
there is no outer boundary and the radiation escapes away
at infinity. To do so, we simply impose the condition

∂Ψ
∂t

þ ∂Ψ
∂x

¼ 0 ðB1Þ

at the outer boundary of our computational domain.
However, differently from the BH case, at the ECO

surface r0 we need to impose partially reflecting boundary
conditions, to account for absorption. One way to imple-
ment it is to insert a fictitious, dissipative region of length l
behind r0 and then a perfectly reflecting boundary con-
dition at r0 − l, so that looking at the reflected wave only
from r0 onwards it will have an effective smaller amplitude.
The dissipation, in turn, can be implemented through two
possible methods. One is to switch on a dissipative term in
this region through perfect matched layers [36]. The other
method is to pause the simulation at an instant in which the
whole part of the field that has to be reflected is present
inside the fictitious region, then for each point of the region
we replace ΨðrÞ with ð1 − κÞ1=2ΨðrÞ before the simulation
stars over. In any case, the fictitious dissipative region, will
cause a delay in the reflection that can be either deleted in
the final results or can be interpreted as the interaction time
between the massive object and the scalar wave. If the
central object is compact enough, as in the cases considered
here, this replacement can be done also without inserting
any fictitious region, simply stopping the simulation when
the part of the field that has to be reflected is in the region
between the potential and the surface.
We also checked that we obtain the same results if we

simply impose Dirichlet boundary conditions and multiply
each nth echo for ð1 − κÞn=2 at the end of the simulation.
We have used this last simple implementation for all the
simulations presented here in which the absorption coef-
ficient is constant. This method has already been studied and
applied even in the frequency domain e.g. in Refs. [37,38].

Note also that, given the small absorption coefficients
used in this work, the effect on the echoes amplitude is
negligible.

APPENDIX C: ABSORBED ENERGY

During the multiple reflections of echoes, the central
object absorbs part of the energy of the scalar field and its
mass increases, at a given time step, by an amount κΔEðtÞ,
where κ is the absorption coefficient defined in Eq. (13) and
ΔEðtÞ is the field energy present, at time t, in the last spatial
bin of our computational domain corresponding to the
location of the surface of the central object.
For this reason we need to know the energy distribution

of the echoes that arrive at the surface. To obtain this
distribution we run a simulation in which the central
object is very compact, precisely we put the surface at
r� ¼ −70M0. Then we look at the energy that pass through
a fixed point, distant from the reflecting surface to avoid
possible deformations and interference with the reflecting
wave. Precisely we chose to evaluate the energy at
r� ¼ −45M0. Since the field moves on light rays
dr� ¼ dt, these energy distribution in time is equivalent
to the spatial energy distribution.
The results obtained in this way for the first two echoes

are shown in Fig. 6. Taking into account the right time shift
due to the different position of the surface in the true
simulations, we obtain the energy that arrive at the object
for each instant.
Note however that the results are poorly influenced by

the precise distribution of the energy but basically depends
only on the time of arrival of the echo, its spread and its
total energy.

FIG. 6. Energy present in the spatial bin between r� ¼
−45.001M0 and r� ¼ −45M0 for the first two echoes of a
quadrupolar Gaussian pulse in the spacetime of an ECO with
compactness σ ¼ 2.3 × 10−16.
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